1
|
Zhang X, Ai Z, Zhang Z, Dong R, Wang L, Jin S, Wei H. Dihydroartemisinin Triggers Ferroptosis in Multidrug-Resistant Leukemia Cells. DNA Cell Biol 2022; 41:705-715. [PMID: 35687364 DOI: 10.1089/dna.2021.1145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular mechanisms and role of ferroptosis in tumor drug resistance remain unclear. In this study, we found that multidrug-resistant (MDR) K562/adriamycin (ADM) leukemia cells possessed higher glutathione (GSH) levels and iron-regulatory protein 2 (IRP2), transferrin receptor, ferritin heavy chain 1 (FTH1), and peroxidase-4 (GPX4) expression than parental drug-sensitive K562 leukemia cells. These elevations might have increased the antioxidant ability of K562/ADM cells and granted them increased buffering capacity against iron disorder, protecting them from ferroptosis and favoring drug resistance. However, dihydroartemisinin (DHA) restrained MDR K562/ADM cell viability and enhanced the sensitivity to ADM by strengthening ferroptosis induced by downregulation of GSH levels and GPX4, IRP2, and FTH expression, upregulation of reactive oxygen species (ROS) levels, and the consequent suppression of total serine/threonine kinase (AKT), total mammalian target of rapamycin (t-mTOR), phosphorylated mTOR (p-mTOR), and p-mTOR/t-mTOR levels. Moreover, compared with K562 cells, MDR K562/ADM cells exhibited greater ROS increases, GSH decreases, and viability rescue after ferroptosis inhibitor treatment owing to further suppression of FTH1, GPX4, p-mTOR, and p-mTOR/t-mTOR. Collectively, the increase in oxidative damage and the blockade of antioxidant defence shaped DHA-induced ferroptosis, which was responsible for the sensitivity of MDR leukemia cells to DHA. Regulating iron homeostasis/ROS/AKT/mTOR might be a potential chemotherapeutic strategy for sensitizing drug-resistant leukemia.
Collapse
Affiliation(s)
- Xueyan Zhang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ziying Ai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rui Dong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lina Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Suya Jin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Ghio AJ, Soukup JM, Dailey LA, Madden MC. Air pollutants disrupt iron homeostasis to impact oxidant generation, biological effects, and tissue injury. Free Radic Biol Med 2020; 151:38-55. [PMID: 32092410 PMCID: PMC8274387 DOI: 10.1016/j.freeradbiomed.2020.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Air pollutants cause changes in iron homeostasis through: 1) a capacity of the pollutant, or a metabolite(s), to complex/chelate iron from pivotal sites in the cell or 2) an ability of the pollutant to displace iron from pivotal sites in the cell. Through either pathway of disruption in iron homeostasis, metal previously employed in essential cell processes is sequestered after air pollutant exposure. An absolute or functional cell iron deficiency results. If enough iron is lost or is otherwise not available within the cell, cell death ensues. However, prior to death, exposed cells will attempt to reverse the loss of requisite metal. This response of the cell includes increased expression of metal importers (e.g. divalent metal transporter 1). Oxidant generation after exposure to air pollutants includes superoxide production which functions in ferrireduction necessary for cell iron import. Activation of kinases and phosphatases and transcription factors and increased release of pro-inflammatory mediators also result from a cell iron deficiency, absolute or functional, after exposure to air pollutants. Finally, air pollutant exposure culminates in the development of inflammation and fibrosis which is a tissue response to the iron deficiency challenging cell survival. Following the response of increased expression of importers and ferrireduction, activation of kinases and phosphatases and transcription factors, release of pro-inflammatory mediators, and inflammation and fibrosis, cell iron is altered, and a new metal homeostasis is established. This new metal homeostasis includes increased total iron concentrations in cells with metal now at levels sufficient to meet requirements for continued function.
Collapse
Affiliation(s)
- Andrew J Ghio
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Joleen M Soukup
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Lisa A Dailey
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Michael C Madden
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Moafi A, Ziaie M, Abedi M, Rahgozar S, Reisi N, Nematollahi P, Moafi H. The relationship between iron bone marrow stores and response to treatment in pediatric acute lymphoblastic leukemia. Medicine (Baltimore) 2017; 96:e8511. [PMID: 29095311 PMCID: PMC5682830 DOI: 10.1097/md.0000000000008511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Iron is an intracellular element whose accumulation in the body is associated with tissue damage. This study examines the effect of iron on pediatric acute lymphoblastic leukemia (ALL) and its "response to treatment." At the end of the first year of treatment, bone marrow iron store (BMIS) was evaluated in children with ALL and the relationship between iron store and minimal residual disease was investigated. Moreover, the 3-year disease-free survival (3-DFS) of patients was determined. Patients' BMIS were compared with that of subjects with normal bone marrow. The study examined 93 children, including 78 Pre-B and 15 T-cell ALL patients. BMIS did not differ between the children with ALL and those with no evidence of cancer. BMIS was increased in 26.6% of patients at the end of the first year of treatment. Drug resistance and BM relapses were more prevalent in cases with high BMIS in both Pre-B and T-cell groups. Bone marrow iron store is not considered a risk factor for childhood ALL. However, high levels of BMIS are associated with poor response to treatment and the risk of relapse. Bone marrow iron store control during treatment can therefore help achieve better outcomes and improve the chances of recovery.
Collapse
Affiliation(s)
- Alireza Moafi
- Departmant of Pediatrics, School of Medicine, Isfahan University of Medical Sciences
| | - Mozhdeh Ziaie
- Departmant of Pediatrics, School of Medicine, Isfahan University of Medical Sciences
| | - Marjan Abedi
- Department of Biology, Faculty of Sciences, University of Isfahan
| | - Soheila Rahgozar
- Department of Biology, Faculty of Sciences, University of Isfahan
| | - Nahid Reisi
- Departmant of Pediatrics, School of Medicine, Isfahan University of Medical Sciences
| | - Pardis Nematollahi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Moafi
- Department of Medicine, School of Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Wang P, Wang ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res Rev 2017; 35:265-290. [PMID: 27829171 DOI: 10.1016/j.arr.2016.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a common form of dementia in aged people, which is defined by two pathological characteristics: β-amyloid protein (Aβ) deposition and tau hyperphosphorylation. Although the mechanisms of AD development are still being debated, a series of evidence supports the idea that metals, such as copper, iron, zinc, magnesium and aluminium, are involved in the pathogenesis of the disease. In particular, the processes of Aβ deposition in senile plaques (SP) and the inclusion of phosphorylated tau in neurofibrillary tangles (NFTs) are markedly influenced by alterations in the homeostasis of the aforementioned metal ions. Moreover, the mechanisms of oxidative stress, synaptic plasticity, neurotoxicity, autophagy and apoptosis mediate the effects of metal ions-induced the aggregation state of Aβ and phosphorylated tau on AD development. More importantly, imbalance of these mechanisms finally caused cognitive decline in different experiment models. Collectively, reconstructing the signaling network that regulates AD progression by metal ions may provide novel insights for developing chelators specific for metal ions to combat AD.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| |
Collapse
|
5
|
Ghio AJ, Schreinemachers DM. Heme Oxygenase Activity Correlates with Serum Indices of Iron Homeostasis in Healthy Nonsmokers. Biomark Insights 2016; 11:49-54. [PMID: 27199547 PMCID: PMC4863832 DOI: 10.4137/bmi.s36226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/05/2022] Open
Abstract
Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirmed such participation of HO in iron homeostasis of humans. Carbon monoxide produced through HO activity will bind to hemoglobin in circulating erythrocytes, and therefore, blood carboxyhemoglobin (COHb) can be used as an index of HO activity. Using the second National Health and Nutrition Examination Survey, we tested the postulate that HO activity correlates with serum indices of iron homeostasis in healthy nonsmokers. The investigation included 844 lifetime nonsmokers (586 females) 18 years of age and older in the study population. Significant correlations were demonstrated between COHb and several indices of iron homeostasis including serum levels of both ferritin and iron and percentage iron saturation of transferrin. There was no significant association between COHb and hemoglobin, the largest repository of heme in the human body, which functions as the substrate for HO. We conclude that HO activity contributes to human iron homeostasis with significant correlations between COHb and serum ferritin and iron levels and percentage iron saturation of transferrin.
Collapse
Affiliation(s)
- Andrew J. Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Dina M. Schreinemachers
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Ghio AJ, Tong H, Soukup JM, Dailey LA, Cheng WY, Samet JM, Kesic MJ, Bromberg PA, Turi JL, Upadhyay D, Scott Budinger GR, Mutlu GM. Sequestration of mitochondrial iron by silica particle initiates a biological effect. Am J Physiol Lung Cell Mol Physiol 2013; 305:L712-24. [DOI: 10.1152/ajplung.00099.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhalation of particulate matter has presented a challenge to human health for thousands of years. The underlying mechanism for biological effect following particle exposure is incompletely understood. We tested the postulate that particle sequestration of cell and mitochondrial iron is a pivotal event mediating oxidant generation and biological effect. In vitro exposure of human bronchial epithelial cells to silica reduced intracellular iron, which resulted in increases in both the importer divalent metal transporter 1 expression and metal uptake. Diminished mitochondrial 57Fe concentrations following silica exposure confirmed particle sequestration of cell iron. Preincubation of cells with excess ferric ammonium citrate increased cell, nuclear, and mitochondrial metal concentrations and prevented significant iron loss from mitochondria following silica exposure. Cell and mitochondrial oxidant generation increased after silica incubation, but pretreatment with iron diminished this generation of reactive oxygen species. Silica exposure activated MAP kinases (ERK and p38) and altered the expression of transcription factors (nF-κB and NF-E2-related factor 2), proinflammatory cytokines (interleukin-8 and -6), and apoptotic proteins. All of these changes in indexes of biological effect were either diminished or inhibited by cell pretreatment with iron. Finally, percentage of neutrophils and total protein concentrations in an animal model instilled with silica were decreased by concurrent exposure to iron. We conclude that an initiating event in the response to particulate matter is a sequestration of cell and mitochondrial iron by endocytosed particle. The resultant oxidative stress and biological response after particle exposure are either diminished or inhibited by increasing the cell iron concentration.
Collapse
Affiliation(s)
- Andrew J. Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Haiyan Tong
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Joleen M. Soukup
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Lisa A. Dailey
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Wan-Yun Cheng
- Department of Environmental Sciences and Engineering, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - James M. Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Chapel Hill, North Carolina
| | - Matthew J. Kesic
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | | | - Jennifer L. Turi
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Daya Upadhyay
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University Medical Center, Stanford, California; and
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gökhan M. Mutlu
- Division of Pulmonary and Critical Care Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
7
|
Dostalikova-Cimburova M, Kratka K, Balusikova K, Chmelikova J, Hejda V, Hnanicek J, Neubauerova J, Vranova J, Kovar J, Horak J. Duodenal expression of iron transport molecules in patients with hereditary hemochromatosis or iron deficiency. J Cell Mol Med 2012; 16:1816-26. [PMID: 21973163 PMCID: PMC3822694 DOI: 10.1111/j.1582-4934.2011.01458.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disturbances of iron metabolism are observed in chronic liver diseases. In the present study, we examined gene expression of duodenal iron transport molecules and hepcidin in patients with hereditary hemochromatosis (HHC) (treated and untreated), involving various genotypes (genotypes which represent risk for HHC were examined), and in patients with iron deficiency anaemia (IDA). Gene expressions of DMT1, ferroportin, Dcytb, hephaestin, HFE and TFR1 were measured in duodenal biopsies using real-time PCR and Western blot. Serum hepcidin levels were measured using ELISA. DMT1, ferroportin and TFR1 mRNA levels were significantly increased in post-phlebotomized hemochromatics relative to controls. mRNAs of all tested molecules were significantly increased in patients with IDA compared to controls. The protein expression of ferroportin was increased in both groups of patients but not significantly. Spearman rank correlations showed that DMT1 versus ferroportin, Dcytb versus hephaestin and DMT1 versus TFR1 mRNAs were positively correlated regardless of the underlying cause, similarly to protein levels of ferroportin versus Dcytb and ferroportin versus hephaestin. Serum ferritin was negatively correlated with DMT1 mRNA in investigated groups of patients, except for HHC group. A decrease of serum hepcidin was observed in IDA patients, but this was not statistically significant. Our data showed that although untreated HHC patients do not have increased mRNA levels of iron transport molecules when compared to normal subjects, the expression is relatively increased in relation to body iron stores. On the other hand, post-phlebotomized HHC patients had increased DMT1 and ferroportin mRNA levels possibly due to stimulated erythropoiesis after phlebotomy.
Collapse
Affiliation(s)
- Marketa Dostalikova-Cimburova
- Department of Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li B, Xie Y, Cheng Z, Cheng J, Hu R, Gui S, Sang X, Sun Q, Zhao X, Sheng L, Shen W, Hong F. BmNPV resistance of silkworm larvae resulting from the ingestion of TiO₂ nanoparticles. Biol Trace Elem Res 2012; 150:221-8. [PMID: 23054861 DOI: 10.1007/s12011-012-9507-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) causes infection in the silkworm that is often lethal. The infection is hard to prevent, partly because of the nature of the virus particles and partly because of the different strains of B. mori. Titanium dioxide nanoparticles (TiO₂ NPs) have been demonstrated to have antimicrobial properties. The present study investigated whether TiO₂ NPs added to an artificial diet can increase the resistance of B. mori larvae to BmNPV and examined the molecular mechanism behind any resistance shown. The results indicated that ingested TiO₂ NPs decreased reactive oxygen species and NO accumulation in B. mori larvae under BmNPV infection, which in turn led to a decrease in their growth inhibition and mortality. In addition, the TiO₂ NPs significantly promoted the expression of resistance-related genes, including those encoding superoxide dismutase, catalase, glutathione peroxidase, acetylcholine esterase, carboxylesterase, heat shock protein 21, glutathione S transferase o1, P53, and transferring and of genes encoding cytochrome p302 and nitric oxide synthase. These findings are a useful addition to the understanding of the mechanism of BmNPV resistance of B. mori larvae in response to TiO₂ NPs addition. Such information also provides a theoretical basis for the use of TiO₂ NPs in sericulture.
Collapse
Affiliation(s)
- Bing Li
- Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang Z, Hu W, Zhang JL, Wu XH, Zhou HJ. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio 2012; 2:103-12. [PMID: 23650588 PMCID: PMC3642128 DOI: 10.1016/j.fob.2012.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 01/05/2023] Open
Abstract
Dihydroartemisinin (DHA), an active metabolite of artemisinin derivatives, is the most remarkable anti-malarial drug and has little toxicity to humans. Recent studies have shown that DHA effectively inhibits the growth of cancer cells. In the present study, we intended to elucidate the mechanisms underlying the inhibition of growth of iron-loaded human myeloid leukemia K562 cells by DHA. Mitochondria are important regulators of both autophagy and apoptosis, and one of the triggers for mitochondrial dysfunction is the generation of reactive oxygen species (ROS). We found that the DHA-induced autophagy of leukemia K562 cells, whose intracellular organelles are primarily mitochondria, was ROS dependent. The autophagy of these cells was followed by LC3-II protein expression and caspase-3 activation. In addition, we demonstrated that inhibition of the proliferation of leukemia K562 cells by DHA is also dependent upon iron. This inhibition includes the down-regulation of TfR expression and the induction of K562 cell growth arrest in the G2/M phase.
Collapse
Key Words
- AO, acridine orange
- DHA, dihydroartemisinin
- Dihydroartemisinin
- EB, ethidium bromide
- Iron
- K562 cell
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- Mitophagy
- PARP, poly(ADP-ribose) polymerases
- PBS, phosphate buffer saline
- ROS
- ROS, reactive oxygen species
- TfR, transferrin receptor
Collapse
Affiliation(s)
- Zeng Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang 310058, People's Republic of China ; Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Zhao H, Cheng J, Cai J, Cheng Z, Cui Y, Gao G, Hu R, Gong X, Wang L, Hong F. Liver injury and its molecular mechanisms in mice caused by exposure to cerium chloride. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:154-64. [PMID: 21503700 DOI: 10.1007/s00244-011-9672-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/04/2011] [Indexed: 05/23/2023]
Abstract
Cerium has been demonstrated to damage liver of mice, but very little is known about the molecular mechanisms underlying the mouse liver apoptosis. In order to understand the liver injury induced by intragastric administration of cerium chloride (CeCl3) for 60 consecutive days, the hepatocyte ultrasrtucture, various oxidative stress parameters, and the stress-related gene expression levels were investigated for the mouse liver. The results demonstrated that CeCl3 had an obvious accumulation in the mouse liver, leading to a classical laddering cleavage of DNA and hepatocyte apoptosis. CeCl3 significantly promoted the accumulation of reactive oxygen species and inhibited the stress-related gene expression of superoxide dismutase, catalase, glutathione peroxidase, metallothionein, heat-shock protein 70, glutathione-S-transferase, P53, and transferring, and it effectively activated the cytochrome p450 1A. It implied that CeCl3 resulted in apoptosis and alteration of expression levels of the genes related with metal detoxification/metabolism regulation and radical scavenging action in mice.
Collapse
Affiliation(s)
- Haiquan Zhao
- Medical College of Soochow University, Suzhou, 215123, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Isobe T, Baba E, Arita S, Komoda M, Tamura S, Shirakawa T, Ariyama H, Takaishi S, Kusaba H, Ueki T, Akashi K. Human STEAP3 maintains tumor growth under hypoferric condition. Exp Cell Res 2011; 317:2582-91. [PMID: 21871451 DOI: 10.1016/j.yexcr.2011.07.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/16/2011] [Accepted: 07/23/2011] [Indexed: 12/12/2022]
Abstract
Iron is essential in cellular proliferation and survival based on its crucial roles in DNA and ATP synthesis. Tumor cells proliferate rapidly even in patients with low serum iron, although their actual mechanisms are not well known. To elucidate molecular mechanisms of efficient tumor progression under the hypoferric condition, we studied the roles of six-transmembrane epithelial antigen of the prostate family member 3 (STEAP3), which was reported to facilitate iron uptake. Using Raji cells with low STEAP3 mRNA expression, human STEAP3-overexpressing cells were established. The impact of STEAP3 expression was analyzed about the amount of iron storage, the survival under hypoferric conditions in vitro and the growth of tumor in vivo. STEAP3 overexpression increased ferritin, an indicator of iron storage, in STEAP3-overexpressing Raji cells. STEAP3 gave Raji cells the resistance to iron deprivation-induced apoptosis. These STEAP3-overexpressing Raji cells preserved efficient growth even in hypoferric mice, while parental Raji cells grew less rapidly. In addition, iron deficiency enhanced STEAP3 mRNA expression in tumor cells. Furthermore, human colorectal cancer tissues exhibited more STEAP3 mRNA expression and iron storage compared with normal colon mucosa. These findings indicate that STEAP3 maintains iron storage in human malignant cells and tumor proliferation under the hypoferric condition.
Collapse
Affiliation(s)
- Taichi Isobe
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cui Y, Gong X, Duan Y, Li N, Hu R, Liu H, Hong M, Zhou M, Wang L, Wang H, Hong F. Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2010; 183:874-80. [PMID: 20724067 DOI: 10.1016/j.jhazmat.2010.07.109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/24/2010] [Accepted: 07/26/2010] [Indexed: 05/04/2023]
Abstract
While the hepatocyte apoptosis induced by TiO(2) nanoparticles (NPs) has been demonstrated, very little is known about the molecular mechanisms underlying this mouse liver apoptosis. In order to understand the hepatocyte apoptosis induced by intragastric administration of TiO(2) NPs for consecutive 60 days, the hepatocyte apoptosis, various oxidative stress parameters and the stress-related gene expression levels were assayed for the mouse liver. 60 days of TiO(2) NPs exposure, hepatocyte apoptosis in the liver could be observed, which was followed by increased reactive oxygen species accumulation, and decreased the stress-related gene expression levels of superoxide dismutase, catalase, glutathione peroxidase, metallothionein, heat shock protein 70, glutathione S transferase, P53, and transferrin; and the significant enhancement of the cytochrome p450 1A expression level. It implied that hepatocyte apoptosis, oxidative stresses, and alteration of expression levels of the genes related with TiO(2) NPs detoxification/metabolism regulation and radical scavenging action. Therefore, the application of TiO(2) NPs and exposure effects especially on human liver for long-term and low-dose treatment should be cautious.
Collapse
Affiliation(s)
- Yaling Cui
- Medical College of Soochow University, Renai Road No. 199, Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
14
|
B-cell lymphoma line (Raji) viability and surface marker expression minimally affected by 20- and 25-gauge vitrectomy systems analyzed by flow cytometry. Retina 2010; 30:1505-10. [PMID: 20829744 DOI: 10.1097/iae.0b013e3181d87e1f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the effect of 20-gauge (20-G) and 25-gauge (25-G) vitrectomy on cell viability and diagnostic yield (surface marker expression) using flow cytometry and human lymphoma cells in culture. METHODS Cultured human Burkitt lymphoma cells (Raji B-cell lymphoma line) were allocated into five study groups in Roswell Park Memorial Institute media. By using manual aspiration, cells were then processed by aspiration alone, by 20-G vitrectomy at 600 cuts per minute (cpm) and 1,500 cpm, or by 25-G vitrectomy at both 600 and 1,500 cpm. To assess cell viability and cell surface marker expression, samples underwent standard flow cytometry analysis for suspected lymphoma using 7-amino-actinomycin D and antibodies against CD45, CD19, lambda, and kappa light chains. RESULTS Twenty-five samples were processed after being divided into four vitrectomy groups and one nonvitrectomy group (control). The mean cell viability was 98.5 for both the nonvitrectomized and vitrectomized specimens. The percentage of cells positive for CD45 or kappa light chain was the same in the nonvitrectomized and vitrectomized groups. In addition, the level of expression of these molecules was not significantly different in all five groups. Similarly, no difference was seen for these markers between 20-G and 25-G vitrectomy at either a cut rate of 600 or 1,500 cpm. The percentage positive for CD19 was significantly lower for the 20-G vitrectomy at 1,500 cpm compared with the 25-G vitrectomy at both 600 and 1,500 cpm. Percentage of CD19 cells was greater for the 25-G vitrectomy at 600 cpm than the nonvitrectomy group. CONCLUSION Compared with simple aspiration, both 20-G and 25-G vitrectomy seem to have no significant effect on cell viability or diagnostic yield for B-cell lymphoma cells (Raji cell line) in suspension based on flow cytometry. Further studies need to be conducted to study and compare 20-G versus 25-G vitrectomy on lymphoma cells in human vitreous or in an animal model.
Collapse
|
15
|
Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 94:320-327. [PMID: 19699002 DOI: 10.1016/j.aquatox.2009.07.019] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/21/2009] [Accepted: 07/25/2009] [Indexed: 05/28/2023]
Abstract
The increased use of nano-sized metallic materials is likely to result in the release of these particles into the environment. It is, however, unclear if these materials are harmful to aquatic animals. Furthermore, because the dissolution of such nanomaterials will occur, it is probable that some of the adverse effects resulting will result from the dissolved metal species. In this study, therefore, we investigated the health and environmental impact of silver nanoparticles (Ag-NPs) on Japanese Medaka by studying changes in the expression of stress-related genes using real time RT-PCR analysis and compared these results with those of Medaka exposed to soluble silver ions. The stress-related genes selected here were metallothionein, HSP 70, GST, p53, CYP 1A and the transferrin gene. The expression levels of each gene were determined using two different Ag-NPs dosages and were quantified by measuring the mRNA concentrations in liver extracts with the Taqman-based Real-Time PCR method. The results suggest that these two silver forms have distinguishable toxic fingerprints between them. While the Ag-NPs led to cellular and DNA damage, as well as carcinogenic and oxidative stresses, genes related with metal detoxification/metabolism regulation and radical scavenging action were also induced. In contrast, the ionic silver led to an induction of inflammatory response and metallic detoxification processes in the liver of the exposed fish, but resulted in a lower overall stress response when compared with the Ag-NPs.
Collapse
Affiliation(s)
- Yun Ju Chae
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
16
|
Al-Ejeh F, Darby JM, Brown MP. Chemotherapy synergizes with radioimmunotherapy targeting La autoantigen in tumors. PLoS One 2009; 4:e4630. [PMID: 19247485 PMCID: PMC2645682 DOI: 10.1371/journal.pone.0004630] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/12/2009] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND To date, inefficient delivery of therapeutic doses of radionuclides to solid tumors limits the clinical utility of radioimmunotherapy. We aim to test the therapeutic utility of Yttrium-90 ((90)Y)-radio-conjugates of a monoclonal antibody, which we showed previously to bind specifically to the abundant intracellular La ribonucleoprotein revealed in dead tumor cells after DNA-damaging treatment. METHODOLOGY/PRINCIPAL FINDINGS Immunoconjugates of the DAB4 clone of the La-specific monoclonal antibody, APOMAB, were prepared using the metal chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and then radiolabeled with (90)Y. Mice bearing established subcutaneous tumors were treated with (90)Y-DOTA-DAB4 alone or after chemotherapy. Non-radiosensitizing cyclophosphamide/etoposide chemotherapy was used for the syngeneic EL4 lymphoma model. Radiosensitizing cisplatin/gemcitabine chemotherapy was used for the syngeneic Lewis Lung carcinoma (LL2) model, and for the xenograft models of LNCaP prostatic carcinoma and Panc-1 pancreatic carcinoma. We demonstrate the safety, specificity, and efficacy of (90)Y-DOTA-DAB4-radioimmunotherapy alone or combined with chemotherapy. EL4 lymphoma-bearing mice either were cured at higher doses of radioimmunotherapy alone or lower doses of radioimmunotherapy in synergy with chemotherapy. Radioimmunotherapy alone was less effective in chemo- and radio-resistant carcinoma models. However, radioimmunotherapy synergized with radiosensitizing chemotherapy to retard significantly tumor regrowth and so prolong the survival of mice bearing LL2, LNCaP, or Panc-1 subcutaneous tumor implants. CONCLUSIONS/SIGNIFICANCE We report proof-of-concept data supporting a unique form of radioimmunotherapy, which delivers bystander killing to viable cancer cells after targeting the universal cancer antigen, La, created by DNA-damaging treatment in neighboring dead cancer cells. Subsequently we propose that DAB4-targeted ionizing radiation induces additional cycles of tumor cell death, which further augments DAB4 binding to produce a tumor-lethal 'genotoxic chain reaction'. Clinically, this approach may be useful as consolidation treatment after a drug-induced cell death among (small-volume) metastatic deposits, the commonest cause of cancer death. This article is part II of a two-part series providing proof-of-concept for the diagnostic and therapeutic use of the DAB4 clone of the La-specific monoclonal antibody, APOMAB.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Jocelyn M. Darby
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Michael P. Brown
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medical Oncology, Royal Adelaide Hospital and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Differing expression of genes involved in non-transferrin iron transport across plasma membrane in various cell types under iron deficiency and excess. Mol Cell Biochem 2008; 321:123-33. [DOI: 10.1007/s11010-008-9926-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 09/15/2008] [Indexed: 01/21/2023]
|
18
|
Dihydroartemisinin induces apoptosis in human leukemia cells HL60 via downregulation of transferrin receptor expression. Anticancer Drugs 2008; 19:247-55. [PMID: 18510170 DOI: 10.1097/cad.0b013e3282f3f152] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dihydroartemisinin (DHA), a water-soluble active metabolite of artemisinin derivatives, is the safest and most effective antimalarial analog of artemisinin. In the present investigation, we assessed the apoptotic effect of DHA on leukemia HL60 cells and its regulation of transferrin receptor (TfR). Cell growth inhibition was assessed by Trypan blue exclusive staining; the expression of caspase-3, Bcl-2, and Bax in HL60 cells was evaluated by Western blotting; DHA-induced apoptosis was determined by AO/EB double staining, DNA fragmentation assay, and flow cytometric analysis; the expression of TfR in HL60 cells was examined by real-time PCR assays, Western blotting, and flow cytometric analysis. DHA could specifically reduce the mRNA and protein expression of TfR in HL60 cells, and the flow cytometric analysis presented the unity tendency that the TfR content decreased progressively in a dose-dependent manner. Consequently, DHA exhibited high anticancer activity in HL60 cells; MTT assay and growth inhibition assay showed that DHA could specifically inhibit the growth of HL60 cells in a dose-dependent (0.25-8 micromol/l) and time-dependent (12-72 h) manner. DHA-induced DNA fragmentation also induced the activation of caspase-3 and influenced the expression of Bcl-2 and Bax. Taken together, these data from our study show that DHA can induce HL60 cell apoptosis via the effect of downregulation TfR expression resulting in an induction of apoptosis through the mitochondrial pathway, and it might be a potential antileukemia strategy for leukemia therapy.
Collapse
|
19
|
Valis K, Neubauerova J, Man P, Pompach P, Vohradsky J, Kovar J. VDAC2 and aldolase A identified as membrane proteins of K562 cells with increased expression under iron deprivation. Mol Cell Biochem 2008; 311:225-31. [DOI: 10.1007/s11010-008-9712-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
|
20
|
Peng JL, Wu S, Zhao XP, Wang M, Li WH, Shen X, Liu J, Lei P, Zhu HF, Shen GX. Downregulation of transferrin receptor surface expression by intracellular antibody. Biochem Biophys Res Commun 2007; 354:864-71. [PMID: 17266924 DOI: 10.1016/j.bbrc.2007.01.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 01/05/2007] [Indexed: 11/18/2022]
Abstract
To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4+/-2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For the first time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.
Collapse
Affiliation(s)
- Ji-Lin Peng
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Koc M, Nad’ová Z, Kovář J. Sensitivity of cells to apoptosis induced by iron deprivation can be reversibly changed by iron availability. Cell Prolif 2007; 39:551-61. [PMID: 17109638 PMCID: PMC6495871 DOI: 10.1111/j.1365-2184.2006.00411.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We tested the effect of iron deprivation on cell death induction in human Raji cells pre-adapted to differing availability of extracellular iron. Iron deprivation was achieved by incubation in a defined iron-free medium. Original Raji cells have previously been adapted to long-term culture in a defined medium with 5 microg/ml of iron-saturated human transferrin as a source of iron. Raji/lowFe cells were derived from original Raji cells by subsequent adaptation to culture in the medium with 50 microm ferric citrate as a source of iron. Raji/lowFe-re cells were derived from Raji/lowFe cells by re-adaptation to the transferrin-containing (5 microg/ml) medium. Iron deprivation induced cell death in both Raji cells and Raji/lowFe-re cells; that is, cells pre-adapted to a near optimum source of extracellular iron (5 microg/ml of transferrin). However, Raji/lowFe cells preadapted to a limited source of extracellular iron (50 microm ferric citrate) became resistant to the induction of cell death by iron deprivation. We demonstrated that cell death induction by iron deprivation in Raji cells correlates with the activation of executioner caspase-3 and the cleavage of caspase-3 substrate, poly-ADP ribose polymerase. Two other executioner caspases, caspase-7 and caspase-6, were not activated. Taken together, we suggest that in human Raji cells, iron deprivation induces apoptotic cell death related to caspase-3 activation. However, the sensitivity of the cells to death induction by iron deprivation can be reversibly changed by extracellular iron availability. The cells pre-adapted to a limited source of extracellular iron became resistant.
Collapse
Affiliation(s)
- M. Koc
- Department of Cell Signalling and Apoptosis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, and
| | - Z. Nad’ová
- Department of Cell Signalling and Apoptosis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, and
| | - J. Kovář
- Department of Cell Signalling and Apoptosis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, and
- Department of Cell and Molecular Biology, Third Medical Faculty, Charles University, Prague, Czech Republic
| |
Collapse
|
22
|
Kovar J, Neubauerova J, Cimburova M, Truksa J, Balusikova K, Horak J. Stimulation of non-transferrin iron uptake by iron deprivation in K562 cells. Blood Cells Mol Dis 2006; 37:95-9. [PMID: 16904349 DOI: 10.1016/j.bcmd.2006.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Accepted: 06/20/2006] [Indexed: 11/25/2022]
Abstract
We tested the effect of iron deprivation on the uptake of iron from ferric citrate by human erythroleukemia K562 cells. The iron uptake after 24-h preincubation in defined iron-free medium was approximately 2-3x higher than after the preincubation in control transferrin-containing medium. The preincubation of K562 cells in iron-free medium together with the inhibitor of protein synthesis cycloheximide completely abrogated the stimulation of the iron uptake. The preincubation in iron-free medium resulted in a slight decrease (20%) of DMT1 mRNA level. The level of Dcytb, ferroportin and hephaestin mRNA did not exert any significant change. We also did not find any significant effect on the protein level of DMT1, Dcytb, ferroportin and hephaestin. We conclude that iron deprivation stimulates the uptake of non-transferrin iron in K562 cells and that this stimulation depends on protein synthesis. It seems that the expression of an unknown or seemingly unrelated protein(s) is involved.
Collapse
Affiliation(s)
- Jan Kovar
- Department of Cell Signalling and Apoptosis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Xie C, Zhang N, Zhou H, Li J, Li Q, Zarubin T, Lin SC, Han J. Distinct roles of basal steady-state and induced H-ferritin in tumor necrosis factor-induced death in L929 cells. Mol Cell Biol 2005; 25:6673-81. [PMID: 16024802 PMCID: PMC1190336 DOI: 10.1128/mcb.25.15.6673-6681.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor (TNF) alpha is a cytokine capable of inducing caspase-dependent (apoptotic) cell death in some cells and caspase-independent (necrosis-like) cell death in others. Here, using a mutagenesis screen for genes critical in TNF-induced death in L929 cells, we have found that H-ferritin deficiency is responsible for TNF resistance in a mutant line and that, upon treatment with TNF, this line fails to elevate levels of labile iron pool (LIP), critical for TNF-induced reactive oxygen species (ROS) production and ROS-dependent cell death. Since we found that TNF-induced LIP in L929 cells is primarily furnished by intracellular storage iron, the lesser induction of LIP in H-ferritin-deficient cells results from a reduction of intracellular iron storage caused by less H-ferritin. Different from some other cell lines, the H-ferritin gene in L929 cells is not TNF inducible; however, when H-ferritin is expressed in L929 cells under a TNF-inducible system, the TNF-induced LIP and subsequent ROS production and cell death were all prevented. Thus, LIP is a common denominator of ferritin both in the enhancement of cell death by basal steady-state H-ferritin and in protection against cell death by induced H-ferritin, thereby acting as a key determinant of TNF-induced cell death.
Collapse
Affiliation(s)
- Changchuan Xie
- The Scripps Research Institute Department of Immunology Imm-32, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Koc M, Nad'ová Z, Truksa J, Ehrlichová M, Kovár J. Iron deprivation induces apoptosis via mitochondrial changes related to Bax translocation. Apoptosis 2005; 10:381-93. [PMID: 15843899 DOI: 10.1007/s10495-005-0812-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to elucidate the mechanisms involved in apoptosis induction by iron deprivation, we compared cells sensitive (38C13) and resistant (EL4) to apoptosis induced by iron deprivation. Iron deprivation was achieved by incubation in a defined iron-free medium. We detected the activation of caspase-3 as well as the activation of caspase-9 in sensitive cells but not in resistant cells under iron deprivation. Iron deprivation led to the release of cytochrome c from mitochondria into the cytosol only in sensitive cells but it did not affect the cytosolic localization of Apaf-1 in both sensitive and resistant cells. The mitochondrial membrane potential (Deltapsi(m)) was dissipated within 24 h in sensitive cells due to iron deprivation. The antiapoptotic Bcl-2 protein was found to be associated with mitochondria in both sensitive and resistant cells and the association did not change under iron deprivation. On the other hand, under iron deprivation we detected translocation of the proapoptotic Bax protein from the cytosol to mitochondria in sensitive cells but not in resistant cells. Taken together, we suggest that iron deprivation induces apoptosis via mitochondrial changes concerning proapoptotic Bax translocation to mitochondria, collapse of the mitochondrial membrane potential, release of cytochrome c from mitochondria, and activation of caspase-9 and caspase-3.
Collapse
Affiliation(s)
- M Koc
- Cell Growth Control Laboratory, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeñská 1083, Prague, Czech Republic
| | | | | | | | | |
Collapse
|