1
|
Goldufsky JW, Daniels P, Williams MD, Gupta K, Lyday B, Chen T, Singh G, Kaufman HL, Zloza A, Marzo AL. Attenuated Dengue virus PV001-DV induces oncolytic tumor cell death and potent immune responses. J Transl Med 2023; 21:483. [PMID: 37468934 PMCID: PMC10357599 DOI: 10.1186/s12967-023-04344-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Viral therapies developed for cancer treatment have classically prioritized direct oncolytic effects over their immune activating properties. However, recent clinical insights have challenged this longstanding prioritization and have shifted the focus to more immune-based mechanisms. Through the potential utilization of novel, inherently immune-stimulating, oncotropic viruses there is a therapeutic opportunity to improve anti-tumor outcomes through virus-mediated immune activation. PV001-DV is an attenuated strain of Dengue virus (DEN-1 #45AZ5) with a favorable clinical safety profile that also maintains the potent immune stimulatory properties characterstic of Dengue virus infection. METHODS In this study, we utilized in vitro tumor killing and immune multiplex assays to examine the anti-tumor effects of PV001-DV as a potential novel cancer immunotherapy. RESULTS In vitro assays demonstrated that PV001-DV possesses the ability to directly kill human melanoma cells lines as well as patient melanoma tissue ex vivo. Importantly, further work demonstrated that, when patient peripheral blood mononuclear cells (PBMCs) were exposed to PV001-DV, a substantial induction in the production of apoptotic factors and immunostimulatory cytokines was detected. When tumor cells were cultured with the resulting soluble mediators from these PBMCs, rapid cell death of melanoma and breast cancer cell lines was observed. These soluble mediators also increased dengue virus binding ligands and immune checkpoint receptor, PD-L1 expression. CONCLUSIONS The direct in vitro tumor-killing and immune-mediated tumor cytotoxicity facilitated by PV001-DV contributes support of its upcoming clinical evaluation in patients with advanced melanoma who have failed prior therapy.
Collapse
Affiliation(s)
- Josef W Goldufsky
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Preston Daniels
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Michael D Williams
- Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kajal Gupta
- Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Bruce Lyday
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Tony Chen
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Geeta Singh
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Andrew Zloza
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Amanda L Marzo
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Mosquera-Sulbaran JA, Pedreañez A, Hernandez-Fonseca JP, Hernandez-Fonseca H. Angiotensin II and dengue. Arch Virol 2023; 168:191. [PMID: 37368044 DOI: 10.1007/s00705-023-05814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Dengue is a disease caused by a flavivirus that is transmitted principally by the bite of an Aedes aegypti mosquito and represents a major public-health problem. Many studies have been carried out to identify soluble factors that are involved in the pathogenesis of this infection. Cytokines, soluble factors, and oxidative stress have been reported to be involved in the development of severe disease. Angiotensin II (Ang II) is a hormone with the ability to induce the production of cytokines and soluble factors related to the inflammatory processes and coagulation disorders observed in dengue. However, a direct involvement of Ang II in this disease has not been demonstrated. This review primarily summarizes the pathophysiology of dengue, the role of Ang II in various diseases, and reports that are highly suggestive of the involvement of this hormone in dengue.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela
- Servicio de Microscopia Electronica del Centro Nacional de Biotecnologia (CNB- CSIC) Madrid, Madrid, España
| | - Hugo Hernandez-Fonseca
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, Saint George's University, True Blue, West Indies, Grenada
| |
Collapse
|
3
|
Wang L, Li L, Li Y, Huang C, Lian R, Wu T, Ma J, Zhang Y, Cheng Y, Diao L, Zeng Y. A History of Endometriosis Is Associated With Decreased Peripheral NK Cytotoxicity and Increased Infiltration of Uterine CD68 + Macrophages. Front Immunol 2021; 12:711231. [PMID: 34531861 PMCID: PMC8438297 DOI: 10.3389/fimmu.2021.711231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023] Open
Abstract
Women with endometriosis may have a defective immune system. However, evidence of the immune responses of endometriosis patients with a history of endometriosis surgery is lacking, and the association between the location of endometriosis lesions and immune responses is unclear. This retrospective study included 117 females with reproductive failure and a history of endometriosis and 200 females with reproductive failure but without endometriosis to analyze their endometrial and peripheral immune responses. The results show that endometriosis was associated with decreased peripheral natural killer (NK) cytotoxicity and increased uterine macrophages. Peripheral NK cytotoxicity at effector-to-target ratios of 25:1 and 50:1 was significantly reduced in women with a history of endometriosis from that of the control group (26.6% versus 33.3% and 36.1% versus 43.3%, respectively, both P < 0.001). Furthermore, after further division of patients into three subgroups according to the location of endometriosis lesions, we observed that NK cytotoxicity in the endometriosis subgroups, especially the mixed endometriosis group, was strongly decreased from that of the controls (P = 0.001). The endometrial CD68+ macrophage proportion in the mixed endometriosis subgroup was higher than that in the control group (2.8% versus 2.1%, P = 0.043). In addition, the baseline estradiol (E2) level was weakly correlated with the percentage of endometrial macrophages (r = 0.251, P = 0.009), indicating a potential association among the endocrine system, endometrial immune environment, and endometriosis. This study indicated that peripheral NK cytotoxicity and endometrial immune cell profiles could be useful for diagnosing and treating endometriosis and endometriosis-related reproductive diseases.
Collapse
Affiliation(s)
- Linlin Wang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chunyu Huang
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Tonghua Wu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jingwen Ma
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
4
|
Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol 2021; 78:17-32. [PMID: 33231723 PMCID: PMC7815537 DOI: 10.1007/s00284-020-02284-w] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
Abstract
The pathogenesis of dengue virus infection is attributed to complex interplay between virus, host genes and host immune response. Host factors such as antibody-dependent enhancement (ADE), memory cross-reactive T cells, anti-DENV NS1 antibodies, autoimmunity as well as genetic factors are major determinants of disease susceptibility. NS1 protein and anti-DENV NS1 antibodies were believed to be responsible for pathogenesis of severe dengue. The cytokine response of cross-reactive CD4+ T cells might be altered by the sequential infection with different DENV serotypes, leading to further elevation of pro-inflammatory cytokines contributing a detrimental immune response. Fcγ receptor-mediated antibody-dependent enhancement (ADE) results in release of cytokines from immune cells leading to vascular endothelial cell dysfunction and increased vascular permeability. Genomic variation of dengue virus and subgenomic flavivirus RNA (sfRNA) suppressing host immune response are viral determinants of disease severity. Dengue infection can lead to the generation of autoantibodies against DENV NS1antigen, DENV prM, and E proteins, which can cross-react with several self-antigens such as plasminogen, integrin, and platelet cells. Apart from viral factors, several host genetic factors and gene polymorphisms also have a role to play in pathogenesis of DENV infection. This review article highlights the various factors responsible for the pathogenesis of dengue and also highlights the recent advances in the field related to biomarkers which can be used in future for predicting severe disease outcome.
Collapse
Affiliation(s)
- Puneet Bhatt
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | - Muralidhar Varma
- Dept of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576101 India
| | - Govindakarnavar Arunkumar
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Present Address: WHO Country Office, Kathmandu, Nepal
| |
Collapse
|
5
|
Shrivastava R, Upreti RK, Chaturvedi UC. Effects of dengue virus infection on the spleen of male mice given hexavalent chromium with drinking water. Toxicol Mech Methods 2012; 15:323-9. [PMID: 20021051 DOI: 10.1080/153765291009732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present study was undertaken to investigate the effects of dengue virus (DV) infection in male mice given drinking water containing 250 ppm Cr (VI) and the normal control male mice given plain water to drink. On the basis of intake of water in 24 h, the average dose of Cr (VI) in each mouse was 14.8 mg/kg. After 3, 6, and 9 weeks of drinking Cr (VI), a set of five mice from each group were inoculated intracerebrally (ic) with a 1000 x LD(50) (100 times the lethal dose that kills 50% mice) dose of DV, and the effects on the spleen were studied at the fourth and eightth day postinoculation. It was observed that Cr (VI) drinking and DV infection led to reduction in the weight of the spleen, but the peak reduction was seen in Cr (VI)-fed mice infected with DV, being 30, 34, and 61% at 3, 6, and 9 weeks respectively. A similar response was seen with respect to the cytotoxic activity of spleen homogenates, phagocytic activity of macrophages, and the mitogenic response of spleen cells to concanavalin A from different groups of animals, being most marked (58 to 60%) at the ninth week of Cr (VI) drinking. This shows a summation of adverse effects of DV infection in mice preexposed to Cr (VI).
Collapse
Affiliation(s)
- Richa Shrivastava
- Biomembrane Division, Industrial Toxicology Research Centre, Mahatma Gandhi Marg, Lucknow, 226001India
| | | | | |
Collapse
|
6
|
Gupta N, Srivastava S, Jain A, Chaturvedi UC. Dengue in India. Indian J Med Res 2012; 136:373-90. [PMID: 23041731 PMCID: PMC3510884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue virus belongs to family Flaviviridae, having four serotypes that spread by the bite of infected Aedes mosquitoes. It causes a wide spectrum of illness from mild asymptomatic illness to severe fatal dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). Approximately 2.5 billion people live in dengue-risk regions with about 100 million new cases each year worldwide. The cumulative dengue diseases burden has attained an unprecedented proportion in recent times with sharp increase in the size of human population at risk. Dengue disease presents highly complex pathophysiological, economic and ecologic problems. In India, the first epidemic of clinical dengue-like illness was recorded in Madras (now Chennai) in 1780 and the first virologically proved epidemic of dengue fever (DF) occurred in Calcutta (now Kolkata) and Eastern Coast of India in 1963-1964. During the last 50 years a large number of physicians have treated and described dengue disease in India, but the scientific studies addressing various problems of dengue disease have been carried out at limited number of centres. Achievements of Indian scientists are considerable; however, a lot remain to be achieved for creating an impact. This paper briefly reviews the extent of work done by various groups of scientists in this country.
Collapse
Affiliation(s)
| | | | - Amita Jain
- Department of Microbiology, KG Medical University, Lucknow, India
| | - Umesh C. Chaturvedi
- Indian Council of Medical Research, New Delhi, India,Reprint requests: Prof. U.C. Chaturvedi, 201-Annapurna Apartments, No.1, Bishop Rocky Street, Faizabad Road, Lucknow 226 007, India e-mail:
| |
Collapse
|
7
|
Abstract
Much remains to be learned about the pathogenesis of the different manifestations of dengue virus (DENV) infections in humans. They may range from subclinical infection to dengue fever, dengue hemorrhagic fever (DHF), and eventually dengue shock syndrome (DSS). As both cell tropism and tissue tropism of DENV are considered major determinants in the pathogenesis of dengue, there is a critical need for adequate tropism assays, animal models, and human autopsy data. More than 50 years of research on dengue has resulted in a host of literature, which strongly suggests that the pathogenesis of DHF and DSS involves viral virulence factors and detrimental host responses, collectively resulting in abnormal hemostasis and increased vascular permeability. Differential targeting of specific vascular beds is likely to trigger the localized vascular hyperpermeability underlying DSS. A personalized approach to the study of pathogenesis will elucidate the basis of individual risk for development of DHF and DSS as well as identify the genetic and environmental bases for differences in risk for development of severe disease.
Collapse
|
8
|
Chaturvedi UC, Nagar R. Nitric oxide in dengue and dengue haemorrhagic fever: necessity or nuisance? FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 56:9-24. [PMID: 19239490 PMCID: PMC7110348 DOI: 10.1111/j.1574-695x.2009.00544.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/23/2008] [Accepted: 01/22/2009] [Indexed: 01/03/2023]
Abstract
Advances in free radical research show that reactive oxygen and nitrogen oxide species, for example superoxide, nitric oxide (NO) and peroxynitrite, play an important role in the pathogenesis of different viral infections, including dengue virus. The pathogenic mechanism of dengue haemorrhagic fever (DHF) is complicated and is not clearly understood. The hallmarks of the dengue disease, the antibody-dependent enhancement, the shift from T-helper type 1 (Th1) to Th2 cytokine response and the cytokine tsunami resulting in vascular leakage can now be explained much better with the knowledge gained about NO and peroxynitrite. This paper makes an effort to present a synthesis of the current opinions to explain the pathogenesis of DHF/shock syndrome with NO on centre stage.
Collapse
|
9
|
Abstract
The relationship of this country with dengue has been long and intense. The ?rst recorded epidemic of clinically dengue-like illness occurred at Madras in 1780 and the dengue virus was isolated for the ?rst time almost simultaneously in Japan and Calcutta in 1943-1944. After the ?rst virologically proved epidemic of dengue fever along the East Coast of India in 1963-1964, it spread to allover the country.The ?rst full-blown epidemic of the severe form of the illness,the dengue haemorrhagic fever/dengue shock syndrome occurred in North India in 1996. Aedes aegypti is the vector for transmission of the disease. Vaccines or antiviral drugs are not available for dengue viruses; the only effective way to prevent epidemic degure fever/dengue haemorrhagic fever (DF/DHF) is to control the mosquito vector, Aedes aegypti and prevent its bite. This country has few virus laboratories and some of them have done excellent work in the area of molecular epidemiology,immunopathology and vaccine development. Selected work done in this country on the problems of dengue is presented here.
Collapse
Affiliation(s)
- U C Chaturvedi
- Department of Microbiology, CSM Medical University, Lucknow 226 003, India.
| | | |
Collapse
|
10
|
Basu A, Chaturvedi UC. Vascular endothelium: the battlefield of dengue viruses. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2008; 53:287-99. [PMID: 18522648 PMCID: PMC7110366 DOI: 10.1111/j.1574-695x.2008.00420.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/22/2008] [Accepted: 04/02/2008] [Indexed: 12/27/2022]
Abstract
Increased vascular permeability without morphological damage to the capillary endothelium is the cardinal feature of dengue haemorrhagic fever (DHF)/dengue shock syndrome (DSS). Extensive plasma leakage in various tissue spaces and serous cavities of the body, including the pleural, pericardial and peritoneal cavities in patients with DHF, may result in profound shock. Among various mechanisms that have been considered include immune complex disease, T-cell-mediated, antibodies cross-reacting with vascular endothelium, enhancing antibodies, complement and its products, various soluble mediators including cytokines, selection of virulent strains and virus virulence, but the most favoured are enhancing antibodies and memory T cells in a secondary infection resulting in cytokine tsunami. Whatever the mechanism, it ultimately targets vascular endothelium (making it a battlefield) leading to severe dengue disease. Extensive recent work has been done in vitro on endothelial cell monolayer models to understand the pathophysiology of vascular endothelium during dengue virus (DV) infection that may be translated to help understand the pathogenesis of DHF/DSS. The present review provides a broad overview of the effects of DV infection and the associated host responses contributing towards alterations in vascular endothelial cell physiology and damage that may be responsible for the DHF/DSS.
Collapse
Affiliation(s)
- Atanu Basu
- National Institute of Virology, Pune, India
| | | |
Collapse
|
11
|
Chaturvedi UC, Shrivastava R, Tripathi RK, Nagar R. Dengue virus-specific suppressor T cells: current perspectives. ACTA ACUST UNITED AC 2007; 50:285-99. [PMID: 17573929 DOI: 10.1111/j.1574-695x.2007.00273.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dengue virus was the first microorganism that was shown to induce generation of antigen-specific suppressor T (TS) cells in mice. The cascade of the three generations of TS cells (TS1, TS2, TS3) and their secretary products, the suppressor factors (SF1, SF2), was delineated. The TS pathway was proposed to be protective through inhibition of the production of enhancing antibody, which may enhance the severity of dengue disease. The currently second most favoured mechanism of severe dengue disease is the 'cytokine tsunami'. During the last decade, suppressor/regulatory T cells have been studied in greater detail using modern techniques in various diseases, including viral infections. This brief review discusses the role of dengue-specific suppressor T cells in protection and/or induction of severe dengue disease in view of our current understanding of suppressor/regulatory T cells.
Collapse
|
12
|
Khare PD, Khare M, Tandon R, Chaturvedi UC. Identification, purification and characterization of a receptor for dengue virus-induced macrophage cytotoxin (CF2) from murine T cells. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 38:35-43. [PMID: 12900053 DOI: 10.1016/s0928-8244(03)00113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dengue type-2 virus infection in mice induces a subpopulation of T lymphocytes to produce a cytokine cytotoxic factor, which induces macrophages (Mphi) to produce a biologically active cytotoxic cytokine, the Mphi cytotoxin (CF2). Previously we have identified the presence of intermediate-affinity receptors for CF2 on mouse peritoneal Mphi. The present study was undertaken to identify the CF2-receptors (CF2-R) on murine T cells followed by their purification and characterization. Receptor binding assay and Scatchard analysis revealed single, high-affinity (1.0309 nM) receptors for CF2 on T cells (22000 receptors per cell). The binding of [125I]CF2 on murine T cells was saturable and specific. Furthermore, CF2-R was purified from normal mouse T cell plasma membrane by affinity chromatography followed by reversed-phase high-pressure liquid chromatography. The presence of CF2-R was confirmed by indirect dot-blot assay and its binding with [125I]CF2. The purified CF2-R is a 90-95-kDa protein as characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis. The chemical crosslinking of [125I]CF2 and its receptor complex showed a product of 100-110 kDa on different subpopulations of murine T cells. The pretreatment of target cells with anti-CF2-R antisera inhibited the cytotoxic activity of CF2 in a dose-dependent manner and thus confirmed the biological significance of CF2-R. Moreover, the presence of CF2-R was also identified on normal human peripheral blood mononuclear cells and T and B cells by crosslinking with [125I]CF2, thus revealing the possible role of CF2 and CF2-R in the immunopathogenesis of dengue virus disease.
Collapse
Affiliation(s)
- Pranay Deep Khare
- Postgraduate Department of Microbiology, K.G. Medical College, 226-003 Lucknow, India.
| | | | | | | |
Collapse
|
13
|
Carr JM, Hocking H, Bunting K, Wright PJ, Davidson A, Gamble J, Burrell CJ, Li P. Supernatants from dengue virus type-2 infected macrophages induce permeability changes in endothelial cell monolayers. J Med Virol 2003; 69:521-8. [PMID: 12601760 DOI: 10.1002/jmv.10340] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ability of dengue virus-infected human monocyte-derived macrophages to induce permeability changes in primary human umbilical vein endothelial cells was investigated. Supernatants from dengue virus type 2-infected monocyte-derived macrophages increased permeability in human umbilical vein endothelial cell monolayers without inducing endothelial cell infection. Production of permeabilising activity from monocyte-derived macrophages occurred after the peak of progeny virus release. TNF-alpha, a known inducer of endothelial cell permeability, was released from dengue virus infected monocyte-derived macrophages but its release did not coincide with release of endothelial cell permeabilising activity. Permeability induction was enhanced by pre-incubation with supernatants from infected monocyte-derived macrophages harvested at the time of peak release of TNF-alpha and infectious virus. Thus, supernatants from dengue virus-infected monocyte-derived macrophages contain factors that increase human umbilical vein endothelial cell permeability, but this is not accompanied by endothelial cell infection or directly correlated with release of dengue virus or TNF-alpha from monocyte-derived macrophages. This model system can be used for further in vitro analysis of mechanisms that may relate to capillary leakage and the development of dengue haemorrhagic fever/dengue shock syndrome.
Collapse
Affiliation(s)
- Jillian M Carr
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Adelaide, South Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
INTRODUCTION Transmitted by Aedes mosquitoes all over the inter-tropical area, Dengue fever is the leading arboviral disease in humans. It is also an emerging disease. CURRENT KNOWLEDGE AND KEY POINTS Increasing morbidity-mortality, and geographical expansion are the drastic changes noted in the recent epidemiology of the disease. They are related to those occurring at the bio-climatic, socio-demographic and behavioural levels, which in turn may have led to enhanced viral circulation and virulence, and also vectorial resistance. The various clinical patterns (undifferentiated febrile episode of children, acute and algid classic form, the potentially fatal dengue hemorrhagic fever/dengue shock syndrome, and the atypical forms) are reviewed, as well as the diagnostic methods, and the pathogenesis (sequential infections, facilitating antibodies, capillary leakage). FUTURE PROSPECTS AND PROJECTS Dengue fever is actually much more than a traveller's fever or an exotic curiosity. It presently threatens half the world's population, and remains a puzzling disease in many aspects, such as the virus-vector and host-virus relationships, and clinical expression variability. In this respect, dengue fever appears as a model of viral disease. The current molecular approach is expected to provide us with new insights into pathophysiology, more efficient tools for disease control, and also an efficient vaccine in the near future.
Collapse
Affiliation(s)
- M Strobel
- Service des maladies infectieuses, CHU, BP 465, 97159, Pointe à Pitre, Guadeloupe, France.
| | | |
Collapse
|
15
|
Chaturvedi UC, Elbishbishi EA, Agarwal R, Mustafa AS. Cytotoxic factor-autoantibodies: possible role in the pathogenesis of dengue haemorrhagic fever. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2001; 30:181-6. [PMID: 11335136 DOI: 10.1111/j.1574-695x.2001.tb01568.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During dengue virus infection a unique cytokine, cytotoxic factor (hCF), is produced that is pathogenesis-related and plays a key role in the development of dengue haemorrhagic fever (DHF). However, what regulates the adverse effects of hCF is not known. We have previously shown that anti-hCF antibodies raised in mice, neutralise the pathogenic effects of hCF. In this study we have investigated the presence and levels of hCF-autoantibodies in sera of patients with various severity of dengue illness (n=136) and normal healthy controls (n=50). The highest levels of hCF-autoantibodies (mean+/-S.D.=36+/-20 U ml(-1)) were seen in patients with mild illness, the dengue fever (DF), and 48 out of 50 (96%) of the sera were positive. On the other hand the hCF-autoantibody levels declined sharply with the development of DHF and the levels were lowest in patients with DHF grade IV (mean+/-S.D.=5+/-2 U ml(-1); P=<0.001 as compared to DF). Only one of the 13 DHF grade IV patients had an antibody level above the 'cut-off' value (mean plus 3 S.D. of the control sera). The analysis of data with respect to different days of illness further showed that the highest levels of hCF-autoantibodies were present in DF patients at >9 days of illness. Moreover, the DF patients at all time points, i.e. 1-4, 5-8 and >9 days of illness had significantly higher levels of hCF-autoantibodies (P<0.001) than patients with DHF grade I, II, III and IV. In addition DHF grade I and grade II patients had significantly more positive specimens than DHF grade III and grade IV patients at all time points. These results suggest that elevated levels of hCF-autoantibodies protect the patients against the development of severe forms of DHF and, therefore, it may be useful as a prognostic indicator.
Collapse
Affiliation(s)
- U C Chaturvedi
- Department of Microbiology, Faculty of medicine, Kuwait University, P.O Box 24923, 13110 Safat, Kuwait
| | | | | | | |
Collapse
|
16
|
Mustafa AS, Elbishbishi EA, Agarwal R, Chaturvedi UC. Elevated levels of interleukin-13 and IL-18 in patients with dengue hemorrhagic fever. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2001; 30:229-33. [PMID: 11335143 DOI: 10.1111/j.1574-695x.2001.tb01575.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin (IL)-13 is produced by T helper 2 (Th2)-type cells and inhibits the production of proinflammatory cytokines by activated monocytes, while IL-18 is a pleiotropic cytokine that induces interferon-gamma and plays an important role in the development of Th1-type cells. Role of the shift from a Th1-type response to Th2-type has been suggested in the pathogenesis of dengue hemorrhagic fever (DHF). This study was undertaken to investigate the possible protective/pathogenic role of IL-13 and IL-18 in patients with DHF. Sera were collected from a total of 84 patients with various grades of dengue illness and 21 normal healthy controls and tested for IL-13 and IL-18 levels using commercial enzyme-linked immunosorbent assay kits. The results showed that very low levels of IL-13 (4+/-3 pg ml(-1)) and IL-18 (15+/-4 pg ml(-1)) were detected in the sera of healthy controls. In dengue patients, the levels of IL-13 and IL-18 were the highest in the patients with DHF grade IV (205+/-103 pg ml(-1) and 366+/-155 pg ml(-1), respectively) and the lowest in patients with dengue fever (22+/-12 pg ml(-1) and 76+/-50 pg ml(-1), respectively). Both the cytokines appeared (IL-13=20+/-11 pg ml(-1) and IL-18=70+/-45 pg ml(-1)) during the first 4 days of illness and reached peak levels (IL-13=204+/-96 pg ml(-1) and IL-18=360+/-148 pg ml(-1)) by day 9 onwards. The presence of high levels of IL-13 and IL-18 during severe illness and late phases of the disease suggests that both of these cytokines may contribute to the shift from a Th1- to Th2-type response and thus to the pathogenesis of DHF.
Collapse
Affiliation(s)
- A S Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O Box 24923, Safat 13110 Kuwait.
| | | | | | | |
Collapse
|
17
|
Chaturvedi UC, Agarwal R, Elbishbishi EA, Mustafa AS. Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2000; 28:183-8. [PMID: 10865168 DOI: 10.1111/j.1574-695x.2000.tb01474.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dengue virus produces a mild acute febrile illness, dengue fever (DF) and a severe illness, dengue hemorrhagic fever (DHF). The characteristic feature of DHF is increased capillary permeability leading to extensive plasma leakage in serous cavities resulting in shock. The pathogenesis of DHF is not fully understood. This paper presents a cascade of cytokines, that in our view, may lead to DHF. The main feature is the early generation of a unique cytokine, human cytotoxic factor (hCF) that initiates a series of events leading to a shift from Th1-type response in mild illness to a Th2-type response resulting in severe DHF. The shift from Th1 to Th2 is regulated by the relative levels of interferon-gamma and interleukin (IL)-10 and between IL-12 and transforming growth factor-beta, which showed an inverse relationship in patients with DF.
Collapse
Affiliation(s)
- U C Chaturvedi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | | | | | |
Collapse
|
18
|
Pacsa AS, Agarwal R, Elbishbishi EA, Chaturvedi UC, Nagar R, Mustafa AS. Role of interleukin-12 in patients with dengue hemorrhagic fever. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2000; 28:151-5. [PMID: 10799806 DOI: 10.1111/j.1574-695x.2000.tb01470.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interleukin (IL)-12 has a broad range of activities including regulation of cytokine synthesis and selective promotion of Th1-type cell development. A shift from a Th1-type response to Th2-type has been suggested to be important in the pathogenesis of dengue hemorrhagic fever (DHF). This study was undertaken to investigate the possible role of IL-12 in this shift. A total of 76 patients with various grades of dengue illness and 21 normal healthy controls were tested for IL-12 levels in serum samples and IL-12 mRNA in their peripheral blood mononuclear cells. The results showed that the levels of IL-12 were the highest in patients with dengue fever (270+/-102 pg ml(-1)) followed by decreasing levels in the patients with DHF grade I (198+/-86 pg ml(-1); P<0.05) and DHF grade II (84+/-52 pg ml(-1); P<0.001). Neither IL-12 nor its mRNA could be detected in the patients with DHF grades III and IV. The cytokine appeared and reached peak levels during the first 4 days of illness, started to decline by day 5-8 and disappeared by day 9 onwards. The absence of IL-12 during severe illness and late phases of the disease may be responsible for the shift to a Th2-type response and thus for the pathogenesis of DHF.
Collapse
Affiliation(s)
- A S Pacsa
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat, Kuwait
| | | | | | | | | | | |
Collapse
|
19
|
Chaturvedi UC, Elbishbishi EA, Agarwal R, Raghupathy R, Nagar R, Tandon R, Pacsa AS, Younis OI, Azizieh F. Sequential production of cytokines by dengue virus-infected human peripheral blood leukocyte cultures. J Med Virol 1999; 59:335-40. [PMID: 10502266 DOI: 10.1002/(sici)1096-9071(199911)59:3<335::aid-jmv13>3.0.co;2-e] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The study was undertaken to elucidate the sequence of appearance of T helper (Th)1- and Th2-type cytokines in human peripheral blood leucocyte cultures infected in vitro with dengue type 2 virus. Commercial sandwich enzyme-linked immunosorbent assay kits were used to assay the levels of tumour necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin (IL)-2, IL-4, IL-5, IL-6, and IL-10 in culture supernatants. Culture supernatants were also screened for the cytotoxic factor and the dengue virus titres determined. The cytokines that appeared in the culture supernatants on the first day post-infection (p.i.) were cytotoxic factor, TNF-alpha, IL-2, and IL-6; their levels were highest on the second day p.i. IFN-gamma appeared on the second day with a peak on the third day p.i. The levels of these cytokines declined quickly, except for human cytotoxic factor (hCF) and IL-2. The cytokines that appeared later were IL-10 and IL-5 on the fourth day and IL-4 on the sixth day p.i. Dengue virus replicated in the peripheral blood leucocyte (PBL) cultures and was present throughout the course of the study. The findings of the present study show that dengue virus induced a predominant Th1-type cytokine response during the first 3 days of infection of PBL cultures that was replaced by a Th2-type response later.
Collapse
Affiliation(s)
- U C Chaturvedi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait. chaturvedihsc.kuniv.edu.kw
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Agarwal R, Elbishbishi EA, Chaturvedi UC, Nagar R, Mustafa AS. Profile of transforming growth factor-beta 1 in patients with dengue haemorrhagic fever. Int J Exp Pathol 1999; 80:143-9. [PMID: 10469270 PMCID: PMC2517771 DOI: 10.1046/j.1365-2613.1999.00107.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of dengue haemorrhagic fever (DHF) is incompletely understood but it has been suggested that various cytokines may have a role in the process. In this study the profile of the cytokine Transforming Growth Factor-beta 1 (TGF-beta1) was investigated in the sera of 79 patients with various grades of dengue illness and in 21 normal healthy controls. Also, TGF-beta1-specific mRNA was examined in their peripheral blood mononuclear cells (PBMC). The results showed that neither TGF-beta1 protein nor its mRNA were detected in healthy controls. In dengue patients, the TGF-beta1 protein and its mRNA were detected in 96%. However, among the patient groups, the levels of TGF-beta1 were lowest in patients with dengue fever (DF; mean value 315 +/- 95 pg/ml) and were highest in patients with DHF grade IV (mean value 1350 +/- 280 pg/ml; P = < 0. 001). The cytokine appeared during the first four days of illness (304 +/- 90 pg/ml) and gradually increased, reaching peak levels (1050 +/- 215 pg/ml) after the 9th day of the illness. Thus TGF-beta1 in the sera and TGF-beta1-mRNA in the PBMC were present in most of the patients with dengue (96%) but the cytokine levels were highest during the later periods of illness and in patients with DHF grade IV, suggesting a possible role of TGF-beta1 in the pathogenesis of DHF.
Collapse
Affiliation(s)
- R Agarwal
- Department of Microbiology, K.G. Medical College, Lucknow, India
| | | | | | | | | |
Collapse
|
21
|
Raghupathy R, Chaturvedi UC, Al-Sayer H, Elbishbishi EA, Agarwal R, Nagar R, Kapoor S, Misra A, Mathur A, Nusrat H, Azizieh F, Khan MA, Mustafa AS. Elevated levels of IL-8 in dengue hemorrhagic fever. J Med Virol 1998; 56:280-5. [PMID: 9783699 DOI: 10.1002/(sici)1096-9071(199811)56:3<280::aid-jmv18>3.0.co;2-i] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dengue virus causes dengue fever, a mild febrile illness, and at times dengue hemorrhagic fever (DHF), a severe illness the pathogenesis of which is not fully understood. Given the crucial roles played by interleukin-8 (IL-8) as a chemoattractant cytokine and in inflammatory processes, levels of circulating IL-8 in the sera and IL-8 mRNA in the peripheral blood mononuclear cells (PBMC) were measured in 99 patients of a recent dengue epidemic that occurred in India in 1996 and in 21 normal healthy controls. Twenty-six of the patients had dengue fever (DF) and the remaining 73 were diagnosed as having different grades of DHF. All the control normal sera were negative for IL-8, so were their PBMC for IL-8 mRNA. Increased levels of IL-8 in the sera and IL-8 mRNA in their PBMC were observed in patients with severe illness of DHF grades III and IV. Only two out of 26 patients of DF and one out of 10 DHF grade I patient were positive for IL-8 and all three deteriorated to DHF grade IV within 24 hr. All six patients of DHF grade IV who died had higher serum level of IL-8 above 200 pg/ml, the highest being 5,568 pg/ml in one patient; the presence of mRNA for IL-8 was very high in all patients. A striking correlation was observed between increased levels of IL-8 and severe DHF, with greater levels in patients with increased grade of the disease and death. These results suggest that IL-8 may have an important role and may be an indicator of increasing severity of the disease and death.
Collapse
Affiliation(s)
- R Raghupathy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|