1
|
Ning Y, Chen Y, Tian T, Gao X, Liu X, Wang J, Chu H, Zhao C, Yang Y, Lei K, Ren H, Cui Z. S100A7 orchestrates neutrophil chemotaxis and drives neutrophil extracellular traps (NETs) formation to facilitate lymph node metastasis in cervical cancer patients. Cancer Lett 2024; 605:217288. [PMID: 39384116 DOI: 10.1016/j.canlet.2024.217288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Neutrophil extracellular traps (NETs) have been shown to promote the metastatic potential of many kinds of tumors. Our study aimed to investigate the role and mechanisms of NETs in lymph node metastasis (LNM) of cervical cancer (CCa), and evaluated the therapeutic value of targeting NETs in CCa. Immunohistochemistry demonstrated that neutrophil infiltration and NETs formation were increased in CCa patients with LNM, as well as confirming a positive correlation between S100A7 expression and neutrophil infiltration in CCa. NETs enhanced the migratory capability of CCa by activating the P38-MAPK/ERK/NFκB pathway through interaction with TLR2. Digesting NETs with deoxyribonuclease 1 (DNase 1) or inhibiting TLR2 with chloroquine eliminated the NETs-induced metastatic potential of CCa. Additionally, NETs promoted lymphangiogenesis and increased the permeability of lymphatic vessels, thus facilitating translymphatic movement of CCa. CCa-derived S100A7 exhibited a chemotactic effect on neutrophils and promoted NETs generation by elevating ROS levels rather than activating autophagy in neutrophils. The mouse model with footpad implantation illustrated that DNase 1 effectively reduced LNM in LPS-induced mice and in mice seeded with S100A7-overexpressing CCa cells. In conclusion, our study reveals a new tumor-promoting mechanism of S100A7, clarifies the crucial role and mechanism of NETs in LNM of CCa, and indicates that the NETs-targeted therapy emerges as a promising anti-metastasis therapy in CCa.
Collapse
Affiliation(s)
- Ying Ning
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yu Chen
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Tian Tian
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xinyan Gao
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Xiaolan Liu
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Jia Wang
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Huijun Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chenyang Zhao
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yufei Yang
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - He Ren
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
2
|
Stamm SM, Wagner R, Lang DA, Skerra A, Gebauer M. Development of a Clonal and High-Yield Mammalian Cell Line for the Manufacturing of a Hyperactive Human DNase I with Extended Plasma Half-Life Using PASylation ® Technology. Pharmaceutics 2024; 16:967. [PMID: 39065664 PMCID: PMC11280007 DOI: 10.3390/pharmaceutics16070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Cumulative evidence from several pre-clinical studies suggests that restoration of plasma DNase activity in a thrombo-inflammatory state may improve clinical outcomes. Following injury, hyperactivated immune cells release large amounts of granular proteins together with DNA, which often accumulate in the surrounding environment in so-called neutrophil extracellular traps (NETs). Degradation of excess NETs by systemic DNase administration offers a promising therapeutic approach to ameliorate inflammation and dissolve intravascular clots. In order to expand the therapeutic utility of human DNase I, a variant of the enzyme was developed that has both a prolonged systemic half-life and a higher catalytic activity compared to Dornase alfa (Pulmozyme®), the recombinant form of DNase I approved for inhaled therapy of cystic fibrosis. The hyperactive enzyme was "PASylated" by genetic fusion with a strongly hydrophilic and biodegradable PAS-polypeptide to increase its hydrodynamic volume and retard kidney filtration. A stable TurboCell™ CHO-K1-based cell line was generated which is suitable for the future production of PASylated DNase I according to good manufacturing practice (GMP). Furthermore, a robust bioprocess strategy was devised and an effective downstream process was developed. The final protein product is characterized by excellent purity, favorable physicochemical properties, a 14-fold higher DNA-degrading activity than Dornase alfa and a sustained pharmacokinetic profile, with a 22-fold slower clearance in rats.
Collapse
Affiliation(s)
- Serge M. Stamm
- Rentschler Biopharma SE, Erwin-Rentschler-Str. 21, 88471 Laupheim, Germany; (S.M.S.); (R.W.)
| | - Roland Wagner
- Rentschler Biopharma SE, Erwin-Rentschler-Str. 21, 88471 Laupheim, Germany; (S.M.S.); (R.W.)
| | - Dietmar A. Lang
- Rentschler Biopharma SE, Erwin-Rentschler-Str. 21, 88471 Laupheim, Germany; (S.M.S.); (R.W.)
| | - Arne Skerra
- XL-Protein GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | | |
Collapse
|
3
|
Ferchiou S, Caza F, Villemur R, Betoulle S, St-Pierre Y. From shells to sequences: A proof-of-concept study for on-site analysis of hemolymphatic circulating cell-free DNA from sentinel mussels using Nanopore technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172969. [PMID: 38754506 DOI: 10.1016/j.scitotenv.2024.172969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Blue mussels are often abundant and widely distributed in polar marine coastal ecosystems. Because of their wide distribution, ecological importance, and relatively stationary lifestyle, bivalves have long been considered suitable indicators of ecosystem health and changes. Monitoring the population dynamics of blue mussels can provide information on the overall biodiversity, species interactions, and ecosystem functioning. In the present work, we combined the concept of liquid biopsy (LB), an emerging concept in medicine based on the sequencing of free circulating DNA, with the Oxford Nanopore Technologies (ONT) platform using a portable laboratory in a remote area. Our results demonstrate that this platform is ideally suited for sequencing hemolymphatic circulating cell-free DNA (ccfDNA) fragments found in blue mussels. The percentage of non-self ccfDNA accounted for >50 % of ccfDNA at certain sampling Sites, allowing the quick, on-site acquisition of a global view of the biodiversity of a coastal marine ecosystem. These ccfDNA fragments originated from viruses, bacteria, plants, arthropods, algae, and multiple Chordata. Aside from non-self ccfDNA, we found DNA fragments from all 14 blue mussel chromosomes, as well as those originating from the mitochondrial genomes. However, the distribution of nuclear and mitochondrial DNA was significantly different between Sites. Similarly, analyses between various sampling Sites showed that the biodiversity varied significantly within microhabitats. Our work shows that the ONT platform is well-suited for LB in sentinel blue mussels in remote and challenging conditions, enabling faster fieldwork for conservation strategies and resource management in diverse settings.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Stéphane Betoulle
- Université Reims Champagne-Ardenne, UMR-I 02 SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Campus Moulin de la Housse, 51687 Reims, France
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
4
|
Kim J, Yoo H, Woo S, Oh SS. Aptasensor-encapsulating semi-permeable proteinosomes for direct target detection in non-treated biofluids. Biosens Bioelectron 2024; 251:116062. [PMID: 38350238 DOI: 10.1016/j.bios.2024.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Detecting biomarkers in biofluids directly without sample treatments makes molecular diagnostics faster and more efficient. Aptasensors, the nucleic acid-based molecular biosensors, can detect a wide range of target molecules, but their susceptibility to degradation and aggregation by nucleases and charged proteins, respectively, limits their direct use in clinical samples. In this work, we demonstrate that when aptasensors are encapsulated in proteinosomes, the protein-based liposome mimics, clinically important small molecules can be sensitively and selectively detected in non-treated specimens, such as 100 % unpurified serum. As serum albumin is used to form the membrane, the nanomeshed proteinosomes become semi-permeable and antifouling, which enables exclusive admission of small molecules while blocking unwanted large proteins. Consequently, the enclosed aptasensors can maintain close-to-optimal performance for target binding, and nucleolytic degradation and electrostatic aggregation are effectively suppressed. Three different structure-switching aptamers specific for estradiol, dopamine, and cocaine, respectively, are demonstrated to fully conserve their high affinities and specificities inside the microcapsules. The shielding effect of proteinosomes is indeed exceptional; the enclosed DNA aptasensors remain completely intact over 18 h in serum and even in an extremely concentrated DNase solution (1 mg/ml, ∼300,000× the serum level). Moreover, the proteinosome-mediated compartmentalization enables independent operation of multiple aptasensors in the same mixture. Hence, simultaneous real-time sensing of two different targets is demonstrated with different operation modes, 'recording' target appearance and 'reporting' target concentration changes. This work is the first demonstration of small-molecule-specific aptasensors operating with optimal performance in serum environments and will find promising applications in molecular diagnostics.
Collapse
Affiliation(s)
- Jinmin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Hyebin Yoo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Sungwook Woo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon, 21983, South Korea.
| |
Collapse
|
5
|
Guo ZC, Jing SL, Jia XY, Elayah SA, Xie LY, Cui H, Tu JB, Na SJ. Porphyromonas gingivalis promotes the progression of oral squamous cell carcinoma by stimulating the release of neutrophil extracellular traps in the tumor immune microenvironment. Inflamm Res 2024; 73:693-705. [PMID: 38150024 DOI: 10.1007/s00011-023-01822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the impact of Porphyromonas gingivalis (P. gingivalis) on the progression of oral squamous cell carcinoma (OSCC) through neutrophil extracellular traps (NETs) in the tumor immune microenvironment. METHODS The expression of NETs-related markers was identified through immunohistochemistry, immunofluorescence, and Western blotting in different clinical stages of OSCC samples. The relationship between NETs-related markers and clinicopathological characteristics in 180 samples was analyzed using immunohistochemistry data. Furthermore, the ability to predict the prognosis of OSCC patients was determined by ROC curve analysis and survival analysis. The effect of P. gingivalis on the release of NETs was identified through immunofluorescence and immunohistochemistry, both in vitro and in vivo. CAL27 and SCC25 cell lines were subjected to NETs stimulation to elucidate the influence of NETs on various cellular processes, including cell proliferation, migration, invasion, and metastasis in vitro. Furthermore, the impact of NETs on the growth and metastatic potential of OSCC was assessed using in vivo models involving tumor-bearing mice and tumor metastasis mouse models. RESULTS Immunochemistry analysis revealed a significant correlation between the NETs-related markers and clinical stage, living status as well as TN stage. P. gingivalis has demonstrated its ability to effectively induce the release of NETs both in vivo and in vitro. NETs have the potential to facilitate cell migration, invasion, and colony formation. Moreover, in vivo experiments have demonstrated that NETs play a pivotal role in promoting tumor metastasis. CONCLUSION High expression of NETs-related markers demonstrates a strong correlation with the progression of OSCC. Inhibition of the NETs release process stimulated by P. gingivalis and targeted NETs could potentially open up a novel avenue in the field of immunotherapy for patients afflicted with OSCC.
Collapse
Affiliation(s)
- Zhi-Chen Guo
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Si-Li Jing
- Shannxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, China
| | - Xin-Yu Jia
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Sadam Ahmed Elayah
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jiblah University for Medical and Health Sciences, Ibb, Yemen
| | - Lin-Yang Xie
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hao Cui
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jun-Bo Tu
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Si-Jia Na
- Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
6
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
7
|
Liu LN, Chen C, Xin WJ, Li Q, Han C, Hua ZC. The oncolytic bacteria-mediated delivery system of CCDC25 nucleic acid drug inhibits neutrophil extracellular traps induced tumor metastasis. J Nanobiotechnology 2024; 22:69. [PMID: 38369519 PMCID: PMC10875894 DOI: 10.1186/s12951-024-02335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs), antibacterial weapons of neutrophils (NEs), have been found to play a crucial role in cancer metastasis in recent years. More and more cancer research is focusing on anti-NETs. However, almost all anti-NETs treatments have limitations such as large side effects and limited efficacy. Therefore, exploring new anti-NETs therapeutic strategies is a long-term goal. RESULTS The transmembrane protein coiled-coil domain containing 25 (CCDC25) on tumor cell membranes can bind NETs-DNA with high specificity and affinity, enabling tumor cells to sense NETs and thus promote distant metastasis. We transformed shCCDC25 into VNP20009 (VNP), an oncolytic bacterium, to generate VNP-shCCDC25 and performed preclinical evaluation of the inhibitory effect of shCCDC25 on cancer metastasis in B16F10 lung metastasis and 4T1 orthotopic lung metastasis models. VNP-shCCDC25 effectively blocked the downstream prometastatic signaling pathway of CCDC25 at tumor sites and reduced the formation of NETs while recruiting more neutrophils and macrophages to the tumor core, ultimately leading to excellent metastasis inhibition in the two lung metastasis models. CONCLUSION This study is a pioneer in focusing on the effect of anti-NET treatment on CCDC25. shCCDC25 is effectively delivered to tumor sites via the help of oncolytic bacteria and has broad application in the inhibition of cancer metastasis via anti-NETs.
Collapse
Affiliation(s)
- Li-Na Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Chen Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Wen-Jie Xin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Qiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Chao Han
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu, Changzhou, China.
- TargetPharma Laboratories Inc., Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
8
|
Yadav R, Momin A, Godugu C. DNase based therapeutic approaches for the treatment of NETosis related inflammatory diseases. Int Immunopharmacol 2023; 124:110846. [PMID: 37634446 DOI: 10.1016/j.intimp.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Neutrophils are the primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils limit pathogen transmission is NETosis, which includes releasing the nuclear content into the cytosol by forming pores in the plasma membrane. The extrusion of cellular deoxyribonucleic acid (DNA) results in neutrophil extracellular traps (NETs) composed of nuclear DNA associated with histones and granule proteins. NETosis is driven by the enzyme PAD-4 (Peptidylarginine deiminase-4), which converts arginine into citrulline, leading to decondensation of chromatin, separation of DNA, and eventual extrusion. DNase is responsible for the breakdown of NETs. On the one hand, the release of DNase may interfere with the antibacterial effects of NETs; further, DNase may protect tissues from self-destruction caused by the increased release of NET under septic conditions. NETs in physiological quantities are expected to have a role in anti-infectious innate immune responses. In contrast, abnormally high concentrations of NETs in the body that are not adequately cleared by DNases can damage tissues and cause inflammation. Through several novel approaches, it is now possible to avoid the adverse effects caused by the continued release of NETs into the extracellular environment. In this review we have highlighted the basic mechanisms of NETosis, its significance in the pathogenesis of various inflammatory disorders, and the role of DNase enzyme with a focus on the possible function of nanotechnology in its management.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Alfiya Momin
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Chen XQ, Tu L, Tang Q, Zou JS, Yun X, Qin YH. DNase I targeted degradation of neutrophil extracellular traps to reduce the damage on IgAV rat. PLoS One 2023; 18:e0291592. [PMID: 37906560 PMCID: PMC10617705 DOI: 10.1371/journal.pone.0291592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/30/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND In the past two years, studies have found a significant increase in neutrophil extracellular traps (NETs) in patients with IgA vasculitis (IgAV), which is correlated with the severity of the disease. NETs have been reported as an intervention target in inflammatory and autoimmune diseases. This study aimed to investigate the effect of targeted degradation of NETs using DNase I in IgAV rat model. METHODS Twenty-four Sprague-Dawley rats were randomly divided into three groups: the IgAV model group, the DNase I intervention group and the normal control group, with an average of 8 rats in each group. The model group was established by using Indian ink, ovalbumin, and Freund's complete adjuvant. In the intervention group, DNase I was injected through tail vein 3 days before the end of established model. The circulating cell free-DNA (cf-DNA) and myeloperoxidase-DNA (MPO-DNA) were analyzed. The presence of NETs in the kidney, gastric antrum and descending duodenum were detected using multiple fluorescences immunohistochemistry and Western blots. Morphological changes of the tissues were observed. RESULTS After the intervention of DNase I, there was a significant reduction in cf-DNA and MPO-DNA levels in the intervention group compared to the IgAV model group (all P<0.001). The presence of NETs in renal, gastric, and duodenal tissues of the intervention group exhibited a significant decrease compared to the IgAV model group (P < 0.01). Moreover, the intervention group demonstrated significantly lower levels of renal MPO and citrullinated histone H3 (citH3) protein expression when compared to the IgAV model group (all P < 0.05). The HE staining results of intervention group demonstrated a significant reduction in congestion within glomerular and interstitial capillaries. Moreover, there was a notable improvement in gastric and intestinal mucosa necrosis, congestion and bleeding. Additionally, there was a substantial decrease in inflammatory cells infiltration. CONCLUSION The degradation of NETs can be targeted by DNase I to mitigate tissue damage in IgAV rat models. Targeted regulation of NETs holds potential as a therapeutic approach for IgAV.
Collapse
Affiliation(s)
- Xiu-Qi Chen
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Li Tu
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Qing Tang
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jia-Sen Zou
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiang Yun
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yuan-Han Qin
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Jarrahi A, Khodadadi H, Moore NS, Lu Y, Awad ME, Salles EL, Vaibhav K, Baban B, Dhandapani KM. Recombinant human DNase-I improves acute respiratory distress syndrome via neutrophil extracellular trap degradation. J Thromb Haemost 2023; 21:2473-2484. [PMID: 37196848 PMCID: PMC10185489 DOI: 10.1016/j.jtha.2023.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Respiratory failure is the primary cause of death in patients with COVID-19, whereas coagulopathy is associated with excessive inflammation and multiorgan failure. Neutrophil extracellular traps (NETs) may exacerbate inflammation and provide a scaffold for thrombus formation. OBJECTIVES The goal of this study was to determine whether degradation of NETs by recombinant human DNase-I (rhDNase), a safe, Food and Drug Administration-approved drug, reduces excessive inflammation, reverses aberrant coagulation, and improves pulmonary perfusion after experimental acute respiratory distress syndrome (ARDS). METHODS Intranasal poly(I:C), a synthetic double-stranded RNA, was administered to adult mice for 3 consecutive days to simulate a viral infection, and these subjects were randomized to treatment arms, which received either an intravenous placebo or rhDNase. The effects of rhDNase on immune activation, platelet aggregation, and coagulation were assessed in mice and donor human blood. RESULTS NETs were observed in bronchoalveolar lavage fluid and within regions of hypoxic lung tissue after experimental ARDS. The administration of rhDNase mitigated peribronchiolar, perivascular, and interstitial inflammation induced by poly(I:C). In parallel, rhDNase degraded NETs, attenuated platelet-NET aggregates, reduced platelet activation, and normalized the clotting time to improve regional perfusion, as observed using gross morphology, histology, and microcomputed tomographic imaging in mice. Similarly, rhDNase reduced NETs and attenuated platelet activation in human blood. CONCLUSION NETs exacerbate inflammation and promote aberrant coagulation by providing a scaffold for aggregated platelets after experimental ARDS. Intravenous administration of rhDNase degrades NETs and attenuates coagulopathy in ARDS, providing a promising translational approach to improve pulmonary structure and function after ARDS.
Collapse
Affiliation(s)
- Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Nicholas S Moore
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Mohamed E Awad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Evila L Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
11
|
Roth S, Wernsdorf SR, Liesz A. The role of circulating cell-free DNA as an inflammatory mediator after stroke. Semin Immunopathol 2023:10.1007/s00281-023-00993-5. [PMID: 37212886 DOI: 10.1007/s00281-023-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023]
Abstract
Stroke is the second leading cause of death worldwide and a leading cause of disability. Clinical and experimental studies highlighted the complex role of the immune system in the pathophysiology of stroke. Ischemic brain injury leads to the release of cell-free DNA, a damage-associated molecular pattern, which binds to pattern recognition receptors on immune cells such as toll-like receptors and cytosolic inflammasome sensors. The downstream signaling cascade then induces a rapid inflammatory response. In this review, we are highlighting the characteristics of cell-free DNA and how these can affect a local as well as a systemic response after stroke. For this purpose, we screened literature on clinical studies investigating cell-free DNA concentration and properties after brain ischemia. We report the current understanding for mechanisms of DNA uptake and sensing in the context of post-stroke inflammation. Moreover, we compare possible treatment options targeting cell-free DNA, DNA-sensing pathways, and the downstream mediators. Finally, we describe clinical implications of this inflammatory pathway for stroke patients, open questions, and potential future research directions.
Collapse
Affiliation(s)
- Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Saskia R Wernsdorf
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
12
|
Nam K, Kim YM, Choi I, Han HS, Kim T, Choi KY, Roh YH. Crystallinity-tuned ultrasoft polymeric DNA networks for controlled release of anticancer drugs. J Control Release 2023; 355:7-17. [PMID: 36706839 DOI: 10.1016/j.jconrel.2023.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/29/2023]
Abstract
Despite the vast interest in utilizing rolling circle amplification (RCA)-based DNA networks for bioapplications, precise control of the mechanical and physicochemical properties is highly challenging. To address this concern, we aimed to develop ultrasoft self-supporting polymerized DNA networks (pDNets) of variable crystallinities to manipulate sequence-mediated drug release efficiency. A controlled ratio of the inorganic magnesium pyrophosphate (MgPPi) crystal to the organic polymeric DNA resulted in the synthesis of pDNets of various nanoporosities. The number of crystal microstructures influencing drug localization and release pattern and the tunable mechanical properties influencing injectability and structural stability under physiological conditions were investigated. The pDNets exhibited ultrasoft properties with Young's moduli of 0.06-0.54 Pa; approximately 9-fold differences in mechanical properties were obtained by varying the degree of crystallinity. With functional DNA sequences, the developed platforms showed pH stimuli-responsive drug release profiles of the dynamic DNA structures and aptamer-specific cell target adhesion efficiency. Analyses of controlled delivery of anticancer therapeutics in vitro and in vivo revealed crystallinity-dependent antitumor efficacy without side effects. This strategy provides an effective one-pot enzymatic polymerization methodology and a favorable microenvironment for a three-dimensional DNA network based on demand-localized drug delivery.
Collapse
Affiliation(s)
- Keonwook Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Young Min Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Inseok Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Hwa Seung Han
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung 25451, South Korea
| | - Taehyung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Ki Young Choi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung 25451, South Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
13
|
Filipczak N, Li X, Saawant GR, Yalamarty SSK, Luther E, Torchilin VP. Antibody-modified DNase I micelles specifically recognize the neutrophil extracellular traps (NETs) and promote their degradation. J Control Release 2023; 354:109-119. [PMID: 36596341 DOI: 10.1016/j.jconrel.2022.12.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Neutrophil extracellular traps (NETs) are structures consisting of decondensed chromatin with associated proteins, including histones and antimicrobial peptides, released from activated neutrophils. They are believed to be one of the body's first lines of defense against infectious agents. Despite their beneficial effect on the immune response process, some studies indicate that their excessive formation and the associated accumulation of extracellular DNA (eDNA) together with other polyelectrolytes (F-actin) plays an important role in the pathogenesis of many diseases. Thus NETs formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity for intact nucleohistones (NS) and targets NS in NETs as we previously confirmed. Creation of a nano preparation that can specifically recognize and destroy NETs represents the aim for treatment many diseases. 2C5 antibody functionalized micelles coated with DNase I were created to achieve this aim.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Gaurav Rajan Saawant
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | - Ed Luther
- Supervisor of Shared Research Facilities, School of Pharmacy and Department of Pharmaceutical Sciences, Northeastern University, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Hosseinnejad A, Ludwig N, Wienkamp AK, Rimal R, Bleilevens C, Rossaint R, Rossaint J, Singh S. DNase I functional microgels for neutrophil extracellular trap disruption. Biomater Sci 2021; 10:85-99. [PMID: 34812809 DOI: 10.1039/d1bm01591e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neutrophil extracellular traps (NETs) are web-like chromatin structures produced and liberated by neutrophils under inflammatory conditions which also promote the activation of the coagulation cascade and thrombus formation. The formation of NETs is quite prominent when blood comes in contact with artificial surfaces like extracorporeal circuits, oxygenator membranes, or intravascular grafts. DNase I as a factor of the host defense system, digests the DNA backbone of NETs, which points out its treatment potential for NET-mediated thrombosis. However, the low serum stability of DNase I restricts its clinical/therapeutic applications. To improve the bioavailability of the enzyme, DNase I was conjugated to the microgels (DNase I MG) synthesized from highly hydrophilic N-(2-hydroxypropyl) methacrylamide (HPMA) and zwitterionic carboxybetaine methacrylamide (CBMAA). The enzyme was successfully conjugated to the microgels without any alternation to its secondary structure. The Km value representing the enzymatic activity of the conjugated DNase I was calculated to be 0.063 μM demonstrating a high enzyme-substrate affinity. The DNase I MGs were protein repellant and were able to digest NETs more efficiently compared to free DNase in a biological media, remarkably even after long-term exposure to the stimulated neutrophils continuously releasing NETs. Overall, the conjugation of DNase I to a non-fouling microgel provides a novel biohybrid platform that can be exploited as non-thrombogenic active microgel-based coatings for blood-contacting surfaces to reduce the NET-mediated inflammation and microthrombi formation.
Collapse
Affiliation(s)
- Aisa Hosseinnejad
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Bldg. A1, 48149 Münster, Germany
| | - Ann-Katrin Wienkamp
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Bldg. A1, 48149 Münster, Germany
| | - Rahul Rimal
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Christian Bleilevens
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Bldg. A1, 48149 Münster, Germany
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056 Aachen, Germany.,Max-Planck-Institut für medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Kaltenmeier C, Simmons RL, Tohme S, Yazdani HO. Neutrophil Extracellular Traps (NETs) in Cancer Metastasis. Cancers (Basel) 2021; 13:6131. [PMID: 34885240 PMCID: PMC8657162 DOI: 10.3390/cancers13236131] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the leading cause of cancer related morbidity and mortality. The metastatic process involves several identifiable biological stages, including tumor cell dissemination, intravasation, and the extravasation of circulating cancer cells to facilitate colonization at a distant site. Immune cell infiltration and inflammation within the tumor microenvironment coincide with tumor progression and metastatic spread and are thought to be the key mediators of this complex process. Amongst many infiltrating cells, neutrophils have recently emerged as an important player in fueling tumor progression, both in animal models and cancer patients. The production of Neutrophil Extracellular Traps (NETs) is particularly important in the pathogenesis of the metastatic cascade. NETs are composed of web-like DNA structures with entangled proteins that are released in response to inflammatory cues in the environment. NETs play an important role in driving tumor progression both in experimental and clinical models. In this review, we aim to summarize the current advances in understanding the role of NETs in cancer, with a specific focus on their role in promoting premetastatic niche formation, interaction with circulating cancer cells, and in epithelial to mesenchymal transition during cancer metastasis. We will furthermore discuss the possible role and different treatment options for targeting NETs to prevent tumor progression.
Collapse
Affiliation(s)
| | | | | | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (C.K.); (R.L.S.); (S.T.)
| |
Collapse
|
16
|
Garland KM, Rosch JC, Carson CS, Wang-Bishop L, Hanna A, Sevimli S, Van Kaer C, Balko JM, Ascano M, Wilson JT. Pharmacological Activation of cGAS for Cancer Immunotherapy. Front Immunol 2021; 12:753472. [PMID: 34899704 PMCID: PMC8662543 DOI: 10.3389/fimmu.2021.753472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
When compartmentally mislocalized within cells, nucleic acids can be exceptionally immunostimulatory and can even trigger the immune-mediated elimination of cancer. Specifically, the accumulation of double-stranded DNA in the cytosol can efficiently promote antitumor immunity by activating the cGAMP synthase (cGAS) / stimulator of interferon genes (STING) cellular signaling pathway. Targeting this cytosolic DNA sensing pathway with interferon stimulatory DNA (ISD) is therefore an attractive immunotherapeutic strategy for the treatment of cancer. However, the therapeutic activity of ISD is limited by several drug delivery barriers, including susceptibility to deoxyribonuclease degradation, poor cellular uptake, and inefficient cytosolic delivery. Here, we describe the development of a nucleic acid immunotherapeutic, NanoISD, which overcomes critical delivery barriers that limit the activity of ISD and thereby promotes antitumor immunity through the pharmacological activation of cGAS at the forefront of the STING pathway. NanoISD is a nanoparticle formulation that has been engineered to confer deoxyribonuclease resistance, enhance cellular uptake, and promote endosomal escape of ISD into the cytosol, resulting in potent activation of the STING pathway via cGAS. NanoISD mediates the local production of proinflammatory cytokines via STING signaling. Accordingly, the intratumoral administration of NanoISD induces the infiltration of natural killer cells and T lymphocytes into murine tumors. The therapeutic efficacy of NanoISD is demonstrated in preclinical tumor models by attenuated tumor growth, prolonged survival, and an improved response to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Carcia S. Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Casey Van Kaer
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
17
|
Lee J, Lee D, Lawler S, Kim Y. Role of neutrophil extracellular traps in regulation of lung cancer invasion and metastasis: Structural insights from a computational model. PLoS Comput Biol 2021; 17:e1008257. [PMID: 33596197 PMCID: PMC7920364 DOI: 10.1371/journal.pcbi.1008257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/01/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide and is characterized by hijacking immune system for active growth and aggressive metastasis. Neutrophils, which in their original form should establish immune activities to the tumor as a first line of defense, are undermined by tumor cells to promote tumor invasion in several ways. In this study, we investigate the mutual interactions between the tumor cells and the neutrophils that facilitate tumor invasion by developing a mathematical model that involves taxis-reaction-diffusion equations for the critical components in the interaction. These include the densities of tumor and neutrophils, and the concentrations of signaling molecules and structure such as neutrophil extracellular traps (NETs). We apply the mathematical model to a Boyden invasion assay used in the experiments to demonstrate that the tumor-associated neutrophils can enhance tumor cell invasion by secreting the neutrophil elastase. We show that the model can both reproduce the major experimental observation on NET-mediated cancer invasion and make several important predictions to guide future experiments with the goal of the development of new anti-tumor strategies. Moreover, using this model, we investigate the fundamental mechanism of NET-mediated invasion of cancer cells and the impact of internal and external heterogeneity on the migration patterning of tumour cells and their response to different treatment schedules.
Collapse
Affiliation(s)
- Junho Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Sean Lawler
- Department of neurosurgery, Brigham and Women’s Hospital & Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
18
|
Lee YY, Park HH, Park W, Kim H, Jang JG, Hong KS, Lee JY, Seo HS, Na DH, Kim TH, Choy YB, Ahn JH, Lee W, Park CG. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm. Biomaterials 2021; 267:120389. [PMID: 33130319 PMCID: PMC7583619 DOI: 10.1016/j.biomaterials.2020.120389] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus not previously identified in humans. Globally, the number of confirmed cases and mortality rates of coronavirus disease 2019 (COVID-19) have risen dramatically. Currently, there are no FDA-approved antiviral drugs and there is an urgency to develop treatment strategies that can effectively suppress SARS-CoV-2-mediated cytokine storms, acute respiratory distress syndrome (ARDS), and sepsis. As symptoms progress in patients with SARS-CoV-2 sepsis, elevated amounts of cell-free DNA (cfDNA) are produced, which in turn induce multiple organ failure in these patients. Furthermore, plasma levels of DNase-1 are markedly reduced in SARS-CoV-2 sepsis patients. In this study, we generated recombinant DNase-1-coated polydopamine-poly(ethylene glycol) nanoparticulates (named long-acting DNase-1), and hypothesized that exogenous administration of long-acting DNase-1 may suppress SARS-CoV-2-mediated neutrophil activities and the cytokine storm. Our findings suggest that exogenously administered long-acting nanoparticulate DNase-1 can effectively reduce cfDNA levels and neutrophil activities and may be used as a potential therapeutic intervention for life-threatening SARS-CoV-2-mediated illnesses.
Collapse
Affiliation(s)
- Yun Young Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyelim Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Geol Jang
- Division of Pulmonary and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea
| | - Kyung Soo Hong
- Division of Pulmonary and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young Bin Choy
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - June Hong Ahn
- Division of Pulmonary and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea.
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
| |
Collapse
|
19
|
Park HH, Park W, Lee YY, Kim H, Seo HS, Choi DW, Kwon H, Na DH, Kim T, Choy YB, Ahn JH, Lee W, Park CG. Bioinspired DNase-I-Coated Melanin-Like Nanospheres for Modulation of Infection-Associated NETosis Dysregulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001940. [PMID: 33173718 PMCID: PMC7645930 DOI: 10.1002/advs.202001940] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/23/2020] [Indexed: 05/08/2023]
Abstract
The current outbreak of the beta-coronavirus (beta-Cov) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in December 2019. No specific antiviral treatments or vaccines are currently available. A recent study has reported that coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2 infection, is associated with neutrophil-specific plasma membrane rupture, and release excessive neutrophil extracellular traps (NETs) and extracellular DNAs (eDNAs). This mechanism involves the activation of NETosis, a neutrophil-specific programmed cell death, which is believed to play a crucial role in COVID-19 pathogenesis. Further progression of the disease can cause uncontrolled inflammation, leading to the initiation of cytokine storms, acute respiratory distress syndrome (ARDS), and sepsis. Herein, it is reported that DNase-I-coated melanin-like nanospheres (DNase-I pMNSs) mitigate sepsis-associated NETosis dysregulation, thereby preventing further progression of the disease. Recombinant DNase-I and poly(ethylene glycol) (PEG) are used as coatings to promote the lengthy circulation and dissolution of NET structure. The data indicate that the application of bioinspired DNase-I pMNSs reduce neutrophil counts and NETosis-related factors in the plasma of SARS-CoV-2 sepsis patients, alleviates systemic inflammation, and attenuates mortality in a septic mouse model. Altogether, the findings suggest that these nanoparticles have potential applications in the treatment of SARS-CoV-2-related illnesses and other beta-CoV-related diseases.
Collapse
Affiliation(s)
- Hee Ho Park
- Department of Biotechnology and BioengineeringKangwon National UniversityChuncheonGangwon‐do24341Republic of Korea
| | - Wooram Park
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Yun Young Lee
- Department of Biomedical EngineeringSeoul National University College of MedicineSeoul03080Republic of Korea
| | - Hyelim Kim
- College of PharmacyChungnam National UniversityDaejeon34134Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical EngineeringSKKU Institute for ConvergenceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Dong Wook Choi
- Department of Cancer BiologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA02215USA
| | - Ho‐Keun Kwon
- Department of Microbiology and ImmunologyYonsei University College of MedicineSeoul03722Republic of Korea
| | - Dong Hee Na
- College of PharmacyChung‐Ang UniversitySeoul06974Republic of Korea
| | - Tae‐Hyung Kim
- School of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Young Bin Choy
- Department of Biomedical EngineeringSeoul National University College of MedicineSeoul03080Republic of Korea
| | - June Hong Ahn
- Division of Pulmonology and AllergyDepartment of Internal MedicineCollege of MedicineYeungnam University and Regional Center for Respiratory DiseasesYeungnam University Medical CenterDaegu42415Republic of Korea
| | - Wonhwa Lee
- Aging Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical EngineeringSKKU Institute for ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Biomedical Institute for Convergence at SKKU (BICS)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- Center for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSKKU Institute for ConvergenceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
20
|
Cell-free DNA in human ex vivo lung perfusate as a potential biomarker to predict the risk of primary graft dysfunction in lung transplantation. J Thorac Cardiovasc Surg 2020; 162:490-499.e2. [PMID: 32928548 DOI: 10.1016/j.jtcvs.2020.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cell-free DNA (cfDNA), such as mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA), are known to be released from injured cells and as such have been explored as biomarkers for tissue injury in different clinical settings. Ex vivo lung perfusion (EVLP) has been developed as an effective technique for marginal donor lung functional assessment. We hypothesized that the level of cfDNA in EVLP perfusate may reflect tissue injury and thus can be developed as a biomarker to quantify the degree of donor lung injury or predict the development of primary graft dysfunction (PGD) after lung transplantation (LTx). METHODS The perfusate from 62 donor lungs transplanted at our institution between May 2010 and December 2015 was sampled for cfDNA at 1 and 4 hours of perfusion. Sequences of genes encoding nicotinamide adenine dinucleotide dehydrogenase 1 (NADH-1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used to represent mtDNA and nuDNA, respectively. Levels were quantified by real-time polymerase chain reaction and correlated with clinical outcome after LTx. RESULTS In our entire cohort, 14 patients developed PGD grade 3 (PGD3) within 72 hours after LTx. The non-PGD group included 48 patients (PGD0-1). Concentrations of mtDNA in the perfusate of the PGD3 group were significantly higher than those in non-PGD group at 1 hour of EVLP (1874 ± 844 vs 1259 ± 885 copies/μL; P = .011). The perfusate of the PGD3 group had significantly higher levels of nuDNA compared with the non-PGD group at both 1 hour (1498 ± 1895 vs 675 ± 391 copies/μL; P = .008) and 4 hours (4521 ± 5810 vs 1764 ± 1494 copies/μL; P = .001). In donation after cardiac death (DCD) cases, mtDNA levels were significantly higher in the PGD3 group compared with the non-PGD group at 1 hour of EVLP (2060 ± 997 vs 1184 ± 782 copies/μL; P = .040), and the levels of nuDNA were significantly higher in the PGD3 group compared with the non-PGD group at both 1 hour (1021 ± 495 vs 606 ± 305 copies/μL; P = .041) and 4 hours (2358 ± 1028 vs 1185 ± 967 copies/μL; P = .006). In donation after brain death (DBD) cases, cfDNA scores did not show a significant difference. CONCLUSIONS We found that the amount of cfDNA, especially nuDNA, in EVLP perfusate was higher in the severe PGD group (PGD3) compared with the non-PGD group. This proof-of-concept study supports the concept that the analysis of cfDNA levels in EVLP perfusate can help estimate the damage to donor lungs before implantation. Larger studies are needed to validate this concept.
Collapse
|
21
|
Tanaka T, Hanaoka H, Sakurai S. Optimization of the quality by design approach for gene therapy products: A case study for adeno-associated viral vectors. Eur J Pharm Biopharm 2020; 155:88-102. [PMID: 32784043 DOI: 10.1016/j.ejpb.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/10/2020] [Accepted: 08/05/2020] [Indexed: 01/02/2023]
Abstract
The development of gene therapy products has been expanding globally, and among them, the recombinant adeno-associated virus (rAAV) vector is one of the most promising vectors for gene transfer. For efficient and rapid development of the manufacturing process and quality control strategy, the quality by design (QbD) approach can be as effective for gene therapy products as it is for gene recombinant proteins, which have been developed for decades. However, prior available knowledge required for the QbD approach is limited in the field of gene therapy. Here, we comprehensively review rAAV study results that can form the basis of QbD-based development and propose a critical quality attribute identification method suitable for gene therapy development. As a case study for rAAV, we propose a series of practical development steps, including a quality target product profile (QTPP) setting, identification of critical quality attributes (CQAs), repetitive risk assessment associated with process optimization, design space (DS) establishment, and control strategy using the QbD method. Our case study, which was based on publicly available literature, is a basic model that can be augmented by unique data pertaining to specific products. An improvement in rAAV development is expected using this model as the first step.
Collapse
Affiliation(s)
- Toshimitsu Tanaka
- Department of Regulatory Science of Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Hideki Hanaoka
- Department of Regulatory Science of Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Division of Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8766, Japan.
| | - Shingo Sakurai
- Department of Regulatory Science of Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Pharmaceuticals and Medical Devices Agency, Shin-Kasumigaseki Building, 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan.
| |
Collapse
|
22
|
Yang LY, Luo Q, Lu L, Zhu WW, Sun HT, Wei R, Lin ZF, Wang XY, Wang CQ, Lu M, Jia HL, Chen JH, Zhang JB, Qin LX. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol 2020; 13:3. [PMID: 31907001 PMCID: PMC6945602 DOI: 10.1186/s13045-019-0836-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background The propensity of the activated neutrophils to form extracellular traps (NETs) is demonstrated in multiple inflammatory conditions. In this study, we investigated the roles of NETs in metastasis of hepatocellular carcinoma (HCC) and further explored the underlying mechanism of how NETs affect metastasis as well as the therapeutic value. Methods The neutrophils were isolated from the blood of human HCC patients and used to evaluate the formation of NETs. The expression of NET markers was detected in tumor specimens. A LPS-induced NET model was used to investigate the role of NETs on HCC metastasis. RNA-seq was performed to identify the key molecular event triggered by NETs, and their underlying mechanism and therapeutic significance were explored using both in vitro and in vivo assays. Results NET formation was enhanced in neutrophils derived from HCC patients, especially those with metastatic HCCs. NETs trapped HCC cells and subsequently induced cell-death resistance and enhanced invasiveness to trigger their metastatic potential, which was mediated by internalization of NETs into trapped HCC cells and activation of Toll-like receptors TLR4/9-COX2 signaling. Inhibition of TLR4/9-COX2 signaling abrogated the NET-aroused metastatic potential. A combination of DNase 1 directly wrecking NETs with anti-inflammation drugs aspirin/hydroxychloroquine effectively reduced HCC metastasis in mice model. Conclusions NETs trigger tumorous inflammatory response and fuel HCC metastasis. Targeting NETs rather than neutrophils themselves can be a practice strategy against HCC metastasis.
Collapse
Affiliation(s)
- Lu-Yu Yang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qin Luo
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hao-Ting Sun
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ran Wei
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Zhi-Fei Lin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Chao-Qun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ju-Bo Zhang
- Cancer Metastasis Institute, Fudan University, Shanghai, China. .,Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China. .,Cancer Metastasis Institute, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Targeting of cell-free DNA by DNase I diminishes endothelial dysfunction and inflammation in a rat model of cardiopulmonary bypass. Sci Rep 2019; 9:19249. [PMID: 31848423 PMCID: PMC6917735 DOI: 10.1038/s41598-019-55863-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022] Open
Abstract
The use of cardiopulmonary bypass (CPB) results in the activation of leukocytes, release of neutrophil extracellular traps (NETs) and severe inflammation. We hypothesize that targeting of circulating cell-free DNA (cfDNA) by DNases might represent a feasible therapeutic strategy to limit CPB-associated side effects. Male Wistar rats (n = 24) underwent CPB with deep hypothermic circulatory arrest (DHCA) and were divided into 3 groups: control (group 1), one i.v. bolus DNase I before CPB start (group 2) and a second DNase I dose before reperfusion (group 3). We found a positive correlation between plasma cfDNA/NETs levels and compromised endothelial vasorelaxation after CPB. DNase I administration significantly diminished plasma cfDNA/NETs levels. Further, a dose-dependent improvement in endothelial function accompanied by significant reduction of circulating intercellular adhesion molecule (ICAM)-1 was observed. Rats of group 3 had significantly reduced plasma IL-6 levels and downregulated expression of adhesion molecules resulting in impaired leukocyte extravasation and reduced MPO activity in lungs. Mechanistically, digestion of NETs by DNase I significantly diminished NETs-dependent upregulation of adhesion molecules in human endothelial cells. Altogether, systemic DNase I administration during CPB efficiently reduced cfDNA/NETs-mediated endothelial dysfunction and inflammation and might represents a promising therapeutic strategy for clinical practice.
Collapse
|
24
|
Olasz F, Mészáros I, Marton S, Kaján GL, Tamás V, Locsmándi G, Magyar T, Bálint Á, Bányai K, Zádori Z. A Simple Method for Sample Preparation to Facilitate Efficient Whole-Genome Sequencing of African Swine Fever Virus. Viruses 2019; 11:v11121129. [PMID: 31817647 PMCID: PMC6950082 DOI: 10.3390/v11121129] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
In the recent years, African swine fever has become the biggest animal health threat to the swine industry. To facilitate quick genetic analysis of its causative agent, the African swine fever virus (ASFV), we developed a simple and efficient method for next generation sequencing of the viral DNA. Execution of the protocol does not demand complicated virus purification steps, enrichment of the virus by ultracentrifugation or of the viral DNA by ASFV-specific PCRs, and minimizes the use of Sanger sequencing. Efficient DNA-se treatment, monitoring of sample preparation by qPCR, and whole genome amplification are the key elements of the method. Through detailed description of sequencing of the first Hungarian ASFV isolate (ASFV_HU_2018), we specify the sensitive steps and supply key reference numbers to assist reproducibility and to facilitate the successful use of the method for other ASFV researchers.
Collapse
Affiliation(s)
- Ferenc Olasz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (S.M.); (G.L.K.); (V.T.); (T.M.); (K.B.); (Z.Z.)
- Correspondence: ; Tel.: +36-1-467-4060
| | - István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (S.M.); (G.L.K.); (V.T.); (T.M.); (K.B.); (Z.Z.)
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (S.M.); (G.L.K.); (V.T.); (T.M.); (K.B.); (Z.Z.)
| | - Győző L. Kaján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (S.M.); (G.L.K.); (V.T.); (T.M.); (K.B.); (Z.Z.)
| | - Vivien Tamás
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (S.M.); (G.L.K.); (V.T.); (T.M.); (K.B.); (Z.Z.)
| | - Gabriella Locsmándi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok u. 2, 1149 Budapest, Hungary; (G.L.); (Á.B.)
| | - Tibor Magyar
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (S.M.); (G.L.K.); (V.T.); (T.M.); (K.B.); (Z.Z.)
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok u. 2, 1149 Budapest, Hungary; (G.L.); (Á.B.)
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (S.M.); (G.L.K.); (V.T.); (T.M.); (K.B.); (Z.Z.)
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (I.M.); (S.M.); (G.L.K.); (V.T.); (T.M.); (K.B.); (Z.Z.)
| |
Collapse
|
25
|
Agarwal S, Loder SJ, Cholok D, Li J, Bian G, Yalavarthi S, Li S, Carson WF, Hwang C, Marini S, Pagani C, Edwards N, Delano MJ, Standiford TJ, Knight JS, Kunkel SL, Mishina Y, Ward PA, Levi B. Disruption of Neutrophil Extracellular Traps (NETs) Links Mechanical Strain to Post-traumatic Inflammation. Front Immunol 2019; 10:2148. [PMID: 31708911 PMCID: PMC6821718 DOI: 10.3389/fimmu.2019.02148] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation after trauma is both critical to normal wound healing and may be highly detrimental when prolonged or unchecked with the potential to impair physiologic healing and promote de novo pathology. Mechanical strain after trauma is associated with impaired wound healing and increased inflammation. The exact mechanisms behind this are not fully elucidated. Neutrophil extracellular traps (NETs), a component of the neutrophil response to trauma, are implicated in a range of pro-inflammatory conditions. In the current study, we evaluated their role in linking movement and inflammation. We found that a link exists between the disruption and amplification of NETs which harbors the potential to regulate the wound's response to mechanical strain, while leaving the initial inflammatory signal necessary for physiologic wound healing intact.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shawn J Loder
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David Cholok
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Guowu Bian
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Srilakshmi Yalavarthi
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shuli Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - William F Carson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Charles Hwang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Simone Marini
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chase Pagani
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Nicole Edwards
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthew J Delano
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Theodore J Standiford
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jason S Knight
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Steven L Kunkel
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
26
|
Abstract
Human deoxyribonuclease I (DNase I) is an endonuclease that catalyzes the hydrolysis of extracellular DNA and is just one of the numerous types of nucleases found in nature. The enzymatic mechanism for a single turnover is reasonably well understood based on biochemical and structural studies that are consistent with divalent metal ion dependent nonspecific nicking of a phosphodiester bond in one of the strands of double stranded DNA. Recombinant human DNase I (rhDNase I, rhDNase, Pulmozyme®, dornase alfa) has been expressed in mammalian cell culture in Chinese hamster ovary cells and developed clinically where it is aerosolized into the airways for treatment of pulmonary disease in patients with cystic fibrosis (CF). rhDNase I hydrolyzes the DNA in purulent sputum of CF patients and reduces sputum viscoelasticity. Reduction of high molecular weight DNA into smaller fragments by treatment with aerosolized rhDNase I has been proposed as the mechanism to reduce the mucus viscosity and improve mucus clearability from obstructed airways in patients. The improved clearance of the purulent mucus enhances pulmonary function and reduces recurrent exacerbations of respiratory symptoms. rhDNase I was approved for clinical use in 1993 and has been widely used as a safe and effective therapy for CF patients. The use of rhDNase I has also been investigated in other diseases where exogenous DNA has been implicated in the disease pathology.
Collapse
|
27
|
Kenny EF, Raupach B, Abu Abed U, Brinkmann V, Zychlinsky A. Dnase1-deficient mice spontaneously develop a systemic lupus erythematosus-like disease. Eur J Immunol 2019; 49:590-599. [PMID: 30758851 DOI: 10.1002/eji.201847875] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/13/2018] [Accepted: 02/12/2019] [Indexed: 11/08/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that has high morbidity and can result in multi-organ damage. SLE is characterized by dysregulated activation of T- and B-lymphocytes and the production of autoantibodies directed against nuclear components. The endonuclease deoxyribonuclease 1 (DNase1) is abundant in blood and a subset of SLE patients have mutations in DNASE1. Furthermore, a report showed that Dnase1-deficient mice develop an SLE-like disease, but these mice also carry a deletion of the gene adjacent to Dnase1, which encodes the chaperone TRAP1/HSP75. We generated a murine strain deficient in Dnase1 with an intact Trap1 gene to examine if a lack of DNase1 is responsible for the development of a spontaneous SLE-like disease. We show that the Dnase1-deficient mice do indeed develop an SLE-like phenotype with elevated autoantibody production by 9 months and kidney damage by 12 months. Notably, this model recapitulates the female bias seen in human SLE patients since female Dnase1-deficient mice produced the highest concentrations of autoantibodies and had more severe kidney damage than males. Since there is currently no cure for SLE the protective role of DNase1 as demonstrated in our study remains of great therapeutic interest.
Collapse
Affiliation(s)
- Elaine F Kenny
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Bärbel Raupach
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Ulrike Abu Abed
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
28
|
Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, Liu Y. Anti-β 2GPI/β 2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology 2018; 138:140-150. [PMID: 29883691 DOI: 10.1016/j.neuropharm.2018.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Antiphospholipid antibodies (aPLs) are a large group of heterogeneous antibodies that bind to anionic phospholipids alone or in combination with phospholipid binding proteins. Increasing evidence has converged to indicate that aPLs especially anti-β2 glycoprotein I antibody (anti-β2GPI) correlate with stroke severity and outcome. Though studies have shown that aPLs promote thrombus formation in a neutrophil-dependent way, the underlying mechanisms remain largely unknown. In the present study, we investigated the effect of anti-β2GPI in complex with β2GPI (anti-β2GPI/β2GPI) on neutrophil extracellular traps (NETs) formation and thrombus generation in vitro and in vivo. We found that anti-β2GPI/β2GPI immune complex induced NETs formation in a time- and concentration-dependent manner. This effect was mediated by its interaction with TLR4 and the production of ROS. We demonstrated that MyD88-IRAKs-MAPKs, an intracellular signaling pathway, was involved in anti-β2GPI/β2GPI-induced NETs formation. We also presented evidence that tissue factor was expressed on anti-β2GPI/β2GPI-induced NETs, and NETs could promote platelet aggregation in vitro. In addition, we identified that anti-β2GPI/β2GPI-induced NETs enhanced thrombus formation in vivo, and this effect was counteracted by using DNase I. Our data suggest that anti-β2GPI/β2GPI induces NETs formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation, and could be a potentially novel target for aPLs related ischemic stroke.
Collapse
Affiliation(s)
- Caijun Zha
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wenjing Zhang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Fei Gao
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiali Xu
- Laboratory of Endocrinology and Metabolism Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ruichun Jia
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
29
|
Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 2018; 3:98178. [PMID: 29415887 DOI: 10.1172/jci.insight.98178] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022] Open
Abstract
Neutrophils dominate the early immune response in pathogen-induced acute lung injury, but efforts to harness their responses have not led to therapeutic advancements. Neutrophil extracellular traps (NETs) have been proposed as an innate defense mechanism responsible for pathogen clearance, but there are concerns that NETs may induce collateral damage to host tissues. Here, we detected NETs in abundance in mouse models of severe bacterial pneumonia/acute lung injury and in human subjects with acute respiratory distress syndrome (ARDS) from pneumonia or sepsis. Decreasing NETs reduced lung injury and improved survival after DNase I treatment or with partial protein arginine deiminase 4 deficiency (PAD4+/-). Complete PAD4 deficiency (PAD4-/-) reduced NETs and lung injury but was counterbalanced by increased bacterial load and inflammation. Importantly, we discovered that the lipoxin pathway could be a potent modulator of NET formation, and that mice deficient in the lipoxin receptor (Fpr2-/-) produced excess NETs leading to increased lung injury and mortality. Lastly, we observed in humans that increased plasma NETs were associated with ARDS severity and mortality, and lower plasma DNase I levels were associated with the development of sepsis-induced ARDS. We conclude that a critical balance of NETs is necessary to prevent lung injury and to maintain microbial control, which has important therapeutic implications.
Collapse
Affiliation(s)
| | | | | | | | - Mark R Looney
- Department of Medicine and.,Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
30
|
Pharmacologic Protection of Mitochondrial DNA Integrity May Afford a New Strategy for Suppressing Lung Ischemia-Reperfusion Injury. Ann Am Thorac Soc 2018; 14:S210-S215. [PMID: 28945469 DOI: 10.1513/annalsats.201706-438mg] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lung ischemia-reperfusion (IR) injury contributes to post-transplant complications, including primary graft dysfunction. Decades of reports show that reactive oxygen species generated during lung IR contribute to pulmonary vascular endothelial barrier disruption and edema formation, but the specific target molecule(s) that "sense" injury-inducing oxidant stress to activate signaling pathways culminating in pathophysiologic changes have not been established. This review discusses evidence that mitochondrial DNA (mtDNA) may serve as a molecular sentinel wherein oxidative mtDNA damage functions as an upstream trigger for lung IR injury. First, the mitochondrial genome is considerably more sensitive than nuclear DNA to oxidant stress. Multiple studies suggest that oxidative mtDNA damage could be transduced to physiologic dysfunction by pathways that are either a direct consequence of mtDNA damage per se or involve formation of proinflammatory mtDNA damage-associated molecular patterns. Second, transgenic animals or cells overexpressing components of the base excision DNA repair pathway in mitochondria are resistant to oxidant stress-mediated pathophysiologic effects. Finally, published and preliminary studies show that pharmacologic enhancement of mtDNA repair or mtDNA damage-associated molecular pattern degradation suppresses reactive oxygen species-induced or IR injury in multiple organs, including preclinical models of lung procurement for transplant. Collectively, these findings point to the interesting prospect that pharmacologic enhancement of DNA repair during procurement or ex vivo lung perfusion may increase the availability of lungs for transplant and reduce the IR injury contributing to primary graft dysfunction.
Collapse
|
31
|
Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR, Jorns J, Schott AF, Kinugasa-Katayama Y, Lee Y, Won NH, Nakasone ES, Hearn SA, Küttner V, Qiu J, Almeida AS, Perurena N, Kessenbrock K, Goldberg MS, Egeblad M. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 2017; 8:361ra138. [PMID: 27798263 DOI: 10.1126/scitranslmed.aag1711] [Citation(s) in RCA: 608] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
Neutrophils, the most abundant type of leukocytes in blood, can form neutrophil extracellular traps (NETs). These are pathogen-trapping structures generated by expulsion of the neutrophil's DNA with associated proteolytic enzymes. NETs produced by infection can promote cancer metastasis. We show that metastatic breast cancer cells can induce neutrophils to form metastasis-supporting NETs in the absence of infection. Using intravital imaging, we observed NET-like structures around metastatic 4T1 cancer cells that had reached the lungs of mice. We also found NETs in clinical samples of triple-negative human breast cancer. The formation of NETs stimulated the invasion and migration of breast cancer cells in vitro. Inhibiting NET formation or digesting NETs with deoxyribonuclease I (DNase I) blocked these processes. Treatment with NET-digesting, DNase I-coated nanoparticles markedly reduced lung metastases in mice. Our data suggest that induction of NETs by cancer cells is a previously unidentified metastasis-promoting tumor-host interaction and a potential therapeutic target.
Collapse
Affiliation(s)
- Juwon Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Robert W Wysocki
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Medical Scientist Training Program, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.,Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zohreh Amoozgar
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Laura Maiorino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Miriam R Fein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julie Jorns
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Youngseok Lee
- Department of Pathology, Korea University Anam Hospital, Seoul, South Korea
| | - Nam Hee Won
- Department of Pathology, Korea University Anam Hospital, Seoul, South Korea
| | - Elizabeth S Nakasone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Stephen A Hearn
- Cold Spring Harbor Laboratory Cancer Center, NCI Shared Resources and St. Giles Foundation Advanced Microscopy Center, Cold Spring Harbor, NY 11724, USA
| | - Victoria Küttner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jing Qiu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ana S Almeida
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Naiara Perurena
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Michael S Goldberg
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Microbiology and Immunobiology at Harvard Medical School, Boston, MA 02115, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
32
|
Trofimenko AS. Elimination of Nucleoproteins in Systemic Lupus Erythematosus and Antinuclear Autoantibodies Production. Lupus 2017. [DOI: 10.5772/intechopen.68496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Delayed but not Early Treatment with DNase Reduces Organ Damage and Improves Outcome in a Murine Model of Sepsis. Shock 2016; 44:166-72. [PMID: 26009820 DOI: 10.1097/shk.0000000000000396] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sepsis is characterized by systemic activation of coagulation and inflammation in response to microbial infection. Although cell-free DNA (cfDNA) released from activated neutrophils has antimicrobial properties, it may also exert harmful effects by activating coagulation and inflammation. The authors aimed to determine whether deoxyribonuclease (DNase) administration reduces cfDNA levels, attenuates coagulation and inflammation, suppresses organ damage, and improves outcome in a cecal ligation and puncture (CLP) model of polymicrobial sepsis. Healthy C57Bl/6 mice were subjected to CLP, a surgical procedure involving two punctures of the ligated cecum, or sham surgery (no ligation/puncture). Mice were given DNase or saline by intraperitoneal injection 2, 4, or 6 h after surgery. Two hours after treatment, organs were harvested and plasma levels of cfDNA, interleukin-6 (IL-6), IL-10, thrombin-antithrombin complexes, lung myeloperoxidase, creatinine, alanine transaminase, and bacterial load were quantified. Survival studies were also performed. The CLP-operated mice had rapid time-dependent elevations in cfDNA that correlated with elevations in IL-6, IL-10, and thrombin-antithrombin complexes and had organ damage in the lungs and kidneys. Administration of DNase at 2 h after CLP resulted in increased IL-6 and IL-10 levels and organ damage in the lungs and kidneys. In contrast, DNase administration at 4 or 6 h after CLP resulted in reduced cfDNA and IL-6 levels, increased IL-10, and suppressed organ damage and bacterial dissemination. Deoxyribonuclease administration every 6 h after CLP also rescued mice from death. Our studies are the first to demonstrate that delayed but not early administration of DNase may be protective in experimental sepsis.
Collapse
|
34
|
Implementing a two-layer feed-forward catalytic DNA circuit for enzyme-free and colorimetric detection of nucleic acids. Anal Chim Acta 2016; 910:68-74. [DOI: 10.1016/j.aca.2016.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/02/2016] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
|
35
|
|
36
|
Leffler J, Ciacma K, Gullstrand B, Bengtsson AA, Martin M, Blom AM. A subset of patients with systemic lupus erythematosus fails to degrade DNA from multiple clinically relevant sources. Arthritis Res Ther 2015; 17:205. [PMID: 26268365 PMCID: PMC4535789 DOI: 10.1186/s13075-015-0726-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023] Open
Abstract
Introduction Patients with systemic lupus erythematosus (SLE) have a decreased ability to clear cell remnants and multiple deficiencies in the ability to degrade cellular chromatin have been linked to the disease. Since the discovery of neutrophil extracellular traps (NETs), a renewed interest has been sparked in this field of research with multiple studies reporting a decreased ability of patients with SLE to degrade NETs. In this study we extend these findings by investigating the ability of patients with SLE to degrade chromatin from multiple clinically relevant sources. Methods We use flow cytometry in combination with NET degradation and DNA zymogram assays to investigate the ability of sera from SLE patients to degrade chromatin from three different sources of DNA such as NETs, apoptotic and necrotic cells. This ability was further associated with clinical manifestations. Results We found that 61 % of the patients had an affected degradation of at least one chromatin source. Further, degradation of NETs correlated with degradation of chromatin from secondary necrotic cells but not with degradation of chromatin from primary necrotic cells. Patients who fail to degrade several forms of DNA more often display anti-nuclear and nephritic involvement whereas this is not observed in patients with decreased ability to degrade chromatin from primary necrotic cells. Conclusions The majority of patients with SLE has a decreased ability to degrade chromatin from clinically relevant sources. This decreased ability is further reflected in their clinical presentation.
Collapse
Affiliation(s)
- Jonatan Leffler
- Lund University, Department of Translational Medicine, Section of Medical Protein Chemistry, Inga Marie Nilssons gata 53 floor 4, 205 02, Malmö, Sweden. .,Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA6008, Western Australia, Australia.
| | - Katarzyna Ciacma
- Lund University, Department of Translational Medicine, Section of Medical Protein Chemistry, Inga Marie Nilssons gata 53 floor 4, 205 02, Malmö, Sweden.
| | - Birgitta Gullstrand
- Lund University, Department of Clinical Sciences, Section of Rheumatology, Skåne University Hospital Lund, 221 85, Lund, Sweden.
| | - Anders A Bengtsson
- Lund University, Department of Clinical Sciences, Section of Rheumatology, Skåne University Hospital Lund, 221 85, Lund, Sweden.
| | - Myriam Martin
- Lund University, Department of Translational Medicine, Section of Medical Protein Chemistry, Inga Marie Nilssons gata 53 floor 4, 205 02, Malmö, Sweden.
| | - Anna M Blom
- Lund University, Department of Translational Medicine, Section of Medical Protein Chemistry, Inga Marie Nilssons gata 53 floor 4, 205 02, Malmö, Sweden.
| |
Collapse
|
37
|
Goltry S, Hallstrom N, Clark T, Kuang W, Lee J, Jorcyk C, Knowlton WB, Yurke B, Hughes WL, Graugnard E. DNA topology influences molecular machine lifetime in human serum. NANOSCALE 2015; 7:10382-90. [PMID: 25959862 PMCID: PMC4457601 DOI: 10.1039/c5nr02283e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 05/28/2023]
Abstract
DNA nanotechnology holds the potential for enabling new tools for biomedical engineering, including diagnosis, prognosis, and therapeutics. However, applications for DNA devices are thought to be limited by rapid enzymatic degradation in serum and blood. Here, we demonstrate that a key aspect of DNA nanotechnology-programmable molecular shape-plays a substantial role in device lifetimes. These results establish the ability to operate synthetic DNA devices in the presence of endogenous enzymes and challenge the textbook view of near instantaneous degradation.
Collapse
Affiliation(s)
- Sara Goltry
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Natalya Hallstrom
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Tyler Clark
- Department of Physics , Boise State University , Boise , Idaho 83725 , USA
- Department of Mathematics , Boise State University , Boise , Idaho 83725 , USA
| | - Wan Kuang
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - Jeunghoon Lee
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Chemistry & Biochemistry , Boise State University , Boise , Idaho 83725 , USA
| | - Cheryl Jorcyk
- Department of Biological Sciences , Boise State University , Boise , Idaho 83725 , USA
| | - William B. Knowlton
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - Bernard Yurke
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
- Department of Electrical & Computer Engineering , Boise State University , Boise , Idaho 83725 , USA
| | - William L. Hughes
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| | - Elton Graugnard
- Department of Materials Science & Engineering , Boise State University , Boise , Idaho 83725 , USA . ; Fax: +1-208-426-4466 ; Tel: +1-208-426-4026
| |
Collapse
|
38
|
Dou Y, Yang X. Novel high-sensitive fluorescent detection of deoxyribonuclease I based on DNA-templated gold/silver nanoclusters. Anal Chim Acta 2013; 784:53-8. [DOI: 10.1016/j.aca.2013.04.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/27/2013] [Accepted: 04/12/2013] [Indexed: 01/21/2023]
|
39
|
Peters DL, Pretorius PJ. Continuous adaptation through genetic communication – a putative role for cell-free DNA. Expert Opin Biol Ther 2012; 12 Suppl 1:S127-32. [DOI: 10.1517/14712598.2012.668518] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Deoxyribonuclease is a potential counter regulator of aberrant neutrophil extracellular traps formation after major trauma. Mediators Inflamm 2012; 2012:149560. [PMID: 22315507 PMCID: PMC3270459 DOI: 10.1155/2012/149560] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/15/2011] [Indexed: 01/01/2023] Open
Abstract
Introduction. Neutrophil extracellular traps (NET) consist of a DNA scaffold that can be destroyed by Deoxyribonuclease (DNase). Thus DNases are potential prerequisites for natural counter regulation of NETs formation. In the present study, we determined the relationship of NETs and DNase after major trauma.
Methods. Thirty-nine major trauma patients, 14 with and 25 without sepsis development were enrolled in this prospective study. Levels of cell-free (cf)-DNA/NETs and DNase were quantified daily from admission until day 9 after admission.
Results. Levels of cf-DNA/NETs in patients who developed sepsis were significantly increased after trauma. In the early septic phase, DNase values in septic patients were significantly increased compared to patients without sepsis (P < 0.05). cf-DNA/NETs values correlated to values of DNase in all trauma patients and patients with uneventful recovery (P < 0.01) but not in septic patients. Recombinant DNase efficiently degraded NETs released by stimulated neutrophils in a concentration-dependent manner in vitro.
Conclusions. DNase degrades NETs in a concentration-dependent manner and therefore could have a potential regulatory effect on NET formation in neutrophils. This may inhibit the antibacterial effects of NETs or protect the tissue from autodestruction in inadequate NETs release in septic patients.
Collapse
|
41
|
Tamkovich SN, Cherepanova AV, Bryzgunova OE, Kolesnikova EV, Permyakova VI, Vlassov VV, Laktionov PP. Deoxyribonuclease activity in biological fluids of healthy donors and cancer patients. Bull Exp Biol Med 2009; 146:89-91. [PMID: 19145360 DOI: 10.1007/s10517-008-0213-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Integral activity of neutral deoxyribonucleases in the plasma and urine or donors, patients with benign prostatic hyperplasia, and patients with stomach and prostatic cancer was studied by IFA based on hydrolysis of DNA fragment modified with haptene molecules. In donors plasma deoxyribonuclease activity was 0.16+/-0.04, urinary activity 1.49+/-1.41 act. U/ml. In patients with benign prostatic hyperplasia and malignant tumors the integral activity of blood deoxyribonucleases was significantly below the normal, and in tumors it did not correlate with tumor size and disease stage. A significant correlation between blood and urinary deoxyribonuclease activities was detected.
Collapse
Affiliation(s)
- S N Tamkovich
- Institute of Chemical Biology and Basic Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk State University, Central Clinical Hospital, Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
42
|
Napirei M, Ludwig S, Mezrhab J, Klöckl T, Mannherz HG. Murine serum nucleases--contrasting effects of plasmin and heparin on the activities of DNase1 and DNase1-like 3 (DNase1l3). FEBS J 2009; 276:1059-73. [PMID: 19154352 DOI: 10.1111/j.1742-4658.2008.06849.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNase1 is regarded as the major serum nuclease; however, a systematic investigation into the presence of additional serum nuclease activities is lacking. We have demonstrated directly that serum contains DNase1-like 3 (DNase1l3) in addition to DNase1 by an improved denaturing SDS-PAGE zymography method and anti-murine DNase1l3 immunoblotting. Using DNA degradation assays, we compared the activities of recombinant murine DNase1 and DNase1l3 (rmDNase1, rmDNase1l3) with the serum of wild-type and DNase1 knockout mice. Serum and rmDNase1 degrade chromatin effectively only in cooperation with serine proteases, such as plasmin or thrombin, which remove DNA-bound proteins. This can be mimicked by the addition of heparin, which displaces histones from chromatin. In contrast, serum and rmDNase1l3 degrade chromatin without proteolytic help and are directly inhibited by heparin and proteolysis by plasmin. In previous studies, serum DNase1l3 escaped detection because of its sensitivity to proteolysis by plasmin after activation of the plasminogen system in the DNA degradation assays. In contrast, DNase1 is resistant to plasmin, probably as a result of its di-N-glycosylation, which is lacking in DNase1l3. Our data demonstrate that secreted rmDNase1 and murine parotid DNase1 are mixtures of three different di-N-glycosylated molecules containing two high-mannose, two complex N-glycans or one high-mannose and one complex N-glycan moiety. In summary, serum contains two nucleases, DNase1 and DNase1l3, which may substitute or cooperate with each other during DNA degradation, providing effective clearance after exposure or release from dying cells.
Collapse
Affiliation(s)
- Markus Napirei
- Abteilung für Anatomie und Embryologie, Medizinische Fakultät, Ruhr-Universität Bochum, Germany.
| | | | | | | | | |
Collapse
|
43
|
Cherepanova AV, Tamkovich SN, Vlassov VV, Laktionov PP. Blood deoxyribonuclease activity in health and diseases. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2007. [DOI: 10.1134/s1990750807040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Cherepanova A, Tamkovich S, Pyshnyi D, Kharkova M, Vlassov V, Laktionov P. Immunochemical assay for deoxyribonuclease activity in body fluids. J Immunol Methods 2007; 325:96-103. [PMID: 17618645 DOI: 10.1016/j.jim.2007.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/17/2007] [Accepted: 06/10/2007] [Indexed: 10/23/2022]
Abstract
We have developed two microtiter plate assays to quantify the deoxyribonuclease activity in biological fluids. Both assays are based on hydrolysis of biotinylated and fluorescein-labeled DNA substrates, with subsequent immunochemical detection of non-digested DNA. The assay based on hydrolysis of 974 bp PCR product labeled with biotinylated forward and fluorescein-labeled reverse primers is more sensitive (0.05 U/ml) and convenient for quantifying the DNase activity in biological fluids than the assay based on hydrolysis of double-labeled 20 bp oligonucleotide. The DNase activity in urine and blood plasma of healthy donors was measured using the PCR product-based assay. Urine samples revealed greater activity, 1.49+/-1.41 U/ml; blood plasma DNase I-like activity was 0.36+/-0.20 U/ml. DNase II-like activity was not detected in the plasma samples. The data obtained confirm that DNase I-like enzymes are responsible for the majority of deoxyribonuclease activity in blood plasma.
Collapse
Affiliation(s)
- Anna Cherepanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk, 630090, Russia
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Extracellular nucleic acids are found in different biological fluids in the organism and in the environment: DNA is a ubiquitous component of the organic matter pool in the soil and in all marine and freshwater habitats. Data from recent studies strongly suggest that extracellular DNA and RNA play important biological roles in microbial communities and in higher organisms. DNA is an important component of bacterial biofilms and is involved in horizontal gene transfer. In recent years, the circulating extracellular nucleic acids were shown to be associated with some diseases. Attempts are being made to develop noninvasive methods of early tumor diagnostics based on analysis of circulating DNA and RNA. Recent observations demonstrated the possibility of nucleic acids exchange between eukaryotic cells and extracellular space suggesting their participation in so far unidentified biological processes.
Collapse
Affiliation(s)
- Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.
| | | | | |
Collapse
|
46
|
Jansson V, Jansson K. A bioluminescent DNA nickase assay of deoxyribonuclease I. Anal Biochem 2004; 333:402-4. [PMID: 15450819 DOI: 10.1016/j.ab.2004.05.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Indexed: 11/16/2022]
Affiliation(s)
- Vuokko Jansson
- CSI Biotech Ltd., Tapionkatu 4 B, FIN-40100 Jyväskylä, Finland.
| | | |
Collapse
|
47
|
Laktionov PP, Tamkovich SN, Rykova EY, Bryzgunova OE, Starikov AV, Kuznetsova NP, Vlassov VV. Cell-surface-bound nucleic acids: Free and cell-surface-bound nucleic acids in blood of healthy donors and breast cancer patients. Ann N Y Acad Sci 2004; 1022:221-7. [PMID: 15251964 DOI: 10.1196/annals.1318.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Concentrations of extracellular DNA and RNA in the blood of healthy donors and patients with malignant and nonmalignant breast tumors were investigated. Cell-surface-bound extracellular DNA and RNA were detached by PBS-EDTA treatment or mild trypsin treatment of erythrocytes and leukocytes. In healthy donors, almost all extracellular nucleic acids (98%) are bound at the surface of blood cells. In the blood of cancer patients, extracellular nucleic acids were found in plasma and not at the cell surface. In patients with nonmalignant breast tumors, extracellular nucleic acids were found both at the surface of blood cells and in plasma. In healthy donors, the cell-surface-bound DNA is represented by 20-kbp DNA fragments and smaller fragments that varied in amounts in different fractions.
Collapse
Affiliation(s)
- Pavel P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
48
|
Gaipl US, Beyer TD, Heyder P, Kuenkele S, Böttcher A, Voll RE, Kalden JR, Herrmann M. Cooperation between C1q and DNase I in the clearance of necrotic cell-derived chromatin. ACTA ACUST UNITED AC 2004; 50:640-9. [PMID: 14872509 DOI: 10.1002/art.20034] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The efficient uptake of dying cells by phagocytes is essential to the avoidance of chronic inflammation. Some human autoimmune responses are thought to be driven by autoantigens from apoptotic or necrotic cells. We analyzed the role of C1q and DNase I in the disposal of necrotic cell-derived chromatin because deficiencies in these serum factors predispose to the development of systemic autoimmune disorders, such as systemic lupus erythematosus. METHODS Human necrotic peripheral blood lymphocytes were incubated in cell culture medium supplemented with various sera or serum components. Chromatin degradation was monitored by measuring the residual DNA content by flow cytometry. The uptake of necrotic cell-derived nuclei was analyzed by in vitro phagocytosis assays. RESULTS Reconstitution of C1q-depleted serum with C1q strongly increased its ability to degrade necrotic cell-derived chromatin. Although C1q itself displayed no DNase activity, it strongly augmented the activity of serum DNase I. Whereas an excess of recombinant DNase I degraded chromatin in the absence of C1q, efficient uptake of the predigested material by monocyte-derived phagocytes required the presence of C1q. These data show that C1q and DNase I cooperate in the degradation of chromatin from necrotic cells. Furthermore, C1q was found to be necessary for effective uptake of degraded chromatin by monocyte-derived phagocytes. CONCLUSION C1q or DNase I deficiencies may precipitate autoimmunity in humans by a mechanism similar to that of other molecules that are involved in the safe, efficient, and rapid disposal of dying cells.
Collapse
Affiliation(s)
- Udo S Gaipl
- University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Boom R, Sol CJA, Schuurman T, Van Breda A, Weel JFL, Beld M, Ten Berge IJM, Wertheim-Van Dillen PME, De Jong MD. Human cytomegalovirus DNA in plasma and serum specimens of renal transplant recipients is highly fragmented. J Clin Microbiol 2002; 40:4105-13. [PMID: 12409382 PMCID: PMC139725 DOI: 10.1128/jcm.40.11.4105-4113.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2001] [Revised: 03/23/2002] [Accepted: 08/04/2002] [Indexed: 12/16/2022] Open
Abstract
Quantitation of cytomegalovirus (CMV) DNA in plasma and serum by PCR is increasingly used to identify patients at risk for developing CMV disease and to monitor the efficacy of antiviral therapy. Although CMV DNA levels are generally interpreted as viral loads, the exact nature of the viral DNA in these specimens is unknown. We studied the state of CMV DNA in plasma and serum specimens obtained from three renal transplant recipients at peak viral DNA levels during primary CMV infection. For this purpose, DNA isolated from these specimens was fractionated by size, and CMV DNA levels in the resulting DNA fractions were measured by quantitative PCR targeted at large (578-bp) and small (134-bp) amplicons. These experiments showed that the molecular sizes of DNA fragments from which CMV DNA is amplified were small (<2,000 bp), indicating that CMV DNA in plasma and serum is highly fragmented. Furthermore, CMV DNA levels were consistently higher when targeted at the smaller amplicon, providing additional evidence for the fragmentation of viral DNA. In conclusion, the first results with three patients have shown that CMV DNA in plasma and serum is highly fragmented and does not necessarily reflect the amount of infectious virus. These observations have potential consequences for understanding CMV pathogenesis and interpreting CMV DNA levels in individual patient management.
Collapse
Affiliation(s)
- René Boom
- Section of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kabbaj M, Phillips NC. Anticancer activity of mycobacterial DNA: effect of formulation as chitosan nanoparticles. J Drug Target 2002; 9:317-28. [PMID: 11770702 DOI: 10.3109/10611860108998768] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mycobacterium phlei (M. phlei) DNA inhibits cancer cell division but is susceptible to degradation by DNase. Chitosan forms nanoparticulate polyelectrolyte complexes with DNA, and may thus reduce nuclease degradation. We have characterized chitosan-DNA nanoparticle formation, determined DNase susceptibility, and evaluated their antiproliferative activity. Nanoparticle diameter initially decreased with increasing phosphate charge density. However nanoparticle diameter increased above 6 micromol of phosphate. Particle aggregation occurred at 16.2 micromol phosphate and was related to reduced surface charge. Incorporation of DNA within chitosan nanoparticles significantly decreased degradation by DNase. The ability of M. phlei DNA-chitosan nanoparticles to inhibit melanoma cell division was determined relative to M. phlei DNA and a cationic liposomal M. phlei DNA formulation. M. phlei DNA had antiproliferative activity (MTT reduction, IC50 = 0.9 mg/ml) without intrinsic cytotoxicity (LDH release, ED50 > 50 microg/ml). Cationic polyphosphate chitosan nanoparticles were inert (antiproliferative IC50 > 1 mg/ml, ED50 > 1 mg/ml). M. phlei DNA-chitosan nanoparticles were 20-fold more potent than M. phlei DNA. Cationic DOTAP/DOPE liposomes were cytostatic (IC50 = 49 microg/ml) and cytotoxic (ED50 = 87 microg/ml), and complexation of M. phlei DNA resulted in a significant reduction of antiproliferative activity. Chitosan nanoparticles may therefore be appropriate delivery vehicles for M. phlei DNA.
Collapse
Affiliation(s)
- M Kabbaj
- Faculty of Pharmacy, University of Montreal, Que., Canada
| | | |
Collapse
|