1
|
Kılıç KD, Garipoğlu G, Çakar B, Uyanıkgil Y, Erbaş O. Antioxidant-Effective Quercetin Through Modulation of Brain Interleukin-13 Mitigates Autistic-Like Behaviors in the Propionic Acid-Induced Autism Model in Rats. J Neuroimmune Pharmacol 2025; 20:36. [PMID: 40220083 PMCID: PMC11993503 DOI: 10.1007/s11481-025-10190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Overproduction of reactive oxygen species occurs when inflammation induces oxidative stress in macrophages and microglia, leading to a self-sustaining cycle of cellular damage and neuroinflammation. Oxidative stress and neuroinflammation are well-established contributors to the pathophysiology of autism spectrum disorders, which are associated with impaired neuronal function, neuronal loss, and behavioral deficits. Damaged cells, through microglial activation, release additional inflammatory mediators under conditions of oxidative stress, exacerbating neuronal damage. Quercetin, a powerful dietary antioxidant, has been shown to scavenge free radicals, reduce oxidative stress, and inhibit inflammatory pathways. Given these properties, we hypothesize that quercetin may improve learning and social skills in individuals with autism spectrum disorders by alleviating oxidative stress and reducing brain levels of inflammatory cytokines. In this study, an autism model was established in 30 rats by intraperitoneal injection of 250 mg/kg/day propionic acid (PPA) for five days. The study groups were as follows: Group 1: Normal ontrol (n = 10); Group 2: PPA + saline (PPAS, n = 10); Group 3: PPA + Quercetin (PPAQ, n = 10). All treatments were administered for 15 days. At the end of the treatment, histological and biochemical analyses of brain tissue and behavioral tests related to autistic-like behaviors were performed. Malondialdehyde, tumor necrosis factor-alpha, and interleukin-13 levels in brain homogenates were significantly higher in the PPAS group compared to the control group, indicating elevated oxidative stress and inflammation following PPA exposure. The PPAQ group significantly reduced oxidative stress parameters and inflammatory biomarkers, demonstrating its antioxidant and anti-inflammatory effects. This biochemical improvement was accompanied by preserving Purkinje cells and neuronal populations, significantly reduced in the PPAS group. Moreover, quercetin-treated rats exhibited improved social behavior and learning, which were severely impaired in the PPAS group. These findings, when interpreted together, suggest that quercetin exerts its neuroprotective effects by targeting oxidative stress and neuroinflammation, thereby preventing neuronal cell loss and alleviating behavioral deficits associated with autism spectrum disorders.
Collapse
Affiliation(s)
- Kubilay Doğan Kılıç
- Faculty of Medicine, Department of Histology and Embryology, Ege University, İzmir, Türkiye.
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Munich, Germany.
- Museum Für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.
| | - Gökçen Garipoğlu
- Faculty of Health Sciences, Department of Nutrition and Dietetic, Bahçeşehir University, Istanbul, Türkiye
| | - Burak Çakar
- Faculty of Medicine, Department of Histology and Embryology, İstinye University, İstanbul, Türkiye
| | - Yiğit Uyanıkgil
- Faculty of Medicine, Department of Histology and Embryology, Ege University, İzmir, Türkiye
- Cord Blood Cell - Tissue Research and Application Center, Ege University, İzmir, Türkiye
| | - Oytun Erbaş
- Faculty of Medicine, Biruni Research Center (BAMER), Biruni University, Istanbul, Türkiye
| |
Collapse
|
2
|
Ling L, Shi H. Association between dietary flavonoids and childhood asthma. J Asthma 2025:1-8. [PMID: 39760652 DOI: 10.1080/02770903.2024.2449242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Dietary flavonoids in various green plants have anti-inflammatory, antioxidant, and immune-modulating properties. While numerous studies have confirmed that flavonoid substances benefit asthma, evidence remains limited in epidemiological research and human experiments. This study aimed to explore the relationship between childhood asthma and dietary flavonoids. METHODS Dietary flavonoids comprise isoflavones, anthocyanins, flavan-3-ols, flavanones, flavones, and flavonols. This study used data from the United States National Health and Nutrition Examination Survey, collected during interviews from 2007 to 2010 and 2017 to 2018. Asthma data were obtained from the survey questionnaire. The analysis included 7,913 participants under 20 years old. A multivariable logistic regression model was performed to investigate the correlation between flavonoids (as constant or category variables) and asthma frequency among children in the United States, with stratified analyses performed for each group. RESULTS After adjusting for potential confounding variables, a significant negative correlation was observed between asthma incidence and the highest intake group of anthocyanins compared to the lowest intake group (odds ratio [OR] = 0.83, 95% confidence interval [CI]: 0.72-0.97, and p = 0.0182). Similarly, asthma incidence indicated a significant negative association with the median flavonol intake group compared to the lowest intake group (OR = 0.83, 95% CI: 0.72-0.97, and p = 0.0165). In the stratified analysis, anthocyanin content demonstrated a significant negative correlation with asthma prevalence among males, non-Hispanic whites, nonsmoking families, and middle-income families (p < 0.05). CONCLUSION The intake of dietary flavonoids, including anthocyanins and flavonols, is correlated with asthma prevalence in children.
Collapse
Affiliation(s)
- Li Ling
- Pediatric Department, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hongbo Shi
- Pediatric Department, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Werner R, Carnazza M, Li XM, Yang N. Effect of Small-Molecule Natural Compounds on Pathologic Mast Cell/Basophil Activation in Allergic Diseases. Cells 2024; 13:1994. [PMID: 39682741 PMCID: PMC11639848 DOI: 10.3390/cells13231994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024] Open
Abstract
Pathologic mast cells and basophils, key effector cells in allergic reactions, play pivotal roles in initiating and perpetuating IgE-mediated allergic responses. Conventional therapies for allergies have limitations, prompting exploration into alternative approaches such as small-molecule natural compounds derived from botanical sources. This review synthesizes the existing literature on the effects of these compounds on pathologic mast cells and basophils, highlighting their potential in allergy management, and utilizes the PubMed database for literature acquisition, employing keyword-based searches to identify relevant peer-reviewed sources. Additionally, mechanistic insights were evaluated to contextualize how small-molecule natural compounds can inhibit mast cell/basophil activation, degranulation, and signaling pathways crucial for IgE-mediated allergic reactions. Small-molecule natural compounds exhibit promising anti-allergic effects, yet despite these findings, challenges persist in the development and translation of natural compound-based therapies, including bioavailability and standardization issues. Future research directions include optimizing dosing regimens, exploring synergistic effects with existing therapies, and employing systems pharmacology approaches for a holistic understanding of their mechanisms of action. By harnessing the therapeutic potential of small-molecule natural compounds, effective treatments for allergic diseases may be realized, offering hope for individuals with allergies.
Collapse
Affiliation(s)
- Robert Werner
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA; (R.W.); (M.C.)
| | - Michelle Carnazza
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA; (R.W.); (M.C.)
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA;
- Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| | - Nan Yang
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA; (R.W.); (M.C.)
| |
Collapse
|
4
|
Ramadan G, Waheed G, Mohammed HA. Potential Antiallergic Activity of Two Chemically/Enzymatically-Modified Natural Products Against Active Atopic and Systemic Anaphylaxes in CD1 Mice Models. Immunol Invest 2024; 53:1359-1380. [PMID: 39258651 DOI: 10.1080/08820139.2024.2401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Anaphylaxis is a globally increasing allergic reaction that is often fatal. Recently, our previous study reported the possibility of using the modified natural products "sodium R-lipoate (NaRLA) and enzymatically modified isoquercitrin (EMIQ)" as potential novel safe agents against the non-immunological-degranulation of mast cells. METHODS Here, we extended our previous findings by determining the antianaphylactic activity of 50 and 100 mg/kg body weight of NaRLA and EMIQ (given orally and prior to local or systemic challenge) in mice models of ovalbumin (OVA)-induced IgE-dependent active cutaneous anaphylaxis (ACA) and active systemic anaphylaxis (ASA) in comparison with sulfasalazine (SSZ, amast cell stabilizer). RESULTS The pre-treatment of mice with NaRLA or EMIQ completely succeeded, as SSZ, in suppression of the increased vascular permeability associated with IgE-dependent ACA and protected the OVA-sensitized mice from fatal ASA by reducing (p < .001) the skin mast cell degranulation, the elevated peritoneal histamine and interleukin-4 levels, along with decreasing the associated sever gastrointestinal and lung histopathological alterations and inflammation. The high dose of EMIQ prevented death in 70% of mice with anaphylactic shock, better than SSZ. DISCUSSION Our data indicated that NaRLA and EMIQ may be potential prophylactic and therapeutic candidates for the alleviation of atopic and systemic anaphylaxis.
Collapse
Affiliation(s)
- Gamal Ramadan
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gehan Waheed
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
5
|
Gu S, Wang R, Zhang W, Wen C, Chen C, Liu S, Lei Q, Zhang P, Zeng S. The production, function, and clinical applications of IL-33 in type 2 inflammation-related respiratory diseases. Front Immunol 2024; 15:1436437. [PMID: 39301028 PMCID: PMC11410612 DOI: 10.3389/fimmu.2024.1436437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Epithelial-derived IL-33 (Interleukin-33), as a member of alarm signals, is a chemical substance produced under harmful stimuli that can promote innate immunity and activate adaptive immune responses. Type 2 inflammation refers to inflammation primarily mediated by Type 2 helper T cells (Th2), Type 2 innate lymphoid cells (ILC2), and related cytokines. Type 2 inflammation manifests in various forms in the lungs, with diseases such as asthma and chronic obstructive pulmonary disease chronic obstructive pulmonary disease (COPD) closely associated with Type 2 inflammation. Recent research suggests that IL-33 has a promoting effect on Type 2 inflammation in the lungs and can be regarded as an alarm signal for Type 2 inflammation. This article provides an overview of the mechanisms and related targets of IL-33 in the development of lung diseases caused by Type 2 inflammation, and summarizes the associated treatment methods. Analyzing lung diseases from a new perspective through the alarm of Type 2 inflammation helps to gain a deeper understanding of the pathogenesis of these related lung diseases. This, in turn, facilitates a better understanding of the latest treatment methods and potential therapeutic targets for diseases, with the expectation that targeting lL-33 can propose new strategies for disease prevention.
Collapse
Affiliation(s)
- Shiyao Gu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruixuan Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wantian Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cen Wen
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
SHIMBO H, FUKAGAWA A, NAKAMURA O, MURAKAMI S, MIURA Y, HATTORI M, DE BEER D, JOUBERT E, YOSHIDA T. Anti-allergic effect of Cyclopia (honeybush) extracts via anti-degranulation activity in a murine allergy model for inhaled antigen. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:241-249. [PMID: 38966058 PMCID: PMC11220329 DOI: 10.12938/bmfh.2023-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 07/06/2024]
Abstract
The anti-allergic effects of extracts prepared from two species of honeybush, Cyclopia genistoides and Cyclopia subternata, were demonstrated in vivo in a murine allergy model for inhaled antigen induced with ovalbumin (OVA) inhalation to mimic pollen allergy. Intake of the extracts increased the production of OVA-specific immunoglobulin (Ig) E (IgE), IgG1, and IgG2a antibodies in serum and significantly suppressed anaphylactic reaction-induced body temperature decline. Moreover, the extracts significantly inhibited antigen-antibody-induced degranulation in RBL-2H3 cells. They also inhibited body temperature decline when the allergic mice were given them after antigen sensitization, indicating that anti-degranulation activity is the major mechanism underlying the anti-allergic effect of Cyclopia extracts. Despite their qualitative and quantitative differences in phenolic composition, the two extracts exhibited similar effects, suggesting that several active compounds might be involved in the activity. Therefore, oral administration of either Cyclopia extract potentially exerts a systemic anti-allergic effect, supporting the increased consumption of honeybush tea for general wellness and improved quality of life.
Collapse
Affiliation(s)
- Hitoshi SHIMBO
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Ayumi FUKAGAWA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Oji NAKAMURA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Shiho MURAKAMI
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Yutaka MIURA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Makoto HATTORI
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Dalene DE BEER
- Plant Bioactives Group, Post-Harvest & Agro-Processing
Technologies Division, Agricultural Research Council, Stellenbosch 7599, South
Africa
- Department of Food Science, Stellenbosch University,
Stellenbosch 7602, South Africa
| | - Elizabeth JOUBERT
- Plant Bioactives Group, Post-Harvest & Agro-Processing
Technologies Division, Agricultural Research Council, Stellenbosch 7599, South
Africa
- Department of Food Science, Stellenbosch University,
Stellenbosch 7602, South Africa
| | - Tadashi YOSHIDA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| |
Collapse
|
7
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. Mast Cells in Autism Spectrum Disorder-The Enigma to Be Solved? Int J Mol Sci 2024; 25:2651. [PMID: 38473898 DOI: 10.3390/ijms25052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a disturbance of neurodevelopment with a complicated pathogenesis and unidentified etiology. Many children with ASD have a history of "allergic symptoms", often in the absence of mast cell (MC)-positive tests. Activation of MCs by various stimuli may release molecules related to inflammation and neurotoxicity, contributing to the development of ASD. The aim of the present paper is to enrich the current knowledge on the relationship between MCs and ASD by discussing key molecules and immune pathways associated with MCs in the pathogenesis of autism. Cytokines, essential marker molecules for MC degranulation and therapeutic targets, are also highlighted. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, are the main points contributing to solving the enigma. Key molecules, associated with MCs, may provide new insights to the discovery of drug targets for modeling inflammation in ASD.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Ayaz M, Mosa OF, Nawaz A, Hamdoon AAE, Elkhalifa MEM, Sadiq A, Ullah F, Ahmed A, Kabra A, Khan H, Murthy HCA. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155272. [PMID: 38181530 DOI: 10.1016/j.phymed.2023.155272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aβ) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aβ load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Osama F Mosa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alshebli Ahmed
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia; Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and technical science (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India
| |
Collapse
|
9
|
Hu S, Wang J, Bai H, Feng C, Zhou Z, Xue Z, Zhang W, Zhang Y, Wang N, He L. Secreted phosphoprotein 1 regulates natural compound 3',4',5,7-tetrahydroxyflavone to inhibit mast cell-mediated allergic inflammation. Immunopharmacol Immunotoxicol 2023; 45:672-681. [PMID: 37339357 DOI: 10.1080/08923973.2023.2228478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Mast cells (MCs) are important effector cells in anaphylaxis and anaphylactic disease. 3',4',5,7-tetrahydroxyflavone (THF) presents in many medicinal plants and exerts a variety of pharmacological effects. In this study, we evaluated the effect of THF on C48/80-induced anaphylaxis and the mechanisms underlying its effects, including the role of secreted phosphoprotein 1 (SPP1), which has not been reported to IgE-independent MC activation. RESULTS THF inhibited C48/80-induced Ca2+ flow and degranulation via the PLCγ/PKC/IP3 pathway in vitro. RNA-seq showed that THF inhibited the expression of SPP1 and downstream molecules. SPP1 is involved in pseudo-anaphylaxis reactions. Silencing SPP1 affects the phosphorylation of AKT and P38. THF suppressed C48/80-induced paw edema, hypothermia and serum histamine, and chemokines release in vivo. CONCLUSIONS Our results validated SPP1 is involved in IgE-independent MC activation anaphylactoid reactions. THF inhibited C48/80-mediated anaphylactoid reactions both in vivo and in vitro, suppressed calcium mobilization and inhibited SPP1-related pathways.
Collapse
Affiliation(s)
- Shiling Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jue Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haoyun Bai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chaohua Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenqi Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhuoyin Xue
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongjing Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Ciprandi G, Tosca MA. Nutraceuticals and non-pharmacological remedies for managing patients with allergic rhinitis. Minerva Pediatr (Torino) 2023; 75:905-913. [PMID: 36282486 DOI: 10.23736/s2724-5276.22.07027-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Allergic rhinitis (AR) is a common disease characterized by type 2 inflammation and typical symptoms. Although pharmacologic treatment can be effective, prolonged administration of drugs can be associated with adverse reactions and seldom reduction of effectiveness. Therefore, complementary medicine is widespread in clinical practice, mainly in pediatric settings, and pleasing to parents. We reviewed and discussed the most relevant nutraceuticals and non-pharmacological remedies used in managing patients with AR. Nutraceutical, according to Defelice is "a food (or part of a food) that provides medical or health benefits, including the prevention and/or treatment of a disease," and is commonly prescribed by pediatrics as well as self-prescription by parents. There is evidence that some components exert beneficial effects in AR. Some compounds, including micronutrients, vitamins, probiotics, herbal medicines, hyaluronic acid, and saline solutions, could positively and safely be used in children with AR as add-on remedies.
Collapse
Affiliation(s)
| | - Maria A Tosca
- Allergy Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
11
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
12
|
Qiu S, Zorig A, Sato N, Yanagihara A, Kanazawa T, Takasugi M, Arai H. Effect of Polyphenols in Sea Buckthorn Berry on Chemical Mediator Release from Mast Cells. Prev Nutr Food Sci 2023; 28:335-346. [PMID: 37842252 PMCID: PMC10567591 DOI: 10.3746/pnf.2023.28.3.335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is a deciduous shrub of the Elaeagnaceae family and is widely distributed in northern Eurasia. Sea buckthorn berry (SBB) has attracted attention for its use in many health foods, although its physiological function remains unknown. In this study, we investigated the inhibitory effect of SBB extract and its fractions on Type-I allergy using mast cell lines. Among these fractions, SBB fraction with the highest amount of antioxidant polyphenols significantly inhibited the release of chemical mediators such as histamine and leukotriene B4 (LTB4) from the stimulated mast cells. This fraction also inhibited the influx of calcium ions (Ca2+) and the phosphorylation of tyrosine residues in proteins, including spleen tyrosine kinase, which is associated with signal transduction during the release of chemical mediators. The active SBB fraction contained isorhamnetin as its major flavonol aglycon. Isorhamnetin inhibited histamine and LTB4 release from the stimulated cells and suppressed intracellular Ca2+ influx. These results indicate that isorhamnetin is the primary substance responsible for the antiallergic activity in SBB. In conclusion, SBB may alleviate Type-I allergy by inhibiting the release of chemical mediators from mast cells, and polyphenols may contribute to this effect.
Collapse
Affiliation(s)
- Shiman Qiu
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Anuu Zorig
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Naoko Sato
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Ai Yanagihara
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Tsutomu Kanazawa
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| | - Mikako Takasugi
- Department of Life Science, Kyushu Sangyo University, Fukuoka 813-8503, Japan
| | - Hirofumi Arai
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan
| |
Collapse
|
13
|
Marogna M, Ciprandi G. A multicomponent nutraceutical (<i>Perilla frutescens</i>, quercetin, and vitamin D3) as add-on therapy in patients with grass pollen-induced mild persistent asthma and rhinitis. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2023; 96. [DOI: 10.4081/jbr.2023.11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Background Allergic asthma is an inflammatory disease characterized by a type 2 immune response. Pollens are a common cause of seasonal asthma. Allergic rhinitis (AR) frequently associates with asthma. The treatment usually aims at controlling inflammation and relieving symptoms. Inhaled corticosteroids are the most effective controller and short-acting b2-agonists (SABA) as a reliever for asthma. Oral antihistamines and nasal corticosteroids (NC) are the mainstays for AR. A multicomponent nutraceutical containing perilla, quercetin, and vitamin D3 significantly prevented AR exacerbations in children. Thus, the current study explored the add-on use in adult patients with mild persistent asthma and AR due to grass pollen allergy.
Methods The treatment lasted three months. Asthma and AR symptoms, asthma control test, spirometry, nasal eosinophils, and use of rescue medications (SABA and NC) were evaluated in the previous grass season and throughout the treatment. All patients were treated with ciclesonide (320 mcg/day) and cetirizine (10 mg/day). Patients were randomly stratified into Group A, taking the nutraceutical, and Group B using the predetermined therapy.
Results 90 patients (13-59 years old) were enrolled, and 84 completed the trial. Group A significantly improved all outcomes (p<0.001). Group B did not achieve an improvement in AR symptoms, nasal eosinophils, and nasal steroid use. The intergroup analysis showed that Group A patients experienced less severe bronchial symptoms (- 32 %), AR symptoms (- 39 %), better asthma control (+ 38 %), higher FEV1 (+ 10 %), lower SABA (- 30 %) and NC use (- 41 %), and nasal eosinophils count (- 35 %) than Group B (p<0.0001 for all).
No clinically relevant adverse events occurred.
Conclusion A multicomponent nutraceutical containing perilla, quercetin, and vitamin D3, as an add-on treatment to inhaled ciclesonide and cetirizine, provided a clinically relevant benefit in patients with mild persistent asthma and AR due to grass pollen uncontrolled by standard therapy.
Collapse
|
14
|
Li Q, Abdulla R, Xin X, Xue G, Kang X, Zhao F, Asia HA. Profiling of chemical constituents of Matricarla chamomilla L. by UHPLC-Q-Orbitrap-HRMS and in vivo evaluation its anti-asthmatic activity. Heliyon 2023; 9:e15470. [PMID: 37153405 PMCID: PMC10160356 DOI: 10.1016/j.heliyon.2023.e15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Matricarla chamomilla L. is native to European countries and widely cultivated in China, especially in Xinjiang. It has been used in Uygur medicine for the treatment of cough caused by asthma. In this study, UHPLC-Q-Orbitrap-MS was used to detect and identify the components from the active fraction of M. Chamomile, 64 compounds were identified by combining the standards, related literatures and mass spectrometry fragments, including 10 caffeoyl quinic acids, 38 flavonoids, 8 coumarins, 5 alkaloids and 3 other compounds. Furtherly, the anti-asthma activity of active fraction of M. Chamomile was investigated in OVA-induced allergic asthma rat model. The results showed that the number of EOS in Penh and bronchoalveolar lavage fluid (BALF) in the group of the active fraction of M. Chamomile was significantly lower than that in the model group. Besides, the active fraction of M. Chamomile can significantly reduce the IgE level and increased glutathione peroxidase (GSH-Px) in the serum of OVA-induced rats, and ameliorated OVA-induced lung injury. Hence, M. Chamomile could be used to treat asthma through their in vivo antioxidant and anti-inflammatory effects. This study explored the potential material basis of M. Chamomile for the treatment of asthma.
Collapse
Affiliation(s)
- Qian Li
- Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
- Xinjiang Key Laboratory of Processing and Research of Traditional Chinese Medicine, Urumqi, 830000, People's Republic of China
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
- Corresponding author. Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University Urumqi, 830000, People's Republic of China.
| | - Rahima Abdulla
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
| | - Xuelei Xin
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
| | - Guipeng Xue
- Xinjiang Uygur Autonomous Region Evaluation and Inspection Center for Drug, Urumqi, 830000, People's Republic of China
| | - Xiaolong Kang
- Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
- Xinjiang Key Laboratory of Processing and Research of Traditional Chinese Medicine, Urumqi, 830000, People's Republic of China
| | - Feicui Zhao
- Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
- Xinjiang Key Laboratory of Processing and Research of Traditional Chinese Medicine, Urumqi, 830000, People's Republic of China
| | - Haji Akber Asia
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
- Corresponding author.
| |
Collapse
|
15
|
Application Potential of Luteolin in the Treatment of Viral Pneumonia. J Food Biochem 2023. [DOI: 10.1155/2023/1810503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Aim of the Review. This study aims to summarize the therapeutic effect of luteolin on the pathogenesis of viral pneumonia, explore its absorption and metabolism in the human body, evaluate the possibility of luteolin as a drug to treat viral pneumonia, and provide a reference for future research. Materials and Methods. We searched MEDLINE/PubMed, Web of Science, China National Knowledge Infrastructure, and Google Scholar and collected research on luteolin in the treatment of viral pneumonia and related diseases since 2003. Then, we summarized the efficacy and potential of luteolin in directly inhibiting viral activity, limiting inflammatory storms, reducing pulmonary inflammation, and treating pneumonia complications. Results and Conclusion. Luteolin has the potential to treat viral pneumonia in multiple ways. Luteolin has a direct inhibitory effect on coronavirus, influenza virus, and respiratory syncytial virus. Luteolin can alleviate the inflammatory factor storm induced by multiple factors by inhibiting the function of macrophages or mast cells. Luteolin can reduce pulmonary inflammation, pulmonary edema, or pulmonary fibrosis induced by multiple factors. In addition, viral pneumonia may cause multisystem complications, while luteolin has extensive protective effects on the gastrointestinal system, cardiovascular system, and nervous system. However, due to the first-pass metabolism mediated by phase II enzymes, the bioavailability of oral luteolin is low. The bioavailability of luteolin can be improved, and its potential value can be further developed by changing the dosage form or route of administration.
Collapse
|
16
|
Junaid M, Basak B, Akter Y, Afrose SS, Nahrin A, Emran R, Shahinozzaman M, Tawata S. Sakuranetin and its therapeutic potentials - a comprehensive review. Z NATURFORSCH C 2023; 78:27-48. [PMID: 35844107 DOI: 10.1515/znc-2022-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/10/2022] [Indexed: 01/11/2023]
Abstract
Sakuranetin (SKN), a naturally derived 7-O-methylated flavonoid, was first identified in the bark of the cherry tree (Prunus spp.) as an aglycone of sakuranin and then purified from the bark of Prunus puddum. It was later reported in many other plants including Artemisia campestris, Boesenbergia pandurata, Baccharis spp., Betula spp., Juglans spp., and Rhus spp. In plants, it functions as a phytoalexin synthesized from its precursor naringenin and is the only known phenolic phytoalexin in rice, which is released in response to different abiotic and biotic stresses such as UV-irradiation, jasmonic acid, cupric chloride, L-methionine, and the phytotoxin coronatine. Till date, SKN has been widely reported for its diverse pharmacological benefits including antioxidant, anti-inflammatory, antimycobacterial, antiviral, antifungal, antileishmanial, antitrypanosomal, glucose uptake stimulation, neuroprotective, antimelanogenic, and antitumor properties. Its pharmacokinetics and toxicological properties have been poorly understood, thus warranting further evaluation together with exploring other pharmacological properties such as antidiabetic, neuroprotective, and antinociceptive effects. Besides, in vivo studies or clinical investigations can be done for proving its effects as antioxidant and anti-inflammatory, antimelanogenic, and antitumor agent. This review summarizes all the reported investigations with SKN for its health-beneficial roles and can be used as a guideline for future studies.
Collapse
Affiliation(s)
- Md Junaid
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Bangladesh, Chattogram, 4226, Bangladesh
| | - Bristy Basak
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Yeasmin Akter
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Bangladesh, Chattogram, 4226, Bangladesh.,Department of Biotechnology & Genetic Engineering, Noakhali Science & Technology University, Chattogram, Bangladesh
| | - Syeda Samira Afrose
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Bangladesh, Chattogram, 4226, Bangladesh
| | - Afsana Nahrin
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Bangladesh, Chattogram, 4226, Bangladesh.,Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Rashiduzzaman Emran
- Bioscience and Bioinformatics Research Center (BBRC), 5/2, Shehora, Dhaka Road, Mymensingh, 2200, Bangladesh.,Department of Agricultural Extension (DAE), Khamarbari, Farmgate, Dhaka, 1215, Bangladesh
| | - Md Shahinozzaman
- The Red-Green Research Centre, Tejgaon, Dhaka, 1215, Bangladesh.,PAK Research Center, University of the Ryukyus, Okinawa, Japan
| | | |
Collapse
|
17
|
Anti-inflammatory, Antinociceptive, and Toxicological Properties of Uvaria comperei Stem Crude Extract and Fractions. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2754725. [PMID: 36726837 PMCID: PMC9886488 DOI: 10.1155/2023/2754725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023]
Abstract
The present study was carried out to investigate the anti-inflammatory activity of a methanolic extract and fractions of Uvaria comperei stems. The crude extract was obtained by maceration of the powder in methanol and fractions by vacuum chromatography from the methanolic extract. To study the anti-inflammatory activity in vitro, red blood cell lysis inhibition assay and albumin denaturation inhibition were performed, while in vivo measurements of carrageenan-induced paw oedema and formalin-induced pain in albino mice were performed. Acute toxicity and cytotoxicity studies of the fraction F2 were performed, as well as its HPLC, and some biochemical parameters were quantified. Uvaria comperei crude extract (UCCE) at 250 and 500 μg/mL completely inhibited albumin denaturation, while decreasing 75.5% of heat blood cell lysis at 500 μg/mL. The fractions 128-136 (F3), 10-11 (F1), and 56-62 (F2) at 500 μg/mL displayed a significant anti-inflammatory activity with percentages of inhibition of 60.5, 67.4, and 100%, respectively. Administration of fraction F2 (25, 50, and 100 mg/kg, p.o.) produced a dose-dependent inhibition of formalin-induced pain of 60.2% at 50 mg/kg in the neurogenic phase (p < 0.05) and 70.2% at 25 mg/kg in the inflammatory phase (p < 0.05). Similarly, the time-dependent increase in carrageenan-induced paw circumference induced by carrageenan was inhibited by pretreatment with F2: 50% of inhibition at 25 mg/kg after 30 min (p < 0.05) and 96.5% inhibition at 25 mg/kg after 6 h (p < 0.05). In this research, the fraction F2 presented its maximum analgesic property at 50 mg/kg, while it presented the highest anti-inflammatory property at 25 mg/kg. The oral lethal median dose (LD50) of F2 was determined to be greater than 2000 mg/kg; further low cytotoxicity in RAW cells was also observed. Overall, this work shows that the methanolic crude extract and fractions, mainly F2, of Uvaria comperei stem have interesting anti-inflammatory properties.
Collapse
|
18
|
Chaudhary P, Singh D, Swapnil P, Meena M, Janmeda P. Euphorbia neriifolia (Indian Spurge Tree): A Plant of Multiple Biological and Pharmacological Activities. SUSTAINABILITY 2023; 15:1225. [DOI: 10.3390/su15021225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although India has a well-established and growing economy surrounding synthetic drug chemistry with an antibiotic base, a large part of the population, especially in forested villages and tribal belts, is relying solely on plant-derived drugs. This is due to a lower number of side effects, low chances of resistance development against pathogenic microorganisms, as well as the diversity and affordability of such drugs. In the Indian subcontinents, Euphorbia neriifolia Linn. (EN) is one of the valuable plants from the big family of Euphorbiaceae, which is usually found in rocky and hilly areas. E. neriifolia was found to be useful in curing tumors, abdominal swelling, bronchial infection, hydrophobia, earache, cough and cold, asthma, leprosy, gonorrhea, spleen enlargement, leucoderma, snake bites, scorpion stings, and causing appetite improvement, etc. Different in vitro and in vivo experimental studies were performed to determine the antioxidant, anti-diabetic, immunomodulatory, anti-inflammatory, anti-arthritic, wound healing, anti-atherosclerosis, radioprotective, anti-anxiety, anti-convulsant, anti-psychotic, anti-thrombotic, dermal irritation, hemolytic, analgesic, anti-fertility, diuretic, anti-microbial, anti-diarrheal, and anti-carcinogenic activities of the various parts of EN. Several bioactive compounds, such as euphol, nerifoliol, taraxerol, euphonerins A–G, lectin, etc., were isolated from E. neriifolia and need to be investigated further for various biological activities (cardiovascular and neuronal diseases). In the pharmaceutical sector, E. neriifolia was selected for the development of new drugs due to its broad pharmacological activities. Therefore, in the present review, distribution, classification, morphological and microscopical description, phytochemical investigation, pharmacological activities, medicinal uses, harmful effects, and their treatment were evaluated, especially against different lifestyle-related diseases.
Collapse
|
19
|
Chemotherapy-Induced Peripheral Neuropathy. Handb Exp Pharmacol 2023; 277:299-337. [PMID: 36253554 DOI: 10.1007/164_2022_609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many common anti-cancer agents that can lead to dose reduction or treatment discontinuation, which decrease chemotherapy efficacy. Long-term CIPN can interfere with activities of daily living and diminish the quality of life. The mechanism of CIPN is not yet fully understood, and biomarkers are needed to identify patients at high risk and potential treatment targets. Metabolomics can capture the complex behavioral and pathophysiological processes involved in CIPN. This chapter is to review the CIPN metabolomics studies to find metabolic pathways potentially involved in CIPN. These potential CIPN metabolites are then investigated to determine whether there is evidence from studies of other neuropathy etiologies such as diabetic neuropathy and Leber hereditary optic neuropathy to support the importance of these pathways in peripheral neuropathy. Six potential biomarkers and their putative mechanisms in peripheral neuropathy were reviewed. Among these biomarkers, histidine and phenylalanine have clear roles in neurotransmission or neuroinflammation in peripheral neuropathy. Further research is needed to discover and validate CIPN metabolomics biomarkers in large clinical studies.
Collapse
|
20
|
Liao H, Ye J, Gao Y, Lian C, Liu L, Xu X, Feng Y, Yang Y, Yang Y, Shen Q, Gao L, Liu Z, Liu Y. Baicalein self-microemulsion based on drug-phospholipid complex for the alleviation of cytokine storm. Bioeng Transl Med 2023; 8:e10357. [PMID: 36684101 PMCID: PMC9842031 DOI: 10.1002/btm2.10357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
Cytokine storm is a phenomenon whereby the overreaction of the human immune system leads to the release of inflammatory cytokines, which can lead to multiple organ dysfunction syndrome. At present, the existing drugs for the treatment of cytokine storm have limited efficacy and severe adverse effects. Here, we report a lymphatic targeting self-microemulsifying drug delivery system containing baicalein to effectively inhibit cytokine storm. Baicalein self-microemulsion with phospholipid complex as an intermediate carrier (BAPC-SME) prepared in this study could be spontaneously emulsified to form 12-nm oil-in-water nanoemulsion after administration. And then BAPC-SME underwent uptake by enterocyte through endocytosis mediated by lipid valve and clathrin, and had obvious characteristics of mesenteric lymph node targeting distribution. Oral administration of BAPC-SME could significantly inhibit the increase in plasma levels of 14 cytokines: TNF-α, IL-6, IFN-γ, MCP-1, IL-17A, IL-27, IL-1α, GM-CSF, MIG, IFN-β, IL-12, MIP-3α, IL-23, and RANTES in mice experiencing systemic cytokine storm. BAPC-SME could also significantly improve the pathological injury and inflammatory cell infiltration of lung tissue in mice experiencing local cytokine storm. This study does not only provide a new lymphatic targeted drug delivery strategy for the treatment of cytokine storm but also has great practical significance for the clinical development of baicalein self-microemulsion therapies for cytokine storm.
Collapse
Affiliation(s)
- Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chunfang Lian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lu Liu
- Research and Development DepartmentBeijing Wehand‐Bio Pharmaceutical Co. LtdBeijingChina
| | - Xiaoyan Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Feng
- Research and Development DepartmentBeijing Wehand‐Bio Pharmaceutical Co. LtdBeijingChina
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuqi Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qiqi Shen
- Research and Development DepartmentBeijing Wehand‐Bio Pharmaceutical Co. LtdBeijingChina
| | - Lili Gao
- Research and Development DepartmentBeijing Wehand‐Bio Pharmaceutical Co. LtdBeijingChina
| | - Zhihua Liu
- Research and Development DepartmentBeijing Wehand‐Bio Pharmaceutical Co. LtdBeijingChina
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
21
|
Borghi SM, Zaninelli TH, Carra JB, Heintz OK, Baracat MM, Georgetti SR, Vicentini FTMC, Verri WA, Casagrande R. Therapeutic Potential of Controlled Delivery Systems in Asthma: Preclinical Development of Flavonoid-Based Treatments. Pharmaceutics 2022; 15:pharmaceutics15010001. [PMID: 36678631 PMCID: PMC9865502 DOI: 10.3390/pharmaceutics15010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Asthma is a chronic disease with increasing prevalence and incidence, manifested by allergic inflammatory reactions, and is life-threatening for patients with severe disease. Repetitive challenges with the allergens and limitation of treatment efficacy greatly dampens successful management of asthma. The adverse events related to several drugs currently used, such as corticosteroids and β-agonists, and the low rigorous adherence to preconized protocols likely compromises a more assertive therapy. Flavonoids represent a class of natural compounds with extraordinary antioxidant and anti-inflammatory properties, with their potential benefits already demonstrated for several diseases, including asthma. Advanced technology has been used in the pharmaceutical field to improve the efficacy and safety of drugs. Notably, there is also an increasing interest for the application of these techniques using natural products as active molecules. Flavones, flavonols, flavanones, and chalcones are examples of flavonoid compounds that were tested in controlled delivery systems for asthma treatment, and which achieved better treatment results in comparison to their free forms. This review aims to provide a comprehensive understanding of the development of novel controlled delivery systems to enhance the therapeutic potential of flavonoids as active molecules for asthma treatment.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Center for Research in Health Sciences, University of Northern Paraná, Londrina 86041-120, PR, Brazil
| | - Tiago H. Zaninelli
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Jéssica B. Carra
- Department of Chemistry, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Olivia K. Heintz
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Marcela M. Baracat
- Department of Chemistry, State University of Londrina, Londrina 86057-970, PR, Brazil
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Fabiana T. M. C. Vicentini
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto 14040-900, SP, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: or (W.A.V.); or (R.C.); Tel.: +55-43-3371-4979 (W.A.V.); +55-43-3371-2476 (R.C.); Fax: +55-43-3371-4387 (W.A.V.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
- Correspondence: or (W.A.V.); or (R.C.); Tel.: +55-43-3371-4979 (W.A.V.); +55-43-3371-2476 (R.C.); Fax: +55-43-3371-4387 (W.A.V.)
| |
Collapse
|
22
|
Raghav A, Giri R, Agarwal S, Kala S, Jeong GB. Protective role of engineered extracellular vesicles loaded quercetin nanoparticles as anti-viral therapy against SARS-CoV-2 infection: A prospective review. Front Immunol 2022; 13:1040027. [PMID: 36569877 PMCID: PMC9773252 DOI: 10.3389/fimmu.2022.1040027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Quercetin (QCT) is a naturally occurring phenolic flavonoid compound with inbuilt characteristics of antioxidant, anti-inflammatory, and immune protection. Several recent studies have shown that QCT and QCTits nanoparticles have therapeutic potential against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Novel therapeutics also include the implication of extracellular vesicles (EVs) to protect from SARS-CoV-2 viral infection. This article highlighted the therapeutic/prophylactic potential of engineered EVs loaded with QCT against SARS-CoV-2 infection. Several biotechnological engineering approaches are available to deliver EVs loaded with QCT nanoparticles. Among these biotechnological advances, a specific approach with significantly higher efficiency and yield has to be opted to fabricate such drug delivery of nano molecules, especially to combat SARS-CoV-2 infection. The current treatment regime protects the human body from virus infection but has some limitations including drugs and long-term steroid side effects. However, the vaccine strategy is somehow effective in inhibiting the spread of coronavirus disease-19 (COVID-19) infection. Moreover, the proposed exosomal therapy met the current need to repair the damaged tissue along with inhibition of COVID-19-associated complications at the tissue level. These scientific findings expand the possibilities and predictability of developing a novel and cost-effective therapeutic approach that combines the dual molecule, EVs and QCT nanoparticles, to treat SARS-CoV-2 infection. Therefore, the most suitable engineering method to fabricate such a drug delivery system should be better understood before developing novel therapeutics for clinical purposes.
Collapse
Affiliation(s)
- Alok Raghav
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea,Multidisciplinary Research Unit, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Richa Giri
- Kailashpat Singhania (KPS), Institute of Medicine, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Saurabh Agarwal
- Kailashpat Singhania (KPS), Institute of Medicine, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Sanjay Kala
- Department of Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Goo-Bo- Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea,*Correspondence: Goo-Bo- Jeong,
| |
Collapse
|
23
|
Zhang Z, Wang J, Lin Y, Chen J, Liu J, Zhang X. Nutritional activities of luteolin in obesity and associated metabolic diseases: an eye on adipose tissues. Crit Rev Food Sci Nutr 2022; 64:4016-4030. [PMID: 36300856 DOI: 10.1080/10408398.2022.2138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is characterized by excessive body fat accumulation and is a high-risk factor for metabolic comorbidities, including type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. In lean individuals, adipose tissue (AT) is not only an important regulatory organ for energy storage and metabolism, but also an indispensable immune and endocrine organ. The sustained energy imbalance induces adipocyte hypotrophy and hyperplasia as well as AT remodeling, accompanied by chronic low-grade inflammation and adipocytes dysfunction in AT, ultimately leading to systemic insulin resistance and ectopic lipid deposition. Luteolin is a natural flavonoid widely distributed in fruits and vegetables and possesses multifold biological activities, such as antioxidant, anticancer, and anti-inflammatory activities. Diet supplementation of this flavonoid has been reported to inhibit AT lipogenesis and inflammation as well as the ectopic lipid deposition, increase AT thermogenesis and systemic energy expenditure, and finally improve obesity and associated metabolic diseases. The purpose of this review is to reveal the nutritional activities of luteolin in obesity and its complications with emphasis on its action on AT energy metabolism, immunoregulation, and endocrine intervention.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jiahui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
24
|
Mizuno M, Fujioka A, Bitani S, Minato KI, Sakakibara H. Anti-Allergic Activity of Fucoidan Can Be Enhanced by Coexistence with Quercetin. Int J Mol Sci 2022; 23:ijms232012163. [PMID: 36293027 PMCID: PMC9602864 DOI: 10.3390/ijms232012163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 12/05/2022] Open
Abstract
In recent years, the incidence of type I hypersensitivity including hay fever has been increasing year by year in Japan. Our previous study using mice showed that only oral, but not intraperitoneal, administration of fucoidan extracted from seaweed (Saccharina japonica) suppressed type I hypersensitivity by secretion of galectin-9, which has a high affinity for IgE in the blood. However, the amount of seaweed required to achieve this activity is quite high (12 g dry weight per person per day). Therefore, the purpose of this study was to search for food ingredients in vegetables that enhance type I hypersensitivity suppression effect when consumed together with fucoidan. As a result, the enhanced effect was observed in extracts from Welsh onions and onions among vegetables. When we compared the polyphenols in the vegetables that showed activity with those that did not, flavonols such as quercetin and kaempferol were found as candidates. When quercetin or kaempferol (100 μg each) were orally administered at the same time, even at amounts where fucoidan alone showed no anti-allergic activity, anti-allergic effects were observed. More interestingly, when both flavonols were combined and administered simultaneously at half the amount of each of the above flavonols (50 μg), while the fucoidan amount remained the same, a similar effect was observed as when each flavonol (100 μg) was administered alone. The simultaneous intake of fucoidan and vegetables containing high contents of quercetin or kaempferol may reduce fucoidan intake while maintaining the allergy suppression effect, suggesting the importance of food combination.
Collapse
Affiliation(s)
- Masashi Mizuno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Correspondence: ; Tel./Fax: +81-78-803-5835
| | - Asuka Fujioka
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shiho Bitani
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Ken-ichiro Minato
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Meijo University, 1-50 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Hiroyuki Sakakibara
- Faculty of Agriculture, University of Miyazaki, Gakuen Kibana-dai Nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
25
|
Ezaouine A, Salam MR, Nouadi B, Anachad O, Messal ME, Chegdani F, Bennis F. In Silico Prediction of the Bioactive Profile and Metabolites of Satureja nepeta in Diseases Related to the Excessive Production of Interleukin-6. Bioinform Biol Insights 2022; 16:11779322221115665. [PMID: 35958296 PMCID: PMC9358202 DOI: 10.1177/11779322221115665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel diseases are caused by an abnormal reaction of the immune system, which becomes hyperactive because the mechanisms responsible for regulating it get out of control. For an effective immune response, many proinflammatory cytokines are secreted, particularly interleukin-6 (IL-6) keystone cytokine inflammation. Many synthetic and natural compounds targeting IL-6 have been studied. The genus Satureja of the Lamiaceae family is generally known for its many virtues, in particular anti-inflammatory properties. However, the mechanism of action is unclear. This study aims to predict the impact of characterized bioactive molecules of Moroccan Satureja nepeta in the potential control of inflammatory response mediated by IL-6 cytokine. A list of 9 previously characterized natural compounds of S. nepeta was compiled, and a list of 6 potential protein targets involved in intestinal inflammation was made. The 2 lists of natural compound-target proteins were analyzed by the STITCH software (http://stitch.embl.de/) to develop protein-compound and protein-protein interaction networks (PPINs). An ontological enrichment (GO) analysis was performed by the Clue GO plugin to evaluate the PPIN generated by STITCH; finally, the molecular docking to predict the mode underlying the anti-inflammatory effects. STITCH results revealed direct and indirect interactions of S. nepeta chemical compounds with a key protein target IL-6. The array results by ClueGO showed that most compounds involved in the regulation of several biological processes related to IL-6 such as inflammation apoptosis, cell differentiation, and metabolic regulation. The targets directly related to IL-6 have been used for molecular docking. Quercetin, catechin, and gallic acid have a strong affinity with the IL-6 receptor (respectively −7.1; −6.1; −5.3). This study strongly suggests that the bioactive compounds of S. nepeta could constitute a new therapeutic alternative in the treatment of diseases related to IL-6. However, to validate the results obtained in this work, it is necessary to explore the mechanism of action of potential bioactive molecules by experimentation.
Collapse
Affiliation(s)
- Adbelkarim Ezaouine
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Rida Salam
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Badreddine Nouadi
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Oumaima Anachad
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mariame El Messal
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatima Chegdani
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Faïza Bennis
- Immunology and Biodiversity laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
26
|
Kopalli SR, Annamneedi VP, Koppula S. Potential Natural Biomolecules Targeting JAK/STAT/SOCS Signaling in the Management of Atopic Dermatitis. Molecules 2022; 27:molecules27144660. [PMID: 35889539 PMCID: PMC9319717 DOI: 10.3390/molecules27144660] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by the dysregulation of cytokines and other immune mediators. JAK/STAT is a classical signal transduction pathway involved in various biological processes, and its dysregulation contributes to the key aspects of AD pathogenesis. Suppressor of cytokine signaling (SOCS) proteins negatively regulate the immune-related inflammatory responses mediated by the JAK/STAT pathway. JAK/STAT-mediated production of cytokines including IL-4, IL-13, IL-31, and TSLP inhibits the expression of important skin barrier proteins and triggers pruritus in AD. The expression of SOCS proteins regulates the JAK-mediated cytokines and facilitates maintaining the skin barrier disruptions seen in AD. STATs are crucial in dendritic-cell-activated Th2 cell differentiation in the skin, releasing inflammatory cytokines, indicating that AD is a Th2-mediated skin disorder. SOCS proteins aid in balancing Th1/Th2 cells and, moreover, regulate the onset and maintenance of Th2-mediated allergic responses by reducing the Th2 cell activation and differentiation. SOCS proteins play a pivotal role in inflammatory cytokine-signaling events that act via the JAK/STAT pathway. Therapies relying on natural products and derived biomolecules have proven beneficial in AD when compared with the synthetic regimen. In this review, we focused on the available literature on the potential natural-product-derived biomolecules targeting JAK/STAT/SOCS signaling, mainly emphasizing the SOCS family of proteins (SOCS1, SOCS3, and SOCS5) acting as negative regulators in modulating JAK/STAT-mediated responses in AD pathogenesis and other inflammatory disorders.
Collapse
Affiliation(s)
| | - Venkata Prakash Annamneedi
- Convergence Science Research Center, College of Pharmacy and Institute of Chronic Diseases, Sahmyook University, Seoul 01795, Korea;
| | - Sushruta Koppula
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27381, Korea
- Correspondence:
| |
Collapse
|
27
|
Karrat L, Abajy MY, Nayal R. Investigating the anti-inflammatory and analgesic properties of leaves ethanolic extracts of Cedrus libani and Pinus brutia. Heliyon 2022; 8:e09254. [PMID: 35434396 PMCID: PMC9006851 DOI: 10.1016/j.heliyon.2022.e09254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/16/2021] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
|
28
|
Abou Baker DH. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicol Rep 2022; 9:445-469. [PMID: 35340621 PMCID: PMC8943219 DOI: 10.1016/j.toxrep.2022.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Flavonoids -a class of low molecular weight secondary metabolites- are ubiquitous and cornucopia throughout the plant kingdom. Structurally, the main structure consists of C6-C3-C6 rings with different substitution patterns so that many sub-classes are obtained, for example: flavonols, flavonolignans, flavonoid glycosides, flavans, anthocyanidins, aurones, anthocyanidins, flavones, neoflavonoids, chalcones, isoflavones, flavones and flavanones. Flavonoids are evaluated to have drug like nature since they possess different therapeutic activities, and can act as cardioprotective, antiviral, antidiabetic, anti-inflammatory, antibacterial, anticancer, and also work against Alzheimer's disease and others. However, information on the relationship between their structure and biological activity is scarce. Therefore, the present review tries to summarize all the therapeutic activities of flavonoids, their mechanisms of action and the structure activity relationship. Latest updated ethnopharmacological review of the therapeutic effects of flavonoids. Flavonoids are attracting attention because of their therapeutic properties. Flavonoids are valuable candidates for drug development against many dangerous diseases. This overview summarizes the most important therapeutic effect and mechanism of action of flavonoids. General knowledge about the structure activity relationship of flavonoids is summarized. Substitution of chemical groups in the structure of flavonoids can significantly change their biological and chemical properties. The chemical properties of the basic flavonoid structure should be considered in a drug-based structural program.
Collapse
|
29
|
Li L, Zhao J, Yang T, Sun B. High-speed countercurrent chromatography as an efficient technique for large separation of plant polyphenols: a review. Food Res Int 2022; 153:110956. [DOI: 10.1016/j.foodres.2022.110956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
30
|
Pinheiro RGR, Pinheiro M, Neves AR. Nanotechnology Innovations to Enhance the Therapeutic Efficacy of Quercetin. NANOMATERIALS 2021; 11:nano11102658. [PMID: 34685098 PMCID: PMC8539325 DOI: 10.3390/nano11102658] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Quercetin is a flavonol present in many vegetables and fruits. Generally, quercetin can be found in aglycone and glycoside forms, mainly in leaves. The absorption of this compound occurs in the large and small intestine, where it suffers glucuronidation, sulfidation, and methylation to improve hydrophilicity. After metabolization, which occurs mainly in the gut, it is distributed throughout the whole organism and is excreted by feces, urine, and exhalation of carbon dioxide. Despite its in vitro cytotoxicity effects, in vivo studies with animal models ensure its safety. This compound can protect against cancer, cardiovascular diseases, chronic inflammation, oxidative stress, and neurodegenerative diseases due to its radical scavenging and anti-inflammatory properties. However, its poor bioavailability dampens the potential beneficial effects of this flavonoid. In that sense, many types of nanocarriers have been developed to improve quercetin solubility, as well as to design tissue-specific delivery systems. All these studies manage to improve the bioavailability of quercetin, allowing it to increase its concentration in the desired places. Collectively, quercetin can become a promising compound if nanotechnology is employed as a tool to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Rúben G. R. Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.G.R.P.); (M.P.)
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.G.R.P.); (M.P.)
| | - Ana Rute Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.G.R.P.); (M.P.)
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Correspondence:
| |
Collapse
|
31
|
Kakavas S, Karayiannis D, Mastora Z. The Complex Interplay between Immunonutrition, Mast Cells, and Histamine Signaling in COVID-19. Nutrients 2021; 13:nu13103458. [PMID: 34684460 PMCID: PMC8537261 DOI: 10.3390/nu13103458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
There is an ongoing need for new therapeutic modalities against SARS-CoV-2 infection. Mast cell histamine has been implicated in the pathophysiology of COVID-19 as a regulator of proinflammatory, fibrotic, and thrombogenic processes. Consequently, mast cell histamine and its receptors represent promising pharmacological targets. At the same time, nutritional modulation of immune system function has been proposed and is being investigated for the prevention of COVID-19 or as an adjunctive strategy combined with conventional therapy. Several studies indicate that several immunonutrients can regulate mast cell activity to reduce the de novo synthesis and/or release of histamine and other mediators that are considered to mediate, at least in part, the complex pathophysiology present in COVID-19. This review summarizes the effects on mast cell histamine of common immunonutrients that have been investigated for use in COVID-19.
Collapse
Affiliation(s)
- Sotirios Kakavas
- Critical Care Department, “Sotiria” General Hospital of Chest Diseases, 152 Mesogeion Avenue, 11527 Athens, Greece;
| | - Dimitrios Karayiannis
- Department of Clinical Nutrition, Evangelismos General Hospital of Athens, Ypsilantou 45-47, 10676 Athens, Greece
- Correspondence: ; Tel.: +30-213-2045035; Fax: +30-213-2041385
| | - Zafeiria Mastora
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
32
|
Effects of Allium cepa and Its Constituents on Respiratory and Allergic Disorders: A Comprehensive Review of Experimental and Clinical Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5554259. [PMID: 34552650 PMCID: PMC8452398 DOI: 10.1155/2021/5554259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022]
Abstract
The health benefits of Allium cepa (A. cepa) have been proclaimed for centuries. Various pharmacological and therapeutic effects on respiratory, allergic, and immunologic disorders are shown by A. cepa and its constituents. Flavonoids such as quercetin and kaempferol, alk(en)yl cysteine sulfoxides including S-methyl cysteine sulfoxide and S-propyl cysteine sulfoxide, cycloalliin, thiosulfinates, and sulfides are the main compounds of the plant. A. cepa displays broad-spectrum pharmacological activities including antioxidant, anti-inflammatory, antihypertensive, and antidiabetic effects. Our objective in this review is to present the effects of A. cepa and its constituents on respiratory, allergic, and immunologic disorders. Different online databases were searched to find articles related to the effect of A. cepa extracts and its constituents on respiratory, allergic, and immunologic disorders until the end of December 2020 using keywords such as onion, A. cepa, constituents of A. cepa, therapeutic effects and pharmacological effects, and respiratory, allergic, and immunologic disorders. Extracts and constituents of A. cepa showed tracheal smooth muscle relaxant effects, indicating possible bronchodilator activities or relieving effects on obstructive respiratory diseases. In experimental animal models of different respiratory diseases, the preventive effect of various extracts and constituents of A. cepa was induced by their antioxidant, immunomodulatory, and anti-inflammatory effects. The preventive effects of the plant and its components on lung disorders induced by exposure to noxious agents as well as lung cancer, lung infection, and allergic and immunologic disorders were also indicated in the experimental and clinical studies. Therefore, this review may be considered a scientific basis for development of therapies using this plant, to improve respiratory, allergic, and immunologic disorders.
Collapse
|
33
|
Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021; 35:6813-6842. [PMID: 34462981 DOI: 10.1002/ptr.7268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Various pharmacological effects for Portulaca oleracea were shown in previous studies. Therefore, the effects of P. oleracea and its derivatives on respiratory, allergic, and immunologic diseases according to update experimental and clinical studies are provided in this review article. PubMed/Medline, Scopus, and Google Scholar were searched using appropriate keywords until the end of December 2020. The effects of P. oleracea and its constituents such as quercetin and kaempferol on an animal model of asthma were shown. Portulaca oleracea and its constituents also showed therapeutic effects on chronic obstructive pulmonary disease and chronic bronchitis in both experimental and clinical studies. The possible bronchodilatory effect of P. oleracea and its ingredients was also reported. Portulaca oleracea and its constituents showed the preventive effect on lung cancer and a clinical study showed the effect of P. oleracea on patients with lung adenocarcinoma. In addition, a various constituents of P. oleracea including, quercetin and kaempferol showed therapeutic effects on lung infections. This review indicates the therapeutic effect of P. oleracea and its constituents on various lung and allergic disorders but more clinical studies are required to establish the clinical efficacy of this plant and its constituents on lung and allergic disorders.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Bielory L, Tabliago NRA. Flavonoid and cannabinoid impact on the ocular surface. Curr Opin Allergy Clin Immunol 2021; 20:482-492. [PMID: 32796166 DOI: 10.1097/aci.0000000000000673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW To evaluate the impact of flavonoids and cannabinoids as anti-inflammatory and antiallergic treatments on the anterior surface of the eye. RECENT FINDINGS Allergic conjunctivitis and dry eye syndrome are common ocular surface diseases that have been treated with traditional pharmacological measures, e.g. corticosteroids, antihistamines. Given the side-effect profiles of these medications and the growing interest in complementary treatment modalities as part of integrative medical interventions, well known flavonoids, such as quercetin and catechin, are under investigation for topical and systemic application methods for relief. As flavonoid derivatives, pycnogenol and epigallocatechin gallate have alleviated dry eye symptoms, including lacrimal gland inflammation, tear secretion, and the stability of the tear film. Research on ocular cannabinoid receptors and response to synthetic cannabinoids are also being considered for therapy of anterior ocular disorders. The expansion of herbal formulations provides a framework for future treatment regimens for ocular surface disorders. SUMMARY Flavonoids and cannabinoids show promise as potential complementary treatment for allergic diseases because of their anti-inflammatory and antiallergic properties. Several studies implementing ocular and systemic application of these compounds show potential in becoming adjuvant treatment strategies for improving quality of life while also managing ocular surface disease processes.
Collapse
Affiliation(s)
- Leonard Bielory
- Professor of Medicine, Allergy, Immunology and Ophthalmology, Hackensack Meridian School of Medicine, Springfield
| | - Nikko Rowe A Tabliago
- Overlook Medical Center, Atlantic Health System, St. George's University Medical School, Summit, New Jersey, USA
| |
Collapse
|
35
|
Mucha P, Skoczyńska A, Małecka M, Hikisz P, Budzisz E. Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules 2021; 26:4886. [PMID: 34443474 PMCID: PMC8398118 DOI: 10.3390/molecules26164886] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous plant compounds and their metal-ion complexes exert antioxidative, anti-inflammatory, anticancer, and other beneficial effects. This review highlights the different bioactivities of flavonoids, chromones, and coumarins and their metal-ions complexes due to different structural characteristics. In addition to insight into the most studied antioxidative properties of these compounds, the first part of the review provides a comprehensive overview of exogenous and endogenous sources of reactive oxygen and nitrogen species, oxidative stress-mediated damages of lipids and proteins, and on protective roles of antioxidant defense systems, including plant-derived antioxidants. Additionally, the review covers the anti-inflammatory and antimicrobial activities of flavonoids, chromones, coumarins and their metal-ion complexes which support its application in medicine, pharmacy, and cosmetology.
Collapse
Affiliation(s)
- Paulina Mucha
- Department of the Chemistry of Cosmetic Raw Materials, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Anna Skoczyńska
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Poniatowskiego 15, 41-200 Sosnowiec, Poland;
| | - Magdalena Małecka
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland;
| | - Paweł Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Łódź, Poland;
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
36
|
Hafezi B, Chan L, Knapp JP, Karimi N, Alizadeh K, Mehrani Y, Bridle BW, Karimi K. Cytokine Storm Syndrome in SARS-CoV-2 Infections: A Functional Role of Mast Cells. Cells 2021; 10:1761. [PMID: 34359931 PMCID: PMC8308097 DOI: 10.3390/cells10071761] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokine storm syndrome is a cascade of escalated immune responses disposing the immune system to exhaustion, which might ultimately result in organ failure and fatal respiratory distress. Infection with severe acute respiratory syndrome-coronavirus-2 can result in uncontrolled production of cytokines and eventually the development of cytokine storm syndrome. Mast cells may react to viruses in collaboration with other cells and lung autopsy findings from patients that died from the coronavirus disease that emerged in 2019 (COVID-19) showed accumulation of mast cells in the lungs that was thought to be the cause of pulmonary edema, inflammation, and thrombosis. In this review, we present evidence that a cytokine response by mast cells may initiate inappropriate antiviral immune responses and cause the development of cytokine storm syndrome. We also explore the potential of mast cell activators as adjuvants for COVID-19 vaccines and discuss the medications that target the functions of mast cells and could be of value in the treatment of COVID-19. Recognition of the cytokine storm is crucial for proper treatment of patients and preventing the release of mast cell mediators, as impeding the impacts imposed by these mediators could reduce the severity of COVID-19.
Collapse
Affiliation(s)
- Bahareh Hafezi
- Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran; (B.H.); (N.K.)
| | - Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Jason P. Knapp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Negar Karimi
- Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran; (B.H.); (N.K.)
| | - Kimia Alizadeh
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| |
Collapse
|
37
|
Synergistic anti-allergy activity using a combination of Enterococcus faecalis IC-1 and luteolin. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Małecka M, Skoczyńska A, Goodman DM, Hartinger CG, Budzisz E. Biological properties of ruthenium(II)/(III) complexes with flavonoids as ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Okumo T, Furuta A, Kimura T, Yusa K, Asano K, Sunagawa M. Inhibition of Angiogenic Factor Productions by Quercetin In Vitro and In Vivo. MEDICINES 2021; 8:medicines8050022. [PMID: 34065895 PMCID: PMC8150841 DOI: 10.3390/medicines8050022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022]
Abstract
Background: Angiogenesis is well known to be an important event in the tissue remodeling observed in allergic diseases. Although there is much evidence that quercetin, one of the most abundant dietary flavonoids, exerts anti-allergic effects in both human and experimental animal models of allergic diseases, the action of quercetin on angiogenesis has not been defined. Therefore, in this study, we first examined the action of quercetin on the secretion of angiogenic factors from murine mast cells in vitro. We also examined the action of quercetin on angiogenic factor secretion in the murine allergic rhinitis model in vivo. Methods: Mast cells (1 × 105 cells/mL) sensitized with ovalbumin (OVA)-specific murine IgE were stimulated with 10.0 ng/mL OVA in the presence or the absence of quercetin for 24 h. The concentrations of angiogenic factors, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), tumor necrosis factor-α, IL-6 and IL-8 in the supernatants were examined by ELISA. BALB/c male mice immunized with OVA were challenged intranasally with OVA every other day, starting seven days after the final immunization. These mice were then orally administered quercetin once a day for five days, starting seven days after the final immunization. Clinical symptoms were assessed by counting the number of sneezes and nasal rubbing behaviors during the 10 min period just after OVA nasal provocation. The angiogenic factor concentrations in the nasal lavage fluids obtained 6 h after nasal antigenic provocation were examined by ELISA. Results: Quercetin significantly inhibited the production of angiogenetic factors induced by IgE-dependent mechanisms at 5.0 µM or more. Oral administration of 25.0 mg/kg quercetin into the mice also suppressed the appearance of angiogenetic factors in nasal lavage fluids, along with the attenuation of nasal symptoms. Conclusions: These results strongly suggest that the inhibitory action of quercetin on angiogenic factor secretion may be implicated in the therapeutic action of quercetin on allergic diseases, especially allergic rhinitis.
Collapse
Affiliation(s)
- Takayuki Okumo
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan; (T.O.); (T.K.); (K.Y.); (M.S.)
| | - Atsuko Furuta
- Department of Medical Education, Showa University School of Medicine, Tokyo 142-8555, Japan;
| | - Tarou Kimura
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan; (T.O.); (T.K.); (K.Y.); (M.S.)
| | - Kanako Yusa
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan; (T.O.); (T.K.); (K.Y.); (M.S.)
| | - Kazuhito Asano
- Faculty of Human Sciences, University of Human Arts and Sciences, Saitama 339-8555, Japan
- Correspondence: ; Tel.: +81-48-758-7111
| | - Masataka Sunagawa
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan; (T.O.); (T.K.); (K.Y.); (M.S.)
| |
Collapse
|
40
|
Jantrapirom S, Hirunsatitpron P, Potikanond S, Nimlamool W, Hanprasertpong N. Pharmacological Benefits of Triphala: A Perspective for Allergic Rhinitis. Front Pharmacol 2021; 12:628198. [PMID: 33995026 PMCID: PMC8120106 DOI: 10.3389/fphar.2021.628198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Allergic rhinitis (AR) is considered a major nasal condition impacting a large number of people around the world, and it is now becoming a global health problem. Because the underlying mechanisms of AR are complex, the development of single-drug treatment might not be enough to treat a wide spectrum of the disease. Although the standard guidelines classify and provide suitable diagnosis and treatment, the vast majority of people with AR are still without any means of controlling it. Moreover, the benefits of AR drugs are sometimes accompanied by undesirable side effects. Thus, it is becoming a significant challenge to find effective therapies with limited undesirable side effects for a majority of patients suffering from uncontrolled AR. Aller-7/NR-A2, a polyherbal formulation, has revealed promising results in patients by reducing nasal symptoms and eosinophil counts without serious adverse effects. Interestingly, three out of seven of the herbals in the Aller-7/NR-A2 formulation are also found in an Ayurvedic polyherbal formulation known as “Triphala,” which is a potential candidate for the treatment of AR. However, there are no current studies that have examined the effects of Triphala on the disease. This review aims to describe the complexity of AR pathophysiology, currently available treatments, and the effects of Triphala on AR in order to help develop it as a promising alternative treatment in the future.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Drosophila Center for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai, University, Chiang Mai, Thailand
| | - Pannaphak Hirunsatitpron
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nutthiya Hanprasertpong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
41
|
Santana FPR, Thevenard F, Gomes KS, Taguchi L, Câmara NOS, Stilhano RS, Ureshino RP, Prado CM, Lago JHG. New perspectives on natural flavonoids on COVID-19-induced lung injuries. Phytother Res 2021; 35:4988-5006. [PMID: 33928690 PMCID: PMC8242604 DOI: 10.1002/ptr.7131] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
The SARS-CoV-2 virus, responsible for COVID-19, spread rapidly worldwide and became a pandemic in 2020. In some patients, the virus remains in the respiratory tract, causing pneumonia, respiratory failure, acute respiratory distress syndrome (ARDS), and sepsis, leading to death. Natural flavonoids (aglycone and glycosides) possess broad biological activities encompassing antiinflammatory, antiviral, antitumoral, antiallergic, antiplatelet, and antioxidant effects. While many studies have focused on the effects of natural flavonoids in experimental models, reports based on clinical trials are still insufficient. In this review, we highlight the effects of flavonoids in controlling pulmonary diseases, particularly the acute respiratory distress syndrome, a consequence of COVID-19, and their potential use in coronavirus-related diseases. Furthermore, we also focus on establishing a relationship between biological potential and chemical aspects of related flavonoids and discuss several possible mechanisms of action, pointing out some possible effects on COVID-19.
Collapse
Affiliation(s)
- Fernanda Paula R Santana
- Department of Bioscience, Federal University of São Paulo, Santos, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Fernanda Thevenard
- Center of Natural Sciences and Humanities, Federal University of ABC, São Paulo, São Paulo, Brazil
| | - Kaio S Gomes
- Center of Natural Sciences and Humanities, Federal University of ABC, São Paulo, São Paulo, Brazil
| | - Laura Taguchi
- Department of Bioscience, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Niels Olsen S Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Roberta S Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, São Paulo, Brazil
| | - Rodrigo P Ureshino
- Department of Biological Science, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Carla Maximo Prado
- Department of Bioscience, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | |
Collapse
|
42
|
Bioactive Potential of Several Actinobacteria Isolated from Microbiologically Barely Explored Desert Habitat, Saudi Arabia. BIOLOGY 2021; 10:biology10030235. [PMID: 33808594 PMCID: PMC8003550 DOI: 10.3390/biology10030235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Bioactive natural products have been regarded as promising tools for treatment of various ailments. Among natural sources, actinomycetes have been widely explored for their potential bioactivity. In this regard, the present study has focused on the phytochemical content and biological activities of several actinobacteria isolates, which were investigated for their phenolic and flavonoid content, as well as their antioxidant, antibacterial and antiprotozoal activities. The most active isolates were further investigated for their antileukemic activity, where such isolates were shown to exert cytotoxic activity against the tested cell lines, following a mechanism that might be due to the ability of the active isolate extracts to reduce cyclooxygenase and lipoxygenase activities. Overall, isolation and characterization of the active molecule from the potential actinomycetes strains will pave the way for the development of drugs against human diseases such as blood cancer. Abstract Biomolecules from natural sources, including microbes, have been the basis of treatment of human diseases since the ancient times. Therefore, this study aimed to investigate the potential bioactivity of several actinobacteria isolates form Al-Jouf Desert, Saudi Arabia. Twenty-one actinobacterial isolates were tested for their antioxidant (flavonoids, phenolics, tocopherols and carotenoids) content, and biological activities, namely FRAP, DPPH, ABTS, SOS and XO inhibition, anti-hemolytic and anti-lipid peroxidation as well as their antibacterial and antiprotozoal activities. Accordingly, five isolates (i.e., Act 2, 12, 15, 19 and 21) were selected and their 90% ethanolic extracts were used. The phylogenetic analysis of the 16S rRNA sequences indicated that the most active isolates belong to genus Streptomyces. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites against different cancer types. Thus, the anti-blood cancer activity and the possible molecular mechanisms by which several Streptomyces species extracts inhibited the growth of different leukemia cells, i.e., HL-60, K562 and THP-1, were investigated. In general, the five active isolates showed cytotoxic activity against the tested cell lines in a dose dependent manner. Among the potent isolates, isolate Act 12 significantly decreased the cell viability and showed maximum cytotoxic activities against both HL-60 and K562 cells, while isolate Act 15 exhibited maximum cytotoxic activity against THP-1 cells. Moreover, Act 2 and Act 12 reduced cyclooxygenase (COX-2) and lipoxygenase (LOX) activity, which is involved in the proliferation and differentiation of cancer cells and may represent a possible molecular mechanism underlying leukemia growth inhibition. The bioactive antioxidant extracts of the selected Streptomyces species inhibited leukemia cell growth by reducing the COX-2 and LOX activity. Overall, our study not only introduced a promising natural alternative source for anticancer agents, but it also sheds light on the mechanism underlying the anticancer activity of isolated actinomycetes.
Collapse
|
43
|
Gendrisch F, Esser PR, Schempp CM, Wölfle U. Luteolin as a modulator of skin aging and inflammation. Biofactors 2021; 47:170-180. [PMID: 33368702 DOI: 10.1002/biof.1699] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
Luteolin belongs to the group of flavonoids and can be found in flowers, herbs, vegetables and spices. It plays an important role in defending plants, for example against UV radiation by partially absorbing UVA and UVB radiation. Thus, luteolin can also decrease adverse photobiological effects in the skin by acting as a first line of defense. Furthermore, anti-oxidative and anti-inflammatory activities of luteolin were described on keratinocytes and fibroblasts as well as on several immune cells (e.g., macrophages, mast cell, neutrophils, dendritic cells and T cells). Luteolin can suppress proinflammatory mediators (e.g., IL-1β, IL-6, IL-8, IL-17, IL-22, TNF-α and COX-2) and regulate various signaling pathway (e.g., the NF-κB, JAK-STAT as well as TLR signaling pathway). In this way, luteolin modulates many inflammatory processes of the skin. The present review summarizes the recent in vitro and in vivo research on luteolin in the field of skin aging and skin cancer, wound healing as well as inflammatory skin diseases, including psoriasis, contact dermatitis and atopic dermatitis. In conclusion, luteolin might be a promising molecule for the development of topic formulations and systemic agents against inflammatory skin diseases.
Collapse
Affiliation(s)
- Fabian Gendrisch
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp R Esser
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christoph M Schempp
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ute Wölfle
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Liu XB, Liu F, Liang YY, Yin G, Zhang HJ, Mi XS, Zhang ZJ, So KF, Li A, Xu Y. Luteolin delays photoreceptor degeneration in a mouse model of retinitis pigmentosa. Neural Regen Res 2021; 16:2109-2120. [PMID: 33642401 PMCID: PMC8343326 DOI: 10.4103/1673-5374.303537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Luteolin is neuroprotective for retinal ganglion cells and retinal pigment epithelial cells after oxidative injury, whereby it can inhibit microglial neurotoxicity. Therefore, luteolin holds the potential to be useful for treatment of retinal diseases. The purpose of this study was to investigate whether luteolin exhibits neuroprotective effects on rod cells in rd10 mice, a slow photoreceptor-degenerative model of retinitis pigmentosa. Luteolin (100 mg/kg) intraperitoneally injected daily from postnatal day 14 (P14) to P25 significantly enhanced the visual performance and retinal light responses of rd10 mice at P25. Moreover, it increased the survival of photoreceptors and improved retinal structure. Mechanistically, luteolin treatment attenuated increases in reactive oxygen species, photoreceptor apoptosis, and reactive gliosis; increased mRNA levels of anti-inflammatory cytokines while lowering that of pro-inflammatory and chemoattractant cytokines; and lowered the ratio of phospho-JNK/JNK. Application of the JNK inhibitor SP600125 exerted a similar protective effect to luteolin, suggesting that luteolin delays photoreceptor degeneration and functional deterioration in rd10 mice through regulation of retinal oxidation and inflammation by inhibiting the JNK pathway. Therefore, luteolin may be useful as a supplementary treatment for retinitis pigmentosa. This study was approved by the Qualified Ethics Committee of Jinan University, China (approval No. IACUC-20181217-02) on December 17, 2018.
Collapse
Affiliation(s)
- Xiao-Bin Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Feng Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Yao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Gang Yin
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Hui-Jun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xue-Song Mi
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zai-Jun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Ying Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
45
|
Li QS, Wang YQ, Liang YR, Lu JL. The anti-allergic potential of tea: a review of its components, mechanisms and risks. Food Funct 2020; 12:57-69. [PMID: 33241826 DOI: 10.1039/d0fo02091e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allergy is an immune-mediated disease with increasing prevalence worldwide. Regular treatment with glucocorticoids and antihistamine drugs for allergy patients is palliative rather than permanent. Daily use of dietary anti-allergic natural products is a superior way to prevent allergy and alleviate the threat. Tea, as a health-promoting beverage, has multiple compounds with immunomodulatory ability. Persuasive evidence has shown the anti-allergic ability of tea against asthma, food allergy, atopic dermatitis and anaphylaxis. Recent advances in potential anti-allergic ability of tea and anti-allergic compounds in tea have been reviewed in this paper. Tea exerts its anti-allergic effect mainly by reducing IgE and histamine levels, decreasing FcεRI expression, regulating the balance of Th1/Th2/Th17/Treg cells and inhibiting related transcription factors. Further research perspectives are also discussed.
Collapse
Affiliation(s)
- Qing-Sheng Li
- Tea Research Institute, Zhejiang University, China. and Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, China
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, China.
| | | | | |
Collapse
|
46
|
Liao H, Ye J, Gao L, Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed Pharmacother 2020; 133:110917. [PMID: 33217688 DOI: 10.1016/j.biopha.2020.110917] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Scutellaria baicalensis Georgi., a plant used in traditional Chinese medicine, has multiple biological activities, including anti-inflammatory, antiviral, antitumor, antioxidant, and antibacterial effects, and can be used to treat respiratory tract infections, pneumonia, colitis, hepatitis, and allergic diseases. The main active substances of S. baicalensis, baicalein, baicalin, wogonin, wogonoside, and oroxylin A, can act directly on immune cells such as lymphocytes, macrophages, mast cells, dendritic cells, monocytes, and neutrophils, and inhibit the production of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α, and other inflammatory mediators such as nitric oxide, prostaglandins, leukotrienes, and reactive oxygen species. The molecular mechanisms underlying the immunomodulatory and anti-inflammatory effects of the active compounds of S. baicalensis include downregulation of toll-like receptors, activation of the Nrf2 and PPAR signaling pathways, and inhibition of the nuclear thioredoxin system and inflammation-associated pathways such as those of MAPK, Akt, NFκB, and JAK-STAT. Given that in addition to the downregulation of cytokine production, the active constituents of S. baicalensis also have antiviral and antibacterial effects, they may be more promising candidate therapeutics for the prevention of infection-related cytokine storms than are drugs having only antimicrobial or anti-inflammatory activities.
Collapse
Affiliation(s)
- Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
47
|
Dobrydnev AV, Tkachuk TM, Atamaniuk VP, Popova MV. Quercetin-Amino Acid Conjugates are Promising Anti-Cancer Agents in Drug Discovery Projects. Mini Rev Med Chem 2020; 20:107-122. [PMID: 31595850 DOI: 10.2174/1389557519666191009152007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Quercetin is a plant flavonoid with great potential for the prevention and treatment of disease. Despite the curative application of quercetin is hampered by low bioavailability, its core serves as a scaffold for generating more potent compounds with amplified therapeutic window. This review aims to describe recent advances in the improvement of the pharmacokinetic profile of quercetin via the amino acid prodrug approach which offers wide structural diversity, physicochemical and biological properties improvement. According to the findings, conjugation of quercetin with amino acids results in increased solubility, stability, cellular permeability as well as biological activity. In particular quercetin- amino acid conjugates exhibited potent anticancer, MDR-reversal and antibiotic resistance reversal activities. The synthetic pathways and examples of quercetin-amino acid conjugates are considered. Practical considerations and challenges associated with the development of these prodrugs are also discussed. This mini-review covers the literature on quercetin-amino acid conjugates since 2001 when the first thematic work was published.
Collapse
Affiliation(s)
- Alexey V Dobrydnev
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Tetiana M Tkachuk
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Viktor P Atamaniuk
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Maria V Popova
- Chemistry Department, National Taras Shevchenko University of Kyiv, Lva Tolstoho Street 12, Kyiv 01033, Ukraine
| |
Collapse
|
48
|
Ciumărnean L, Milaciu MV, Runcan O, Vesa ȘC, Răchișan AL, Negrean V, Perné MG, Donca VI, Alexescu TG, Para I, Dogaru G. The Effects of Flavonoids in Cardiovascular Diseases. Molecules 2020; 25:E4320. [PMID: 32967119 PMCID: PMC7571023 DOI: 10.3390/molecules25184320] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are metabolites of plants and fungus. Flavonoid research has been paid special attention to in recent times after the observation of their beneficial effects on the cardiovascular system. These favorable effects are exerted by flavonoids mainly due to their antioxidant properties, which result from the ability to decrease the oxidation of low-density lipoproteins, thus improving the lipid profiles. The other positive effect exerted on the cardiovascular system is the ability of flavonoids to produce vasodilation and regulate the apoptotic processes in the endothelium. Researchers suggested that these effects, including their anti-inflammatory function, are consequences of flavonoids' potent antioxidant properties, but recent studies have shown multiple signaling pathways linked to them, thus suggesting that there are more mechanisms involved in the beneficial effect of the flavonoids on the human body. This review aims to present the latest data on the classification of these substances, their main mechanisms of action in the human body, and the beneficial effects on the physiological and pathological status of the cardiovascular system.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Mircea Vasile Milaciu
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Octavia Runcan
- Regional Institute of Gastroenterology and Hepatology ‘Octavian Fodor’ Cluj-Napoca, 400162 Cluj-Napoca, Romania;
| | - Ștefan Cristian Vesa
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Liana Răchișan
- Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania
| | - Vasile Negrean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Mirela-Georgiana Perné
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Valer Ioan Donca
- Department of Geriatrics-Gerontology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania;
| | - Teodora-Gabriela Alexescu
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Ioana Para
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Gabriela Dogaru
- Department of Physical Medicine & Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
49
|
Mast Cell Regulation and Irritable Bowel Syndrome: Effects of Food Components with Potential Nutraceutical Use. Molecules 2020; 25:molecules25184314. [PMID: 32962285 PMCID: PMC7570512 DOI: 10.3390/molecules25184314] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells are key actors in inflammatory reactions. Upon activation, they release histamine, heparin and nerve growth factor, among many other mediators that modulate immune response and neuron sensitization. One important feature of mast cells is that their population is usually increased in animal models and biopsies from patients with irritable bowel syndrome (IBS). Therefore, mast cells and mast cell mediators are regarded as key components in IBS pathophysiology. IBS is a common functional gastrointestinal disorder affecting the quality of life of up to 20% of the population worldwide. It is characterized by abdominal pain and altered bowel habits, with heterogeneous phenotypes ranging from constipation to diarrhea, with a mixed subtype and even an unclassified form. Nutrient intake is one of the triggering factors of IBS. In this respect, certain components of the daily food, such as fatty acids, amino acids or plant-derived substances like flavonoids, have been described to modulate mast cells' activity. In this review, we will focus on the effect of these molecules, either stimulatory or inhibitory, on mast cell degranulation, looking for a nutraceutical capable of decreasing IBS symptoms.
Collapse
|
50
|
Hogenkamp A, Ehlers A, Garssen J, Willemsen LEM. Allergy Modulation by N-3 Long Chain Polyunsaturated Fatty Acids and Fat Soluble Nutrients of the Mediterranean Diet. Front Pharmacol 2020; 11:1244. [PMID: 32973501 PMCID: PMC7472571 DOI: 10.3389/fphar.2020.01244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet, containing valuable nutrients such as n-3 long chain poly-unsaturated fatty acids (LCPUFAs) and other fat-soluble micronutrients, is known for its health promoting and anti-inflammatory effects. Its valuable elements might help in the battle against the rising prevalence of non-communicable diseases (NCD), including the development of allergic diseases and other (chronic) inflammatory diseases. The fat fraction of the Mediterranean diet contains bioactive fatty acids but can also serve as a matrix to dissolve and increase the uptake of fat-soluble vitamins and phytochemicals, such as luteolin, quercetin, resveratrol and lycopene with known immunomodulatory and anti-inflammatory capacities. Especially n-3 LCPUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine oils can target specific receptors or signaling cascades, act as eicosanoid precursors and/or alter membrane fluidity and lipid raft formation, hereby exhibiting anti-inflammatory properties. Beyond n-3 LCPUFAs, fat-soluble vitamins A, D, E, and K1/2 have the potential to affect pro-inflammatory signaling cascades by interacting with receptors or activating/inhibiting signaling proteins or phosphorylation in immune cells (DCs, T-cells, mast cells) involved in allergic sensitization or the elicitation/effector phase of allergic reactions. Moreover, fat-soluble plant-derived phytochemicals can manipulate signaling cascades, mostly by interacting with other receptors or signaling proteins compared to those modified by fat-soluble vitamins, suggesting potential additive or synergistic actions by applying a combination of these nutrients which are all part of the regular Mediterranean diet. Research concerning the effects of phytochemicals such as polyphenols has been hampered due to their poor bio-availability. However, their solubility and uptake are improved by applying them within the dietary fat matrix. Alternatively, they can be prepared for targeted delivery by means of pharmaceutical approaches such as encapsulation within liposomes or even unique nanoparticles. This review illuminates the molecular mechanisms of action and possible immunomodulatory effects of n-3 LCPUFAs and fat-soluble micronutrients from the Mediterranean diet in allergic disease development and allergic inflammation. This will enable us to further appreciate how to make use of the beneficial effects of n-3 LCPUFAs, fat-soluble vitamins and a selection of phytochemicals as active biological components in allergy prevention and/or symptom reduction.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Ehlers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|