1
|
Jožef M, Locatelli I, Brecl Jakob G, Kos M, Rot U. Medication persistence among people with multiple sclerosis in Slovenia treated with dimethyl fumarate. Curr Med Res Opin 2023; 39:1489-1496. [PMID: 37772491 DOI: 10.1080/03007995.2023.2265299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVE Multiple sclerosis is a chronic, demyelinating inflammatory disease of the central nervous system. Medication persistence is defined as an interval between the initiation and last dose of the applied medication and presents a useful surrogate marker of a stable disease course. This observational study aimed to evaluate medication persistence and discontinuation reasons in Slovenian people with multiple sclerosis treated with dimethyl fumarate. METHODS Our retrospective cohort study evaluated people with relapsing-remitting multiple sclerosis treated with dimethyl fumarate as an initial monotherapy or switched from injectable disease-modifying therapy medication between 2014 and 2021. Medication dispenses were extracted from the Slovenian National Institute of Public Health Outpatient Medication Database. The medication persistence criterion was based on the treatment gap. Patients exceeding a 60-day gap were considered nonpersistent. The median time to discontinuation was assessed using survival analyses. Considering discontinuation reasons, patients were further divided into safety and inefficacy groups. Due to the high probability of adverse effects, patients exceeding a 60-day gap were included in the safety group, but definite discontinuation reason remains unknown. The impact of covariates was evaluated by Cox regression. RESULTS A total of 269 patients were included (183 women, mean age 37 years). During the 7-year follow-up period, 123 (45.7%) patients discontinued treatment. The median time to discontinuation was 5.6 years. After 1, 2, and 5 years of treatment, 84%, 77%, and 57% of patients were found to be persistent, respectively. All patients older than 30 years (p = 0.0013) and among them, those in the inefficacy group (p = 0.037) were more likely to be persistent. CONCLUSIONS The results of our study proved a high persistence rate among our patients. The most frequent discontinuation reason was gastrointestinal adverse effects. Medication persistence requires interventions in younger patients with an unstable disease course.
Collapse
Affiliation(s)
- Maj Jožef
- Department of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Division of Neurology, Multiple Sclerosis Centre, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Igor Locatelli
- Department of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Brecl Jakob
- Division of Neurology, Multiple Sclerosis Centre, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mitja Kos
- Department of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Uroš Rot
- Division of Neurology, Multiple Sclerosis Centre, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Schuhmann MK, Langhauser F, Zimmermann L, Bellut M, Kleinschnitz C, Fluri F. Dimethyl Fumarate Attenuates Lymphocyte Infiltration and Reduces Infarct Size in Experimental Stroke. Int J Mol Sci 2023; 24:15540. [PMID: 37958527 PMCID: PMC10648192 DOI: 10.3390/ijms242115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Ischemic stroke is associated with exacerbated tissue damage caused by the activation of immune cells and the initiation of other inflammatory processes. Dimethyl fumarate (DMF) is known to modulate the immune response, activate antioxidative pathways, and improve the blood-brain barrier (BBB) after stroke. However, the specific impact of DMF on immune cells after cerebral ischemia remains unclear. In our study, male mice underwent transient middle cerebral artery occlusion (tMCAO) for 30 min and received oral DMF (15 mg/kg) or a vehicle immediately after tMCAO, followed by twice-daily administrations for 7 days. Infarct volume was assessed on T2-weighted magnetic resonance images on days 1 and 7 after tMCAO. Brain-infiltrating immune cells (lymphocytes, monocytes) and microglia were quantified using fluorescence-activated cell sorting. DMF treatment significantly reduced infarct volumes and brain edema. On day 1 after tMCAO, DMF-treated mice showed reduced lymphocyte infiltration compared to controls, which was not observed on day 7. Monocyte and microglial cell counts did not differ between groups on either day. In the acute phase of stroke, DMF administration attenuated lymphocyte infiltration, probably due to its stabilizing effect on the BBB. This highlights the potential of DMF as a therapeutic candidate for mitigating immune cell-driven damage in stroke.
Collapse
Affiliation(s)
- Michael K. Schuhmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, 45147 Essen, Germany; (F.L.); (C.K.)
| | - Lena Zimmermann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Maximilian Bellut
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, 45147 Essen, Germany; (F.L.); (C.K.)
| | - Felix Fluri
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| |
Collapse
|
3
|
Jožef M, Locatelli I, Brecl Jakob G, Rot U, Kos M. Medication adherence and health outcomes in persons with multiple sclerosis treated with dimethyl fumarate. Mult Scler Relat Disord 2023; 72:104615. [PMID: 36933300 DOI: 10.1016/j.msard.2023.104615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that particularly affects people in their 30s. Oral disease-modifying therapy (DMT) offers a simple dosage form, good efficacy and safety. Dimethyl fumarate (DMF) is a frequently prescribed oral DMT medication worldwide. The aim of this study was to evaluate the impact of medication adherence on health outcomes in Slovenian persons with MS treated with DMF. METHODS Our retrospective cohort study included persons with relapsing-remitting MS on DMF treatment. The medication adherence was evaluated by AdhereR software package using the proportion of days covered (PDC) measure. The threshold was set at 90%. Health outcomes after treatment initiation were represented by relapse occurrence, disability progression and occurrence of active (new T2 and T1/Gadolinium (Gd) enhancing) lesions between first two outpatient visits and first two brain magnetic resonance imaging (MRI), respectively. For each health outcome a separate multivariable regression model was built. RESULTS The study included 164 patients. Their mean age (SD) was 36.7 (8.8) years, and the majority of patients were women (114 or 70%). Eighty-one patients were treatment naive. The mean (SD) PDC value was 0.942 (0.08) and 82% of patients were considered adherent above the 90% threshold. Older age (OR 1.06 per one year, P = 0.017, 95% CI (1.01-1.11)) and treatment naivety (OR 3.93, P = 0.004, 95% CI (1.64-10.4)) were related to higher adherence. In the 6-year follow-up period after DMF treatment initiation, 33 patients experienced a relapse. Among those, 19 required an emergency visit. Sixteen patients had a 1-point disability progression on the Expanded Disability Status Scale (EDSS) score between two consecutive outpatient visits. Thirty-seven patients were found to have active lesions between first and second brain MRI. Medication adherence showed no impact on relapse occurrence or disability progression. Lower medication adherence (10% lower PDC) was associated with higher occurrence of active lesions (OR 1.25, P=0.038, 95% CI: 1.01-1.56). Higher disability prior to DMF initiation was related to a higher risk for relapse occurrence and EDSS progression. CONCLUSION Our study showed high medication adherence among Slovenian persons with relapse-remitting MS on DMF treatment. Higher adherence was associated with lower incidence of the radiological progression of MS. Interventions for improving medication adherence should be intended for younger patients with higher disability prior treatment with DMF and those switching from alternative DMTs.
Collapse
Affiliation(s)
- Maj Jožef
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia; University Medical Centre Ljubljana, Division of Neurology, Multiple Sclerosis Centre, Zaloška cesta 2, Ljubljana 1000, Slovenia
| | - Igor Locatelli
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Gregor Brecl Jakob
- University Medical Centre Ljubljana, Division of Neurology, Multiple Sclerosis Centre, Zaloška cesta 2, Ljubljana 1000, Slovenia
| | - Uroš Rot
- University Medical Centre Ljubljana, Division of Neurology, Multiple Sclerosis Centre, Zaloška cesta 2, Ljubljana 1000, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, Ljubljana 1000, Slovenia
| | - Mitja Kos
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
4
|
Manai F, Govoni S, Amadio M. The Challenge of Dimethyl Fumarate Repurposing in Eye Pathologies. Cells 2022; 11:cells11244061. [PMID: 36552824 PMCID: PMC9777082 DOI: 10.3390/cells11244061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule currently approved and used in the treatment of psoriasis and multiple sclerosis due to its immuno-modulatory, anti-inflammatory, and antioxidant properties. As an Nrf2 activator through Keap1 protein inhibition, DMF unveils a potential therapeutical use that is much broader than expected so far. In this comprehensive review we discuss the state-of-art and future perspectives regarding the potential repositioning of this molecule in the panorama of eye pathologies, including Age-related Macular Degeneration (AMD). The DMF's mechanism of action, an extensive analysis of the in vitro and in vivo evidence of its beneficial effects, together with a search of the current clinical trials, are here reported. Altogether, this evidence gives an overview of the new potential applications of this molecule in the context of ophthalmological diseases characterized by inflammation and oxidative stress, with a special focus on AMD, for which our gene-disease (KEAP1-AMD) database search, followed by a protein-protein interaction analysis, further supports the rationale of DMF use. The necessity to find a topical route of DMF administration to the eye is also discussed. In conclusion, the challenge of DMF repurposing in eye pathologies is feasible and worth scientific attention and well-focused research efforts.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987888
| |
Collapse
|
5
|
Neuroprotective effects of dimethyl fumarate against depression-like behaviors via astrocytes and microglia modulation in mice: possible involvement of the HCAR2/Nrf2 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1029-1045. [PMID: 35665831 DOI: 10.1007/s00210-022-02247-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iβ by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iβ expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.
Collapse
|
6
|
Sun Z, Liu X, Liu Y, Zhao X, Zang X, Wang F. Immunosuppressive effects of dimethyl fumarate on dendritic cell maturation and migration: a potent protector for coronary heart disease. Immunopharmacol Immunotoxicol 2022; 44:178-185. [PMID: 35016591 DOI: 10.1080/08923973.2021.2025245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs), as a bridge between innate and adaptive immunity, play key roles in atherogenesis, particularly in plaque rupture, the underlying pathophysiologic cause of myocardial infarction. Targeting DC functions, including maturation and migration to atherosclerotic plaques, may be a novel therapeutic approach to atherosclerotic disease. Dimethyl fumarate (DMF), an agent consisting of a combination of fumaric acid esters, in current study were found to be able to suppress DC maturation by reducing the expression of costimulatory molecules and MHC class II and by blocking cytokine secretion. In addition, DMF efficiently inhibited the migration of activated DCs in vitro and in vivo by reducing the expression of chemokine receptor 7 (CCR7). Additionally, DMF efficiently inhibited the expression of the costimulatory molecule CD86, as well as the chemokine receptor CCR7 and the C-X-C motif chemokine receptor 4 (CXCR4), in healthy donor-derived purified DCs that had been stimulated by ST-segment elevation myocardial infarction (STEMI) patient serum. This study points to the potent therapeutic value of DMF for protecting against cardiovascular disease by suppressing DC functions.
Collapse
Affiliation(s)
- Zikai Sun
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoqiang Liu
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Yu Liu
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xin Zhao
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zang
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
7
|
Resistance exercise improves learning and memory and modulates hippocampal metabolomic profile in aged rats. Neurosci Lett 2021; 766:136322. [PMID: 34737021 DOI: 10.1016/j.neulet.2021.136322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
Physical activity has been considered an important non-medication intervention to preserve mnemonic processes during aging. However, how resistance exercise promotes such benefits remains unclear. A possible hypothesis is that brain-metabolic changes of regions responsible for memory consolidation is affected by muscular training. Therefore, we analyzed the memory, axiety and the metabolomic of aged male Wistar rats (19-20 months old in the 1st day of experiment) submitted to a 12-week resistance exercise protocol (EX, n = 11) or which remained without physical exercise (CTL, n = 13). Barnes maze, elevated plus maze and inhibitory avoidance tests were used to assess the animals' behaviour. The metabolomic profile was identified by nuclear magnetic resonance spectrometry. EX group had better performance in the tests of learning and spatial memory in Barnes maze, and an increase of short and long-term aversive memories formation in inhibitory avoidance. In addition, the exercised animals showed a greater amount of metabolites, such as 4-aminobutyrate, acetate, butyrate, choline, fumarate, glycerol, glycine, histidine, hypoxanthine, isoleucine, leucine, lysine, niacinamide, phenylalanine, succinate, tyrosine, valine and a reduction of ascorbate and aspartate compared to the control animals. These data indicate that the improvement in learning and memory of aged rats submitted to resistance exercise program is associated by changes in the hippocampal metabolomic profile.
Collapse
|
8
|
Baharnoori M, Wilson R, Saxena S, Gonzalez CT, Sotiropoulos MG, Keyhanian K, Healy BC, Chitnis T. Altered adipokine levels are associated with dimethyl fumarate treatment in multiple sclerosis patients. Mult Scler Relat Disord 2021; 56:103311. [PMID: 34655958 DOI: 10.1016/j.msard.2021.103311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/20/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Obesity is linked to increased risk of multiple sclerosis (MS) and worsening disease severity. Recent experimental and clinical data indicates that adipokines are involved in regulating immune response and serve as cross talk between immune and neural system. Dimethyl fumarate (DMF) is an oral MS medication with unknown mechanism of action. It upregulates the nuclear factor E2-related factor 2 (Nrf2) pathway, a pathway for adipocyte differentiation. To determine a possible relationship between treatment with dimethyl fumarate, serum adipokine profiles and treatment response in patients with MS, we conducted an observational cohort study and measured serum adipokine and Vitamin D levels before and after treatment with DMF and examined their association with treatment response. METHODS We identified patients enrolled in the Comprehensive Longitudinal Investigation of Multiple Sclerosis at Brigham and Women's Hospital (CLIMB) study who were treated with dimethyl fumarate and had available serum samples. Longitudinal pre-treatment and on-treatment samples were available in 23 patients. Cross-sectional on-treatment samples were available in 91 patients, who were classified into DMF responders and non-responders based on radiologic and clinical relapse activity or disability progression. We measured serum leptin, adiponectin, resistin, ghrelin, fatty acid binding protein-4 (FABP-4) and-5 (FABP-5), vitamins D2 and D3. Statistical analysis was performed with paired t-tests, Wilcoxon signed-rank and Mann-Whitney U tests. RESULTS After treatment with DMF, serum adiponectin levels significantly increased, whereas FABP-4 levels significantly decreased compared to baseline levels, without a statistically significant change in the patients' BMI. Ghrelin levels were insignificantly lower post-treatment. FABP-4 levels were significantly higher in DMF responders compared to non-responders. This effect was sex-specific, with higher FABP4 levels associated with treatment response in males, but not females. CONCLUSION DMF treatment is associated with significant changes in serum adipokine levels, primarily adiponectin and FABP-4. Sex may affect the association between FABP-4 and treatment response.
Collapse
Affiliation(s)
- Moogeh Baharnoori
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, US; Harvard Medical School, Boston, MA, US; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, US
| | - Ryan Wilson
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, US; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, US; Harvard College, Cambridge, MA, US
| | - Shrishti Saxena
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, US; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, US
| | - Cindy T Gonzalez
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, US; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, US
| | - Marinos G Sotiropoulos
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, US; Harvard Medical School, Boston, MA, US; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, US
| | - Kiandokht Keyhanian
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, US; Harvard Medical School, Boston, MA, US; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, US
| | - Brian C Healy
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, US; Harvard Medical School, Boston, MA, US; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, US
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, US; Harvard Medical School, Boston, MA, US; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, US.
| |
Collapse
|
9
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Timpani CA, Rybalka E. Calming the (Cytokine) Storm: Dimethyl Fumarate as a Therapeutic Candidate for COVID-19. Pharmaceuticals (Basel) 2020; 14:15. [PMID: 33375288 PMCID: PMC7824470 DOI: 10.3390/ph14010015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has rapidly spread worldwide and incidences of hospitalisation from respiratory distress are significant. While a vaccine is in the pipeline, there is urgency for therapeutic options to address the immune dysregulation, hyperinflammation and oxidative stress that can lead to death. Given the shared pathogenesis of severe cases of COVID-19 with aspects of multiple sclerosis and psoriasis, we propose dimethyl fumarate as a viable treatment option. Currently approved for multiple sclerosis and psoriasis, dimethyl fumarate is an immunomodulatory, anti-inflammatory and anti-oxidative drug that could be rapidly implemented into the clinic to calm the cytokine storm which drives severe COVID-19.
Collapse
Affiliation(s)
- Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| |
Collapse
|
11
|
O’Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020; 10:metabo10110453. [PMID: 33182676 PMCID: PMC7696920 DOI: 10.3390/metabo10110453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Electrophilic small molecules have gained significant attention over the last decade in the field of covalent drug discovery. Long recognized as mediators of the inflammatory process, recent evidence suggests that electrophiles may modulate the immune response through the regulation of metabolic networks. These molecules function as pleiotropic signaling mediators capable of reversibly reacting with nucleophilic biomolecules, most notably at reactive cysteines. More specifically, electrophiles target critical cysteines in redox regulatory proteins to activate protective pathways such as the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) antioxidant signaling pathway while also inhibiting Nuclear Factor κB (NF-κB). During inflammatory states, reactive species broadly alter cell signaling through the oxidation of lipids, amino acids, and nucleic acids, effectively propagating the inflammatory sequence. Subsequent changes in metabolic signaling inform immune cell maturation and effector function. Therapeutic strategies targeting inflammatory pathologies leverage electrophilic drug compounds, in part, because of their documented effect on the redox balance of the cell. With mounting evidence demonstrating the link between redox signaling and metabolism, electrophiles represent ideal therapeutic candidates for the treatment of inflammatory conditions. Through their pleiotropic signaling activity, electrophiles may be used strategically to both directly and indirectly target immune cell metabolism.
Collapse
|
12
|
Sulaimani J, Cluxton D, Clowry J, Petrasca A, Molloy O, Moran B, Sweeney C, Malara A, McNicholas N, McGuigan C, Kirby B, Fletcher J. Dimethyl fumarate modulates the Treg–Th17 cell axis in patients with psoriasis*. Br J Dermatol 2020; 184:495-503. [DOI: 10.1111/bjd.19229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- J. Sulaimani
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - D. Cluxton
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - J. Clowry
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - A. Petrasca
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - O.E. Molloy
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - B. Moran
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - C.M. Sweeney
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - A. Malara
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - N. McNicholas
- Department of Neurology St. Vincent's University Hospital Dublin 4 Ireland
| | - C. McGuigan
- Department of Neurology St. Vincent's University Hospital Dublin 4 Ireland
| | - B. Kirby
- Department of Dermatology St. Vincent's University Hospital Dublin 4 Ireland
| | - J.M. Fletcher
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
| |
Collapse
|
13
|
Scuderi SA, Ardizzone A, Paterniti I, Esposito E, Campolo M. Antioxidant and Anti-inflammatory Effect of Nrf2 Inducer Dimethyl Fumarate in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:antiox9070630. [PMID: 32708926 PMCID: PMC7402174 DOI: 10.3390/antiox9070630] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDs) represents debilitating conditions characterized by degeneration of neuronal cells in specific brain areas, causing disability and death in patients. In the pathophysiology of NDs, oxidative stress, apoptosis and neuroinflammation have a key role, as demonstrated by in vivo and in vitro models. Therefore, the use of molecules with antioxidant and anti-inflammatory activities represents a possible strategy for the treatment of NDs. Many studies demonstrated the beneficial effects of fumaric acid esters (FAEs) to counteract neuroinflammation and oxidative stress. Among these molecules, dimethyl fumarate (DMF) showed a valid therapeutic approach to slow down neurodegeneration and relieve symptoms in patients with NDs. DMF is a methyl ester of fumaric acid and acts as modulator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway as well as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation. Therefore, this review aims to examine the potential beneficial effects of DMF to counteract oxidative stress and inflammation in patients with NDs.
Collapse
|
14
|
Zhao J, Cheng Z, Quan X, Xie Z, Zhang L, Ding Z. Dimethyl fumarate protects cardiomyocytes against oxygen-glucose deprivation/reperfusion (OGD/R)-induced inflammatory response and damages via inhibition of Egr-1. Int Immunopharmacol 2020; 86:106733. [PMID: 32645629 DOI: 10.1016/j.intimp.2020.106733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is associated with high rates of morbidity and mortality. Atherosclerosis is among the leading causes of AMI. The rupture or erosion of atherosclerotic plaques can obstruct coronary arteries, thereby leading to an acute inflammatory reaction to ischemic injury and cardiomyocyte apoptosis. Dimethyl fumarate (DMF) is a fumaric acid diester which is used for the treatment of psoriasis and multiple sclerosis. DMF is most well-known for its modulatory actions on the Nrf2 and NF-κB cellular signaling pathways. In the present study, we employed an oxygen-glucose deprivation/reoxygenation (OGD/R) model of myocardial ischemia/reperfusion injury using H9c2 cardiomyocytes to assess the potential protective effects of DMF. We found that DMF significantly improved cell viability and reduced the expression of pro-inflammatory cytokines and chemokines, including IL-6, IL-8, and MCP-1. We further demonstrated an antioxidant effect of DMF via reduced production of ROS, which was mediated through NOX4 inhibition. Tissue factor and ICAM-1 play a major role in left ventricular remodeling. DMF inhibited the expression of TF and ICAM-1 induced by OGD/R, which we demonstrated to be mediated through the Egr-1 signaling pathway, as silencing of Egr-1 suppressed the expression of TF and ICAM-1. Together, these findings demonstrate a potential role for DMF in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| | - Zhaoyun Cheng
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| | - Xiaoqiang Quan
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China.
| | - Zhouliang Xie
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| | - Leilei Zhang
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| | - Zhiwei Ding
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| |
Collapse
|
15
|
Gesser B, Rasmussen MK, Iversen L. Dimethyl Fumarate Targets MSK1, RSK1, 2 and IKKα/β Kinases and Regulates NF-κB /p65 Activation in Psoriasis: A Demonstration of the Effect on Peripheral Blood Mononuclear Cells, Drawn from Two Patients with Severe Psoriasis Before and After Treatment with Dimethyl Fumarate. PSORIASIS-TARGETS AND THERAPY 2020; 10:1-11. [PMID: 32309199 PMCID: PMC7138529 DOI: 10.2147/ptt.s234151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/03/2020] [Indexed: 01/09/2023]
Abstract
Background Dimethyl fumarate (DMF) has an inhibitory effect on the production of pro-inflammatory proteins from different cells which participate in the immune reaction in psoriatic skin. Most recently it was shown that DMF is an allosteric covalent inhibitor of the p90 ribosomal S6 kinases (RSK1, 2), determined by X-ray crystallography. DMF binds to a specific cysteine residue in RSK2 and in the closely related mitogen and stress-activated kinases 1 (MSK1) which inhibits further downstream activation. Objectives The aim of this study was to review the literature on the effects of DMF on activation of MSK1, RSK1, 2 kinases, and downstream transcription factors NF-κB/p65 and IκBα in cells contributing to the pathogenesis of psoriasis. We also hypothesized and studied if treatment with DMF would inhibit the activation of MSK1, RSK1, 2 kinases in peripheral blood mononuclear cells (PBMCs) in psoriatic patients. Methods PBMCs were purified from patients with severe psoriasis before and after 90 days of treatment with DMF. Cells were stimulated with anisomycin, IL-1β or EGF for 10 and 20 minutes. The levels of phosphorylation of MSK1, RSK1, 2 or NF-κB/p65, IκBα were analyzed by Western blotting. Results Our case study showed that treatment with DMF inhibited the activation of MSK1 and RSK1, 2 kinases in PBMCs in patients. This supports that DMF is the active metabolite in vivo in psoriatic patients during DMF treatment. Conclusion Pro-inflammatory proteins are induced through activation of MSK1 and NF-κB/p65 at (S276). The extracellular signal-regulated kinases (ERK1/2) control cell survival by activating both MSK1 and RSK1, 2 kinases. P-RSK1, 2 activates P-κBα and NF-κB/p65 at (S536). The phosphorylation of NF-κB/p65 at (S276) and (S536) controls different T cell and dendritic cell functions. DMF´s inhibitory effect on MSK1 and RSK1, 2 kinase activations reduces multiple immune reactions in psoriatic patients.
Collapse
Affiliation(s)
- Borbala Gesser
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Mads K Rasmussen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Reszke R, Szepietowski JC. A safety evaluation of dimethyl fumarate in moderate-to-severe psoriasis. Expert Opin Drug Saf 2020; 19:373-380. [PMID: 32129112 DOI: 10.1080/14740338.2020.1736553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Psoriasis is a chronic inflammatory disorder affecting skin, nails and joints. Systemic therapy of psoriasis is based upon several drugs which include fumaric acid esters (FAEs), initially introduced in 1959. Since 2017, one of the key substances among FAE spectrum (dimethyl fumarate; DMF) was registered by the European Medicines Agency (EMA) for the treatment of moderate-to-severe psoriasis vulgaris.Areas covered: This article covers the basic concepts underlying usefulness of DMF in psoriasis and extensively reviews the studies, which included its use in monotherapy of this dermatosis, with a particular emphasis on safety aspects and adverse events (AEs).Expert opinion: DMF monotherapy is a valuable systemic modality in the management of moderate-to-severe psoriasis as proved by a recent phase III study. AEs associated with DMF therapy are frequent, usually of mild severity, with a dose-independent manner. Occasionally they are burdensome and require drug discontinuation. The most common AEs comprise gastrointestinal symptoms, flushing and white blood cell count abnormalities. The latter require strict monitoring to prevent serious complications. Acknowledging the possibility of AEs, the use of DMF in moderate-to-severe psoriasis is encouraged while the need of further studies still remains.
Collapse
Affiliation(s)
- Radomir Reszke
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
17
|
De Santa F, Vitiello L, Torcinaro A, Ferraro E. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxid Redox Signal 2019; 30:1553-1598. [PMID: 30070144 DOI: 10.1089/ars.2017.7420] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Macrophages are crucial for tissue homeostasis. Based on their activation, they might display classical/M1 or alternative/M2 phenotypes. M1 macrophages produce pro-inflammatory cytokines, reactive oxygen species (ROS), and nitric oxide (NO). M2 macrophages upregulate arginase-1 and reduce NO and ROS levels; they also release anti-inflammatory cytokines, growth factors, and polyamines, thus promoting angiogenesis and tissue healing. Moreover, M1 and M2 display key metabolic differences; M1 polarization is characterized by an enhancement in glycolysis and in the pentose phosphate pathway (PPP) along with a decreased oxidative phosphorylation (OxPhos), whereas M2 are characterized by an efficient OxPhos and reduced PPP. Recent Advances: The glutamine-related metabolism has been discovered as crucial for M2 polarization. Vice versa, flux discontinuities in the Krebs cycle are considered additional M1 features; they lead to increased levels of immunoresponsive gene 1 and itaconic acid, to isocitrate dehydrogenase 1-downregulation and to succinate, citrate, and isocitrate over-expression. Critical Issues: A macrophage classification problem, particularly in vivo, originating from a gap in the knowledge of the several intermediate polarization statuses between the M1 and M2 extremes, characterizes this field. Moreover, the detailed features of metabolic reprogramming crucial for macrophage polarization are largely unknown; in particular, the role of β-oxidation is highly controversial. Future Directions: Manipulating the metabolism to redirect macrophage polarization might be useful in various pathologies, including an efficient skeletal muscle regeneration. Unraveling the complexity pertaining to metabolic signatures that are specific for the different macrophage subsets is crucial for identifying new compounds that are able to trigger macrophage polarization and that might be used for therapeutical purposes.
Collapse
Affiliation(s)
- Francesca De Santa
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessio Torcinaro
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin," Sapienza University, Rome, Italy
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
18
|
Napier J, Rose L, Adeoye O, Hooker E, Walsh KB. Modulating acute neuroinflammation in intracerebral hemorrhage: the potential promise of currently approved medications for multiple sclerosis. Immunopharmacol Immunotoxicol 2019; 41:7-15. [PMID: 30702002 DOI: 10.1080/08923973.2019.1566361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The secondary inflammatory injury following intracerebral hemorrhage (ICH) results in increased morbidity and mortality. White blood cells have been implicated as critical mediators of this inflammatory injury. Currently, no medications have been clinically proven to ameliorate or beneficially modulate inflammation, or to improve outcomes by any mechanism, following ICH. However, other neuroinflammatory conditions, such as multiple sclerosis, have approved pharmacologic therapies that modulate the inflammatory response and minimize the damage caused by inflammatory cells. Thus, there is substantial interest in existing therapies for neuroinflammation and their potential applicability to other acute neurological diseases such as ICH. In this review, we examined the mechanism of action of twelve currently approved medications for multiple sclerosis: alemtuzumab, daclizumab, dimethyl fumarate, fingolimod, glatiramer acetate, interferon beta-1a, interferon beta-1b, mitoxantrone, natalizumab, ocrelizumab, rituximab, teriflunomide. We analyzed the existing literature pertaining to the effects of these medications on various leukocytes and also with emphasis on mechanisms of action during the acute period following initiation of therapy. As a result, we provide a valuable summary of the current body of knowledge regarding these therapies and evidence that supports or refutes their likely promise for treating neuroinflammation following ICH.
Collapse
Affiliation(s)
- Jarred Napier
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Lucas Rose
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Opeolu Adeoye
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| | - Edmond Hooker
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Kyle B Walsh
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
19
|
Staurengo-Ferrari L, Badaro-Garcia S, Hohmann MSN, Manchope MF, Zaninelli TH, Casagrande R, Verri WA. Contribution of Nrf2 Modulation to the Mechanism of Action of Analgesic and Anti-inflammatory Drugs in Pre-clinical and Clinical Stages. Front Pharmacol 2019; 9:1536. [PMID: 30687097 PMCID: PMC6337248 DOI: 10.3389/fphar.2018.01536] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the progress that has occurred in recent years in the development of therapies to treat painful and inflammatory diseases, there is still a need for effective and potent analgesics and anti-inflammatory drugs. It has long been known that several types of antioxidants also possess analgesic and anti-inflammatory properties, indicating a strong relationship between inflammation and oxidative stress. Understanding the underlying mechanisms of action of anti-inflammatory and analgesic drugs, as well as essential targets in disease physiopathology, is essential to the development of novel therapeutic strategies. The Nuclear factor-2 erythroid related factor-2 (Nrf2) is a transcription factor that regulates cellular redox status through endogenous antioxidant systems with simultaneous anti-inflammatory activity. This review summarizes the molecular mechanisms and pharmacological actions screened that link analgesic, anti-inflammatory, natural products, and other therapies to Nrf2 as a regulatory system based on emerging evidences from experimental disease models and new clinical trial data.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Stephanie Badaro-Garcia
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Miriam S. N. Hohmann
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Marília F. Manchope
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Tiago H. Zaninelli
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Londrina, Brazil
| | - Waldiceu A. Verri
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
20
|
Singh N, Saha L, Kumari P, Singh J, Bhatia A, Banerjee D, Chakrabarti A. Effect of dimethyl fumarate on neuroinflammation and apoptosis in pentylenetetrazol kindling model in rats. Brain Res Bull 2019; 144:233-245. [DOI: 10.1016/j.brainresbull.2018.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
|
21
|
Montes Diaz G, Hupperts R, Fraussen J, Somers V. Dimethyl fumarate treatment in multiple sclerosis: Recent advances in clinical and immunological studies. Autoimmun Rev 2018; 17:1240-1250. [DOI: 10.1016/j.autrev.2018.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
|
22
|
Wijdeven RH, van Luijn MM, Wierenga-Wolf AF, Akkermans JJ, van den Elsen PJ, Hintzen RQ, Neefjes J. Chemical and genetic control of IFNγ-induced MHCII expression. EMBO Rep 2018; 19:embr.201745553. [PMID: 30021835 DOI: 10.15252/embr.201745553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 01/05/2023] Open
Abstract
The cytokine interferon-γ (IFNγ) can induce expression of MHC class II (MHCII) on many different cell types, leading to antigen presentation to CD4+ T cells and immune activation. This has also been linked to anti-tumour immunity and graft-versus-host disease. The extent of MHCII upregulation by IFNγ is cell type-dependent and under extensive control of epigenetic regulators and signalling pathways. Here, we identify novel genetic and chemical factors that control this form of MHCII expression. Loss of the oxidative stress sensor Keap1, autophagy adaptor p62/SQSTM1, ubiquitin E3-ligase Cullin-3 and chromatin remodeller BPTF impair IFNγ-mediated MHCII expression. A similar phenotype is observed for arsenite, an oxidative stressor. Effects of the latter can be reversed by the inhibition of HDAC1/2, linking oxidative stress conditions to epigenetic control of MHCII expression. Furthermore, dimethyl fumarate, an antioxidant used for the treatment of several autoimmune diseases, impairs the IFNγ response by manipulating transcriptional control of MHCII We describe novel pathways and drugs related to oxidative conditions in cells impacting on IFNγ-mediated MHCII expression, which provide a molecular basis for the understanding of MHCII-associated diseases.
Collapse
Affiliation(s)
- Ruud H Wijdeven
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jimmy J Akkermans
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | | | - Rogier Q Hintzen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| |
Collapse
|
23
|
Kofler L, Kathrein-Schneider S, Schweinzer K, Kofler H. Fumaric acid: a possible new therapy for macular edema? Int Ophthalmol 2018; 39:1627-1631. [PMID: 29959659 DOI: 10.1007/s10792-018-0982-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Causes of macular edema are multifactorial, but inflammation, vascular factors and mechanical traction are of major importance. Therapeutic options of macular edema depend on the underlying cause. Intravitreal administration of inhibitors of vascular endothelial growth factor leads to inhibition of retinal neovascularization and subsequent edema. OBJECTIVE Fumaric acid esters are successfully used in dermatology for years according to their antiangiogenic and anti-inflammatory effects. RESULT For the very first time, we describe a successful therapeutic attempt for macular edema, controlled by optical coherence tomography using fumaric acid esters followed up for 60 months.
Collapse
Affiliation(s)
- Lukas Kofler
- Dermatologische Praxis und Allergieambulatorium Hall i.T, Thurnfeldgasse 3a, 6060, Hall in Tirol, Austria.
- Department of Dermatology, Eberhard-Karls University Tübingen, Liebermeisterstraße 25, 72076, Tübingen, Germany.
| | | | - Katrin Schweinzer
- Department of Dermatology, Eberhard-Karls University Tübingen, Liebermeisterstraße 25, 72076, Tübingen, Germany
| | - Heinz Kofler
- Dermatologische Praxis und Allergieambulatorium Hall i.T, Thurnfeldgasse 3a, 6060, Hall in Tirol, Austria
| |
Collapse
|
24
|
Brück J, Dringen R, Amasuno A, Pau-Charles I, Ghoreschi K. A review of the mechanisms of action of dimethylfumarate in the treatment of psoriasis. Exp Dermatol 2018; 27:611-624. [DOI: 10.1111/exd.13548] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jürgen Brück
- Department of Dermatology; University Medical Center; Eberhard Karls University; Tübingen Germany
| | - Ralf Dringen
- Faculty 2 (Biology/Chemistry); Center for Biomolecular Interactions Bremen; University of Bremen; Bremen Germany
- Center for Environmental Research and Sustainable Technology; University of Bremen; Bremen Germany
| | | | | | - Kamran Ghoreschi
- Department of Dermatology; University Medical Center; Eberhard Karls University; Tübingen Germany
| |
Collapse
|
25
|
Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, Schmidt HHHW. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol Rev 2018; 70:348-383. [PMID: 29507103 DOI: 10.1124/pr.117.014753] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Gina Manda
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Ahmed Hassan
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - María José Alcaraz
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Coral Barbas
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Andreas Daiber
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Pietro Ghezzi
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Rafael León
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Manuela G López
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Baldo Oliva
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Marta Pajares
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Ana I Rojo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Natalia Robledinos-Antón
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Angela M Valverde
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Emre Guney
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| | - Harald H H W Schmidt
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM (Autonomous University of Madrid)-CSIC (Centro Superior de Investigaciones Biomédicas), Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., M.P., A.I.R., N.R.-A.); Victor Babes National Institute of Pathology, Bucharest, Romania (A.C., G.M.); Department Pharmacology and Personalized Medicine, School for Cardiovascular Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastrich, The Netherlands (A.H., H.H.H.W.S.); Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Valencia, Spain (M.J.A.); Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU (Centro de Estudios Universitarios)-San Pablo, Madrid, Spain (C.B.); Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany (A.D.); Brighton and Sussex Medical School, Brighton, United Kingdom (P.G.); Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (R.L., M.G.L.); Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain (R.L., M.G.L.); GRIB (Unidad de Investigación en Informática Biomédica), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (B.O., E.G.); Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC and Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain (A.M.V.); and Structural Bioinformatics Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain (E.G.)
| |
Collapse
|
26
|
Singh N, Vijayanti S, Saha L. Targeting crosstalk between Nuclear factor (erythroid-derived 2)-like 2 and Nuclear factor kappa beta pathway by Nrf2 activator dimethyl fumarate in epileptogenesis. Int J Neurosci 2018; 128:987-994. [PMID: 29447051 DOI: 10.1080/00207454.2018.1441149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose/Aim: Epilepsy is a complex, chronic neurological disorder characterized by increased and abnormal synchronization of neuronal electrical activity, which is manifested as seizures. It is associated with many comorbid conditions such as depression, anxiety, sleep disorder, psychiatric disorder etc., which consequently causes higher mortality rate. The understanding of its cellular and molecular mechanism is partial, because of which it remains an ongoing health problem, despite the increasing availability of newer antiepileptic drugs. Although recurrent seizures are the clinical indication of epilepsy, the disease process (epileptogenesis) begins before the onset of the first seizure. This dormant phase before the onset of first seizure provides an opportune time window for modifying the epileptogenic process by intervening in its progression with an appropriate treatment. MATERIAL AND METHODS Studies have shown that in epilepsy, there is a chronic state of oxidative stress and inflammation, which plays a key role in epileptic pathogenesis. Various antioxidant mechanisms maintain the redox balance in the body by either scavenging or regulating the generation of free radicals. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway is a well-established antioxidant pathway in various diseases such as diabetes, renal disease, various neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, traumatic brain injury, etc. Results: It has been observed that single-target therapies are inefficient in providing anticonvulsant and disease-modifying effects in epilepsy. CONCLUSIONS So, preventing the progression of epilepsy by targeting Nrf2-activated antioxidant pathway along with the other established antiepileptic pathways can prove beneficial in epilepsy treatment.
Collapse
Affiliation(s)
- Neha Singh
- a Department of Pharmacology , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Sheekha Vijayanti
- a Department of Pharmacology , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Lekha Saha
- a Department of Pharmacology , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| |
Collapse
|
27
|
Mills EA, Mao-Draayer Y. Understanding Progressive Multifocal Leukoencephalopathy Risk in Multiple Sclerosis Patients Treated with Immunomodulatory Therapies: A Bird's Eye View. Front Immunol 2018; 9:138. [PMID: 29456537 PMCID: PMC5801425 DOI: 10.3389/fimmu.2018.00138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
The increased use of newer potent immunomodulatory therapies for multiple sclerosis (MS), including natalizumab, fingolimod, and dimethyl fumarate, has expanded the patient population at risk for developing progressive multifocal leukoencephalopathy (PML). These MS therapies shift the profile of lymphocytes within the central nervous system (CNS) leading to increased anti-inflammatory subsets and decreased immunosurveillance. Similar to MS, PML is a demyelinating disease of the CNS, but it is caused by the JC virus. The manifestation of PML requires the presence of an active, genetically rearranged form of the JC virus within CNS glial cells, coupled with the loss of appropriate JC virus-specific immune responses. The reliability of metrics used to predict risk for PML could be improved if all three components, i.e., viral genetic strain, localization, and host immune function, were taken into account. Advances in our understanding of the critical lymphocyte subpopulation changes induced by these MS therapies and ability to detect viral mutation and reactivation will facilitate efforts to develop these metrics.
Collapse
Affiliation(s)
- Elizabeth A Mills
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
28
|
|
29
|
Han J, Ma S, Gong H, Liu S, Lei L, Hu B, Xu Y, Liu H, Wu D. Inhibition of Acute Graft-versus-Host Disease with Retention of Graft-versus-Tumor Effects by Dimethyl Fumarate. Front Immunol 2017; 8:1605. [PMID: 29209333 PMCID: PMC5702003 DOI: 10.3389/fimmu.2017.01605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) remains a clinical challenge and a major source of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Dimethyl fumarate (DMF), an activator of Nrf2, has been shown to have anti-inflammatory and immunomodulatory properties without significant immunosuppression. We therefore hypothesized that DMF could be potentially harnessed for the treatment of aGVHD with retention of graft-versus-tumor effect. In this study, we showed that DMF significantly inhibited alloreactive T cell responses in vitro in mixed lymphocyte reaction assay. Administration of DMF significantly alleviated the severity, histological damage, and the overall mortality of aGVHD in an MHC-mismatched aGVHD model. DMF administration reduced the activation and effector function of donor T cells in vitro and in vivo. In addition, DMF treatment upregulated antioxidant enzymes heme oxygenase-1 and glutathione S-transferase-α1 expressions. Furthermore, DMF treatment markedly increased the frequencies of Treg cells. Depletion of CD25+ cells in DMF recipients aggravated aGVHD mortality compared with IgG control recipients. DMF could promote Treg cell differentiation in a dose dependent manner by upregulating TGF-β expression in vitro. Most importantly, DMF administration preserved graft-versus-leukemia effect after bone marrow transplantation. In conclusion, our findings demonstrated DMF as a promising agent for the prevention of aGVHD after allo-HSCT.
Collapse
Affiliation(s)
- Jingjing Han
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shoubao Ma
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Shuangzhu Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Xu
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Department of Microbiology and Immunology, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Clausen BH, Lundberg L, Yli-Karjanmaa M, Martin NA, Svensson M, Alfsen MZ, Flæng SB, Lyngsø K, Boza-Serrano A, Nielsen HH, Hansen PB, Finsen B, Deierborg T, Illes Z, Lambertsen KL. Fumarate decreases edema volume and improves functional outcome after experimental stroke. Exp Neurol 2017; 295:144-154. [PMID: 28602832 DOI: 10.1016/j.expneurol.2017.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/07/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Oxidative stress and inflammation exacerbate tissue damage in the brain after ischemic stroke. Dimethyl-fumarate (DMF) and its metabolite monomethyl-fumarate (MMF) are known to stimulate anti-oxidant pathways and modulate inflammatory responses. Considering these dual effects of fumarates, we examined the effect of MMF treatment after ischemic stroke in mice. METHODS Permanent middle cerebral artery occlusion (pMCAO) was performed using adult, male C57BL/6 mice. Thirty minutes after pMCAO, 20mg/kg MMF was administered intravenously. Outcomes were evaluated 6, 24 and 48h after pMCAO. First, we examined whether a bolus of MMF was capable of changing expression of kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor (Nrf)2 in the infarcted brain. Next, we studied the effect of MMF on functional recovery. To explore mechanisms potentially influencing functional changes, we examined infarct volumes, edema formation, the expression of heat shock protein (Hsp)72, hydroxycarboxylic acid receptor 2 (Hcar2), and inducible nitric oxide synthase (iNOS) in the infarcted brain using real-time PCR and Western blotting. Concentrations of a panel of pro- and anti-inflammatory cytokines (IFNγ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, TNF) were examined in both the infarcted brain tissue and plasma samples 6, 24 and 48h after pMCAO using multiplex electrochemoluminiscence analysis. RESULTS Administration of MMF increased the protein level of Nrf2 6h after pMCAO, and improved functional outcome at 24 and 48h after pMCAO. MMF treatment did not influence infarct size, however reduced edema volume at both 24 and 48h after pMCAO. MMF treatment resulted in increased Hsp72 expression in the brain 6h after pMCAO. Hcar2 mRNA levels increased significantly 24h after pMCAO, but were not different between saline- and MMF-treated mice. MMF treatment also increased the level of the anti-inflammatory cytokine IL-10 in the brain and plasma 6h after pMCAO, and additionally reduced the level of the pro-inflammatory cytokine IL-12p70 in the brain at 24 and 48h after pMCAO. CONCLUSIONS A single intravenous bolus of MMF improved sensory-motor function after ischemic stroke, reduced edema formation, and increased the levels of the neuroprotective protein Hsp72 in the brain. The early increase in IL-10 and reduction in IL-12p70 in the brain combined with changes in systemic cytokine levels may also contribute to the functional recovery after pMCAO.
Collapse
Affiliation(s)
- Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark.
| | - Louise Lundberg
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark
| | - Minna Yli-Karjanmaa
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark.
| | - Nellie Anne Martin
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, DK-5000 Odense C, Denmark.
| | - Martina Svensson
- Department of Experimental Medical Sciences, Experimental Neuroinflammation Laboratory, Sölveg 19, Lund University, 22100 Lund, Sweden.
| | - Maria Zeiler Alfsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark.
| | - Simon Bertram Flæng
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark.
| | - Kristina Lyngsø
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21 3rd, DK-5000 Odense C, Denmark.
| | - Antonio Boza-Serrano
- Department of Experimental Medical Sciences, Experimental Neuroinflammation Laboratory, Sölveg 19, Lund University, 22100 Lund, Sweden.
| | - Helle H Nielsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, DK-5000 Odense C, Denmark.
| | - Pernille B Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21 3rd, DK-5000 Odense C, Denmark.
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, DK-5000 Odense C, Denmark.
| | - Tomas Deierborg
- Department of Experimental Medical Sciences, Experimental Neuroinflammation Laboratory, Sölveg 19, Lund University, 22100 Lund, Sweden.
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, DK-5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, DK-5000 Odense C, Denmark.
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21-25, DK-5000 Odense C, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, DK-5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, DK-5000 Odense C, Denmark.
| |
Collapse
|
31
|
Pistono C, Osera C, Boiocchi C, Mallucci G, Cuccia M, Bergamaschi R, Pascale A. What's new about oral treatments in Multiple Sclerosis? Immunogenetics still under question. Pharmacol Res 2017; 120:279-293. [PMID: 28396093 DOI: 10.1016/j.phrs.2017.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a chronic pathology affecting the Central Nervous System characterized by inflammatory processes that lead to demyelination and neurodegeneration. In MS treatment, disease modifying therapies (DMTs) are essential to reduce disease progression by suppressing the inflammatory response responsible for promoting lesion formation. Recently, in addition to the classical injectable DMTs like Interferons and Glatiramer acetate, new orally administered drugs have been approved for MS therapy: dimethyl fumarate, teriflunomide and fingolimod. These drugs act with different mechanisms on the immune system, in order to suppress the harmful inflammatory process. An additional layer of complexity is introduced by the influence of polymorphic gene variants in the Human Leukocyte Antigen region on the risk of developing MS and its progression. To date, pharmacogenomic studies have mainly focused on the patient's response following admission of injectable drugs. Therefore, greater consideration must be made to pharmacogenomics with a view to developing more effective and personalized therapies. This review aims to shed light on the mechanism of action of the new oral drugs dimethyl fumarate, teriflunomide and fingolimod, taking into account both the importance of immunogenetics in drug response and pharmacogenomic studies.
Collapse
Affiliation(s)
- Cristiana Pistono
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| | - Cecilia Osera
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Chiara Boiocchi
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giulia Mallucci
- Inter-Department Multiple Sclerosis Research Centre, National Neurological Institute "C. Mondino", Pavia, Italy
| | - Mariaclara Cuccia
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Bergamaschi
- Inter-Department Multiple Sclerosis Research Centre, National Neurological Institute "C. Mondino", Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
32
|
Ghadiri M, Rezk A, Li R, Evans A, Luessi F, Zipp F, Giacomini PS, Antel J, Bar-Or A. Dimethyl fumarate-induced lymphopenia in MS due to differential T-cell subset apoptosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e340. [PMID: 28377940 PMCID: PMC5365096 DOI: 10.1212/nxi.0000000000000340] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/30/2017] [Indexed: 01/12/2023]
Abstract
Objective: To examine the mechanism underlying the preferential CD8+ vs CD4+ T-cell lymphopenia induced by dimethyl fumarate (DMF) treatment of MS. Methods: Total lymphocyte counts and comprehensive T-cell subset analyses were performed in high-quality samples obtained from patients with MS prior to and serially following DMF treatment initiation. Random coefficient mixed-effects analysis was used to model the trajectory of T-cell subset losses in vivo. Survival and apoptosis of distinct T-cell subsets were assessed following in vitro exposure to DMF. Results: Best-fit modeling indicated that the DMF-induced preferential reductions in CD8+ vs CD4+ T-cell counts nonetheless followed similar depletion kinetics, suggesting a similar rather than distinct mechanism involved in losses of both the CD8+ and CD4+ T cells. In vitro, DMF exposure resulted in dose-dependent reductions in T-cell survival, which were found to reflect apoptotic cell death. This DMF-induced apoptosis was greater for CD8+ vs CD4+, as well as for memory vs naive, and conventional vs regulatory T-cell subsets, a pattern which mirrored preferential T-cell subset losses that we observed during in vivo treatment of patients. Conclusions: Differential apoptosis mediated by DMF may underlie the preferential lymphopenia of distinct T-cell subsets, including CD8+ and memory T-cell subsets, seen in treated patients with MS. This differential susceptibility of distinct T-cell subsets to DMF-induced apoptosis may contribute to both the safety and efficacy profiles of DMF in patients with MS.
Collapse
Affiliation(s)
- Mahtab Ghadiri
- Montreal Neurological Institute (M.G., A.R., R.L., P.S.G., J.A., A.B.-O.), McGill University, Montreal, QC, Canada; Brain and Mind Centre (M.G.), University of Sydney, NSW, Australia; Institute of Actuaries of Australia (A.E.); Department of Neurology (F.L., F.Z.), University Medical Center Mainz, Germany; and Department of Neurology (A.R., R.L., A.B.-O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ayman Rezk
- Montreal Neurological Institute (M.G., A.R., R.L., P.S.G., J.A., A.B.-O.), McGill University, Montreal, QC, Canada; Brain and Mind Centre (M.G.), University of Sydney, NSW, Australia; Institute of Actuaries of Australia (A.E.); Department of Neurology (F.L., F.Z.), University Medical Center Mainz, Germany; and Department of Neurology (A.R., R.L., A.B.-O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Rui Li
- Montreal Neurological Institute (M.G., A.R., R.L., P.S.G., J.A., A.B.-O.), McGill University, Montreal, QC, Canada; Brain and Mind Centre (M.G.), University of Sydney, NSW, Australia; Institute of Actuaries of Australia (A.E.); Department of Neurology (F.L., F.Z.), University Medical Center Mainz, Germany; and Department of Neurology (A.R., R.L., A.B.-O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ashley Evans
- Montreal Neurological Institute (M.G., A.R., R.L., P.S.G., J.A., A.B.-O.), McGill University, Montreal, QC, Canada; Brain and Mind Centre (M.G.), University of Sydney, NSW, Australia; Institute of Actuaries of Australia (A.E.); Department of Neurology (F.L., F.Z.), University Medical Center Mainz, Germany; and Department of Neurology (A.R., R.L., A.B.-O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Felix Luessi
- Montreal Neurological Institute (M.G., A.R., R.L., P.S.G., J.A., A.B.-O.), McGill University, Montreal, QC, Canada; Brain and Mind Centre (M.G.), University of Sydney, NSW, Australia; Institute of Actuaries of Australia (A.E.); Department of Neurology (F.L., F.Z.), University Medical Center Mainz, Germany; and Department of Neurology (A.R., R.L., A.B.-O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Frauke Zipp
- Montreal Neurological Institute (M.G., A.R., R.L., P.S.G., J.A., A.B.-O.), McGill University, Montreal, QC, Canada; Brain and Mind Centre (M.G.), University of Sydney, NSW, Australia; Institute of Actuaries of Australia (A.E.); Department of Neurology (F.L., F.Z.), University Medical Center Mainz, Germany; and Department of Neurology (A.R., R.L., A.B.-O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Paul S Giacomini
- Montreal Neurological Institute (M.G., A.R., R.L., P.S.G., J.A., A.B.-O.), McGill University, Montreal, QC, Canada; Brain and Mind Centre (M.G.), University of Sydney, NSW, Australia; Institute of Actuaries of Australia (A.E.); Department of Neurology (F.L., F.Z.), University Medical Center Mainz, Germany; and Department of Neurology (A.R., R.L., A.B.-O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jack Antel
- Montreal Neurological Institute (M.G., A.R., R.L., P.S.G., J.A., A.B.-O.), McGill University, Montreal, QC, Canada; Brain and Mind Centre (M.G.), University of Sydney, NSW, Australia; Institute of Actuaries of Australia (A.E.); Department of Neurology (F.L., F.Z.), University Medical Center Mainz, Germany; and Department of Neurology (A.R., R.L., A.B.-O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Amit Bar-Or
- Montreal Neurological Institute (M.G., A.R., R.L., P.S.G., J.A., A.B.-O.), McGill University, Montreal, QC, Canada; Brain and Mind Centre (M.G.), University of Sydney, NSW, Australia; Institute of Actuaries of Australia (A.E.); Department of Neurology (F.L., F.Z.), University Medical Center Mainz, Germany; and Department of Neurology (A.R., R.L., A.B.-O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
33
|
Schlöder J, Berges C, Luessi F, Jonuleit H. Dimethyl Fumarate Therapy Significantly Improves the Responsiveness of T Cells in Multiple Sclerosis Patients for Immunoregulation by Regulatory T Cells. Int J Mol Sci 2017; 18:ijms18020271. [PMID: 28134847 PMCID: PMC5343807 DOI: 10.3390/ijms18020271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/14/2017] [Accepted: 01/22/2017] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease caused by an insufficient suppression of autoreactive T lymphocytes. One reason for the lack of immunological control is the reduced responsiveness of T effector cells (Teff) for the suppressive properties of regulatory T cells (Treg), a process termed Treg resistance. Here we investigated whether the disease-modifying therapy of relapsing-remitting MS (RRMS) with dimethyl fumarate (DMF) influences the sensitivity of T cells in the peripheral blood of patients towards Treg-mediated suppression. We demonstrated that DMF restores responsiveness of Teff to the suppressive function of Treg in vitro, presumably by down-regulation of interleukin-6R (IL-6R) expression on T cells. Transfer of human immune cells into immunodeficient mice resulted in a lethal graft-versus-host reaction triggered by human CD4⁺ Teff. This systemic inflammation can be prevented by activated Treg after transfer of immune cells from DMF-treated MS patients, but not after injection of Treg-resistant Teff from therapy-naïve MS patients. Furthermore, after DMF therapy, proliferation and expansion of T cells and the immigration into the spleen of the animals is reduced and modulated by activated Treg. In summary, our data reveals that DMF therapy significantly improves the responsiveness of Teff in MS patients to immunoregulation.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Carsten Berges
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Felix Luessi
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
34
|
Al-Jaderi Z, Maghazachi AA. Utilization of Dimethyl Fumarate and Related Molecules for Treatment of Multiple Sclerosis, Cancer, and Other Diseases. Front Immunol 2016; 7:278. [PMID: 27499754 PMCID: PMC4956641 DOI: 10.3389/fimmu.2016.00278] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022] Open
Abstract
Several drugs have been approved for treatment of multiple sclerosis (MS). Dimethyl fumarate (DMF) is utilized as an oral drug to treat this disease and is proven to be potent with less side effects than several other drugs. On the other hand, monomethyl fumarate (MMF), a related compound, has not been examined in greater details although it has the potential as a therapeutic drug for MS and other diseases. The mechanism of action of DMF or MMF is related to their ability to enhance the antioxidant pathways and to inhibit reactive oxygen species. However, other mechanisms have also been described, which include effects on monocytes, dendritic cells, T cells, and natural killer cells. It is also reported that DMF might be useful for treating psoriasis, asthma, aggressive breast cancers, hematopoeitic tumors, inflammatory bowel disease, intracerebral hemorrhage, osteoarthritis, chronic pancreatitis, and retinal ischemia. In this article, we will touch on some of these diseases with an emphasis on the effects of DMF and MMF on various immune cells.
Collapse
Affiliation(s)
- Zaidoon Al-Jaderi
- Department of Clinical Sciences, College of Medicine and Sahrjah Institute for Medical Research, University of Sharjah , Sharjah , United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and Sahrjah Institute for Medical Research, University of Sharjah , Sharjah , United Arab Emirates
| |
Collapse
|
35
|
Linker RA, Haghikia A. Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy. Ther Adv Chronic Dis 2016; 7:198-207. [PMID: 27433310 DOI: 10.1177/2040622316653307] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dimethyl fumarate (DMF) is one of the newer additions to the armamentarium of potent immunomodulators for the treatment of relapsing-remitting multiple sclerosis (RRMS). After more than 2 years of real-world experience and more than 190,000 patients currently treated with DMF worldwide, it is a good timepoint to review the experience gathered so far and to re-evaluate the potential of this first-line oral multiple sclerosis (MS) drug. Post-hoc analyses of clinical and magnetic resonance imaging (MRI) data, some comprising more than 6 years of drug exposure including patients from the clinical trials, and the overall notion in clinical practice widely confirm the good efficacy of DMF in RRMS. Despite an overall good safety profile, it became also clear that the necessary clinical vigilance while using DMF may not be neglected. So far, four reported cases of progressive multifocal leukoencephalopathy (PML), a towering shadow over many MS therapies, warrant proper attention in newly-updated risk management plans. This review recapitulates efficacy and safety aspects of DMF therapy in relation to reported data from the pivotal clinical trials. In addition, we summarize recent insights into DMF mechanisms of action drawn from the field of basic research which may have important implications for clinical practice.
Collapse
Affiliation(s)
- Ralf A Linker
- Department of Neurology, Friedrich-Alexander-University Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital Bochum, Bochum, Germany
| |
Collapse
|
36
|
Dimethylfumarate Impairs Neutrophil Functions. J Invest Dermatol 2016; 136:117-26. [PMID: 26763431 DOI: 10.1038/jid.2015.361] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/27/2015] [Accepted: 07/14/2015] [Indexed: 01/03/2023]
Abstract
Host defense against pathogens relies on neutrophil activation. Inadequate neutrophil activation is often associated with chronic inflammatory diseases. Neutrophils also constitute a significant portion of infiltrating cells in chronic inflammatory diseases, for example, psoriasis and multiple sclerosis. Fumarates improve the latter diseases, which so far has been attributed to the effects on lymphocytes and dendritic cells. Here, we focused on the effects of dimethylfumarate (DMF) on neutrophils. In vitro, DMF inhibited neutrophil activation, including changes in surface marker expression, reactive oxygen species production, formation of neutrophil extracellular traps, and migration. Phagocytic ability and autoantibody-induced, neutrophil-dependent tissue injury ex vivo was also impaired by DMF. Regarding the mode of action, DMF modulates-in a stimulus-dependent manner-neutrophil activation using the phosphoinositide 3-kinase/Akt-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 pathways. For in vivo validation, mouse models of epidermolysis bullosa acquisita, an organ-specific autoimmune disease caused by autoantibodies to type VII collagen, were employed. In the presence of DMF, blistering induced by injection of anti-type VII collagen antibodies into mice was significantly impaired. DMF treatment of mice with clinically already-manifested epidermolysis bullosa acquisita led to disease improvement. Collectively, we demonstrate a profound inhibitory activity of DMF on neutrophil functions. These findings encourage wider use of DMF in patients with neutrophil-mediated diseases.
Collapse
|
37
|
Lundy SK, Wu Q, Wang Q, Dowling CA, Taitano SH, Mao G, Mao-Draayer Y. Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e211. [PMID: 27006972 PMCID: PMC4784801 DOI: 10.1212/nxi.0000000000000211] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/22/2015] [Indexed: 12/04/2022]
Abstract
Objective: To test the hypothesis that dimethyl fumarate (Tecfidera, BG-12) affects B-cell subsets in patients with relapsing-remitting multiple sclerosis (RRMS). Methods: Peripheral blood B cells were compared for surface marker expression in patients with RRMS prior to initiation of treatment, after 4–6 months, and at more than 1 year of treatment with BG-12. Production of interleukin (IL)–10 by RRMS patient B cells was also analyzed. Results: Total numbers of peripheral blood B lymphocytes declined after 4–6 months of BG-12 treatment, due to losses in both the CD27+ memory B cells and CD27neg B-cell subsets. Some interpatient variability was observed. In contrast, circulating CD24highCD38high (T2-MZP) B cells increased in percentage in the majority of patients with RRMS after 4–6 months and were present in higher numbers in all of the patients after 12 months of treatment. The CD43+CD27+ B-1 B cells also increased at the later time point in most patients but were unchanged at 4–6 months compared to pretreatment levels. Purified B cells from 7 of the 9 patients with RRMS tested after 4–6 months of treatment were able to produce IL-10 following CD40 ligand stimulation, and the amount corresponded with the combined levels of T2-MZP and B-1 B cells in the sample. None of the patients with RRMS in this study have had a relapse while taking BG-12. Conclusions: These data suggest that BG-12 differentially affects B-cell subsets in patients with RRMS, resulting in increased numbers of circulating B lymphocytes with regulatory capacity.
Collapse
Affiliation(s)
- Steven K Lundy
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Qi Wu
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Qin Wang
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Catherine A Dowling
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Sophina H Taitano
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Guangmei Mao
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| | - Yang Mao-Draayer
- Department of Internal Medicine, Division of Rheumatology (S.K.L.), Graduate Program in Immunology, Program in Biomedical Sciences (S.K.L., S.H.T., Y.M.-D.), and Department of Neurology (Q. Wu, Q. Wang, C.A.D., G.M., Y.M.-D.), University of Michigan Medical School, Ann Arbor
| |
Collapse
|
38
|
Gross CC, Schulte-Mecklenbeck A, Klinsing S, Posevitz-Fejfár A, Wiendl H, Klotz L. Dimethyl fumarate treatment alters circulating T helper cell subsets in multiple sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 3:e183. [PMID: 26767188 PMCID: PMC4701136 DOI: 10.1212/nxi.0000000000000183] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/01/2015] [Indexed: 11/15/2022]
Abstract
Objective: To evaluate the effect of dimethyl fumarate (DMF; Tecfidera, Biogen, Weston, MA) on CD4+ and CD8+ T cell subsets in patients with multiple sclerosis (MS). Methods: Peripheral lymphocyte subsets, including CD4+ and CD8+ memory cells and T helper (TH) cells TH1, TH2, TH17, and peripheral regulatory T cell (pTreg) subpopulations were analyzed before and 6 months after onset of DMF treatment. Results: CD4+ and CD8+ memory T cells were preferentially decreased compared to naive CD4+ and CD8+ T cell populations. Within the CD4+ memory T cell population, frequencies of TH1 cells were decreased, whereas those of TH2 cells were increased and those of TH17 cells remained unaltered. Accordingly, we observed decreased production of interferon γ, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor α, and interleukin (IL)-22 by CD4+ T cells under DMF treatment, whereas the frequency of IL-4- and IL-17A-producing CD4+ T cells remained unchanged. With regard to regulatory T cells, proportions of pTreg increased following DMF treatment. Conclusion: Our data demonstrate that DMF treatment of patients with MS affects predominantly memory T cells accompanied by a shift in TH cell populations, resulting in a shift toward anti-inflammatory responses. These findings indicate that monitoring of memory subsets might enhance vigilance of impaired antiviral immunity and that patients with TH1-driven disease might preferentially benefit from DMF treatment. Classification of Evidence: This study provides Class IV evidence that DMF might preferentially reduce CD4+ and CD8+ memory T cells in MS.
Collapse
Affiliation(s)
- Catharina C Gross
- Department of Neurology, University Hospital Münster, Münster, Germany
| | | | - Svenja Klinsing
- Department of Neurology, University Hospital Münster, Münster, Germany
| | | | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
39
|
Lim JL, van der Pol SMA, Di Dio F, van Het Hof B, Kooij G, de Vries HE, van Horssen J. Protective effects of monomethyl fumarate at the inflamed blood-brain barrier. Microvasc Res 2015; 105:61-9. [PMID: 26679389 DOI: 10.1016/j.mvr.2015.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Reactive oxygen species play a key role in the pathogenesis of multiple sclerosis as they induce blood-brain barrier disruption and enhance transendothelial leukocyte migration. Thus, therapeutic compounds with antioxidant and anti-inflammatory potential could have clinical value in multiple sclerosis. The aim of the current study was to elucidate the therapeutic effects of monomethyl fumarate on inflammatory-mediated changes in blood-brain barrier function and gain insight into the underlying mechanism. METHODS The effects of monomethyl fumarate on monocyte transendothelial migration across and adhesion to inflamed human brain endothelial cells (hCMEC/D3) were quantified using standardized in vitro migration and adhesion assays. Flow cytometry analysis and qPCR were used to measure the concomitant effects of monomethyl fumarate treatment on protein expression of cell adhesion molecules. Furthermore, the effects of monomethyl fumarate on the expression and nuclear localization of proteins involved in the activation of antioxidant and inflammatory pathways in human brain endothelial cells were elucidated using nuclear fractionation and Western blotting. Statistical analysis was performed using one-way ANOVA followed by the Bonferroni post-hoc test. RESULTS Our results show that monomethyl fumarate induced nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 and concomitant production of the antioxidant enzymes heme oxygenase-1 and NADPH:quinone oxidoreductase-1 in brain endothelial cells. Importantly, monomethyl fumarate treatment markedly decreased monocyte transendothelial migration across and adhesion to inflamed human brain endothelial cells. Treatment of brain endothelial cells with monomethyl fumarate resulted in a striking reduction of vascular cell adhesion molecule expression. Surprisingly, monomethyl fumarate did not affect nuclear translocation of nuclear factor-кB suggesting that monomethyl fumarate potentially affects activity of nuclear factor-ĸB downstream of nuclear translocation. CONCLUSIONS Taken together, we show that monomethyl fumarate, the primary metabolite of dimethyl fumarate, which is currently used in the clinics for the treatment of relapsing-remitting multiple sclerosis, demonstrates beneficial therapeutic effects at the inflamed blood-brain barrier.
Collapse
Affiliation(s)
- Jamie L Lim
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Flaminia Di Dio
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Das RK, Brar SK, Verma M. Recent advances in the biomedical applications of fumaric acid and its ester derivatives: The multifaceted alternative therapeutics. Pharmacol Rep 2015; 68:404-14. [PMID: 26922546 DOI: 10.1016/j.pharep.2015.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022]
Abstract
Several lines of evidence have demonstrated the potential biomedical applications of fumaric acid (FA) and its ester derivatives against many human disease conditions. Fumaric acid esters (FAEs) have been licensed for the systemic treatment of the immune-mediated disease psoriasis. Biogen Idec Inc. announced about the safety and efficacy of the formulation FAE (BG-12) for treating RRMS (relapsing-remitting multiple sclerosis). Another FAE formulation DMF (dimethyl fumarate) was found to be capable of reduction in inflammatory cardiac conditions, such as autoimmune myocarditis and ischemia and reperfusion. DMF has also been reported to be effective as a potential neuroprotectant against the HIV-associated neurocognitive disorders (HAND). Many in vivo studies carried out on rat and mice models indicated inhibitory effects of fumaric acid on carcinogenesis of different origins. Moreover, FAEs has emerged as an important matrix ingredient in the fabrication of biodegradable scaffolds for tissue engineering applications. Drug delivery vehicles composed of FAEs have shown promising results in delivering some leading drug molecules. Apart from these specific applications and findings, many more studies on FAEs have revealed new therapeutic potentials with the scope of clinical applications. However, until now, this scattered vital information has not been written into a collective account and analyzed for minute details. The aim of this paper is to review the advancement made in the biomedical application of FA and FAEs and to focus on the clinical investigation and molecular interpretation of the beneficial effects of FA and FAEs.
Collapse
|
41
|
Calcipotriol–captisol inclusion complex and corticosteroid in a novel fixed dose combination: evaluation on human epidermal keratinocyte cells. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Subei AM, Ontaneda D. Risk Mitigation Strategies for Adverse Reactions Associated with the Disease-Modifying Drugs in Multiple Sclerosis. CNS Drugs 2015; 29:759-71. [PMID: 26407624 PMCID: PMC4621807 DOI: 10.1007/s40263-015-0277-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past several years, the number of disease-modifying therapies (DMTs) for the treatment of multiple sclerosis (MS) has doubled in number. The 13 approved agents have shown a wide range of efficacy and safety in their clinical trials and post-marketing experience. While the availability of the newer agents allows for a wider selection of therapy for clinicians and patients, there is a need for careful understanding of the benefits and risks of each agent. Several factors such as the medication efficacy, side-effect profile, patient's preference, and co-morbidities need to be considered. An individualized treatment approach is thus imperative. In this review, risk stratification and mitigation strategies of the various disease-modifying agents are discussed.
Collapse
Affiliation(s)
- Adnan M Subei
- Mellen Center for MS Treatment and Research, Cleveland Clinic Foundation, 9500 Euclid Avenue/U10, Cleveland, OH, 44195, USA.
| | - Daniel Ontaneda
- Mellen Center for MS Treatment and Research, Cleveland Clinic Foundation, 9500 Euclid Avenue/U10, Cleveland, OH, 44195, USA.
| |
Collapse
|
43
|
Terazawa S, Mori S, Nakajima H, Yasuda M, Imokawa G. The UVB-Stimulated Expression of Transglutaminase 1 Is Mediated Predominantly via the NFκB Signaling Pathway: New Evidence of Its Significant Attenuation through the Specific Interruption of the p38/MSK1/NFκBp65 Ser276 Axis. PLoS One 2015; 10:e0136311. [PMID: 26305102 PMCID: PMC4549294 DOI: 10.1371/journal.pone.0136311] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/31/2015] [Indexed: 12/27/2022] Open
Abstract
The influence of ultraviolet B (UVB) radiation on transglutaminase 1 (TGase 1), a major factor that regulates skin keratinization, has not been sufficiently characterized especially at the gene or protein level. Thus, we determined whether UVB affects the expression of TGase 1 in human keratinocytes and clarified the intracellular stress signaling mechanism(s) involved. Exposure of human keratinocytes to UVB significantly up-regulated the expression of TGase 1 at the gene and protein levels. Treatment with inhibitors of p38, MEK, JNK or NFκB significantly abolished the UVB-stimulated protein expression of TGase 1. Treatment with astaxanthin immediately after UVB irradiation did not attenuate the increased phosphorylation of Ser536/Ser468NFκBp65, c-Jun, ATK-2 and CK2, and did not abrogate the increased or diminished protein levels of c-Jun/c-Fos or I-κBα, respectively. However, the same treatment with astaxanthin significantly abolished the UVB-stimulated expression of TGase 1 protein, which was accompanied by the attenuated phosphorylation of Thr565/Ser376/Ser360MSK1, Ser276NFκBp65 and Ser133CREB. The MSK1 inhibitor H89 significantly down-regulated the increased protein expression of TGase 1 in UVB-exposed human keratinocytes, which was accompanied by an abrogating effect on the increased phosphorylation of Ser276NFκBp65 and Ser133CREB but not Thr565/Ser376/Ser360MSK1. Transfection of human keratinocytes with MSK1 siRNA suppressed the UVB-stimulated protein expression of TGase 1. These findings suggest that the UVB-stimulated expression of TGase 1 is mediated predominantly via the NFκB pathway and can be attenuated through a specific interruption of the p38/MSK1/NFκBp65Ser276 axis.
Collapse
Affiliation(s)
- Shuko Terazawa
- Research Institute for Biological Functions, Chubu University, Aichi, Japan
| | - Shingo Mori
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Hiroaki Nakajima
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Michitaka Yasuda
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Genji Imokawa
- Research Institute for Biological Functions, Chubu University, Aichi, Japan
- * E-mail:
| |
Collapse
|
44
|
Iniaghe LO, Krafft PR, Klebe DW, Omogbai EKI, Zhang JH, Tang J. Dimethyl fumarate confers neuroprotection by casein kinase 2 phosphorylation of Nrf2 in murine intracerebral hemorrhage. Neurobiol Dis 2015; 82:349-358. [PMID: 26176793 DOI: 10.1016/j.nbd.2015.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/29/2015] [Accepted: 07/04/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Edema formation, inflammation and increased blood-brain barrier permeability contribute to poor outcomes after intracerebral hemorrhage (ICH). This study examined the therapeutic effect of dimethyl fumarate (DMF), a fumaric acid ester that activates nuclear factor erythroid-2 related factor 2 (Nrf2) and Nrf2 heterodimerization effector protein musculo-aponeurotic fibrosarcoma-G (MAFG) in a murine ICH model. METHODS Male CD-1 mice (n=176) were subjected to intrastriatal infusion of bacterial collagenase (n=126), autologous blood (n=18) or sham surgery (n=32). Four (4) animals not subjected to ICH (naive) were also included in the study. After ICH, animals either received vehicle, dimethyl fumarate (10 mg or 100 mg/kg) or casein kinase 2 inhibitor (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA). Thirty-two mice also received scrambled siRNA or MAFG siRNA 24h before ICH. Brain water content and neurological function were evaluated. RESULTS Dimethyl fumarate reduced Evans blue dye extravasation, decreased brain water content, and improved neurological deficits at 24 and 72 h after ICH. Casein kinase 2 inhibitor TBCA and MAFG siRNA prevented the effect of dimethyl fumarate on brain edema and neurological function. After ICH, ICAM-1 levels increased and casein kinase 2 levels decreased. Dimethyl fumarate reduced ICAM-1 but enhanced casein kinase 2 levels. Again, casein kinase 2 inhibitor TBCA and MAFG siRNA abolished the effect of dimethyl fumarate on ICAM-1 and casein kinase 2. Dimethyl fumarate preserved pNrf2 and MAFG expression in the nuclear lysate after ICH and the effect of dimethyl fumarate was abolished by casein kinase 2 inhibitor TBCA and MAFG siRNA. Dimethyl fumarate reduced microglia activation in peri-hematoma areas after ICH. The protective effect of dimethyl fumarate on brain edema and neurological function was also observed in a blood injection mouse model. CONCLUSION Dimethyl fumarate ameliorated inflammation, reduced blood-brain barrier permeability, and improved neurological outcomes by casein kinase 2 and Nrf2 signaling pathways after experimental ICH in mice.
Collapse
Affiliation(s)
- Loretta O Iniaghe
- Department of Physiology and Pharmacology, Loma Linda University, USA; Department of Pharmacology and Toxicology, University of Benin, Nigeria
| | - Paul R Krafft
- Department of Physiology and Pharmacology, Loma Linda University, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Damon W Klebe
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Eric K I Omogbai
- Department of Pharmacology and Toxicology, University of Benin, Nigeria
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, USA.
| |
Collapse
|
45
|
Lijnen R, Otters E, Balak D, Thio B. Long-term safety and effectiveness of high-dose dimethylfumarate in the treatment of moderate to severe psoriasis: a prospective single-blinded follow-up study. J DERMATOL TREAT 2015; 27:31-6. [PMID: 26088405 DOI: 10.3109/09546634.2015.1050980] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mixtures of fumaric acid esters (FAE) are used as an oral systemic treatment for moderate to severe psoriasis. Large clinical studies with dimethylfumarate (DMF) monotherapy are scarce. OBJECTIVES The objective of this study is to assess the effectiveness and long-term safety of high-dose DMF monotherapy in moderate to severe psoriasis. METHODS A prospective single-blinded follow-up study was performed in a cohort of patients treated with DMF. Patients were followed-up at fixed intervals. Assessment of consecutive photographs was performed by two observers. Primary outcome was a change in static physician global assessment (PGA) score. Safety outcome was defined as incidences of (serious) adverse events. RESULTS A total of 176 patients with moderate to severe psoriasis were treated with DMF for a median duration of 28 months. The median daily maintenance dosage of 480 mg was reached after a median of 8 months. Psoriasis activity decreased significantly by 1.7 out of five points. A total of 152 patients reported one or more adverse events, such as gastrointestinal complaints and flushing. CONCLUSIONS High-dose DMF monotherapy is an effective and safe treatment option in moderate to severe psoriasis. It can be suggested that 50% of all patients may benefit from high-dose DMF monotherapy.
Collapse
Affiliation(s)
- Raphaël Lijnen
- a Department of Dermatology , Laurentius Hospital , Roermond , The Netherlands
| | - Elsemieke Otters
- b Department of Dermatology , Radboud University Medical Center , The Netherlands , and
| | - Deepak Balak
- c Department of Dermatology , Erasmus Medical Centre , Rotterdam , The Netherlands
| | - Bing Thio
- c Department of Dermatology , Erasmus Medical Centre , Rotterdam , The Netherlands
| |
Collapse
|
46
|
Tannahill GM, Iraci N, Gaude E, Frezza C, Pluchino S. Metabolic reprograming of mononuclear phagocytes in progressive multiple sclerosis. Front Immunol 2015; 6:106. [PMID: 25814990 PMCID: PMC4356156 DOI: 10.3389/fimmu.2015.00106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/24/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS). Accumulation of brain damage in progressive MS is partly the result of mononuclear phagocytes (MPs) attacking myelin sheaths in the CNS. Although there is no cure yet for MS, significant advances have been made in the development of disease modifying agents. Unfortunately, most of these drugs fail to reverse established neurological deficits and can have adverse effects. Recent evidence suggests that MPs polarization is accompanied by profound metabolic changes, whereby pro-inflammatory MPs (M1) switch toward glycolysis, whereas anti-inflammatory MPs (M2) become more oxidative. It is therefore possible that reprograming MPs metabolism could affect their function and repress immune cell activation. This mini review describes the metabolic changes underpinning macrophages polarization and anticipates how metabolic re-education of MPs could be used for the treatment of MS. KEY POINTS Inflammation in progressive MS is mediated primarily by MPs.Cell metabolism regulates the function of MPs.DMAs can re-educate the metabolism of MPs to promote healing.
Collapse
Affiliation(s)
- Gillian Margaret Tannahill
- Department of Clinical Neurosciences, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council (MRC) Stem Cell Institute, Cambridge, UK
| | - Nunzio Iraci
- Department of Clinical Neurosciences, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council (MRC) Stem Cell Institute, Cambridge, UK
| | - Edoardo Gaude
- Wellcome Trust-Medical Research Council (MRC) Stem Cell Institute, Cambridge, UK
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Christian Frezza
- Wellcome Trust-Medical Research Council (MRC) Stem Cell Institute, Cambridge, UK
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council (MRC) Stem Cell Institute, Cambridge, UK
| |
Collapse
|
47
|
Lukács J, Schliemann S, Elsner P. Treatment of generalized granuloma annulare - a systematic review. J Eur Acad Dermatol Venereol 2015; 29:1467-80. [DOI: 10.1111/jdv.12976] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- J. Lukács
- Department of Dermatology; University Hospital Jena; Jena Germany
| | - S. Schliemann
- Department of Dermatology; University Hospital Jena; Jena Germany
| | - P. Elsner
- Department of Dermatology; University Hospital Jena; Jena Germany
| |
Collapse
|
48
|
Abstract
Fumaric acid esters (FAE) are small molecules with immunomodulating, anti-inflammatory, and anti-oxidative effects. FAE were introduced as a systemic psoriasis treatment in 1959 and empirically developed further between 1970 and 1990 in Germany, Switzerland, and the Netherlands. The development of FAE as psoriasis treatment did not follow the traditional drug development phases. Nonetheless, in 1994 FAE were approved in Germany for the treatment of severe plaque psoriasis. FAE are currently one of the most commonly used treatments in Germany, and FAE are increasingly being used as an unlicensed treatment in several other European countries. To date, six randomized controlled trials and 29 observational studies have evaluated FAE in a combined total of 3,439 patients. The efficacy and safety profile of FAE is favorable. About 50%-70% of patients achieve at least 75% improvement in psoriasis severity after 16 weeks of treatment. Common adverse events of FAE include gastrointestinal complaints and flushing symptoms, which lead to treatment discontinuation in up to 40% of patients. Lymphocytopenia, eosinophilia, and proteinuria are commonly observed during FAE treatment, but rarely require treatment discontinuation. The long-term safety profile of continuous FAE treatment is favorable without an increased risk for infections, malignancies, or other serious adverse events. There are no known drug-interactions for FAE. The 2009 European evidence-based S3-guidelines on psoriasis treatment recommend FAE and suggest it as a first-line systemic treatment for moderate-to-severe plaque psoriasis. This review is aimed to give an overview of FAE treatment in the management of psoriasis.
Collapse
Affiliation(s)
- Deepak MW Balak
- Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
49
|
Thomas RH, Wakefield RA. Oral disease-modifying therapies for relapsing-remitting multiple sclerosis. Am J Health Syst Pharm 2015; 72:25-38. [DOI: 10.2146/ajhp140023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Rachel Hutchins Thomas
- Shelby Baptist Medical Center, Alabaster, AL; at the time of writing she was Assistant Professor of Pharmacy Practice, McWhorter School of Pharmacy, Sanford University, Birmingham, AL
| | - Richard A. Wakefield
- St. Dominic-Jackson Memorial Hospital, Jackson, MS; at the time of writing he was Resident, Drug Information Practice, McWhorter School of Pharmacy, Samford University
| |
Collapse
|
50
|
Dimethyl fumarate for treatment of multiple sclerosis: mechanism of action, effectiveness, and side effects. Curr Neurol Neurosci Rep 2014; 13:394. [PMID: 24061646 DOI: 10.1007/s11910-013-0394-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dimethyl fumarate is an orally available treatment option for relapsing-remitting multiple sclerosis (MS) in a new formulation with improved gastroenteric coating. The mode of action comprises immunomodulatory effects and an activation of nuclear (erythroid-derived 2) related factor mediated antioxidative response pathways leading to additional cytoprotective effects. In two pivotal phase III trials, dimethyl fumarate, 240 mg twice daily, reduced relapse rates by about 50 % as compared with placebo. In the DEFINE trial, progression of disability was also significantly reduced. Both trials demonstrated a significant reduction of gadolinium-enhanced lesions as well as T2 lesions on cranial MRI. The studies revealed a beneficial safety profile of dimethyl fumarate. The most prevalent side effects were transient flushing and gastrointestinal tract irritation. Dimethyl fumarate has recently been approved in the USA for the treatment of relapsing-remitting MS. The compound is a welcome addition to the immunomodulatory treatment armamentarium for MS patients and physicians alike.
Collapse
|