1
|
Zheng Y, Li Z, Yin M, Gong X. Heme oxygenase‑1 improves the survival of ischemic skin flaps (Review). Mol Med Rep 2021; 23:235. [PMID: 33537805 PMCID: PMC7893698 DOI: 10.3892/mmr.2021.11874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/12/2021] [Indexed: 01/17/2023] Open
Abstract
Heat shock protein 32 (Hsp32), also known as heme oxygenase‑1 (HO‑1), is an enzyme that exists in microsomes. HO‑1 can be induced by a variety of stimuli, including heavy metals, heat shock, inflammatory stimuli, heme and its derivatives, stress, hypoxia, and biological hormones. HO‑1 is the rate‑limiting enzyme of heme catabolism, which splits heme into biliverdin, carbon monoxide (CO) and iron. The metabolites of HO‑1 have anti‑inflammatory and anti‑oxidant effects, and provide protection to the cardiovascular system and transplanted organs. This review summarizes the biological characteristics of HO‑1 and the functional significance of its products, and specifically elaborates on its protective effect on skin flaps. HO‑1 improves the survival rate of ischemic skin flaps through anti‑inflammatory, anti‑oxidant and vasodilatory effects of enzymatic reaction products. In particular, this review focuses on the role of carbon monoxide (CO), one of the primary metabolites of HO‑1, in flap survival and discusses the feasibility and existing challenges of HO‑1 in flap surgery.
Collapse
Affiliation(s)
- Yinhua Zheng
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhenlan Li
- Department of Rehabilitation Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Yin
- Department of Nephrology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xu Gong
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
2
|
Kankam HKN, Mehta S, Jain A. Thermal Preconditioning for Surgery: A Systematic Review. J Plast Reconstr Aesthet Surg 2020; 73:1645-1664. [PMID: 32505626 DOI: 10.1016/j.bjps.2020.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/07/2020] [Accepted: 05/09/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Optimising patients pre-operatively reduces the chance of complications. This may be achieved by preconditioning. Thermal preconditioning refers to the supraphysiological heating of organisms or specific organs prior to an environmental insult. This review explores the current application and efficacy of thermal preconditioning for surgery. METHODS A comprehensive search of Medline (via PubMed), Embase and the Cochrane library was performed. Only articles evaluating the use of supraphysiological heating prior to a surgical intervention were included. Qualitative syntheses of data were undertaken due to the heterogeneity of the studies. The quality of each article was appraised using risk of bias tools (Cochrane and SYRCLE). RESULTS The primary literature search returned 3175 articles. After screening and reviewing reference lists, 28 papers met the inclusion criteria. The majority of studies were performed in animals, with only three clinical trials. Although there was broad coverage of different surgical techniques, flap transfer was the most commonly performed procedure. Most studies demonstrated a beneficial effect of thermal preconditioning, ranging from increased joint mobility to improved flap or organ transplant survival rates. The quality of evidence was variable, with experimental animal studies limited by a lack of methodological detail. CONCLUSIONS Thermal preconditioning for surgery has been primarily investigated using animal models. A beneficial effect has been demonstrated in most cases, across specialties ranging from plastic to general surgery. Future studies should aim to assess the clinical significance through large multicentre randomised controlled trials.
Collapse
Affiliation(s)
- Hadyn K N Kankam
- Department of Surgery, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Saahil Mehta
- Department of Plastic Surgery, Guy's and St. Thomas' NHS Foundation Trust, London, UK; Department of Plastic Surgery, Faculty of Medicine, University of Basel, Basel, Switzerland.
| | - Abhilash Jain
- Department of Plastic and Reconstructive Surgery, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK; Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Botnar Research Centre Institute of Musculoskeletal Sciences, University of Oxford Nuffield, Oxford, UK
| |
Collapse
|
3
|
Effects of ischemic preconditioning of different intraoperative ischemic times of vascularized bone graft rabbit models. Arch Plast Surg 2013; 40:687-96. [PMID: 24286040 PMCID: PMC3840174 DOI: 10.5999/aps.2013.40.6.687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Ischemic preconditioning has been shown to improve the outcomes of hypoxic tolerance of the heart, brain, lung, liver, jejunum, skin, and muscle tissues. However, to date, no report of ischemic preconditioning on vascularized bone grafts has been published. METHODS Sixteen rabbits were divided into four groups with ischemic times of 2, 6, 14, and 18 hours. Half of the rabbits in each group underwent ischemic preconditioning. The osteomyocutaneous flaps consisted of the tibia bone, from which the overlying muscle and skin were raised. The technique of ischemic preconditioning involved applying a vascular clamp to the pedicle for 3 cycles of 10 minutes each. The rabbits then underwent serial plain radiography and computed tomography imaging on the first, second, fourth, and sixth postoperative weeks. Following this, all of the rabbits were sacrificed and histological examinations were performed. RESULTS The results showed that for clinical analysis of the skin flaps and bone grafts, the preconditioned groups showed better survivability. In the plain radiographs, except for two non-preconditioned rabbits with intraoperative ischemic times of 6 hours, all began to show early callus formation at the fourth week. The computed tomography findings showed more callus formation in the preconditioned groups for all of the ischemic times except for the 18-hour group. The histological findings correlated with the radiological findings. There was no statistical significance in the difference between the two groups. CONCLUSIONS In conclusion, ischemic preconditioning improved the survivability of skin flaps and increased callus formation during the healing process of vascularized bone grafts.
Collapse
|
4
|
Edmunds MC, Czopek A, Wigmore SJ, Kluth DC. Paradoxical effects of heme arginate on survival of myocutaneous flaps. Am J Physiol Regul Integr Comp Physiol 2013; 306:R10-22. [PMID: 24089372 DOI: 10.1152/ajpregu.00240.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia reperfusion injury (IRI) contributes to partial flap and solid organ transplant failure. Heme-oxygenase 1 (HO-1) is an inducible, cytoprotective enzyme which protects against IRI in solid organ transplant models. Heme arginate (HA), a HO-1 inducer, is a promising, translatable, preconditioning agent. This study investigated the effects of preconditioning with HA on the clinical outcome of a myocutaneous IRI model. Forty male Lewis rats were randomized to intravenously receive 1) Control-NaCl, 2) HA, 3) HA and tin mesoporphyrin (SnMP), a HO-1 inhibitor; and 4) SnMP alone. Twenty-four hours later, an in situ transverse rectus abdominis myocutaneous flap was performed under isoflurane anesthesia. Viability of flaps was measured clinically and by laser-Doppler perfusion scanning. In vitro work on human epidermal keratinocytes (HEKa) assessed the effects of HA, SnMP, and the iron chelator desferrioxamine on 1) cytotoxicity, 2) intracellular reactive oxygen species (ROS) concentration, and 3) ROS-mediated DNA damage. In contrast to our hypothesis, HA preconditioning produced over 30% more flap necrosis at 48 h compared with controls (P = 0.02). HA-containing treatments produced significantly worse flap perfusion at all postoperative time points. In vitro work showed that HA is cytotoxic to keratinocytes. This cytotoxicity was independent of HO-1 and was mediated by the generation of ROS by free heme. In contrast to solid organ data, pharmacological preconditioning with HA significantly worsened clinical outcome, thus indicating that this is not a viable approach in free flap research.
Collapse
Affiliation(s)
- Marie-Claire Edmunds
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom; and
| | | | | | | |
Collapse
|
5
|
Dentin as a suitable bone substitute comparable to ß-TCP—an experimental study in mice. Microvasc Res 2012; 84:116-22. [DOI: 10.1016/j.mvr.2012.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 11/24/2022]
|
6
|
Sinikovic B, Schumann P, Winkler M, Kuestermeyer J, Tavassol F, von See C, Carvalho C, Mülhaupt R, Bormann KH, Kokemueller H, Meyer-Lindenberg A, Laschke MW, Menger MD, Gellrich NC, Rücker M. Calvaria bone chamber--a new model for intravital assessment of osseous angiogenesis. J Biomed Mater Res A 2011; 99:151-7. [PMID: 21976439 DOI: 10.1002/jbm.a.32955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 09/29/2009] [Accepted: 06/24/2010] [Indexed: 11/06/2022]
Abstract
The faith of tissue engineered bone replacing constructs depends on their early supply with oxygen and nutrients, and thus on a rapid vascularization. Although some models for direct observation of angiogenesis are described, none of them allows the observation of new vessel formation in desmal bone. Therefore, we developed a new chamber model suitable for quantitative in vivo assessment of the vascularization of bone substitutes by intravital fluorescence microscopy. In the parietal calvaria of 32 balb/c mice a critical size defect was set. Porous 3D-poly(L-lactide-co-glycolide) (PLGA)-blocks were inserted into 16 osseous defects (groups 3 and 4) while other 16 osseous defects remained unequipped (groups 1 and 2). By placing a polyethylene membrane onto the dura mater, the angiogenesis was mainly restricted to the osseous margins (groups 2 and 4). Microvascular density, angiogenesis, and microcirculatory parameters were evaluated repetitively during 22 days. In all animals, only a mild inflammatory reaction was observed with a climax after 2 weeks. The implantation of PLGA scaffolds resulted in a vascular growth directed towards the center of the defect as demonstrated by the significantly (p < 0.05) enhanced central microvascular densitiy from day 3 to day 22 when compared with unequipped chambers. The additional application of polyethylene membrane was found to reduce significantly the microvessel density mainly in the center of both scaffolds and defects. The present calvaria bone chamber allows for the first time to assess quantitatively the angiogenesis arising from desmal bone directly in vivo. Therefore, this chronic model may support the future research in the biological adequacy of bone substitutes.
Collapse
Affiliation(s)
- Branko Sinikovic
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Morse D, Lin L, Choi AMK, Ryter SW. Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. Free Radic Biol Med 2009; 47:1-12. [PMID: 19362144 PMCID: PMC3078523 DOI: 10.1016/j.freeradbiomed.2009.04.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/17/2009] [Accepted: 04/06/2009] [Indexed: 11/22/2022]
Abstract
Increases in cell death by programmed (i.e., apoptosis, autophagy) or nonprogrammed mechanisms (i.e., necrosis) occur during tissue injury and may contribute to the etiology of several pulmonary or vascular disease states. The low-molecular-weight stress protein heme oxygenase-1 (HO-1) confers cytoprotection against cell death in various models of lung and vascular injury by inhibiting apoptosis, inflammation, and cell proliferation. HO-1 serves a vital metabolic function as the rate-limiting step in the heme degradation pathway and in the maintenance of iron homeostasis. The transcriptional induction of HO-1 occurs in response to multiple forms of chemical and physical cellular stress. The cytoprotective functions of HO-1 may be attributed to heme turnover, as well as to beneficial properties of its enzymatic reaction products: biliverdin-IXalpha, iron, and carbon monoxide (CO). Recent studies have demonstrated that HO-1 or CO inhibits stress-induced extrinsic and intrinsic apoptotic pathways in vitro. A variety of signaling molecules have been implicated in the cytoprotection conferred by HO-1/CO, including autophagic proteins, p38 mitogen-activated protein kinase, signal transducer and activator of transcription proteins, nuclear factor-kappaB, phosphatidylinositol 3-kinase/Akt, and others. Enhanced HO-1 expression or the pharmacological application of HO end-products affords protection in preclinical models of tissue injury, including experimental and transplant-associated ischemia/reperfusion injury, promising potential future therapeutic applications.
Collapse
Affiliation(s)
- Danielle Morse
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Ling Lin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Augustine M. K. Choi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Stefan W. Ryter
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
|
9
|
Harder Y, Amon M, Schramm R, Contaldo C, Metzkow E, Matzen A, Rücker M, Vollmar B, Menger MD. Erythropoietin reduces necrosis in critically ischemic myocutaneous tissue by protecting nutritive perfusion in a dose-dependent manner. Surgery 2009; 145:372-83. [PMID: 19303985 DOI: 10.1016/j.surg.2008.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Erythropoietin (Epo), the primary regulator of erythropoiesis, has recently been shown to exert antiinflammatory and antiapoptotic properties in neuronal and myocardial tissue. We herein studied whether Epo pretreatment can reduce cell death and ischemic necrosis in a chronic in vivo model. METHODS C57BL/6 mice were treated daily for 3 consecutive days with either 500 IU EPO/kg body weight (bw) (group Epo 500, n = 8) or 5000 IU EPO/kg bw (group Epo 5000, n = 8) administered intraperitoneally 24 hours before surgery. Thereafter, a random pattern myocutaneous flap subjected to acute persistent ischemia was elevated and fixed into a dorsal skinfold chamber. Flap elevation in animals receiving the water-soluble vitamin E analog Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid) served as a nonspecific antiinflammatory agent control group (Tro); untreated control animals (Con) received saline only. Capillary perfusion, leukocyte-endothelial cell interaction, apoptotic cell death, and tissue necrosis were determined over a 10-day observation period using intravital multifluorescence microscopy. RESULTS Epo 5000 (44 +/- 26 cm/cm(2)) but, more noticeably, Epo 500 (116 +/- 32 cm/cm(2)) improved capillary perfusion compared with the two control groups, particularly the Con group (9 +/- 7 cm/cm(2); P < .05). The ischemia-associated leukocytic inflammation was found drastically attenuated in both Epo-pretreatment groups. Epo 500 further decreased apoptotic cell death and was effective in significantly reducing tissue necrosis (16% +/- 4% vs Tro: 48% +/- 7% and Con: 52% +/- 4%; P < .001). No angiogenic blood vessel formation could be observed in either of the Epo groups. Of interest, Epo 5000-but not Epo 500-increased systemic hematocrit. CONCLUSION Despite the lack of neovascularization, Epo pretreatment was capable of reducing ischemic tissue necrosis by protecting capillary perfusion, ie, nutrition of the tissue. Low-dose pretreatment was more effective, a result that was most likely due to the better perfusion conditions without an increase of the hematocrit values. Thus, low-dose Epo pretreatment might represent a promising strategy to protect critically perfused ischemic tissue.
Collapse
Affiliation(s)
- Yves Harder
- Institute for Clinical and Experimental Surgery, University of Saarland, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
OBJECTIVE The objective of this study was to analyze whether erythropoietin (EPO) protects from necrosis of critically perfused musculocutaneous tissue and the mechanisms by which this protection is achieved. BACKGROUND EPO is the regulator of erythropoiesis and is used to treat patients with anemia of different causes. Recent studies suggest that EPO has also other tissue-protective effects, irrespective of its erythropoietic properties. MATERIAL AND METHODS C57BL/6-mice were treated with 3 doses of EPO at 500 IU/kg intraperitoneally. EPO was given either before (preconditioning, n = 7), before and after (overlapping treatment, n = 7), or after (treatment, n = 7) surgery. Animals receiving only saline served as controls (CON). Acute persistent ischemia was induced by elevating a randomly perfused flap in the back of the animals. This critically perfused tissue demonstrates an initial microvascular failure of approximately 40%, resulting in approximately 50% tissue necrosis if kept untreated. Repetitive fluorescence microscopy was performed over 10 days, assessing angiogenesis, functional capillary density, inflammatory leukocyte-endothelial cell interaction, apoptotic cell death, and tissue necrosis. Additional molecular tissue analyses included the determination of inducible nitric oxide synthase, erythropoietin receptor (EPO-R), and vascular endothelial growth factor (VEGF). RESULTS EPO preconditioning did not affect hematocrit and EPO-R expression, but increased inducible nitric oxide synthase in the critically perfused tissue. This correlated with a significant arteriolar dilation, which resulted in a maintained functional capillary density (CON: 0 +/- 0 cm/cm(2); preconditioning: 37 +/- 21 cm/cm(2); overlapping treatment: 72 +/- 26 cm/cm(2); P < 0.05). EPO pretreatment further significantly reduced microvascular leukocyte adhesion and apoptotic cell death. Moreover, EPO pretreatment induced an early VEGF upregulation, which resulted in new capillary network formation (CON: 0 +/- 0 cm/cm(2); preconditioning: 40 +/- 3 cm/cm(2); overlapping treatment: 33 +/- 3 cm/cm(2); P < 0.05). Accordingly, EPO pretreatment significantly reduced tissue necrosis (CON: 48% +/- 2%; preconditioning: 26% +/- 3%; overlapping treatment: 20% +/- 3%; P < 0.05). Of interest, EPO treatment was only able to alleviate ischemia-induced inflammation but could not improve microvascular perfusion and tissue survival. CONCLUSIONS EPO pretreatment improves survival of critically perfused tissue by nitric oxide -mediated arteriolar dilation, protection of capillary perfusion, and VEGF-initiated new blood vessel formation.
Collapse
|
11
|
Pries AR, Habazettl H, Ambrosio G, Hansen PR, Kaski JC, Schächinger V, Tillmanns H, Vassalli G, Tritto I, Weis M, de Wit C, Bugiardini R. A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc Res 2008; 80:165-74. [PMID: 18511433 DOI: 10.1093/cvr/cvn136] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obstructive disease of the large coronary arteries is the prominent cause for angina pectoris. However, angina may also occur in the absence of significant coronary atherosclerosis or coronary artery spasm, especially in women. Myocardial ischaemia in these patients is often associated with abnormalities of the coronary microcirculation and may thus represent a manifestation of coronary microvascular disease (CMD). Elucidation of the role of the microvasculature in the genesis of myocardial ischaemia and cardiac damage-in the presence or absence of obstructive coronary atherosclerosis-will certainly result in more rational diagnostic and therapeutic interventions for patients with ischaemic heart disease. Specifically targeted research based on improved assessment modalities is needed to improve the diagnosis of CMD and to translate current molecular, cellular, and physiological knowledge into new therapeutic options.
Collapse
Affiliation(s)
- Axel R Pries
- Department of Physiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
An old dream revitalised: preconditioning strategies to protect surgical flaps from critical ischaemia and ischaemia-reperfusion injury. J Plast Reconstr Aesthet Surg 2008; 61:503-11. [DOI: 10.1016/j.bjps.2007.11.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 04/11/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
|
13
|
Ischemia-induced up-regulation of heme oxygenase-1 protects from apoptotic cell death and tissue necrosis. J Surg Res 2008; 150:293-303. [PMID: 18262556 DOI: 10.1016/j.jss.2007.12.773] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/12/2007] [Accepted: 12/06/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tissues are endowed with protective mechanisms to counteract chronic ischemia. Previous studies have demonstrated that endogenous heme oxygenase (HO)-1 may protect parenchymal tissue from inflammation- and reoxygenation-induced injury. Nothing is known, however, on whether endogenous HO-1 also plays a role in chronic ischemia to protect from development of tissue necrosis. The aim of this study is, therefore, to evaluate in vivo whether endogenous HO-1 exerts protection on chronically ischemic musculocutaneous tissue, and whether this protection is mediated by an attenuation of the microcirculatory dysfunction. MATERIALS AND METHODS In C57BL/6-mice, a chronically ischemic flap was elevated and fixed into a dorsal skinfold chamber. In a second group, tin-protoporphyrin-IX was administrated to competitively block the action of HO-1. Animals without flap elevation served as controls. With the use of intravital fluorescence microscopy, microcirculation, apoptotic cell death, and tissue necrosis were analyzed over a 10-day observation period. The time course of HO-1 expression was determined by Western blotting. RESULTS Chronic ischemia induced an increase of HO-1 expression, particularly at day 1 and 3. This was associated with arteriolar dilation and hyperperfusion, which was capable of maintaining an adequate capillary perfusion density in the critically perfused central part of the flap, demarcating the distal necrosis. Inhibition of endogenous HO-1 by tin-protoporphyrin-IX completely abrogated arteriolar dilation (44.6 +/- 6.2 microm versus untreated flaps: 71.3 +/- 7.3 microm; P < 0.05) and hyperperfusion (3.13 +/- 1.29 nL/s versus 8.55 +/- 3.56 nL/s; P < 0.05). This resulted in a dramatic decrease of functional capillary density (16 +/- 16 cm/cm(2)versus 84 +/- 31 cm/cm(2); P < 0.05) and a significant increase of apoptotic cell death (585 +/- 51 cells/mm(2)versus 365 +/- 53 cells/mm(2); P < 0.05), and tissue necrosis (73% +/- 5% versus 51% +/- 5%; P < 0.001). CONCLUSION Thus, our results suggest that chronic ischemia-induced endogenous HO-1 protects ischemically endangered tissue, probably by the vasodilatory action of the HO-1-associated carbon monoxide.
Collapse
|
14
|
Desmons SO, Delfosse CJ, Rochon P, Buys B, Penel G, Mordon S. Laser preconditioning of calvarial bone prior to an X-ray radiation injury: A preliminary in vivo study of the vascular response. Lasers Surg Med 2008; 40:28-37. [DOI: 10.1002/lsm.20595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Contaldo C, Harder Y, Plock J, Banic A, Jakob SM, Erni D. The influence of local and systemic preconditioning on oxygenation, metabolism and survival in critically ischaemic skin flaps in pigs. J Plast Reconstr Aesthet Surg 2007; 60:1182-92. [PMID: 17428750 DOI: 10.1016/j.bjps.2007.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Accepted: 02/20/2007] [Indexed: 11/16/2022]
Abstract
Stress proteins represent a group of highly conserved intracellular proteins that provide adaptation against cellular stress. The present study aims to elucidate the stress protein-mediated effects of local hyperthermia and systemic administration of monophosphoryl lipid A (MPL) on oxygenation, metabolism and survival in bilateral porcine random pattern buttock flaps. Preconditioning was achieved 24h prior to surgery by applying a heating blanket on the operative site (n = 5), by intravenous administration of MPL at a dosage of 35 microg/kg body weight (n = 5) or by combining the two (n = 5). The flaps were monitored with laser Doppler flowmetry, polarographic microprobes and microdialysis until 5h postoperatively. Semiquantitative immunohistochemistry was performed for heat shock protein 70 (HSP70), heat shock protein 32 (also termed haem oxygenase-1, HO-1), and inducible nitrc oxide synthase (iNOS). The administration of MPL increased the impaired microcirculatory blood flow in the proximal part of the flap and partial oxygen tension in the the distal part by approximately 100% each (both P<0.05), whereas both variables remained virtually unaffected by local heat preconditioning. Lactate/pyruvate (L/P) ratio and glycerol concentration (representing cell membrane disintegration) in the distal part of the flap gradually increased to values of approximately 500 mmol/l and approximately 350 micromol/l, respectively (both P<0.01), which was substantially attenuated by heat application (P<0.01 for L/P ratio and P<0.05 for glycerol) and combined preconditioning (P<0.01 for both variables), whereas the effect of MPL was less marked (not significant). Flap survival was increased from 56% (untreated animals) to 65% after MPL (not significant), 71% after heat application (P<0.05) and 78% after both methods of preconditioning (P<0.01). iNOS and HO-1 were upregulated after each method of preconditioning (P<0.05), whereas augmented HSP70 staining was only observed after heat application (P<0.05). We conclude that local hyperthermia is more effective in preventing flap necrosis than systemic MPL administration because of enhancing the cellular tolerance to hypoxic stress, which is possibly mediated by HSP70, whereas some benefit may be obtained with MPL due to iNOS and HO-1-mediated improvement in tissue oxygenation.
Collapse
Affiliation(s)
- C Contaldo
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Inselspital University Hospital, CH 3010 Berne, Switzerland.
| | | | | | | | | | | |
Collapse
|
16
|
Healy C, Mulhall KJ, Fitz Patrick D, Kay EW, Bouchier-Hayes D. The effect of thermal preconditioning of the limb on flexor tendon healing. J Hand Surg Eur Vol 2007; 32:289-95. [PMID: 17321648 DOI: 10.1016/j.jhsb.2007.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 01/02/2007] [Accepted: 01/08/2007] [Indexed: 02/03/2023]
Abstract
Thermal preconditioning reduces inflammation by inducing cytoprotective heat shock proteins. We evaluated the role of limb thermal preconditioning in a rabbit model of flexor tendon repair. The treatment groups underwent limb preconditioning by elevating the limb temperature to 41.5 degrees C for 20 minutes. The animals were sacrificed three and six weeks after flexor tendon repair. Heat shock protein72 expression of the treated limb was measured at 18 hours. Macroscopic analysis demonstrated a significant decrease in adhesion formation in the three week treatment group. The inflammatory infiltrate was significantly reduced for both treatment groups. The difference in ultimate tensile strength was not significant. We conclude that thermal preconditioning of the limb before flexor tendon repair decreases inflammation and adhesion formation in a rabbit model and has the potential to improve clinical outcome of flexor tendon surgery.
Collapse
Affiliation(s)
- C Healy
- Department of Surgery, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
17
|
Ming L, Bo W, Xiaoyu Z, Guangyi W, Hong Z. Induction of heme oxygenase-1 improves cold preservation effect of liver graft. BIOCHEMISTRY (MOSCOW) 2007; 72:545-51. [PMID: 17573709 DOI: 10.1134/s0006297907050112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have examined the protective effect and mechanisms of heme oxygenase-1 (HO-1) induction in rat liver model of ex vivo cold ischemia preservation using cobalt protoporphyrin (CoPP) as HO-1 inducer and zinc protoporphyrin (ZnPP) as HO-1 inhibitor. There was a decrease in both aspartate transaminase and lactate dehydrogenase activities and in malondialdehyde level in liver of the CoPP-treated group compared with controls (p < 0.05). In the CoPP-treated rats, the histological signs of reperfusion injury were much lower than in control. Up-regulation of HO-1 expression was also associated with reduced levels of tumor necrosis factor alpha and interleukin-6. Markedly fewer apoptotic liver cells (determined by TUNEL assay) could be detected in CoPP-treated group compared with the control group. These protective effects were prevented by administration of ZnPP. In conclusion, induction of HO-1 provides protection against liver injury during cold ischemia preservation and improves the preservation of liver graft. The mechanisms underlying these beneficial effects include reduction of oxidative injury and of inflammatory response and prevention of apoptosis.
Collapse
Affiliation(s)
- Liu Ming
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | | | | | | | | |
Collapse
|
18
|
Harder Y, Amon M, Georgi M, Scheuer C, Schramm R, Rücker M, Pittet B, Erni D, Menger MD. Aging is associated with an increased susceptibility to ischaemic necrosis due to microvascular perfusion failure but not a reduction in ischaemic tolerance. Clin Sci (Lond) 2007; 112:429-40. [PMID: 17147518 DOI: 10.1042/cs20060187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study in a murine model of chronic ischaemia, we analysed: (i) whether aging was associated with an increased susceptibility to ischaemic necrosis, and (ii) whether this was based on microvascular dysfunction or reduced ischaemic tolerance. An ischaemic pedicled skin flap was created in the ear of homozygous hairless mice. The animals were assigned to three age groups, including adolescent (2±1 months), adult (10±2 months) and senescent (19±3 months). Microvascular perfusion of the ischaemic flap was assessed over 5 days by intravital microscopy, evaluating FCD (functional capillary density), capillary dilation response and the area of tissue necrosis. Expression of the stress-protein HO (haem oxygenase)-1 was determined by immunohistochemistry and Western blotting. Induction of chronic ischaemia stimulated a significant expression of HO-1 without a significant difference between the three age groups. This was associated with capillary dilation, which, however, was more pronounced in adolescent (10.5±2.8 μm compared with 3.95±0.79 μm at baseline) and adult (12.1±3.1 μm compared with 3.36±0.45 μm at baseline) animals compared with senescent animals (8.5±1.7 μm compared with 3.28±0.69 μm at baseline; P value not significant). In senescent animals, flap creation further resulted in complete cessation of capillary flow in the distal area of the flap (FCD, 0±0 cm/cm2), whereas adult (11.9±13.5 cm/cm2) and, in particular, adolescent animals (58.4±33.6 cm/cm2; P<0.05) were capable of maintaining residual capillary perfusion. The age-associated microcirculatory dysfunction resulted in a significantly increased flap necrosis of 49±8% (P<0.05) and 42±8% (P<0.05) in senescent and adult animals respectively, compared with 31±6% in adolescent mice. Of interest, functional inhibition of HO-1 by SnPP-IX (tin protoporphyrin-IX) in adolescent mice abrogated capillary dilation, decreased functional capillary density and aggravated tissue necrosis comparably with that observed in senescent mice. Thus aging is associated with an increased susceptibility to tissue necrosis, which is due to a loss of vascular reactivity to endogenous HO-1 expression, rather than a reduction in ischaemic tolerance.
Collapse
Affiliation(s)
- Yves Harder
- Institute for Clinical & Experimental Surgery, University of Saarland, D-66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Menger MD, Vollmar B. Pathomechanisms of Ischemia-Reperfusion Injury as the Basis for Novel Preventive Strategies: Is It Time for the Introduction of Pleiotropic Compounds? Transplant Proc 2007; 39:485-8. [PMID: 17362764 DOI: 10.1016/j.transproceed.2007.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ischemia-reperfusion-associated tissue dysfunction and organ failure still represent major complications in transplantation surgery. The pathomechanisms involve microvascular perfusion failure, ie, no-reflow and tissue hypoxia despite reperfusion and reoxygenation. However, postischemic reperfusion also provokes an inflammatory response, ie, reflow paradox, with activation of macrophages, recruitment of leukocytes, and accumulation of platelets, involving surface adhesion molecules such as P-selectin, P-selectin glycoprotein ligand (PSGL)-1, Mac-1, and intercellular adhesion molecule (ICAM)-1. These inflammatory cells produce cytokines, chemokines, lipid mediators, and oxygen radicals, which all may contribute to the manifestation of injury, including apoptosis, necrosis, and necrapoptosis. Although specific inhibition of single mediators, such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1, and oxygen radicals, or distinct molecules, such as P-selectin and ICAM-1, has been shown to be protective in the experimental setting, these single-agent antimediator and antimolecule approaches did not find their way into clinical practice. Clinically, University of Wisconsin (UW) solution for organ preservation is still the major milestone for prevention of ischemia- and reperfusion-associated injury. Characteristically, this treatment strategy does not represent an anti-single mediator approach, but exerts protection by influencing multiple pathways involved in hypoxic and inflammatory injury, potentially restoring the overall homeostasis. This type of pleiotropic action may also be achieved by single pharmacological compounds, such as statins, erythropoietin, hemoxygenase-1, and L-glycine. In recent experimental studies, these compounds have been shown to be effective to reduce post-ischemic-reperfusion injury, and, additionally, to be associated with less side effects. Accordingly, these pleiotropic substances may represent ideal candidates for pharmacological preconditioning in patient treatment, and, thus, should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- M D Menger
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | | |
Collapse
|
20
|
Perspektiven in der Schockforschung. Notf Rett Med 2006. [DOI: 10.1007/s10049-006-0855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Rücker M, Schäfer T, Scheuer C, Harder Y, Vollmar B, Menger MD. Local Heat Shock Priming Promotes Recanalization of Thromboembolized Microvasculature by Upregulation of Plasminogen Activators. Arterioscler Thromb Vasc Biol 2006; 26:1632-9. [PMID: 16627801 DOI: 10.1161/01.atv.0000223144.65958.c3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Thromboembolization and subsequent microvascular perfusion failure is implicated in the pathology of a variety of diseases, including transient ischemic attack (TIA), stroke, and myocardial infarction, and also for the complications after interventional and microsurgical procedures in coronary heart disease and peripheral arterial occlusive disease. In vitro heat shock priming has been suggested to induce plasminogen activators, which are the major upregulators of the fibrinolytic system. Herein, we determined whether local heat shock priming endogenously upregulates plasminogen activators also in vivo, and whether this promotes recanalization of thromboembolized microvasculature. METHODS AND RESULTS To induce thromboembolization, a suspension of preformed microthrombi (maximum diameter: 40 microm) was injected via the femoral artery into the left hindlimbs of anesthetized rats. Local heat shock priming (42.5 degrees C, 30 minutes) was performed 24 hours before embolization and resulted in a significant increase of endothelium-derived plasminogen activator expression. The study of the microcirculation by intravital microscopy revealed in all tissues analyzed (muscle, periosteum, subcutis, and skin) that heat shock priming significantly (P<0.05) accelerates recanalization of the thromboembolized microvasculature when compared with nonprimed and sham-primed controls. Importantly, the addition of plasminogen activator inhibitor-1 to the microthrombi suspension completely blunted the heat shock-induced acceleration of microvascular recanalization. CONCLUSIONS Heat shock induces endogenous hyperfibrinolysis by upregulation of plasminogen activators that promote recanalization of thromboembolized microvasculature.
Collapse
Affiliation(s)
- Martin Rücker
- Institute for Clinical & Experimental Surgery, University of Saarland, D-66421 Homburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Wagstaff MJD, Shah M, McGrouther DA, Latchman DS. The heat shock proteins and plastic surgery. J Plast Reconstr Aesthet Surg 2006; 60:974-82. [PMID: 17662462 DOI: 10.1016/j.bjps.2006.03.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 03/12/2006] [Indexed: 11/22/2022]
Abstract
Heat shock proteins are diverse and essential components of cell physiology. Their expression is elevated in the cell undergoing stress, where they protect the cell from death by necrosis or apoptosis and accelerate recovery. Significant advances have been made in studies relevant to plastic surgery regarding these proteins and their manipulation. This review introduces the heat shock proteins and appraises these studies in skin, ultraviolet light exposure, neoplasia, wound healing, ageing, burns, and reconstructive surgery.
Collapse
Affiliation(s)
- M J D Wagstaff
- Department of Plastic and Reconstructive Surgery, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK.
| | | | | | | |
Collapse
|
23
|
Harder Y, Amon M, Schramm R, Georgi M, Banic A, Erni D, Menger MD. Heat shock preconditioning reduces ischemic tissue necrosis by heat shock protein (HSP)-32-mediated improvement of the microcirculation rather than induction of ischemic tolerance. Ann Surg 2005; 242:869-78, discussion 878-9. [PMID: 16327497 PMCID: PMC1409874 DOI: 10.1097/01.sla.0000189671.06782.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Supraphysiologic stress induces a heat shock response, which may exert protection against ischemic necrosis. Herein we analyzed in vivo whether the induction of heat shock protein (HSP) 32 improves survival of chronically ischemic myocutaneous tissue, and whether this is based on amelioration of microvascular perfusion or induction of ischemic tolerance. METHODS The dorsal skin of mice was subjected to local heat preconditioning (n = 8) 24 hours before surgery. In additional heat-preconditioned animals (n = 8), HSP-32 was inhibited by tin-protoporphyrin-IX. Unconditioned animals served as controls (n = 8). A random-pattern myocutaneous flap was elevated in the back of the animals and fixed into a dorsal skinfold chamber. The microcirculation, edema formation, apoptotic cell death, and tissue necrosis were analyzed over a 10-day period using intravital fluorescence microscopy. RESULTS HSP-32 protein expression was observed only in heat-preconditioned but not in unconditioned flaps. Heat preconditioning induced arteriolar dilation, which was associated with a significant improvement of both arteriolar blood flow and capillary perfusion in the distal part of the flap. Further, heat shock reduced interstitial edema formation, attenuated apoptotic cell death, and almost completely abrogated the development of flap necrosis (4% +/- 1% versus controls: 53% +/- 5%; P[r] < 0.001). Most strikingly, inhibition of HSP-32 by tin-protoporphyrin-IX completely blunted the preconditioning-induced improvement of microcirculation and resulted in manifestation of 72% +/- 4% necrosis. CONCLUSION Local heat preconditioning of myocutaneous tissue markedly increases flap survival by maintaining adequate nutritive perfusion rather than inducing ischemic tolerance. The protection is caused by the increased arteriolar blood flow due to significant arteriolar dilation, which is mediated through the carbon monoxide-associated vasoactive properties of HSP-32.
Collapse
Affiliation(s)
- Yves Harder
- Institute for Clinical & Experimental Surgery, University of Saarland, D-66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kubulus D, Amon M, Roesken F, Rücker M, Bauer I, Menger MD. Experimental cooling-induced preconditioning attenuates skin flap failure. Br J Surg 2005; 92:1432-8. [PMID: 16184623 DOI: 10.1002/bjs.5152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Microvascular perfusion failure is a leading cause of tissue necrosis in reconstructive surgery. In the present experimental study the effect of local hypothermia was investigated as a possible preconditioning procedure that could induce stress proteins such as heat-shock protein (HSP) 70 and HSP-32 (haem oxygenase (HO) 1). The effect on flap microcirculation and survival was also studied. METHODS Ears of hairless mice were subjected to local hypothermia (30 min, 4 degrees C) 24 h before flap creation. A pedicled flap was elevated by incision of four-fifths of the base of the ear. Microcirculatory dysfunction and tissue necrosis were analysed quantitatively over 5 days by means of intravital fluorescence microscopy. HO-1 and HSP-70 protein expression were determined by western blot analysis. HO-1 distribution within the flap tissue was also analysed by immunohistochemistry. Animals with unconditioned flaps served as controls. RESULTS Cooling induced a marked expression of HO-1 without induction of HSP-70 protein. This was paralleled by a significant improvement in microvascular perfusion (P < 0.050) that was predominantly regulated by the dilatation of nutritive capillaries. The cooling-mediated improvement in microcirculation resulted in a significant reduction in final flap necrosis (P < 0.050). CONCLUSION In this experimental study preoperative cooling was associated with the expression of HO-1 and was an effective conditioning procedure.
Collapse
Affiliation(s)
- D Kubulus
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Rücker M, Kadirogullari B, Vollmar B, Spitzer WJ, Menger MD. Improvement of nutritive perfusion after free tissue transfer by local heat shock-priming-induced preservation of capillary flowmotion. J Surg Res 2005; 123:102-8. [PMID: 15652957 DOI: 10.1016/j.jss.2004.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Indexed: 11/16/2022]
Abstract
BACKGROUND Capillary flowmotion protects pedicled flaps during critical perfusion conditions. However, free tissue transfer, causing ischemia-reperfusion and surgical trauma, have been shown to blunt these protective blood flow fluctuations. Because heat shock priming protects tissue after transfer, we herein studied whether heat shock protein expression is capable to preserve critical perfusion-induced capillary flowmotion in transferred composite flaps. METHODS In Sprague Dawley rats (n = 16), osteomyocutaneous flaps were subjected to critical perfusion after harvest and 1 h and 4 h after free transfer. In eight animals additional heat shock priming was induced 24 h before flap harvest. Microcirculation including capillary flowmotion was analyzed using intravital fluorescence microscopy. RESULTS After harvest, critical perfusion induced capillary flowmotion in skeletal muscle tissue of all flaps. By this, functional capillary density (FCD), an indicator of nutritive perfusion, was maintained not only in muscle but also in periosteum, subcutis, and skin. In contrast, 1 h after flap transfer muscle capillary flowmotion was completely abrogated, resulting in a significant decrease of FCD in all tissues. Heat shock-priming completely restored capillary flowmotion, and, by this, maintained tissue FCD. CONCLUSIONS The loss of muscle capillary flowmotion after free tissue transfer-associated ischemia-reperfusion can be prevented by heat shock-priming. This may represent the mechanism of protection by local heat application.
Collapse
Affiliation(s)
- Martin Rücker
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | |
Collapse
|
26
|
Baumeister S, Ofer N, Kleist C, Terne P, Opelz G, Gebhard MM, Germann G, Heitmann C. Reduction of Skeletal Muscle Injury in Composite Tissue Allotransplantation by Heat Stress Preconditioning. Plast Reconstr Surg 2004; 114:1832-41. [PMID: 15577355 DOI: 10.1097/01.prs.0000143577.36583.1b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ischemia-reperfusion injury is a dominant factor limiting tissue survival in any microsurgical tissue transplantation, a fact that also applies to allogeneic hand transplantation. The clinical experience of the 12 human hand transplantations indicates that shorter ischemia times result in reduced tissue damage and, ultimately, in better hand function. Heat stress preconditioning and the accompanying up-regulation of the heat shock protein 72 have been shown to reduce the ischemia-reperfusion injury following ischemia of various organs, including organ transplantation. The aim of this study was to reduce the ischemia-reperfusion injury in a model of composite tissue allotransplantation. Allogeneic hind limb transplantations were performed from Lewis (donor) to Brown-Norway rats. Donor rats in group A (n = 10) received a prior heat shock whereas rats in group B (n = 10) did not receive any prior heat shock. Group C served as a control group without transplantation. The transplantations were performed 24 hours after the heat shock, at which time the heat shock protein 72 was shown to be up-regulated. The outcome was evaluated 24 hours after transplantation by nitroblue tetrazolium staining and wet-to-dry weight ratio of muscle slices (anterior tibial muscle). The nitroblue tetrazolium staining showed a significant reduction of necrotic muscle in group A (prior heat shock) (p = 0.005). The wet-to-dry ratio was significantly reduced in group A (prior heat shock), indicating less muscle edema and less tissue damage (p = 0.05). Heat shock preconditioning 24 hours before an ischemic event leads to an up-regulation of heat shock protein 72 in muscle and to a tissue protection reducing ischemia-reperfusion injury in composite tissue transplantation.
Collapse
Affiliation(s)
- Steffen Baumeister
- Department of Hand, Plastic, and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kubulus D, Roesken F, Amon M, Rücker M, Bauer M, Bauer I, Menger MD. Mechanism of the delay phenomenon: tissue protection is mediated by heme oxygenase-1. Am J Physiol Heart Circ Physiol 2004; 287:H2332-40. [PMID: 15217802 DOI: 10.1152/ajpheart.01109.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Induction of the “delay phenomenon” by chronic ischemia is an established clinical procedure, but the mechanisms conferring tissue protection are still incompletely understood. To elucidate the role of heme oxygenase-1 [HO-1 or heat shock protein-32 (HSP-32)] in delay, we examined in the skin-flap model of the ear of the hairless mouse, 1) whether chronic ischemia (delay) is capable to induce expression of HO-1, and 2) whether delay-induced HO-1 affects skin-flap microcirculation and survival by either its carbon monoxide-associated vasodilatory action or its biliverdin-associated anti-oxidative mechanism. Chronic ischemia was induced by transsection of the central feeding vessel of the ear 7 days before flap creation. The flap was finally raised by an incision through four-fifths of the base of the ear. Microcirculatory dysfunction and tissue necrosis were studied with the use of laser Doppler fluxmetry and intravital fluorescence microscopy. HO-1 protein expression was determined with Western blot analysis. Seven days of chronic ischemia (delay) induced a marked expression of HO-1. This was paralleled by a significant improvement ( P < 0.05) of microvascular perfusion and a reduction ( P < 0.05) of flap necrosis when compared with nondelayed controls. Importantly, blockade of HO-1 activity by tin protoporhyrin-IX completely blunted the protection of microcirculation and the improvement of tissue survival. Additional administration of the vitamin E analog trolox after blockade of HO-1 to mimic exclusively the anti-oxidative action of the heat shock protein did not restore the HO-1-associated microcirculatory improvement and only transiently attenuated the manifestation of flap necrosis. Thus our data indicate that the delay-induced protection from tissue necrosis is mediated by HO-1, predominantly through its carbon monoxide-associated action of adequately maintaining nutritive capillary perfusion.
Collapse
Affiliation(s)
- Darius Kubulus
- Dept. of Anesthesiology and Intensive Care Medicine, Univ. of Saarland, D-66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Intensivists frequently collaborate with plastic and reconstructive surgeons in treating patients with major wounds, following significant reconstructive procedures, and following free-tissue transfers. Pressure ulcers are a significant source of morbidity and mortality in the intensive care unit; prevention, early recognition, and multidisciplinary treatment are critical components for successful management. Necrotizing fasciitis is an aggressive, soft-tissue infection that requires rapid diagnosis, early surgical intervention frequent operative debridements, and soft-tissue reconstruction Catastrophic abdominal injuries and infections can be treated with an open abdominal approach and require the expertise of a plastic surgeon to reconstruct the abdominal wall. The success of free-tissue transfers and complex reconstructive procedures requires a thorough understanding of the factors that improve flap survival.
Collapse
Affiliation(s)
- Gerard J Fulda
- Department of Surgery, Christiana Care Health Services, 4755 Ogletown-Stanton Road, Newark, DE 19718, USA.
| | | | | |
Collapse
|
29
|
Mulhall KJ, McLaughlin R, Kay E, Kiely P, Bouchier-Hayes D, Murray P. Thermal preconditioning prevents peritendinous adhesions and inflammation. Clin Orthop Relat Res 2002:258-66. [PMID: 12461382 DOI: 10.1097/00003086-200212000-00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adhesion formation is one of the foremost obstacles to a reliably good outcome in tendon and joint surgery. Thermal preconditioning has been found to reduce the inflammatory response through the induction of molecular chaperone expression, a recently described family of cytoprotective intracellular proteins. The authors analyzed the effect of thermal preconditioning on the inflammatory response to surgery, on tendon healing, and on the formation of peritendinous adhesions in 16 New Zealand White rabbits. Very significant decreases in adhesion formation and in the gliding and dimensions of tendons in animals that had thermal preconditioning were found. Tendons from these animals also showed a decreased level of adhesion formation and a significantly diminished inflammatory response on histologic examination with no biomechanically significant deleterious effect on the strength of tendon healing on testing load to failure. These findings are consistent with induction of heat shock proteins by hyperthermic pretreatment. Such prevention of peritendinous adhesions and the inflammatory response to injury and surgery without compromising healing are findings that have significant implications for tendon surgery and all surgery involving joints and soft tissues.
Collapse
Affiliation(s)
- Kevin J Mulhall
- Department of Orthopaedic Surgery, Beaumont and Cappagh Hospitals, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The heme oxygenase-1 (HO-1) system, the rate-limiting step in the conversion of heme, is among the most critical of cytoprotective mechanisms activated during cellular stress. The cytoprotection may result from the elimination of heme and the function of HO-1 downstream mediators, that is, biliverdin, carbon monoxide, and free iron. HO-1 overexpression exerts beneficial effects in a number of transplantation models, including antigen-independent ischemia/reperfusion injury, acute and chronic allograft rejection, and xenotransplantation. The HO-1 system is thought to exert four major functions: (1) antioxidant function; (2) maintenance of microcirculation; (3) modulatory function upon the cell cycle; and (4) anti-inflammatory function. The antioxidant function depends on heme degradation, oxygen consumption, biliverdin, and production of ferritin via iron accumulation. The production of carbon monoxide, which has vasodilation and antiplatelet aggregation properties, maintains tissue microcirculation and may be instrumental in antiapoptotic and cell arrest mechanisms. Heme catabolism and HO-1 overexpression exert profound direct and indirect inhibitory effects on the cascade of host inflammatory responses mediated by neutrophils, macrophages, and lymphocytes. These anti-inflammatory properties result in cytoprotection in a broad spectrum of graft injury experimental models, including ischemia/reperfusion, acute and chronic allograft, and xenotransplant rejection. Further, the multifaceted targets of HO-1-mediated cytoprotection may simultaneously benefit both local graft function and host systemic immune responses. Thus, the HO-1 system serves as a novel therapeutic concept in organ transplantation.
Collapse
Affiliation(s)
- Masamichi Katori
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|