1
|
Lee JY, Son HG, Koo Y, Jung SH, Park SD, Shim JJ, Lee JL, Lee YH. Protective Effects of Cudrania tricuspidata Against Helicobacter pylori-Induced Inflammation in C57BL/6 Mice. J Med Food 2023; 26:224-231. [PMID: 36862521 DOI: 10.1089/jmf.2022.k.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Helicobacter pylori modulates the host inflammatory response, resulting in chronic gastritis, which contributes to gastric cancer pathogenesis. We verified the effect of Cudrania tricuspidata on H. pylori infection by inhibiting H. pylori-induced inflammatory activity. Five-week-old C57BL/6 mice (n = 8) were administered C. tricuspidata leaf extract (10 or 20 mg/kg per day) for 6 weeks. An invasive test (campylobacter-like organism [CLO]) and noninvasive tests (stool antigen test [SAT] and H. pylori antibody enzyme-linked immunosorbent assay) were performed to confirm the eradication of H. pylori. To evaluate the anti-inflammatory effect of C. tricuspidata, pro-inflammatory cytokines levels and inflammation scores were measured in mouse gastric tissue. C. tricuspidata significantly decreased the CLO score and H. pylori immunoglobulin G antibody optical density levels at both 10 and 20 mg/kg per day doses (P < .05). C. tricuspidata decreased the H. pylori antibody levels in a concentration-dependent manner, increased negative responses to SAT by up to 37.5%, and inhibited the pro-inflammatory cytokines interleukin (IL; IL-1β, IL-6, 1L-8, and tumor necrosis factor alpha). C. tricuspidata also relieved gastric erosions and ulcers and significantly reduced the inflammation score (P < .05). We measured rutin in C. tricuspidata extract as a standard for high-performance liquid chromatography. C. tricuspidata leaf extract showed anti-H. pylori activity through the inhibition of inflammation. Our findings suggest that C. tricuspidata leaf extract is potentially an effective functional food material against H. pylori.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Hyung Gu Son
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Yejin Koo
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | | | | | | | | | - Yoo-Hyun Lee
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| |
Collapse
|
2
|
View from the Biological Property: Insight into the Functional Diversity and Complexity of the Gut Mucus. Int J Mol Sci 2023; 24:ijms24044227. [PMID: 36835646 PMCID: PMC9960128 DOI: 10.3390/ijms24044227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Due to mucin's important protective effect on epithelial tissue, it has garnered extensive attention. The role played by mucus in the digestive tract is undeniable. On the one hand, mucus forms "biofilm" structures that insulate harmful substances from direct contact with epithelial cells. On the other hand, a variety of immune molecules in mucus play a crucial role in the immune regulation of the digestive tract. Due to the enormous number of microorganisms in the gut, the biological properties of mucus and its protective actions are more complicated. Numerous pieces of research have hinted that the aberrant expression of intestinal mucus is closely related to impaired intestinal function. Therefore, this purposeful review aims to provide the highlights of the biological characteristics and functional categorization of mucus synthesis and secretion. In addition, we highlight a variety of the regulatory factors for mucus. Most importantly, we also summarize some of the changes and possible molecular mechanisms of mucus during certain disease processes. All these are beneficial to clinical practice, diagnosis, and treatment and can provide some potential theoretical bases. Admittedly, there are still some deficiencies or contradictory results in the current research on mucus, but none of this diminishes the importance of mucus in protective impacts.
Collapse
|
3
|
Park JY, Forman D, Waskito LA, Yamaoka Y, Crabtree JE. Epidemiology of Helicobacter pylori and CagA-Positive Infections and Global Variations in Gastric Cancer. Toxins (Basel) 2018; 10:E163. [PMID: 29671784 PMCID: PMC5923329 DOI: 10.3390/toxins10040163] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a major health burden and is the fifth most common malignancy and the third most common cause of death from cancer worldwide. Development of gastric cancer involves several aspects, including host genetics, environmental factors, and Helicobacter pylori infection. There is increasing evidence from epidemiological studies of the association of H. pylori infection and specific virulence factors with gastric cancer. Studies in animal models indicate H. pylori is a primary factor in the development of gastric cancer. One major virulence factor in H. pylori is the cytotoxin-associated gene A (cagA), which encodes the CagA protein in the cag pathogenicity island (cag PAI). Meta-analysis of studies investigating CagA seropositivity irrespective of H. pylori status identified that CagA seropositivity increases the risk of gastric cancer (OR = 2.87, 95% CI: 1.95⁻4.22) relative to the risk of H. pylori infection alone (OR = 2.31, 95% CI: 1.58⁻3.39). Eradicating H. pylori is a strategy for reducing gastric cancer incidence. A meta-analysis of six randomised controlled trials (RCTs) suggests that searching for and eradicating H. pylori infection reduces the subsequent incidence of gastric cancer with a pooled relative risk of 0.66 (95% CI: 0.46⁻0.95). The introduction in regions of high gastric cancer incidence of population-based H. pylori screening and treatment programmes, with a scientifically valid assessment of programme processes, feasibility, effectiveness and possible adverse consequences, would impact the incidence of H. pylori-induced gastric cancer. Given the recent molecular understanding of the oncogenic role of CagA, targeting H. pylori screening and treatment programmes in populations with a high prevalence of H. pylori CagA-positive strains, particularly the more oncogenic East Asian H. pylori CagA strains, may be worth further investigation to optimise the benefits of such strategies.
Collapse
Affiliation(s)
- Jin Young Park
- International Agency for Research on Cancer, 69372 Lyon, France.
| | - David Forman
- International Agency for Research on Cancer, 69372 Lyon, France.
| | - Langgeng Agung Waskito
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60113, Indonesia.
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita 879-5503, Japan.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita 879-5503, Japan.
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX 77030, USA.
| | - Jean E Crabtree
- Leeds Institute Biomedical and Clinical Sciences, Wellcome Trust Brenner Building, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
4
|
Zhang S, Kim W, Pham TT, Rogers AB, Houghton JM, Moss SF. Native and bone marrow-derived cell mosaicism in gastric carcinoma in H. pylori-infected p27-deficient mice. Oncotarget 2018; 7:69136-69148. [PMID: 27655701 PMCID: PMC5342465 DOI: 10.18632/oncotarget.12049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/02/2016] [Indexed: 01/25/2023] Open
Abstract
Objective Chronic Helicobacter pylori (H. pylori) infection promotes non-cardia gastric cancer. Some mouse models suggest that bone marrow derived cells (BMDC) contribute to Helicobacter-associated gastric carcinogenesis. We determined whether this increased susceptibility to Helicobacter-induced gastric carcinogenesis of p27-deficient mice is dependent upon their p27-null BMDC or their p27-null gastric epithelial cells. Design Female mice (recipients) were irradiated and transplanted with BMDC from male donors. Wild type (WT) mice in group 1 (control) received BMDC from male GFP-transgenic mice. Female WT and p27 KO mice were engrafted with male p27KO mice BMDC (Group 2) or GFP-transgenic WT BMDC (Group 3). Recipients were infected with H. pylori SS1 for one year. Results Mice lacking p27 in either the BM pool or gastric epithelium developed significantly more advanced gastric pathology, including high-grade dysplasia. Co-staining of donor BMDC in dysplastic gastric glands was confirmed by immunofluorescence. Gastric expression of IL-1 beta protein was reduced in groups 2 and 3 (p < 0.05 vs control) whereas expression of IFN-γ and chemokines MIP-1 beta, MIG, IP-10 and RANTES in group 2 were significantly higher than group 3. Conclusions Both bone marrow-derived and gastric epithelial cells contribute to the increased gastric cancer susceptibility of p27-deficient H. pylori-infected mice.
Collapse
Affiliation(s)
- Songhua Zhang
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Woojin Kim
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Tu T Pham
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Arlin B Rogers
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jean Marie Houghton
- Department of Medicine and Cancer Biology, Division of Gastroenterology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Steven F Moss
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
5
|
miR-30a acts as a tumor suppressor by double-targeting COX-2 and BCL9 in H. pylori gastric cancer models. Sci Rep 2017; 7:7113. [PMID: 28769030 PMCID: PMC5540978 DOI: 10.1038/s41598-017-07193-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 06/23/2017] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most important factors that affect the development of gastric cancer, and its mechanism remains un-elucidated. Our present study found that, miR-30a is crucial for regulating the growth and migration of H. pylori infected gastric cancer in vitro by targeting COX-2 and BCL9. In details, double-stranded miR-30a precursor produced two single-stranded and matured miRNAs including miR-30a-3p and miR-30a-5p, which played significant biological functions in two different manners. First, miR-30a-3p inhibited COX-2 expression and regulated nuclear translocation of β-catenin, and second, miR-30a-5p targeted BCL9 to regulate TCF/LEF promoter activity followed by affecting β-catenin downstream target gene expression. In vivo, miR-30a knockout mice were successfully achieved using CRISPR/Cas9 gene editing technology. Compared with H. pylori-infected wild-type mice, H. pylori-infected miR-30a knockout mice showed increased incidence of chronic gastritis, chronic atrophic gastritis, atypical hyperplasia, and other precancerous lesions or adenocarcinoma manifestations in the antral or gastric mucosa of mice, as well as regulation of genes closely associated with tumor development. Taken together, miR-30a acts as a tumor suppressor by double-targeting COX-2 and BCL9, and significantly affects the development of H. pylori-induced gastric cancer, shedding new light on the mechanisms underlying H. pylori-associated gastric cancer.
Collapse
|
6
|
Lee JY, Kim N, Choi YJ, Nam RH, Choi YJ, Lee S, Choi D, Lee HS, Kim JW, Lee DH. Effect of N-Methyl-N-Nitrosourea on Helicobacter-induced Gastric Carcinogenesis in C57BL/6 Mice. J Cancer Prev 2016; 21:182-186. [PMID: 27722144 PMCID: PMC5051592 DOI: 10.15430/jcp.2016.21.3.182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the effect of N-methyl-N-nitrosourea (MNU) treatment followed by chronic Helicobacter pylori SS1 and H. felis colonization on the stomachs of C57BL/6 mice. The role of MNU and Helicobacter species in gastric carcinogenesis was also elucidated. METHODS A total of 69 C57BL/6 mice at 4 weeks of age were divided into 6 groups according to MNU treatment and H. pylori SS1 or H. felis infection. The mice were sacrificed at 21 and 50 weeks. The degree of inflammation was determined by histopathology. The levels of gastric mucosal myeloperoxidase, TNF-α, and interleukin-1β (IL-1β) were measured by ELISA. RESULTS In the H. felis groups with or without MNU, the incidence of gastric tumors was 21.1% and 35.0% at 21 and 50 weeks, respectively. No gastric tumors were observed in all control mice. At 50 weeks, 37.5% of gastric adenoma cases were observed in the H. felis alone and MNU + H. felis groups. Furthermore, 12.5% of gastric adenocarcinoma cases were observed in the MNU alone and MNU + H. felis groups. The gastric mucosal IL-1β level was significantly higher in the MNU + H. felis group at 21 weeks and H. felis group at 50 weeks, respectively, than that for control mice (P < 0.05). However, the effect of MNU on H. pylori SS1-induced gastric carcinogenesis was low compared to that on H. felis. CONCLUSIONS Administration of MNU before H. felis infection provokes severe inflammation through IL-1β, and eventually induces gastric cancer. However, the role of MNU in H. pylori SS1-induced gastric carcinogenesis model is minor.
Collapse
Affiliation(s)
- Ju Yup Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoon Jeong Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seonmin Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Daeun Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jin-Wook Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
7
|
Zhang S, Lee DS, Morrissey R, Aponte-Pieras JR, Rogers AB, Moss SF. Early or late antibiotic intervention prevents Helicobacter pylori-induced gastric cancer in a mouse model. Cancer Lett 2015; 359:345-51. [PMID: 25853150 DOI: 10.1016/j.canlet.2015.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
H. pylori infection causes gastritis, peptic ulcers and gastric cancer. Eradicating H. pylori prevents ulcers, but to what extent this prevents cancer remains unknown, especially if given after intestinal metaplasia has developed. H. pylori infected wild-type (WT) mice do not develop cancer, but mice lacking the tumor suppressor p27 do so, thus providing an experimental model of H. pylori-induced cancer. We infected p27-deficient mice with H. pylori strain SS1 at 6-8 weeks of age. Persistently H. pylori-infected WT C57BL/6 mice served as controls. Mice in the eradication arms received antimicrobial therapy (omeprazole, metronidazole and clarithromycin) either "early" (at 15 weeks post infection, WPI) or "late" at 45 WPI. At 70 WPI, mice were euthanized for H. pylori determination, histopathology and cytokine/chemokine expression. Persistently infected mice developed premalignant lesions including high-grade dysplasia, whereas those given antibiotics did not. Histologic activity scores in the eradication groups were similar to each other, and were significantly decreased compared with controls for inflammation, epithelial defects, hyperplasia, metaplasia, atrophy and dysplasia. IP-10 and MIG levels in groups that received antibiotics were significantly lower than controls. There were no significant differences in expression of IFN-γ, TNF-α, IL-1β, RANTES, MCP-1, MIP-1α or MIP-1β among the three groups. Thus, H. pylori eradication given either early or late after infection significantly attenuated gastric inflammation, gastric atrophy, hyperplasia, and dysplasia in the p27-deficient mice model of H. pylori-induced gastric cancer, irrespective of the timing of antibiotic administration. This was associated with reduced expression of IP-10 and MIG.
Collapse
|
8
|
Lee JY, Kim N, Nam RH, Choi YJ, Seo JH, Lee HS, Oh JC, Lee DH. No Correlation of Inflammation With Colonization of Helicobacter pylori in the Stomach of Mice Fed High-salt Diet. J Cancer Prev 2014; 19:144-51. [PMID: 25337583 PMCID: PMC4204169 DOI: 10.15430/jcp.2014.19.2.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/09/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Previous studies on Helicobacter pylori infection in mice have contributed to better understanding of the pathogenesis of chronic gastritis and gastric carcinoma. The aim of this study was to evaluate H. pylori colonization and subsequent inflammatory responses in the stomachs of C57BL/6 mice depending on inoculation number and the presence of high-salt diet. Methods: Eighty-four female mice with 4 weeks age were used in this study. The infected mice were gavaged with H. pylori strain Sydney-1 (SS1), and the uninfected mice were dosed with vehicle. In each of these groups, half of the mice were fed ona basal diet (0.25% salt) and the other half were fed on a high-salt diet (7.5% salt). The infected mice were inoculated 4 or 5 times, and infection status and degree of inflammation were checked by culture and histopathology, respectively, after 4 weeks. Gastric mucosal myeloperoxidase and tumor necrosis factor-alpha were measured by ELISA. Results: The overall infection rate was 95.2%; the infection rate after 5 inoculations (100%) was greater than that after 4 inoculations (91.3%). However, no differences in the degree of inflammation were found between 2 groups. The bacterial density was also significantly increased in mice that were on the high-salt diet and had been inoculated 5 times, respectively. Mean neutrophil infiltration in the infected group was 1.7±0.6 (1, minimal; 2, mild; 3, moderate; 4, marked). However, the high-salt diet was not increase the inflammatory grade in the infected group. Gastric mucosal myeloperoxidase and tumor necrosis factor-alpha levels did not increased by the high-salt diet and increased the number of inoculation. Conclusions: In spite of well colonization of H. pylori in the stomachs of C57BL/6 mice, the degree of subsequent inflammation was irrelevant to high-salt diet and frequent (5 times) inoculations.
Collapse
Affiliation(s)
- Ju Yup Lee
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea
| | - Nayoung Kim
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea
| | - Ryoung Hee Nam
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea
| | - Yoon Jeong Choi
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea
| | - Ji Hyung Seo
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea
| | - Hye Seung Lee
- Departments of Pathology, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea
| | - Jane C Oh
- Yonsei Plus Clinic, Seongnam, Gyeonggi-do, Korea
| | - Dong Ho Lee
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea
| |
Collapse
|
9
|
Zhang S, Lee DS, Morrissey R, Aponte-Pieras JR, Rogers AB, Moss SF. Early or late antibiotic intervention prevents Helicobacter pylori-induced gastric cancer in a mouse model. Cancer Lett 2014; 355:106-12. [PMID: 25218349 DOI: 10.1016/j.canlet.2014.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 02/08/2023]
Abstract
H. pylori infection causes gastritis, peptic ulcers and gastric cancer. Eradicating H. pylori prevents ulcers, but to what extent this prevents cancer remains unknown, especially if given after intestinal metaplasia has developed. H. pylori infected wild-type (WT) mice do not develop cancer, but mice lacking the tumor suppressor p27 do so, thus providing an experimental model of H. pylori-induced cancer. We infected p27-deficient mice with H. pylori strain SS1 at 6-8 weeks of age. Persistently H. pylori-infected WT C57BL/6 mice served as controls. Mice in the eradication arms received antimicrobial therapy (omeprazole, metronidazole and clarithromycin) either "early" (at 15 weeks post infection, WPI) or "late" at 45 WPI. At 70 WPI, mice were euthanized for H. pylori determination, histopathology and cytokine/chemokine expression. Persistently infected mice developed premalignant lesions including high-grade dysplasia, whereas those given antibiotics did not. Histologic activity scores in the eradication groups were similar to each other, and were significantly decreased compared with controls for inflammation, epithelial defects, hyperplasia, metaplasia, atrophy and dysplasia. IP-10 and MIG levels in groups that received antibiotics were significantly lower than controls. There were no significant differences in expression of IFN-γ, TNF-α, IL-1β, RANTES, MCP-1, MIP-1α or MIP-1β among the three groups. Thus, H. pylori eradication given either early or late after infection significantly attenuated gastric inflammation, gastric atrophy, hyperplasia, and dysplasia in the p27-deficient mice model of H. pylori-induced gastric cancer, irrespective of the timing of antibiotic administration. This was associated with reduced expression of IP-10 and MIG.
Collapse
Affiliation(s)
- Songhua Zhang
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Dong Soo Lee
- Department of Gastroenterology, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Rhiannon Morrissey
- Department of Biology and Biomedical Sciences, Salve Regina University, Newport, RI 02840, USA
| | - Jose R Aponte-Pieras
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Arlin B Rogers
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Steven F Moss
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|
10
|
Navabi N, McGuckin MA, Lindén SK. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS One 2013; 8:e68761. [PMID: 23869232 PMCID: PMC3712011 DOI: 10.1371/journal.pone.0068761] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 06/04/2013] [Indexed: 12/26/2022] Open
Abstract
Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.
Collapse
Affiliation(s)
- Nazanin Navabi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Michael A. McGuckin
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute and the University of Queensland School of Biomedical Sciences, Translational Research Institute, Woolloongabba, Australia
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
11
|
Abstract
Animal models are essential for in vivo analysis of Helicobacter-related diseases. Transgenic mice and Mongolian gerbil models have been the corner stone of present research focusing on both bacterial virulence factors and host response to infection. Establishing a reproducible rodent model of persistent Helicobacter pylori infection that resembles the H. pylori-associated gastritis observed in humans was a considerable challenge until Lee et al. (Gastroenterology 112:1386-1397, 1997) successfully adapted a clinical Cag A- and Vac A-expressing strain for the mouse stomach. This so-called SS1 (Sydney) strain has since been extensively used for H. pylori research; other rodent-adapted Helicobacter strains have subsequently been developed and utilized in wild-type and genetically engineered rodent models. These bacteria include both H. pylori and the larger but related species H. felis (originally isolated from cats). In this chapter we focus mainly on these two Helicobacter strains and review the rodent models that have been employed to investigate how Helicobacter species induce gastric inflammation and disease.
Collapse
|
12
|
Blood leukocyte Alu and LINE-1 methylation and gastric cancer risk in the Shanghai Women's Health Study. Br J Cancer 2011; 106:585-91. [PMID: 22173668 PMCID: PMC3273339 DOI: 10.1038/bjc.2011.562] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Recent data suggest a link between blood leukocyte DNA methylation, and cancer risk. However, reports on DNA methylation from a prospective study are unavailable for gastric cancer. Methods: We explored the association between methylation in pre-diagnostic blood leukocyte DNA and gastric cancer risk in a case–control study nested in the prospective Shanghai Women's Health Study cohort. Incident gastric cancer cases (n=192) and matched controls (n=384) were included in the study. Methylation of Alu and long interspersed nucleotide elements (LINE)-1 were evaluated using bisulphite pyrosequencing. Odds ratios (ORs) and 95% confidence intervals (CI) were calculated from logistic regression adjusting for potential confounders. Results: Alu methylation was inversely associated with gastric cancer risk, mainly among cases diagnosed one or more years after blood collection. After excluding cases diagnosed during the first year of follow-up, the ORs for the third, second, and first quartiles of Alu methylation compared with the highest quartile were 2.43 (1.43–4.13), 1.47(0.85–2.57), and 2.22 (1.28–3.84), respectively. This association appeared to be modified by dietary intake, particularly isoflavone. In contrast, LINE-1 methylation levels were not associated with gastric cancer risk. Conclusion: Evidence from this prospective study is consistent with the hypothesis that DNA hypomethylation in blood leukocytes may be related to cancer risk, including risk of gastric cancer.
Collapse
|
13
|
Lee KM, Lee JS, Jung HS, Park DK, Park HS, Hahm KB. Late reactivation of sonic hedgehog by Helicobacter pylori results in population of gastric epithelial cells that are resistant to apoptosis: implication for gastric carcinogenesis. Cancer Lett 2009; 287:44-53. [PMID: 19540662 DOI: 10.1016/j.canlet.2009.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 01/06/2023]
Abstract
As much as that a disturbance of tissue homeostasis through dysregulated apoptosis is generally associated with carcinogenesis, gastric carcinogenesis after Helicobacter pylori infection could be the accumulated consequence of imbalances between apoptosis and proliferation. Since sonic hedgehog (Shh) has been reported to play versatile roles in various tumorigenesis, we hypothesized that late reactivation of sonic hedgehog by H. pylori infection results in population of gastric epithelial cells that are resistant to apoptosis. The Resistant Clones against H. pylori-induced Apoptosis (RCHA) were established and maintained up to 19th cell passages, during which the serial changes of Shh expression were measured. Apoptosis was measured in N-Shh over-expressed stable cell lines and compared with parent cell line after either infected with H. pylori or treated with cyclopamine. For clinical relevance, the expressions of Shh were compared in tissues from gastric adenoma or adenocarcinoma according to H. pylori infection. Longer passages of RCHA after H. pylori infection, the higher expressions of Shh, suggesting RCHA was associated with the reactivation of Shh. Significant decrement in subG1 phase of cell cycle and attenuated executions of apoptosis after H. pylori infection in cells of Shh overexpression, whereas either Shh siRNA or cyclopamine increased the H. pylori-induced cytotoxicity and significantly abrogated anti-apoptotic actions imposed by Shh. Significantly higher expressions of Shh were seen in H. pylori-associated gastric cancers than H. pylori-not associated gastric cancer. Late reactivation of sonic hedgehog by H. pylori infection results in population of gastric epithelial cells that are resistant to apoptosis and imposes proliferative changes under the background of atrophic gastritis, providing the carcinogenic basis.
Collapse
Affiliation(s)
- Kee Myung Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
14
|
Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol 2008; 1:183-97. [PMID: 19079178 PMCID: PMC7100821 DOI: 10.1038/mi.2008.5] [Citation(s) in RCA: 834] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mucosal tissues of the gastrointestinal, respiratory, reproductive, and urinary tracts, and the surface of the eye present an enormous surface area to the exterior environment. All of these tissues are covered with resident microbial flora, which vary considerably in composition and complexity. Mucosal tissues represent the site of infection or route of access for the majority of viruses, bacteria, yeast, protozoa, and multicellular parasites that cause human disease. Mucin glycoproteins are secreted in large quantities by mucosal epithelia, and cell surface mucins are a prominent feature of the apical glycocalyx of all mucosal epithelia. In this review, we highlight the central role played by mucins in accommodating the resident commensal flora and limiting infectious disease, interplay between underlying innate and adaptive immunity and mucins, and the strategies used by successful mucosal pathogens to subvert or avoid the mucin barrier, with a particular focus on bacteria.
Collapse
Affiliation(s)
- S K Linden
- grid.1003.20000 0000 9320 7537Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, Level 3 Aubigny Place, Mater Hospitals, South Brisbane, Queensland Australia
| | - P Sutton
- grid.1008.90000 0001 2179 088XCentre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria Australia
| | - N G Karlsson
- grid.6142.10000 0004 0488 0789Department of Chemistry, Centre for BioAnalytical Sciences, National University of Ireland, Galway, Ireland
| | - V Korolik
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Gold Coast, Queensland Australia
| | - M A McGuckin
- grid.1003.20000 0000 9320 7537Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, Level 3 Aubigny Place, Mater Hospitals, South Brisbane, Queensland Australia
| |
Collapse
|
15
|
Chen D, Stenström B, Zhao CM, Wadström T. Does Helicobacter pylori infection per se cause gastric cancer or duodenal ulcer? Inadequate evidence in Mongolian gerbils and inbred mice. ACTA ACUST UNITED AC 2007; 50:184-9. [PMID: 17567281 DOI: 10.1111/j.1574-695x.2007.00249.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A role for Helicobacter pylori infection in the development of gastric cancer in humans is well established; however, evidence for its carcinogenicity in animals remains inadequate. Mongolian gerbils and mice are commonly used to investigate the carcinogenicity of H. pylori, yet it is unclear whether H. pylori infection per se causes gastric cancer or duodenal ulcers in these animal models. Gastric adenocarcinoma in the gerbils was reported over 10 years ago, but this species has proved an unreliable model for studying H. pylori infection-associated gastric cancer. Helicobacter pylori infection alone appears insufficient to induce gastric cancer in these animals; additional carcinogenic insult is required. The development of invasive adenocarcinoma in inbred mice is rare regardless of the mouse or bacterial strain, and many long-term studies have failed to induce gastric cancer in these animals. Helicobacter pylori infection is also an established causative factor for duodenal ulcer in humans. However, few studies have attempted to develop animal models of H. pylori infection-induced duodenal ulcer. We therefore conclude that both Mongolian gerbils and inbred mice may be inadequate models for studying H. pylori infection-associated gastric cancer and that there is no animal model of H. pylori infection-induced duodenal ulcer.
Collapse
Affiliation(s)
- Duan Chen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | |
Collapse
|
16
|
Sgouras DN, Panayotopoulou EG, Martinez-Gonzalez B, Petraki K, Michopoulos S, Mentis A. Lactobacillus johnsonii La1 attenuates Helicobacter pylori-associated gastritis and reduces levels of proinflammatory chemokines in C57BL/6 mice. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2006; 12:1378-86. [PMID: 16339060 PMCID: PMC1317072 DOI: 10.1128/cdli.12.12.1378-1386.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In clinical settings, Lactobacillus johnsonii La1 administration has been reported to have a favorable effect on Helicobacter pylori-associated gastritis, although the mechanism remains unclear. We administered, continuously through the water supply, live La1 to H. pylori-infected C57BL/6 mice and followed colonization, the development of H. pylori-associated gastritis in the lamina propria, and the levels of proinflammatory chemokines macrophage inflammatory protein 2 (MIP-2) and keratinocyte-derived cytokine (KC) in the serum and gastric tissue over a period of 3 months. We documented a significant attenuation in both lymphocytic (P=0.038) and neutrophilic (P=0.003) inflammatory infiltration in the lamina propria as well as in the circulating levels of anti-H. pylori immunoglobulin G antibodies (P=0.003), although we did not observe a suppressive effect of La1 on H. pylori colonizing numbers. Other lactobacilli, such as L. amylovorus DCE 471 and L. acidophilus IBB 801, did not attenuate H. pylori-associated gastritis to the same extent. MIP-2 serum levels were distinctly reduced during the early stages of H. pylori infection in the La1-treated animals, as were gastric mucosal levels of MIP-2 and KC. Finally, we also observed a significant reduction (P=0.046) in H. pylori-induced interleukin-8 secretion by human adenocarcinoma AGS cells in vitro in the presence of neutralized (pH 6.8) La1 spent culture supernatants, without concomitant loss of H. pylori viability. These observations suggest that during the early infection stages, administration of La1 can attenuate H. pylori-induced gastritis in vivo, possibly by reducing proinflammatory chemotactic signals responsible for the recruitment of lymphocytes and neutrophils in the lamina propria.
Collapse
Affiliation(s)
- Dionyssios N Sgouras
- Dept. of Medical Microbiology, Institut Pasteur Hellenique, 127 Vas. Sofias Avenue, 115 21 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
17
|
Wang RQ, Fang DC. Effects of Helicobacter pylori infection on mucin expression in gastric carcinoma and pericancerous tissues. J Gastroenterol Hepatol 2006; 21:425-31. [PMID: 16509869 DOI: 10.1111/j.1440-1746.2005.04006.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Helicobacter pylori infection is one of the major causes of human gastric carcinoma and can disturb the gastric mucosa barrier. Mucins have not only lubricating and protecting functions, but are also related to signal transduction, turnover of gastric epithelium and carcinogenesis of gastric mucosa. The aim of this study was to investigate the relationship between H. pylori infection and aberrant mucin expression in patients with gastric carcinoma. METHODS H. pylori infection was diagnosed by the Warthin-Starry staining method. Different kinds of mucins were detected using an immunohistochemical method. RESULTS Of 46 patients with gastric carcinoma, there were 26 patients who had H. pylori infection (56.5%). Of 21 pericancerous mucosas from the H. pylori-positive patients, 14 had MUC2 expression (66.7%), seven had strong MUC1 expression (+ + +) (33.7%), seven had strong MUC6 expression (+ + +) (33.3%), and five had strong MUC5AC expression (+ + +) (23.8%). In contrast, only six of 18 H. pylori-negative pericancerous mucosas had MUC2 expression (33.3%) (P < 0.05 compared with H. pylori-positive pericancerous mucosas), 12 had strong MUC1 expression (+ + +) in 16 H. pylori-negative pericancerous mucosas (75%) (P < 0.05), 11 had strong MUC6 expression (+ + +) in 16 H. pylori-negative pericancerous mucosas (68.8%) (P < 0.05), and 10 had strong MUC5AC expression (+ + +) in 14 H. pylori-negative pericancerous mucosas (71.4%) (P < 0.01). Of the H. pylori-positive cancerous tissues, 50% (13/26) had MUC1 expression and 38.5% (10/26) had MUC6 expression. In comparison, of the H. pylori-negative cancerous tissues, 80% (16/20) had MUC1 expression (P < 0.05) and 80% (16/20) had MUC6 expression (P < 0.01). CONCLUSIONS The results indicate that H. pylori infection can alter the expression of some mucin genes in pericancerous mucosa and cancerous tissues of gastric carcinoma, then destroy the gastric mucosa barrier.
Collapse
Affiliation(s)
- Rong-Quan Wang
- Department of Gastroenterology, Southwestern Hospital, Third Military Medical University, Chongqing, China.
| | | |
Collapse
|
18
|
Kodama M, Murakami K, Sato R, Okimoto T, Nishizono A, Fujioka T. Helicobacter pylori-infected animal models are extremely suitable for the investigation of gastric carcinogenesis. World J Gastroenterol 2005; 11:7063-71. [PMID: 16437649 PMCID: PMC4725077 DOI: 10.3748/wjg.v11.i45.7063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 06/23/2005] [Accepted: 06/24/2005] [Indexed: 02/06/2023] Open
Abstract
Although various animal models have been developed to clarify gastric carcinogenesis, apparent mechanism of gastric cancer was not clarified in recent years. Since the recognition of the pathogenicity of Helicobacter pylori (H pylori), several animal models with H pylori infection have been developed to confirm the association between H pylori and gastric cancer. Nonhuman primate and rodent models were suitable for this study. Japanese monkey model revealed atrophic gastritis and p53 mutation after long-term infection of H pylori. Mongolian gerbil model showed the development of gastric carcinoma with H pylori infection alone, as well as with combination of chemical carcinogens, such as N-methyl-N-nitrosourea and N-methyl-N-nitro-N'-nitrosoguanidine. The histopathological changes of these animal models after H pylori inoculation are closely similar to those in human beings with H pylori infection. Eradication therapy attenuated the development of gastric cancer in H pylori-infected Mongolian gerbil. Although several features of animal models differ from those seen in human beings, these experimental models provide a starting point for further studies to clarify the mechanism of gastric carcinogenesis as a result of H pylori infection and assist the planning of eradication therapy to prevent gastric carcinoma.
Collapse
Affiliation(s)
- Masaaki Kodama
- Department of Gastroenterology, Oita University, Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Oita-gun, Oita 879-55, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Zhao XH, Gu SZ, Tian HG, Quan P, Pan BR. Clinical significance of expression of apoptotic signal proteins in gastric carcinoma tissue. World J Gastroenterol 2005; 11:3846-9. [PMID: 15991280 PMCID: PMC4504883 DOI: 10.3748/wjg.v11.i25.3846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the expressions of apoptotic signal proteins FADD, TRADD, FasL, Fas, and NFκB in gastric carcinoma tissues and their clinical significance.
METHODS: Western blot immune trace method was adopted to detect the expressions of apoptotic signal proteins FADD, TRADD, FasL, Fas, and NFκB in 55 tissue specimens of gastric carcinoma.
RESULTS: Five apoptotic signal proteins had different expressions in the gastric carcinoma samples and their expressions were not correlated to age (P = 0.085). Expressions of the FADD, FasL, Fas, and NFκB proteins reduced with increase of the volume of tumor with the exception of increased expression the TRADD protein (64.7-71.1%, P = 0.031). With gradual increase of the malignancy of gastric carcinoma tissues, expressions of the FADD, FasL, and Fas proteins decreased (78.6-28.0%, P = 0.008; 78.6-65.9%, P = 0.071; 100.0-46.3%, P = 0.014), while expressions of the TRADD and NFκB proteins increased (42.9-78.1%, P = 0.063; 78.6-79.1%, P = 0.134). With gradual increase of serum CEA, expression of the FADD protein decreased (62.5-34.0%, P = 0.073), but expressions of the TRADD, FasL, Fas, and NFκB proteins increased (0.0-80.8%, P = 0.005; 62.5-70.2%, P = 0.093; 0.0-70.2%, P = 0.003; 62.5-80.9%, P = 0.075). When compared to the tissues of gastric carcinoma without metastasis, the positive rate of expressions of the FADD and FasL proteins increased, whereas expressions of the TRADD, FADD, and NFκB proteins decreased. There was no significant difference between them (P = 0.095).
CONCLUSION: Gastric carcinoma is endurable to Fas-related apoptosis and apoptotic signal proteins are differently expressed in gastric carcinoma.
Collapse
Affiliation(s)
- Xin-Han Zhao
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Department of Forensic Medicine, Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | | | | | | | | |
Collapse
|
20
|
Park S, Kim WS, Choi UJ, Han SU, Kim YS, Kim YB, Chung MH, Nam KT, Kim DY, Cho SW, Hahm KB. Amelioration of oxidative stress with ensuing inflammation contributes to chemoprevention of H. pylori-associated gastric carcinogenesis. Antioxid Redox Signal 2004; 6:549-60. [PMID: 15130281 DOI: 10.1089/152308604773934305] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The gastric inflammatory response provoked by Helicobacter pylori (H. pylori) consists of infiltrations by neutrophils, lymphocytes, and macrophages, resulting in varying degrees of epithelial cell damage. H. pylori-associated inflammation not only activates various oxidant-producing enzymes such as NADPH oxidase and inducible nitric oxide synthase, but also lowers the antioxidant ascorbic acid in the stomach. Reactive oxygen metabolites and nitrogen metabolites generated by these enzymes react with each other to generate new or more potent reactive species. The specific types of cellular damage resulting from reactive oxygen metabolites include lipid peroxidation, protein oxidation, and oxidative DNA damage. All of these oxidative products can result in biochemical changes leading to cancer. A positive association has been demonstrated between H. pylori infection and gastric adenocarcinoma with increased oxidative stress. Therefore, appropriate treatment to reduce oxidative stress would be expected to prevent subsequent gastric carcinogenesis through lessening of H. pylori-associated inflammation. This review will provide evidence that antiinflammatory regimens can decrease the development of tumors and the amelioration of gastric inflammation might lead to chemoprevention strategies by the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Soojin Park
- Genomic Research Center for Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Gastric cancer is the second most common cause of cancer-related mortality world-wide. In most cases, it develops via the pre-malignant stages of atrophic gastritis, intestinal metaplasia and dysplasia, following Helicobacter pylori infection of susceptible individuals. A number of rodent models have recently provided valuable insights into the host, bacterial and environmental factors involved in gastric carcinogenesis. Wild-type rodents do not develop gastric adenocarcinoma, but early studies showed that the disease could be induced in several rodent species by chemical carcinogens. More recently, it has been demonstrated that gastric adenocarcinoma can be induced in Mongolian gerbils by H. pylori infection and in C57BL/6 mice by long-term H. felis infection. These models have allowed the importance of Helicobacter virulence genes, host factors, such as gender, strain and immune response, and environmental factors, such as dietary salt, to be explored. A number of transgenic mice with alterations in various pathways, including the immune response, gastrin biosynthesis, parietal cell development, growth factors and tumour suppressors, have also provided models of various stages of gastric carcinogenesis. One model that has proved to be particularly valuable is the hypergastrinaemic INS-GAS mouse, in which gastric carcinoma develops spontaneously in old animals, but the process is greatly accelerated by Helicobacter infection.
Collapse
Affiliation(s)
- D M Pritchard
- Department of Medicine, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
22
|
Tao HX, Liu CJ, Liu XL, Li SQ, Li J, Zhang ZS. Establishment of mouse models with long-term infection of H. pylori. Shijie Huaren Xiaohua Zazhi 2004; 12:626-629. [DOI: 10.11569/wcjd.v12.i3.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a mouse model with long-term infection of H. pylori.
METHODS: Each mouse was inoculated with H. pylori Sydney strain 1 (SS1). Noninfected control mice and infected mice were killed at 4, 12 and 24 wk after H. pylori infection. A piece of gastric mucosa obtained from the posterior wall of the antrum of each mouse was used for culture of H. pylori, rapid urease testing and histopathological detection. Serum was obtained to measure the IgG antibody level to H. pylori.
RESULTS: After 4 wk of infection, the H. pylori was cultured from 6 of 7 infected Babl/c mice and 5 of 7 the H. pylori-infected C57BL/6 mice. After 12 and 24 wk of infection, all of 7 infected Babl/c and 6 of 7 the H. pylori-infected C57BL/6 mice showed the positive results. At the different wk, the rapid urease test results were consistent with the H. pylori culture test. At 12 wk after inoculation, chronic inflammation was observed in the pyloric mucosa by histopathological examination. At 24 wk after inoculation, lymphoid follicles were especially conspicuous in the submucosa, and they were also found in the deep portion of the mucosa.
CONCLUSION: H. pylori SS1 can colonize easily in the glandular stomach mucosa of mouse, and the histopathological changes are similar to those of humans with H. pylori infection.
Collapse
|