1
|
Nagasaki T, Wenzel SE. Asthma exacerbations and airway redox imbalance under type 2 inflammatory conditions. Respir Investig 2024; 62:923-928. [PMID: 39182396 DOI: 10.1016/j.resinv.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Asthma is a chronic inflammatory airway disease characterized by bronchial hyperresponsiveness and reversibility. Despite considerable advances in asthma treatment based on our understanding of its pathophysiology, asthma exacerbations remain challenging. To reduce asthma exacerbations, it is essential to identify triggers, patients' risk factors, and underlying mechanisms. While exposure to viruses and environmental stimuli are known common triggers for asthma exacerbations, the key factors involved in asthma exacerbations have been identified as type 2 inflammation. Type 2 inflammatory biomarkers have been demonstrated to be useful in predicting individuals at risk of exacerbations. Furthermore, recent clinical trials of targeted biological therapy, which blocks the type 2 pathway, have supported the critical role of type 2 inflammation in asthma exacerbations. Although the specific mechanisms linking type 2 inflammation to asthma exacerbations have not yet been fully elucidated, increasing evidence shows that reduction/oxidation (redox) imbalance likely plays an important role in this association. Under type 2 inflammatory conditions, human airway epithelial cells activate 15-lipoxygenase-1 in complex with phosphatidylethanolamine binding protein-1, leading to the generation of electrophilic hydroperoxyl-phospholipids. When the accumulation of reactive lipid peroxidation surpasses a specific glutathione-dependent activity, these electrophilic compounds are not neutralized, leading to programmed cell death, ferroptosis. Reduced glutathione levels, caused by type 2 inflammation, may impair its ability to neutralize reactive lipid peroxidation. The accumulation of lipid peroxidation with intracellular redox imbalance may contribute to asthma exacerbations in individuals with type 2 inflammation. Inhibiting the ferroptotic pathway holds promise as a therapeutic strategy to alleviate asthma exacerbations.
Collapse
Affiliation(s)
- Tadao Nagasaki
- Department of Respiratory Medicine and Allergology, Kindai University Nara Hospital, Nara, 630-0293, Japan.
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Asthma and Environmental Lung Health Institute at UPMC, Pittsburgh, PA, 15261, USA
| |
Collapse
|
2
|
Ctortecka C, Clark NM, Boyle BW, Seth A, Mani DR, Udeshi ND, Carr SA. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. Nat Commun 2024; 15:5707. [PMID: 38977691 PMCID: PMC11231172 DOI: 10.1038/s41467-024-49651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
The recent technological and computational advances in mass spectrometry-based single-cell proteomics have pushed the boundaries of sensitivity and throughput. However, reproducible quantification of thousands of proteins within a single cell remains challenging. To address some of those limitations, we present a dedicated sample preparation chip, the proteoCHIP EVO 96 that directly interfaces with the Evosep One. This, in combination with the Bruker timsTOF demonstrates double the identifications without manual sample handling and the newest generation timsTOF Ultra identifies up to 4000 with an average of 3500 protein groups per single HEK-293T without a carrier or match-between runs. Our workflow spans 4 orders of magnitude, identifies over 50 E3 ubiquitin-protein ligases, and profiles key regulatory proteins upon small molecule stimulation. This study demonstrates that the proteoCHIP EVO 96-based sample preparation with the timsTOF Ultra provides sufficient proteome depth to study complex biology beyond cell-type classifications.
Collapse
Affiliation(s)
| | | | - Brian W Boyle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Ctortecka C, Clark NM, Boyle B, Seth A, Mani DR, Udeshi ND, Carr SA. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576369. [PMID: 38328197 PMCID: PMC10849471 DOI: 10.1101/2024.01.20.576369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mass spectrometry (MS)-based single-cell proteomics (SCP) has gained massive attention as a viable complement to other single cell approaches. The rapid technological and computational advances in the field have pushed the boundaries of sensitivity and throughput. However, reproducible quantification of thousands of proteins within a single cell at reasonable proteome depth to characterize biological phenomena remains a challenge. To address some of those limitations we present a combination of fully automated single cell sample preparation utilizing a dedicated chip within the picolitre dispensing robot, the cellenONE. The proteoCHIP EVO 96 can be directly interfaced with the Evosep One chromatographic system for in-line desalting and highly reproducible separation with a throughput of 80 samples per day. This, in combination with the Bruker timsTOF MS instruments, demonstrates double the identifications without manual sample handling. Moreover, relative to standard high-performance liquid chromatography, the Evosep One separation provides further 2-fold improvement in protein identifications. The implementation of the newest generation timsTOF Ultra with our proteoCHIP EVO 96-based sample preparation workflow reproducibly identifies up to 4,000 proteins per single HEK-293T without a carrier or match-between runs. Our current SCP depth spans over 4 orders of magnitude and identifies over 50 biologically relevant ubiquitin ligases. We complement our highly reproducible single-cell proteomics workflow to profile hundreds of lipopolysaccharide (LPS)-perturbed THP-1 cells and identified key regulatory proteins involved in interleukin and interferon signaling. This study demonstrates that the proteoCHIP EVO 96-based SCP sample preparation with the timsTOF Ultra provides sufficient proteome depth to study complex biology beyond cell-type classifications.
Collapse
Affiliation(s)
- Claudia Ctortecka
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Natalie M. Clark
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Brian Boyle
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Anjali Seth
- Cellenion SASU, 60F avenue Rockefeller, 69008 Lyon, France
| | - D. R. Mani
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Namrata D. Udeshi
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, 415 Main Street, 02142 Cambridge, MA, USA
| |
Collapse
|
4
|
Karkossa I, Fürst S, Großkopf H, von Bergen M, Schubert K. Oxidation is an underappreciated post-translational modification in the regulation of immune responses associated with changes in phosphorylation. Front Immunol 2023; 14:1244431. [PMID: 37809076 PMCID: PMC10559879 DOI: 10.3389/fimmu.2023.1244431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Although macrophages are known to be affected by their redox status, oxidation is not yet a well-recognized post-translational modification (PTM) in regulating macrophages and immune cells in general. While it has been described that the redox status of single cysteines in specific proteins is relevant for macrophage functions, global oxidation information is scarce. Hence, we globally assessed the impact of oxidation on macrophage activation using untargeted proteomics and PTM-omics. We exposed THP-1 macrophages to lipopolysaccharide (LPS) for 4 h and 24 h and applied a sequential iodoTMT labeling approach to get information on overall oxidation as well as reversible oxidation of cysteines. Thus, we identified 10452 oxidation sites, which were integratively analyzed with 5057 proteins and 7148 phosphorylation sites to investigate their co-occurance with other omics layers. Based on this integrative analysis, we found significant upregulation of several immune-related pathways, e.g. toll-like receptor 4 (TLR4) signaling, for which 19 proteins, 7 phosphorylation sites, and 39 oxidation sites were significantly affected, highlighting the relevance of oxidations in TLR4-induced macrophage activation. Co-regulation of oxidation and phosphorylation was observed, as evidenced by multiply modified proteins related to inflammatory pathways. Additionally, we observed time-dependent effects, with differences in the dynamics of oxidation sites compared to proteins and phosphorylation sites. Overall, this study highlights the importance of oxidation in regulating inflammatory processes and provides a method that can be readily applied to study the cellular redoxome globally.
Collapse
Affiliation(s)
- Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sabine Fürst
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Henning Großkopf
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
5
|
Tajbakhsh A, Gheibihayat SM, Mortazavi D, Medhati P, Rostami B, Savardashtaki A, Momtazi-Borojeni AA. The Effect of Cigarette Smoke Exposure on Efferocytosis in Chronic Obstructive Pulmonary Disease; Molecular Mechanisms and Treatment Opportunities. COPD 2021; 18:723-736. [PMID: 34865568 DOI: 10.1080/15412555.2021.1978419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cigarette smoking-related inflammation, cellular stresses, and tissue destruction play a key role in lung disease, such as chronic obstructive pulmonary disease (COPD). Notably, augmented apoptosis and impaired clearance of apoptotic cells, efferocytosis, contribute to the chronic inflammatory response and tissue destruction in patients with COPD. Of note, exposure to cigarette smoke can impair alveolar macrophages efferocytosis activity, which leads to secondary necrosis formation and tissue inflammation. A better understanding of the processes behind the effect of cigarette smoke on efferocytosis concerning lung disorders can help to design more efficient treatment approaches and also delay the development of lung disease, such as COPD. To this end, we aimed to seek mechanisms underlying the impairing effect of cigarette smoke on macrophages-mediated efferocytosis in COPD. Further, available therapeutic opportunities for restoring efferocytosis activity and ameliorating respiratory tract inflammation in smokers with COPD were also discussed.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Pourya Medhati
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Rostami
- Health & Treatment Center of Rostam, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iran's National Elites Foundation, Tehran, Iran
| |
Collapse
|
6
|
Ghezzi P. Redox regulation of immunity and the role of small molecular weight thiols. Redox Biol 2021; 44:102001. [PMID: 33994345 PMCID: PMC8212150 DOI: 10.1016/j.redox.2021.102001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/31/2021] [Accepted: 05/02/2021] [Indexed: 01/07/2023] Open
Abstract
It is thought that excessive production of reactive oxygen species (ROS) can be a causal component in many diseases, some of which have an inflammatory component. This led to an oversimplification whereby ROS are seen as inflammatory and antioxidants anti-inflammatory. This paper aims at reviewing some of the literature on thiols in host defense. The review will first summarize the mechanisms by which we survive infections by pathogens. Then we will consider how the redox field evolved from the concept of oxidative stress to that of redox regulation and how it intersects the field of innate immunity. A third section will analyze how an oversimplified oxidative stress theory of disease led to a hypothesis on the role of ROS and glutathione (GSH) in immunity, respectively as pro- and anti-inflammatory mediators. Finally, we will discuss some recent research and how to think out of the box of that oversimplification and link the role of thiols in redox regulation to the mechanisms by which we survive an infection outlined in the first section.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Brighton and Sussex Medical School, Brighton, Great Britain, BN1 9RY, UK.
| |
Collapse
|
7
|
Choi DI, Park JH, Choi JY, Piao M, Suh MS, Lee JB, Yun SJ, Lee SC. Keratinocytes-Derived Reactive Oxygen Species Play an Active Role to Induce Type 2 Inflammation of the Skin: A Pathogenic Role of Reactive Oxygen Species at the Early Phase of Atopic Dermatitis. Ann Dermatol 2020; 33:26-36. [PMID: 33911809 PMCID: PMC7875219 DOI: 10.5021/ad.2021.33.1.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Atopic dermatitis (AD) is characterized by chronic, relapsing skin inflammation (eczema) with itchy sensation. Keratinocytes, which are located at the outermost part of our body, are supposed to play important roles at the early phase of type 2 inflammation including AD pathogenesis. Objective The purpose of this study was to evaluate whether keratinocytes-derived reactive oxygen species (ROS) could be produced by the allergens or non-allergens, and the keratinocytes-derived ROS could modulate a set of biomarkers for type 2 inflammation of the skin. Methods Normal human epidermal keratinocytes (NHEKs) were treated with an allergen of house dust mites (HDM) or a non-allergen of compound 48/80 (C48/80). Then, biomarkers for type 2 inflammation of the skin including those for neurogenic inflammation were checked by reverse transcriptase-polymerase chain reaction and western immunoblot experiments. Results HDM or C48/80 was found to upregulate expression levels of our tested biomarkers, including type 2 T helper-driving pathway (KLK5, PAR2, and NFκB), epithelial-cell-derived cytokines (thymic stromal lymphopoietin, interleukin [IL]-25, IL-33), and neurogenic inflammation (NGF, CGRP). The HDM- or C-48/80-induced expression levels of the biomarkers could be blocked by an antioxidant treatment with 5 mM N-acetyl-cysteine. In contrast, pro-oxidant treatment with 1 mM H2O2 could upregulate expression levels of the tested biomarkers in NHEKs. Conclusion Our results reveal that keratinocytes-derived ROS, irrespective to their origins from allergens or non-allergens, have a potential to induce type 2 inflammation of AD skin.
Collapse
Affiliation(s)
- Da-In Choi
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Jun-Hyeong Park
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Jee-Young Choi
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - MeiShan Piao
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Min-Song Suh
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Jee-Bum Lee
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Sook-Jung Yun
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Chul Lee
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
8
|
Ham S, Lima LG, Lek E, Möller A. The Impact of the Cancer Microenvironment on Macrophage Phenotypes. Front Immunol 2020; 11:1308. [PMID: 32655574 PMCID: PMC7324670 DOI: 10.3389/fimmu.2020.01308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Within the tumor microenvironment, there is an intricate communication happening between tumor and stromal cells. This information exchange, in the form of cytokines, growth factors, extracellular vesicles, danger molecules, cell debris, and other factors, is capable of modulating the function of immune cells. The triggering of specific responses, including phenotypic alterations, can ultimately result in either immune surveillance or tumor cell survival. Macrophages are a well-studied cell lineage illustrating the different cellular phenotypes possible, depending on the tumor microenvironmental context. While our understanding of macrophage responses is well documented in vitro, surprisingly, little work has been done to confirm these observations in the cancer microenvironment. In fact, there are examples of opposing reactions of macrophages to cytokines in cell culture and in vivo tumor settings. Additionally, it seems that different macrophage lineages, for example tissue-resident and monocyte-derived macrophages, respond differently to cytokines and other cancer-derived signals. In this review article, we will describe and discuss the diverging reports on how cancer cells influence monocyte-derived and tissue-resident macrophage traits in vivo.
Collapse
Affiliation(s)
- Sunyoung Ham
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luize G Lima
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Erica Lek
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, Nencioni L. Redox-Modulating Agents in the Treatment of Viral Infections. Int J Mol Sci 2020; 21:E4084. [PMID: 32521619 PMCID: PMC7312898 DOI: 10.3390/ijms21114084] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses use cell machinery to replicate their genome and produce viral proteins. For this reason, several intracellular factors, including the redox state, might directly or indirectly affect the progression and outcome of viral infection. In physiological conditions, the redox balance between oxidant and antioxidant species is maintained by enzymatic and non-enzymatic systems, and it finely regulates several cell functions. Different viruses break this equilibrium and induce an oxidative stress that in turn facilitates specific steps of the virus lifecycle and activates an inflammatory response. In this context, many studies highlighted the importance of redox-sensitive pathways as novel cell-based targets for therapies aimed at blocking both viral replication and virus-induced inflammation. In the review, we discuss the most recent findings in this field. In particular, we describe the effects of natural or synthetic redox-modulating molecules in inhibiting DNA or RNA virus replication as well as inflammatory pathways. The importance of the antioxidant transcription factor Nrf2 is also discussed. Most of the data reported here are on influenza virus infection. We believe that this approach could be usefully applied to fight other acute respiratory viral infections characterized by a strong inflammatory response, like COVID-19.
Collapse
Affiliation(s)
- Paola Checconi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Anna Teresa Palamara
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| |
Collapse
|
10
|
Yamada KJ, Heim CE, Xi X, Attri KS, Wang D, Zhang W, Singh PK, Bronich TK, Kielian T. Monocyte metabolic reprogramming promotes pro-inflammatory activity and Staphylococcus aureus biofilm clearance. PLoS Pathog 2020; 16:e1008354. [PMID: 32142554 PMCID: PMC7080272 DOI: 10.1371/journal.ppat.1008354] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/18/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Biofilm-associated prosthetic joint infections (PJIs) cause significant morbidity due to their recalcitrance to immune-mediated clearance and antibiotics, with Staphylococcus aureus (S. aureus) among the most prevalent pathogens. We previously demonstrated that S. aureus biofilm-associated monocytes are polarized to an anti-inflammatory phenotype and the adoptive transfer of pro-inflammatory macrophages attenuated biofilm burden, highlighting the critical role of monocyte/macrophage inflammatory status in dictating biofilm persistence. The inflammatory properties of leukocytes are linked to their metabolic state, and here we demonstrate that biofilm-associated monocytes exhibit a metabolic bias favoring oxidative phosphorylation (OxPhos) and less aerobic glycolysis to facilitate their anti-inflammatory activity and biofilm persistence. To shift monocyte metabolism in vivo and reprogram cells to a pro-inflammatory state, a nanoparticle approach was utilized to deliver the OxPhos inhibitor oligomycin to monocytes. Using a mouse model of S. aureus PJI, oligomycin nanoparticles were preferentially internalized by monocytes, which significantly reduced S. aureus biofilm burden by altering metabolism and promoting the pro-inflammatory properties of infiltrating monocytes as revealed by metabolomics and RT-qPCR, respectively. Injection of oligomycin alone had no effect on monocyte metabolism or biofilm burden, establishing that intracellular delivery of oligomycin is required to reprogram monocyte metabolic activity and that oligomycin lacks antibacterial activity against S. aureus biofilms. Remarkably, monocyte metabolic reprogramming with oligomycin nanoparticles was effective at clearing established biofilms in combination with systemic antibiotics. These findings suggest that metabolic reprogramming of biofilm-associated monocytes may represent a novel therapeutic approach for PJI.
Collapse
Affiliation(s)
- Kelsey J. Yamada
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Cortney E. Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Xinyuan Xi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kuldeep S. Attri
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dezhen Wang
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pankaj K. Singh
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
11
|
Vallejos-Vidal E, Reyes-Cerpa S, Rivas-Pardo JA, Maisey K, Yáñez JM, Valenzuela H, Cea PA, Castro-Fernandez V, Tort L, Sandino AM, Imarai M, Reyes-López FE. Single-Nucleotide Polymorphisms (SNP) Mining and Their Effect on the Tridimensional Protein Structure Prediction in a Set of Immunity-Related Expressed Sequence Tags (EST) in Atlantic Salmon ( Salmo salar). Front Genet 2020; 10:1406. [PMID: 32174954 PMCID: PMC7056891 DOI: 10.3389/fgene.2019.01406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are single genetic code variations considered one of the most common forms of nucleotide modifications. Such SNPs can be located in genes associated to immune response and, therefore, they may have direct implications over the phenotype of susceptibility to infections affecting the productive sector. In this study, a set of immune-related genes (cc motif chemokine 19 precursor [ccl19], integrin β2 (itβ2, also named cd18), glutathione transferase omega-1 [gsto-1], heat shock 70 KDa protein [hsp70], major histocompatibility complex class I [mhc-I]) were analyzed to identify SNPs by data mining. These genes were chosen based on their previously reported expression on infectious pancreatic necrosis virus (IPNV)-infected Atlantic salmon phenotype. The available EST sequences for these genes were obtained from the Unigene database. Twenty-eight SNPs were found in the genes evaluated and identified most of them as transition base changes. The effect of the SNPs located on the 5'-untranslated region (UTR) or 3'-UTR upon transcription factor binding sites and alternative splicing regulatory motifs was assessed and ranked with a low-medium predicted FASTSNP score risk. Synonymous SNPs were found on itβ2 (c.2275G > A), gsto-1 (c.558G > A), and hsp70 (c.1950C > T) with low FASTSNP predicted score risk. The difference in the relative synonymous codon usage (RSCU) value between the variant codons and the wild-type codon (ΔRSCU) showed one negative (hsp70 c.1950C > T) and two positive ΔRSCU values (itβ2 c.2275G > A; gsto-1 c.558G > A), suggesting that these synonymous SNPs (sSNPs) may be associated to differences in the local rate of elongation. Nonsynonymous SNPs (nsSNPs) in the gsto-1 translatable gene region were ranked, using SIFT and POLYPHEN web-tools, with the second highest (c.205A > G; c484T > C) and the highest (c.499T > C; c.769A > C) predicted score risk possible. Using homology modeling to predict the effect of these nonsynonymous SNPs, the most relevant nucleotide changes for gsto-1 were observed for the nsSNPs c.205A > G, c484T > C, and c.769A > C. Molecular dynamics was assessed to analyze if these GSTO-1 variants have significant differences in their conformational dynamics, suggesting these SNPs could have allosteric effects modulating its catalysis. Altogether, these results suggest that candidate SNPs identified may play a crucial potential role in the immune response of Atlantic salmon.
Collapse
Affiliation(s)
- Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Jaime Andrés Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Kevin Maisey
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Hector Valenzuela
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Pablo A. Cea
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana M. Sandino
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Glutathione Induced Immune-Stimulatory Activity by Promoting M1-Like Macrophages Polarization via Potential ROS Scavenging Capacity. Antioxidants (Basel) 2019; 8:antiox8090413. [PMID: 31540482 PMCID: PMC6770173 DOI: 10.3390/antiox8090413] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
The present study investigated the immunomodulatory activity of reduced glutathione (GSH) by assessment of the macrophage polarization (MP)-mediated immune response in RAW 264.7 cells. Furthermore, we identified the signal pathway associated with immune regulation by GSH. The expressions of MP-associated cytokines and chemokines were assessed using cytokine array, nCounter Sprit platform, ELISA and immunoblotting. Phagocytosis activity and intracellular reactive oxygen species (ROS) generation were measured using fluorescence-activated cell sorter. As results of the cytokine array and nCounter gene array, GSH not only up-regulated pro-inflammatory cytokines, including interleukins and tumor necrosis factor-α, but also overexpressed neutrophil-attracting chemokines. Furthermore, GSH significantly stimulated the production of immune mediators, including nitric oxide and PGE2, as well as phagocytosis activity through nuclear factor kappa B activation. In addition, GSH significantly decreased LPS-induced ROS generation, which was associated with an activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/ heme oxygenease-1 (HO-1) signaling pathway. Our results suggest that GSH has potential ROS scavenging capacity via the induction of Nrf2-mediated HO-1, and immune-enhancing activity by regulation of M1-like macrophage polarization, indicating that GSH may be a useful strategy to increase the human defense system.
Collapse
|
13
|
Patsalos A, Tzerpos P, Halasz L, Nagy G, Pap A, Giannakis N, Lyroni K, Koliaraki V, Pintye E, Dezso B, Kollias G, Spilianakis CG, Nagy L. The BACH1-HMOX1 Regulatory Axis Is Indispensable for Proper Macrophage Subtype Specification and Skeletal Muscle Regeneration. THE JOURNAL OF IMMUNOLOGY 2019; 203:1532-1547. [PMID: 31405954 DOI: 10.4049/jimmunol.1900553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022]
Abstract
The infiltration and subsequent in situ subtype specification of monocytes to effector/inflammatory and repair macrophages is indispensable for tissue repair upon acute sterile injury. However, the chromatin-level mediators and regulatory events controlling this highly dynamic macrophage phenotype switch are not known. In this study, we used a murine acute muscle injury model to assess global chromatin accessibility and gene expression dynamics in infiltrating macrophages during sterile physiological inflammation and tissue regeneration. We identified a heme-binding transcriptional repressor, BACH1, as a novel regulator of this process. Bach1 knockout mice displayed impaired muscle regeneration, altered dynamics of the macrophage phenotype transition, and transcriptional deregulation of key inflammatory and repair-related genes. We also found that BACH1 directly binds to and regulates distal regulatory elements of these genes, suggesting a novel role for BACH1 in controlling a broad spectrum of the repair response genes in macrophages upon injury. Inactivation of heme oxygenase-1 (Hmox1), one of the most stringently deregulated genes in the Bach1 knockout in macrophages, impairs muscle regeneration by changing the dynamics of the macrophage phenotype switch. Collectively, our data suggest the existence of a heme-BACH1--HMOX1 regulatory axis, that controls the phenotype and function of the infiltrating myeloid cells upon tissue damage, shaping the overall tissue repair kinetics.
Collapse
Affiliation(s)
- Andreas Patsalos
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary.,Department of Biology, University of Crete, Heraklion, GR-70013 Greece
| | - Laszlo Halasz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Nikolas Giannakis
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Konstantina Lyroni
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Crete, GR-71003 Greece
| | - Vasiliki Koliaraki
- Biomedical Sciences Research Center "Alexander Fleming," Vari, GR-16672 Greece
| | - Eva Pintye
- Department of Radiotherapy, University of Debrecen, Debrecen, HU-4032 Hungary.,Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701.,Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701
| | - Balazs Dezso
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701
| | - George Kollias
- Biomedical Sciences Research Center "Alexander Fleming," Vari, GR-16672 Greece.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| | - Charalampos G Spilianakis
- Department of Biology, University of Crete, Heraklion, GR-70013 Greece.,Department of Biology, University of Crete, Heraklion, GR-70013 Greece.,Department of Biology, University of Crete, Heraklion, GR-70013 Greece
| | - Laszlo Nagy
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701; .,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032 Hungary
| |
Collapse
|
14
|
High dietary vitamin C intake reduces glucocorticoid-induced immunosuppression and measures of oxidative stress in vitamin C-deficient senescence marker protein 30 knockout mice. Br J Nutr 2019; 122:1120-1129. [PMID: 31647039 DOI: 10.1017/s0007114519001922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitamin C (VC) is a vital micronutrient for humans and some other mammals and also has antioxidant activity. Stress-induced elevation of glucocorticoid production is well known to cause immunosuppression. The present study evaluated the effect of high VC intake on glucocorticoid-induced immune changes in mice. Senescence marker protein 30 knockout mice with genetic VC deficiency were fed a diet containing the recommended VC content (20 mg/kg per d; 0·02 %VC group) or a high VC content (200 mg/kg per d; 0·2 %VC group) for 2 months, then dexamethasone was given by intraperitoneal injection. After administration of dexamethasone, the plasma ascorbic acid concentration decreased significantly in the 0·02 %VC group and was unchanged in wild-type C57BL/6 mice on a VC-deficient diet (wild-type group), while it was significantly higher in the 0·2 %VC group compared with the other two groups. In the 0·02 %VC and wild-type groups, dexamethasone caused a significant decrease in the cluster of differentiation (CD)4+ and CD8+ T cells among splenocytes as well as a significant decrease in IL-2, IL-12p40 and interferon-γ protein production by splenocytes and a significant decrease in T-cell proliferation among splenocytes. In the 0·2 %VC group, these dexamethasone-induced immunosuppression improved when compared with the other two groups. In addition, reduction in the intracellular levels of ascorbic acid, superoxide dismutase and glutathione in splenocytes by dexamethasone as well as elevation in thiobarbituric acid-reactive substances were significantly suppressed in the 0·2 %VC group. These findings suggest that high dietary VC intake reduces glucocorticoid-induced T-cell dysfunction by maintaining intracellular antioxidant activity.
Collapse
|
15
|
Crooke SN, Schimer J, Raji I, Wu B, Oyelere AK, Finn MG. Lung Tissue Delivery of Virus-Like Particles Mediated by Macrolide Antibiotics. Mol Pharm 2019; 16:2947-2955. [DOI: 10.1021/acs.molpharmaceut.9b00180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Stephen N. Crooke
- School of Chemistry and Biochemistry, ∥School of Biological Sciences, and §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jiri Schimer
- School of Chemistry and Biochemistry, ∥School of Biological Sciences, and §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Institute of Organic Chemistry and Biochemistry of the CAS, 16610 Prague, Czech Republic
| | - Idris Raji
- School of Chemistry and Biochemistry, ∥School of Biological Sciences, and §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bocheng Wu
- School of Chemistry and Biochemistry, ∥School of Biological Sciences, and §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, ∥School of Biological Sciences, and §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, ∥School of Biological Sciences, and §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Boosting GSH Using the Co-Drug Approach: I-152, a Conjugate of N-acetyl-cysteine and β-mercaptoethylamine. Nutrients 2019; 11:nu11061291. [PMID: 31181621 PMCID: PMC6627109 DOI: 10.3390/nu11061291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Glutathione (GSH) has poor pharmacokinetic properties; thus, several derivatives and biosynthetic precursors have been proposed as GSH-boosting drugs. I-152 is a conjugate of N-acetyl-cysteine (NAC) and S-acetyl-β-mercaptoethylamine (SMEA) designed to release the parent drugs (i.e., NAC and β-mercaptoethylamine or cysteamine, MEA). NAC is a precursor of L-cysteine, while MEA is an aminothiol able to increase GSH content; thus, I-152 represents the very first attempt to combine two pro-GSH molecules. In this review, the in-vitro and in-vivo metabolism, pro-GSH activity and antiviral and immunomodulatory properties of I-152 are discussed. Under physiological GSH conditions, low I-152 doses increase cellular GSH content; by contrast, high doses cause GSH depletion but yield a high content of NAC, MEA and I-152, which can be used to resynthesize GSH. Preliminary in-vivo studies suggest that the molecule reaches mouse organs, including the brain, where its metabolites, NAC and MEA, are detected. In cell cultures, I-152 replenishes experimentally depleted GSH levels. Moreover, administration of I-152 to C57BL/6 mice infected with the retroviral complex LP-BM5 is effective in contrasting virus-induced GSH depletion, exerting at the same time antiviral and immunomodulatory functions. I-152 acts as a pro-GSH agent; however, GSH derivatives and NAC cannot completely replicate its effects. The co-delivery of different thiol species may lead to unpredictable outcomes, which warrant further investigation.
Collapse
|
17
|
Martrus G, Goebels H, Langeneckert AE, Kah J, Flomm F, Ziegler AE, Niehrs A, Löbl SM, Russu K, Hess LU, Salzberger W, Poch T, Nashan B, Schramm C, Oldhafer KJ, Dandri M, Koch M, Lunemann S, Altfeld M. CD49a Expression Identifies a Subset of Intrahepatic Macrophages in Humans. Front Immunol 2019; 10:1247. [PMID: 31231382 PMCID: PMC6568245 DOI: 10.3389/fimmu.2019.01247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophages play central roles in inflammatory reactions and initiation of immune responses during infections. More than 80% of total tissue macrophages are described to be located in the liver as liver-resident macrophages, also named Kupffer cells (KCs). While studies in mice have established a central role of liver-resident KCs in regulating liver inflammation, their phenotype and function are not well-characterized in humans. Comparing paired human liver and peripheral blood samples, we observed significant differences in the distribution of macrophage (Mφ) subsets, with lower frequencies of CD14hiCD16lo and higher frequencies of CD14int−hiCD16int Mφ in human livers. Intrahepatic Mφ consisted of diverse subsets with differential expression of CD49a, a liver-residency marker previously described for human and mice NK cells, and VSIG4 and/or MARCO, two recently described human tissue Mφ markers. Furthermore, intrahepatic CD49a+ Mφ expressed significantly higher levels of maturation and activation markers, exhibited higher baseline levels of TNF-α, IL-12, and IL-10 production, but responded less to additional in vitro TLR stimulation. In contrast, intrahepatic CD49a− Mφ were highly responsive to stimulation with TLR ligands, similar to what was observed for CD49a− monocytes (MOs) in peripheral blood. Taken together, these studies identified populations of CD49a+, VSIG4+, and/or MARCO+ Mφ in human livers, and demonstrated that intrahepatic CD49a+ Mφ differed in phenotype and function from intrahepatic CD49a− Mφ as well as from peripheral blood-derived monocytes.
Collapse
Affiliation(s)
- Glòria Martrus
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Hanna Goebels
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Annika E Langeneckert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Janine Kah
- Internal Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center of Internal Medicine II, Brandenburg Medical School, University Hospital Brandenburg, Brandenburg, Germany
| | - Felix Flomm
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Annerose E Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Annika Niehrs
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sebastian M Löbl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Kristina Russu
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Leonard U Hess
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wilhelm Salzberger
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tobias Poch
- Internal Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Nashan
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Clinic of Hepato-Pancreatico-Biliary Surgery and The Transplantation Center, First Affiliated Hospital, School of Life Sciences and Medical Center, University of Sciences & Technology of China, Hefei, China
| | - Christoph Schramm
- Internal Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl J Oldhafer
- Department of General & Abdominal Surgery, Asklepios Hospital Barmbek, Semmelweis University of Medicine, Hamburg, Germany
| | - Maura Dandri
- Internal Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Koch
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department for General, Visceral and Transplant Surgery, University Hospital Mainz, Mainz, Germany
| | - Sebastian Lunemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
18
|
Schmitt C, Lenglet H, Yu A, Delaby C, Benecke A, Lefebvre T, Letteron P, Paradis V, Wahlin S, Sandberg S, Harper P, Sardh E, Sandvik AK, Hov JR, Aarsand AK, Chiche L, Bazille C, Scoazec JY, To-Figueras J, Carrascal M, Abian J, Mirmiran A, Karim Z, Deybach JC, Puy H, Peoc'h K, Manceau H, Gouya L. Recurrent attacks of acute hepatic porphyria: major role of the chronic inflammatory response in the liver. J Intern Med 2018; 284:78-91. [PMID: 29498764 DOI: 10.1111/joim.12750] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acute intermittent porphyria (AIP) is an inherited disorder of haem metabolism characterized by life-threatening acute neurovisceral attacks due to the induction of hepatic δ-aminolevulinic acid synthase 1 (ALAS1) associated with hydroxymethylbilane synthase (HMBS) deficiency. So far, the treatment of choice is hemin which represses ALAS1. The main issue in the medical care of AIP patients is the occurrence of debilitating recurrent attacks. OBJECTIVE The aim of this study was to determine whether chronic hemin administration contributes to the recurrence of acute attacks. METHODS A follow-up study was conducted between 1974 and 2015 and included 602 French AIP patients, of whom 46 had recurrent AIP. Moreover, we studied the hepatic transcriptome, serum proteome, liver macrophage polarization and oxidative and inflammatory profiles of Hmbs-/- mice chronically treated by hemin and extended the investigations to five explanted livers from recurrent AIP patients. RESULTS The introduction of hemin into the pharmacopeia has coincided with a 4.4-fold increase in the prevalence of chronic patients. Moreover, we showed that both in animal model and in human liver, frequent hemin infusions generate a chronic inflammatory hepatic disease which induces HO1 remotely to hemin treatment and maintains a high ALAS1 level responsible for recurrence. CONCLUSION Altogether, this study has important impacts on AIP care underlying that hemin needs to be restricted to severe neurovisceral crisis and suggests that alternative treatment targeting the liver such as ALAS1 and HO1 inhibitors, and anti-inflammatory therapies should be considered in patients with recurrent AIP.
Collapse
Affiliation(s)
- C Schmitt
- Centre Français des Porphyries, Hôpital Louis Mourier, Assistance publique-Hôpitaux de Paris (AP-HP), Colombes, France.,Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,Laboratoire d'excellence, GR-Ex, Paris, France
| | - H Lenglet
- Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,Laboratoire d'excellence, GR-Ex, Paris, France
| | - A Yu
- STIM CNRS ERL 7368, Physiologie des Cellules Cardiaques et Vasculaires, Tours, France
| | - C Delaby
- Laboratory for Clinical Biochemistry and Proteomics, Institute for Regenerative Medicine and Biotherapy (IRMB), CHU de Montpellier and Université Montpellier, Montpellier, France
| | - A Benecke
- Centre National de la Recherche Scientifique, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France.,Center for Innate Immunity and Immune Disease (CIIID), University of Washington School of Medicine, Seattle, WA, USA
| | - T Lefebvre
- Centre Français des Porphyries, Hôpital Louis Mourier, Assistance publique-Hôpitaux de Paris (AP-HP), Colombes, France.,Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,Laboratoire d'excellence, GR-Ex, Paris, France
| | - P Letteron
- Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France
| | - V Paradis
- Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,DHU Unity, Pathology Department, Hôpital Beaujon, AP-HP, Clichy, France
| | - S Wahlin
- Department of Gastroenterology and Hepatology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - S Sandberg
- Laboratory for Clinical Biochemistry, Norwegian Porphyria Centre (NAPOS), Haukeland University Hospital, Bergen, Norway.,Department of Global Health and Primary Health Care, University of Bergen, Bergen, Norway
| | - P Harper
- Porphyria Centre Sweden, Centre for Inherited Metabolic Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - E Sardh
- Porphyria Centre Sweden, Centre for Inherited Metabolic Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A K Sandvik
- Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway
| | - J R Hov
- Department of Transplantation Medicine, Norwegian PSC Research Center and Section of Gastroenterology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - A K Aarsand
- Laboratory for Clinical Biochemistry, Norwegian Porphyria Centre (NAPOS), Haukeland University Hospital, Bergen, Norway.,Department of Global Health and Primary Health Care, University of Bergen, Bergen, Norway
| | - L Chiche
- Centre Hospitalier Universitaire Bordeaux, Chirurgie Hépatobiliaire et Pancréatique, Maison du Haut Lévèque, Bordeaux, France
| | - C Bazille
- Service d'Anatomie Pathologique, Centre Hospitalo-Universitaire de Caen, Caen, France
| | - J-Y Scoazec
- Service d'anatomopathologie, Institut Gustave Roussy, Villejuif, France
| | - J To-Figueras
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - M Carrascal
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - J Abian
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - A Mirmiran
- Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,Laboratoire d'excellence, GR-Ex, Paris, France
| | - Z Karim
- Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,Laboratoire d'excellence, GR-Ex, Paris, France
| | - J-C Deybach
- Centre Français des Porphyries, Hôpital Louis Mourier, Assistance publique-Hôpitaux de Paris (AP-HP), Colombes, France.,Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,Laboratoire d'excellence, GR-Ex, Paris, France
| | - H Puy
- Centre Français des Porphyries, Hôpital Louis Mourier, Assistance publique-Hôpitaux de Paris (AP-HP), Colombes, France.,Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,Laboratoire d'excellence, GR-Ex, Paris, France
| | - K Peoc'h
- Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,Laboratoire d'excellence, GR-Ex, Paris, France.,Laboratory for Clinical Biochemistry, Hôpital Beaujon, AP-HP, Clichy, France
| | - H Manceau
- Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,Laboratoire d'excellence, GR-Ex, Paris, France.,Laboratory for Clinical Biochemistry, Hôpital Beaujon, AP-HP, Clichy, France
| | - L Gouya
- Centre Français des Porphyries, Hôpital Louis Mourier, Assistance publique-Hôpitaux de Paris (AP-HP), Colombes, France.,Centre de Recherche sur l'Inflammation (CRI), UMR1149 INSERM, Université Paris Diderot, site Bichat, Paris, France.,Laboratoire d'excellence, GR-Ex, Paris, France
| |
Collapse
|
19
|
Funes SC, Rios M, Escobar‐Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology 2018; 154:186-195. [PMID: 29455468 PMCID: PMC5980179 DOI: 10.1111/imm.12910] [Citation(s) in RCA: 611] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022] Open
Abstract
Macrophages are extremely heterogeneous and plastic cells with an important role not only in physiological conditions, but also during inflammation (both for initiation and resolution). In the early 1990s, two different phenotypes of macrophages were described: one of them called classically activated (or inflammatory) macrophages (M1) and the other alternatively activated (or wound-healing) macrophages (M2). Currently, it is known that functional polarization of macrophages into only two groups is an over-simplified description of macrophage heterogeneity and plasticity; indeed, it is necessary to consider a continuum of functional states. Overall, the current available data indicate that macrophage polarization is a multifactorial process in which a huge number of factors can be involved producing different activation scenarios. Once a macrophage adopts a phenotype, it still retains the ability to continue changing in response to new environmental influences. The reversibility of polarization has a critical therapeutic value, especially in diseases in which an M1/M2 imbalance plays a pathogenic role. In this review, we assess the high plasticity of macrophages and their potential to be exploited to reduce chronic/detrimental inflammation. On the whole, the evidence detailed in this review underscores macrophage polarization as a target of interest for immunotherapy.
Collapse
Affiliation(s)
- Samanta C. Funes
- Facultad de Ciencias BiológicasDepartamento de Genética Molecular y MicrobiologíaMillennium Institute on Immunology and ImmunotherapyPontificia Universidad Católica de ChileSantiagoChile
| | - Mariana Rios
- Facultad de Ciencias BiológicasDepartamento de Genética Molecular y MicrobiologíaMillennium Institute on Immunology and ImmunotherapyPontificia Universidad Católica de ChileSantiagoChile
| | - Jorge Escobar‐Vera
- Facultad de Ciencias de la SaludDepartamento BiomédicoLaboratorio de GenéticaUniversidad de AntofagastaAntofagastaChile
| | - Alexis M. Kalergis
- Facultad de Ciencias BiológicasDepartamento de Genética Molecular y MicrobiologíaMillennium Institute on Immunology and ImmunotherapyPontificia Universidad Católica de ChileSantiagoChile
- Facultad de MedicinaDepartamento de EndocrinologíaEscuela de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
20
|
Reyes-Cerpa S, Vallejos-Vidal E, Gonzalez-Bown MJ, Morales-Reyes J, Pérez-Stuardo D, Vargas D, Imarai M, Cifuentes V, Spencer E, Sandino AM, Reyes-López FE. Effect of yeast (Xanthophyllomyces dendrorhous) and plant (Saint John's wort, lemon balm, and rosemary) extract based functional diets on antioxidant and immune status of Atlantic salmon (Salmo salar) subjected to crowding stress. FISH & SHELLFISH IMMUNOLOGY 2018; 74:250-259. [PMID: 29305990 DOI: 10.1016/j.fsi.2017.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Salmon farming may face stress due to the intensive culture conditions with negative impacts on overall performance. In this aspect, functional feed improves not only the basic nutritional requirements but also the health status and fish growth. However, to date no studies have been carried out to evaluate the effect of functional diets in salmon subjected to crowding stress. Thus, the aim of this study was to evaluate the effect of yeast extract (Xanthophyllomyces dendrorhous; diet A) and the combination of plant extracts (common Saint John's wort, lemon balm, and rosemary; diet B) on the antioxidant and immune status of Atlantic salmon grown under normal cultured conditions and then subjected to crowding stress. Fish were fed with functional diets during 30 days (12 kg/m3) and then subjected to crowding stress (20 kg/m3) for 10 days. The lipid peroxidation in gut showed that both diets induced a marked decrease on oxidative damage when fish were subjected to crowding stress. The protein carbonylation in muscle displayed at day 30 a marked decrease in both functional diets that was more marked on the stress condition. The expression of immune markers (IFNγ, CD4, IL-10, TGF-β, IgMmb, IgMsec, T-Bet, and GATA-3) indicated the upregulation of those associated to humoral-like response (CD4, IL-10, GATA-3) when fish were subjected to crowding stress. These results were confirmed with the expression of secreted IgM. Altogether, these functional diets improved the antioxidant status and increased the expression of genes related to Th2-like response suggesting a protective role on fish subjected to crowding stress.
Collapse
Affiliation(s)
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Faculty of Biosciences (Building C), Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain
| | - María José Gonzalez-Bown
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Jonathan Morales-Reyes
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Diego Pérez-Stuardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Chile
| | - Deborah Vargas
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Eugenio Spencer
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ana María Sandino
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile; ActivaQ S.A. General del Canto 460, Providencia, Santiago, Chile.
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Faculty of Biosciences (Building C), Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
21
|
Arora S, Dev K, Agarwal B, Das P, Syed MA. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology 2017; 223:383-396. [PMID: 29146235 PMCID: PMC7114886 DOI: 10.1016/j.imbio.2017.11.001] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023]
Abstract
Macrophages, circulating in the blood or concatenated into different organs and tissues constitute the first barrier against any disease. They are foremost controllers of both innate and acquired immunity, healthy tissue homeostasis, vasculogenesis and congenital metabolism. Two hallmarks of macrophages are diversity and plasticity due to which they acquire a wobbling array of phenotypes. These phenotypes are appropriately synchronized responses to a variety of different stimuli from either the tissue microenvironment or - microbes or their products. Based on the phenotype, macrophages are classified into classically activated/(M1) and alternatively activated/(M2) which are further sub-categorized into M2a, M2b, M2c and M2d based upon gene expression profiles. Macrophage phenotype metamorphosis is the regulating factor in initiation, progression, and termination of numerous inflammatory diseases. Several transcriptional factors and other factors controlling gene expression such as miRNAs contribute to the transformation of macrophages at different points in different diseases. Understanding the mechanisms of macrophage polarization and modulation of their phenotypes to adjust to the micro environmental conditions might provide us a great prospective for designing novel therapeutic strategy. In view of the above, this review summarises the activation of macrophages, the factors intricated in activation along with benefaction of macrophage polarization in response to microbial infections, pulmonary toxicity, lung injury and other inflammatory diseases such as chronic obstructive pulmonary dysplasia (COPD), bronchopulmonary dysplasia (BPD), asthma and sepsis, along with the existing efforts to develop therapies targeting this facet of macrophage biology.
Collapse
Affiliation(s)
- Shweta Arora
- Translational Research Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Kapil Dev
- Translational Research Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Beamon Agarwal
- Department of Hematopathology, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467-2401, United States.
| | - Pragnya Das
- Drexel University College of Medicine, Philadelphia, PA 19134, United States.
| | - Mansoor Ali Syed
- Translational Research Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
22
|
Dominiak A, Wilkaniec A, Jęśko H, Czapski GA, Lenkiewicz AM, Kurek E, Wroczyński P, Adamczyk A. Selol, an organic selenium donor, prevents lipopolysaccharide-induced oxidative stress and inflammatory reaction in the rat brain. Neurochem Int 2017; 108:66-77. [DOI: 10.1016/j.neuint.2017.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
23
|
Nonaka Y, Izumo T, Maekawa T, Shibata H. Anti-stress effect of the Lactobacillus pentosus strain S-PT84 in mice. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2017; 36:121-128. [PMID: 28748133 PMCID: PMC5510157 DOI: 10.12938/bmfh.17-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
We investigated if the orally administered Lactobacillus pentosus strain S-PT84 (S-PT84) might show anti-stress activity and ameliorate stress-induced immune suppression in mice. Stress of mice induced an increase in serum corticosterone and a decrease in splenic natural killer activity and in the number of splenocytes versus control mice. However, these changes were not observed in stressed mice that had been administered S-PT84. Furthermore, interleukin (IL)-12 and IL-10 production, which was downregulated in lipopolysaccharide-activated macrophages from stressed mice, was maintained at control levels in the macrophages of stressed mice that had been fed S-PT84. Interferon-γ production, which was downregulated in concanavalin A-activated splenocytes from stressed mice, tended to be maintained at control levels in stressed mice that had been fed S-PT84, although IL-4 production by these cells was not influenced by S-PT84 administration. Additionally, reduced glutathione (GSH) levels were decreased in serum and peritoneal macrophages from stressed mice versus controls, but these GSH levels were significantly higher in stressed animals that had been administered S-PT84 compared with those that had not. These results suggest that S-PT84 exerts anti-stress activity through immune modulation and/or antioxidative activity.
Collapse
Affiliation(s)
- Yuji Nonaka
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.,Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Toshihiro Maekawa
- Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
24
|
Fraternale A, Brundu S, Magnani M. Glutathione and glutathione derivatives in immunotherapy. Biol Chem 2017; 398:261-275. [PMID: 27514076 DOI: 10.1515/hsz-2016-0202] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/03/2016] [Indexed: 11/15/2022]
Abstract
Reduced glutathione (GSH) is the most prevalent non-protein thiol in animal cells. Its de novo and salvage synthesis serves to maintain a reduced cellular environment, which is important for several cellular functions. Altered intracellular GSH levels are observed in a wide range of pathologies, including several viral infections, as well as in aging, all of which are also characterized by an unbalanced Th1/Th2 immune response. A central role in influencing the immune response has been ascribed to GSH. Specifically, GSH depletion in antigen-presenting cells (APCs) correlates with altered antigen processing and reduced secretion of Th1 cytokines. Conversely, an increase in intracellular GSH content stimulates IL-12 and/or IL-27, which in turn induces differentiation of naive CD4+ T cells to Th1 cells. In addition, GSH has been shown to inhibit the replication/survival of several pathogens, i.e. viruses and bacteria. Hence, molecules able to increase GSH levels have been proposed as new tools to more effectively hinder different pathogens by acting as both immunomodulators and antimicrobials. Herein, the new role of GSH and its derivatives as immunotherapeutics will be discussed.
Collapse
|
25
|
Yamamoto-Oka H, Mizuguchi S, Toda M, Minamiyama Y, Takemura S, Shibata T, Cepinskas G, Nishiyama N. Carbon monoxide-releasing molecule, CORM-3, modulates alveolar macrophage M1/M2 phenotype in vitro. Inflammopharmacology 2017; 26:435-445. [PMID: 28674739 DOI: 10.1007/s10787-017-0371-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/25/2017] [Indexed: 01/28/2023]
Abstract
Alveolar macrophages are key contributors to both the promotion and resolution of inflammation in the lung and are categorized into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. The change in M1/M2 balance has been reported in various pulmonary diseases and is a target for therapeutic intervention. The aim of this study was to assess the modulation of M1/M2 phenotype in alveolar macrophages by water-soluble carbon monoxide-releasing molecule-3 (CORM-3). Rat alveolar macrophages (AM) (NR8383) in culture were stimulated with LPS (5 ng/ml)/IFN-γ (10 U/ml) or IL-4 (10 ng/ml)/IL-13 (10 ng/ml) to induce M1 and M2 phenotypes, respectively. Expression of M1 phenotype markers, iNOS and TNF-α, and M2 phenotype markers, CD206 and Ym-1, was assessed by western blotting after 1, 3, 6, or 24 h in the absence or presence of CORM-3 (0.15 mM) treatment. Inactive CORM-3 (iCORM-3) was used as a control. Treatment of naïve (unstimulated) AM with CORM-3 promoted progression of the M2 phenotype as evidenced by the increased expression of CD206 (at 1 h; 1.8-fold) and Ym-1 (at 3 h; 1.9-fold), respectively. Surprisingly, CORM-3 treatment also upregulated the expression of iNOS protein as assessed 6 h following stimulation of AM with CORM-3 (2.6-fold). On the contrary, CORM-3 effectively reduced LPS/IFN-γ-induced expression of iNOS protein (0.6-fold); however, it had no effect on TNF-α expression. Finally, CORM-3 acutely (1-3 h) upregulated CD206 (1.4-fold) and Ym-1 (1.6-fold) levels in IL-4-/IL-13-treated (M2-stimulus) macrophages. These findings indicate that CORM-3 modulates macrophage M1 and M2 phenotypes in vitro with respect to continuous suppression of iNOS expression in M1-polarized macrophages and transient (early-phase) upregulation of CD206 and Ym-1 proteins in M2-polarized macrophages.
Collapse
Affiliation(s)
- Hiroko Yamamoto-Oka
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shinjiro Mizuguchi
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Michihito Toda
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yukiko Minamiyama
- Department of Food Science and Nutrition Health, Kyoto Prefectural University, Kyoto, Japan
| | - Shigekazu Takemura
- Department Hepato-Biliary-Pancreatic Surgery, Osaka City University, Osaka, Japan
| | - Toshihiko Shibata
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.,Department of Food Science and Nutrition Health, Kyoto Prefectural University, Kyoto, Japan.,Department Hepato-Biliary-Pancreatic Surgery, Osaka City University, Osaka, Japan
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Noritoshi Nishiyama
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
26
|
Kojima S, Ohshima Y, Nakatsukasa H, Tsukimoto M. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects. Dose Response 2017; 15:1559325817690638. [PMID: 28250717 PMCID: PMC5318813 DOI: 10.1177/1559325817690638] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.
Collapse
Affiliation(s)
- Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Yasuhiro Ohshima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Hiroko Nakatsukasa
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| |
Collapse
|
27
|
Pretorius E, Akeredolu OO, Soma P, Kell DB. Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability. Exp Biol Med (Maywood) 2016; 242:355-373. [PMID: 27889698 PMCID: PMC5298544 DOI: 10.1177/1535370216681549] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We review the evidence that infectious agents, including those that become dormant within the host, have a major role to play in much of the etiology of rheumatoid arthritis and the inflammation that is its hallmark. This occurs in particular because they can produce cross-reactive (auto-)antigens, as well as potent inflammagens such as lipopolysaccharide that can themselves catalyze further inflammagenesis, including via β-amyloid formation. A series of observables coexist in many chronic, inflammatory diseases as well as rheumatoid arthritis. They include iron dysregulation, hypercoagulability, anomalous morphologies of host erythrocytes, and microparticle formation. Iron dysregulation may be responsible for the periodic regrowth and resuscitation of the dormant bacteria, with concomitant inflammagen production. The present systems biology analysis benefits from the philosophical idea of "coherence," that reflects the principle that if a series of ostensibly unrelated findings are brought together into a self-consistent narrative, that narrative is thereby strengthened. As such, we provide a coherent and testable narrative for the major involvement of (often dormant) bacteria in rheumatoid arthritis.
Collapse
Affiliation(s)
- Etheresia Pretorius
- 1 Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, Pretoria 0007, South Africa
| | - Oore-Ofe Akeredolu
- 1 Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, Pretoria 0007, South Africa
| | - Prashilla Soma
- 1 Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, Pretoria 0007, South Africa
| | - Douglas B Kell
- 2 School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.,3 The Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.,4 Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
28
|
Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2840643. [PMID: 27974950 PMCID: PMC5126438 DOI: 10.1155/2016/2840643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC) to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day) immediately after a muscle-damaging exercise protocol (300 eccentric contractions) and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules) was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation.
Collapse
|
29
|
Glutathione Depletion Is Linked with Th2 Polarization in Mice with a Retrovirus-Induced Immunodeficiency Syndrome, Murine AIDS: Role of Proglutathione Molecules as Immunotherapeutics. J Virol 2016; 90:7118-7130. [PMID: 27226373 DOI: 10.1128/jvi.00603-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/19/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Injection of the LP-BM5 murine leukemia virus into mice causes murine AIDS, a disease characterized by many dysfunctions of immunocompetent cells. To establish whether the disease is characterized by glutathione imbalance, reduced glutathione (GSH) and cysteine were quantified in different organs. A marked redox imbalance, consisting of GSH and/or cysteine depletion, was found in the lymphoid organs, such as the spleen and lymph nodes. Moreover, a significant decrease in cysteine and GSH levels in the pancreas and brain, respectively, was measured at 5 weeks postinfection. The Th2 immune response was predominant at all times investigated, as revealed by the expression of Th1/Th2 cytokines. Furthermore, investigation of the activation status of peritoneal macrophages showed that the expression of genetic markers of alternative activation, namely, Fizz1, Ym1, and Arginase1, was induced. Conversely, expression of inducible nitric oxide synthase, a marker of classical activation of macrophages, was detected only when Th1 cytokines were expressed at high levels. In vitro studies revealed that during the very early phases of infection, GSH depletion and the downregulation of interleukin-12 (IL-12) p40 mRNA were correlated with the dose of LP-BM5 used to infect the macrophages. Treatment of LP-BM5-infected mice with N-(N-acetyl-l-cysteinyl)-S-acetylcysteamine (I-152), an N-acetyl-cysteine supplier, restored GSH/cysteine levels in the organs, reduced the expression of alternatively activated macrophage markers, and increased the level of gamma interferon production, while it decreased the levels of Th2 cytokines, such as IL-4 and IL-5. Our findings thus establish a link between GSH deficiency and Th1/Th2 disequilibrium in LP-BM5 infection and indicate that I-152 can be used to restore the GSH level and a balanced Th1/Th2 response in infected mice. IMPORTANCE The first report of an association between Th2 polarization and alteration of the redox state in LP-BM5 infection is presented. Moreover, it provides evidence that LP-BM5 infection causes a decrease in the thiol content of peritoneal macrophages, which can influence IL-12 production. The restoration of GSH levels by GSH-replenishing molecules can represent a new therapeutic avenue to fight this retroviral infection, as it reestablishes the Th1/Th2 balance. Immunotherapy based on the use of pro-GSH molecules would permit LP-BM5 infection and probably all those viral infections characterized by GSH deficiency and a Th1/Th2 imbalance to be more effectively combated.
Collapse
|
30
|
Hoffman S, Nolin J, McMillan D, Wouters E, Janssen-Heininger Y, Reynaert N. Thiol redox chemistry: role of protein cysteine oxidation and altered redox homeostasis in allergic inflammation and asthma. J Cell Biochem 2016; 116:884-92. [PMID: 25565397 DOI: 10.1002/jcb.25017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023]
Abstract
Asthma is a pulmonary disorder, with an estimated 300 million people affected worldwide. While it is thought that endogenous reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as hydrogen peroxide and nitric oxide, are important mediators of natural physiological processes, inflammatory cells recruited to the asthmatic airways have an exceptional capacity for producing a variety of highly reactive ROS and RNS believed to contribute to tissue damage and chronic airways inflammation. Antioxidant defense systems form a tightly regulated network that maintains the redox environment of the intra- as well as extracellular environment. Evidence for an oxidant-antioxidant imbalance in asthmatic airways is demonstrated in a number of studies, revealing decreased total antioxidant capacity as well as lower levels of individual antioxidants. Thiols in the form of GSH and sulfhydryl groups of proteins are among the most susceptible oxidant-sensitive targets, and hence, studies investigating protein thiol redox modifications in biology and disease have emerged. This perspective offers an overview of the combined efforts aimed at the elucidation of mechanisms whereby cysteine oxidations contribute to chronic inflammation and asthma, as well as insights into potential cysteine thiol-based therapeutic strategies.
Collapse
Affiliation(s)
- Sidra Hoffman
- Department of Pathology, University of Vermont, Burlington, 05405, Vermont
| | | | | | | | | | | |
Collapse
|
31
|
Simeoni L, Thurm C, Kritikos A, Linkermann A. Redox homeostasis, T cells and kidney diseases: three faces in the dark. Clin Kidney J 2015; 9:1-10. [PMID: 26798455 PMCID: PMC4720211 DOI: 10.1093/ckj/sfv135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
The redox equilibrium is crucial for the maintenance of immune homeostasis. Here, we summarize recent data showing that oxidation regulates T-cell functions and that alterations of the redox equilibrium may play an important role in the pathogenesis of inflammatory conditions affecting the kidneys. We further discuss potential links between oxidation, T cells and renal diseases such as systemic lupus erythematosus, renal ischaemia/reperfusion injury, end-stage renal disease and hypertension. The basic understanding of oxidation as a means by which diseases are directly affected results in unexpected pathophysiological similarities. Finally, we describe potential therapeutic options targeting redox systems for the treatment of nephropathies affecting humans.
Collapse
Affiliation(s)
- Luca Simeoni
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Christoph Thurm
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Andreas Kritikos
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension , Christian-Albrechts-University Kiel , Germany
| |
Collapse
|
32
|
Wrotek S, Jędrzejewski T, Nowakowska A, Kozak W. Glutathione deficiency attenuates endotoxic fever in rats. Int J Hyperthermia 2015; 31:793-9. [DOI: 10.3109/02656736.2015.1067333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
33
|
Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 2015; 144:171-85. [PMID: 25262977 DOI: 10.1111/imm.12394] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/12/2014] [Accepted: 08/19/2014] [Indexed: 12/11/2022] Open
Abstract
Diabetes has been recognized as an important risk factor for a variety of intracellular bacterial infections, but research into the dysregulated immune mechanisms contributing to the impaired host-pathogen interactions is in its infancy. Diabetes is characterized by a chronic state of low-grade inflammation due to activation of pro-inflammatory mediators and increased formation of advanced glycation end products. Increased oxidative stress also exacerbates the chronic inflammatory processes observed in diabetes. The reduced phagocytic and antibacterial activity of neutrophils and macrophages provides an intracellular niche for the pathogen to replicate. Phagocytic and antibacterial dysfunction may be mediated directly through altered glucose metabolism and oxidative stress. Furthermore, impaired activation of natural killer cells contributes to decreased levels of interferon-γ, required for promoting macrophage antibacterial mechanisms. Together with impaired dendritic cell function, this impedes timely activation of adaptive immune responses. Increased intracellular oxidation of antigen-presenting cells in individuals with diabetes alters the cytokine profile generated and the subsequent balance of T-cell immunity. The establishment of acute intracellular bacterial infections in the diabetic host is associated with impaired T-cell-mediated immune responses. Concomitant to the greater intracellular bacterial burden and potential cumulative effect of chronic inflammatory processes, late hyper-inflammatory cytokine responses are often observed in individuals with diabetes, contributing to systemic pathology. The convergence of intracellular bacterial infections and diabetes poses new challenges for immunologists, providing the impetus for multidisciplinary research.
Collapse
Affiliation(s)
- Kelly Hodgson
- Infectious Diseases and Immunopathogenesis Research Group, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Ferreira R, Wong R, Schlichter LC. KCa3.1/IK1 Channel Regulation by cGMP-Dependent Protein Kinase (PKG) via Reactive Oxygen Species and CaMKII in Microglia: An Immune Modulating Feedback System? Front Immunol 2015; 6:153. [PMID: 25904916 PMCID: PMC4389654 DOI: 10.3389/fimmu.2015.00153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/23/2015] [Indexed: 01/09/2023] Open
Abstract
The intermediate conductance Ca2+-activated K+ channel, KCa3.1 (IK1/SK4/KCNN4) is widely expressed in the innate and adaptive immune system. KCa3.1 contributes to proliferation of activated T lymphocytes, and in CNS-resident microglia, it contributes to Ca2+ signaling, migration, and production of pro-inflammatory mediators (e.g., reactive oxygen species, ROS). KCa3.1 is under investigation as a therapeutic target for CNS disorders that involve microglial activation and T cells. However, KCa3.1 is post-translationally regulated, and this will determine when and how much it can contribute to cell functions. We previously found that KCa3.1 trafficking and gating require calmodulin (CaM) binding, and this is inhibited by cAMP kinase (PKA) acting at a single phosphorylation site. The same site is potentially phosphorylated by cGMP kinase (PKG), and in some cells, PKG can increase Ca2+, CaM activation, and ROS. Here, we addressed KCa3.1 regulation through PKG-dependent pathways in primary rat microglia and the MLS-9 microglia cell line, using perforated-patch recordings to preserve intracellular signaling. Elevating cGMP increased both the KCa3.1 current and intracellular ROS production, and both were prevented by the selective PKG inhibitor, KT5823. The cGMP/PKG-evoked increase in KCa3.1 current in intact MLS-9 microglia was mediated by ROS, mimicked by applying hydrogen peroxide (H2O2), inhibited by a ROS scavenger (MGP), and prevented by a selective CaMKII inhibitor (mAIP). Similar results were seen in alternative-activated primary rat microglia; their KCa3.1 current required PKG, ROS, and CaMKII, and they had increased ROS production that required KCa3.1 activity. The increase in current apparently did not result from direct effects on the channel open probability (Po) or Ca2+ dependence because, in inside-out patches from transfected HEK293 cells, single-channel activity was not affected by cGMP, PKG, H2O2 at normal or elevated intracellular Ca2+. The regulation pathway we have identified in intact microglia and MLS-9 cells is expected to have broad implications because KCa3.1 plays important roles in numerous cells and tissues.
Collapse
Affiliation(s)
- Roger Ferreira
- Genetics and Development Division, Toronto Western Research Institute, University Health Network , Toronto, ON , Canada ; Department of Physiology, University of Toronto , Toronto, ON , Canada
| | - Raymond Wong
- Genetics and Development Division, Toronto Western Research Institute, University Health Network , Toronto, ON , Canada ; Department of Physiology, University of Toronto , Toronto, ON , Canada
| | - Lyanne C Schlichter
- Genetics and Development Division, Toronto Western Research Institute, University Health Network , Toronto, ON , Canada ; Department of Physiology, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
35
|
Naito Y, Takagi T, Higashimura Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch Biochem Biophys 2014; 564:83-8. [DOI: 10.1016/j.abb.2014.09.005] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/25/2014] [Accepted: 09/10/2014] [Indexed: 02/08/2023]
|
36
|
Gamage AM, Lee KO, Gan YH. Effect of oral N-acetyl cysteine supplementation in type 2 diabetic patients on intracellular glutathione content and innate immune responses to Burkholderia pseudomallei. Microbes Infect 2014; 16:661-71. [PMID: 25088507 DOI: 10.1016/j.micinf.2014.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 01/23/2023]
Abstract
Type 2 diabetic patients have increased susceptibility to melioidosis, an infectious disease caused by Burkholderia pseudomallei. We had previously shown that peripheral blood mononuclear cells (PBMCs) from diabetic patients with poor glycemic control had a defective IL-12 and IFNγ response to B. pseudomallei infection, resulting in poor intracellular bacterial control. The impaired IL-12 response was due to glutathione (GSH) deficiency characterized by a low reduced to oxidized glutathione ratio (GSH ratio) and could be restored by the addition of reduced GSH to the infected cells. Our goal is to determine whether N-acetyl cysteine (NAC, a GSH pro-drug) supplementation in diabetic patients could improve their immune control of B. pseudomallei. Type 2 diabetic patients with poor glycemic control were given oral supplementation of NAC for six weeks at 1200 mg daily. Their PBMCs and subsets of immune cells showed a significant increase in free GSH concentration. However, the GSH ratio, IL-12 and IFNγ production, and intracellular bacterial killing upon ex-vivo infection did not improve. Thus, oral NAC supplementation in diabetic patients is sufficient to increase intracellular GSH content in blood cells. However, modulating the free GSH content is not sufficient to improve infection outcome as it is the GSH ratio that regulates the IL-12 response in monocytes.
Collapse
Affiliation(s)
- Akshamal M Gamage
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597, Singapore
| | - Kok Onn Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block Level 10 Singapore 119228, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597, Singapore; Immunology Program, National University of Singapore, Singapore.
| |
Collapse
|
37
|
Effect of the N-butanoyl glutathione (GSH) derivative and acyclovir on HSV-1 replication and Th1 cytokine expression in human macrophages. Med Microbiol Immunol 2014; 203:283-9. [PMID: 24682316 DOI: 10.1007/s00430-014-0335-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
Abstract
Macrophages are an important defense against in vivo herpes simplex virus (HSV) infection by early cytokine secretion; however, they can be infected by HSV-1 and they may be compromised in their ability to produce cytokines. In this paper, we studied the expression of two Th1 cytokines, interleukin (IL)-12 and IL-27, upon HSV-1 infection of human macrophages, and how it is regulated by treatment with two antiviral drugs exerting their anti-HSV-1 activity through different mechanisms of action. We found that infection does not alter intra-macrophage thiol content, while it induces mRNA expression of IL-12 p35 and IL-12 p40 as well as of IL-27 p28 and IL-27 EBI3, as revealed by RT-PCR. The increased expression of mRNA is accompanied by increased production of IL-12 p40 and IL-27 p28 protein, as detected in the culture supernatants by ELISA. The two antiviral drugs tested were acyclovir (ACV), commonly used to treat herpes virus infections, and an N-butanoyl glutathione (GSH) derivative, GSH-C4. While ACV inhibits viral DNA polymerase, GSH-C4 inhibits virus replication by interfering with protein folding and maturation of viral particles. Indeed, GSH-C4, altering the intracellular redox state, may modulate the Th1/Th2 balance favoring Th1-type response. Our data show that both drugs inhibit HSV-1 replication in macrophages, without significantly affecting cytokine mRNA levels. Nonetheless, lower levels of IL-12 p40 and IL-27 p28 proteins were found in the supernatants of macrophages treated with either GSH-C4 or ACV, likely as an indirect consequence of inhibited HSV-1 replication.
Collapse
|
38
|
Ohnishi T, Bandow K, Kakimoto K, Kusuyama J, Matsuguchi T. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages. PLoS One 2014; 9:e87229. [PMID: 24504121 PMCID: PMC3913600 DOI: 10.1371/journal.pone.0087229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/26/2013] [Indexed: 01/18/2023] Open
Abstract
N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.
Collapse
Affiliation(s)
- Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kenjiro Bandow
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
39
|
Ghezzi P. Protein glutathionylation in health and disease. Biochim Biophys Acta Gen Subj 2013; 1830:3165-72. [DOI: 10.1016/j.bbagen.2013.02.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/10/2013] [Accepted: 02/07/2013] [Indexed: 12/31/2022]
|
40
|
Fraternale A, Crinelli R, Casabianca A, Paoletti MF, Orlandi C, Carloni E, Smietana M, Palamara AT, Magnani M. Molecules altering the intracellular thiol content modulate NF-kB and STAT-1/IRF-1 signalling pathways and IL-12 p40 and IL-27 p28 production in murine macrophages. PLoS One 2013; 8:e57866. [PMID: 23536773 PMCID: PMC3594194 DOI: 10.1371/journal.pone.0057866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/27/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the molecular mechanisms involved in the production of Th1 cytokines, namely IL-12 and IL-27, when the intra-macrophage redox state was altered by different chemical entities such as GSH-C4, which is reduced glutathione carrying an aliphatic chain, or I-152, a pro-drug of N-acetyl-cysteine (NAC) and beta-mercaptoethylamine. We had already demonstrated that GSH-C4 and I-152 could shift the immune response towards Th1 in Ovalbumin-immunized mice as well as enhance Th1 response in HIV-1 Tat-immunized mice. METHODOLOGY/PRINCIPAL FINDINGS By a new high performance liquid chromatography method, we found that 20 mM GSH-C4 provided a number of thiol species in the form of GSH, while 20 mM I-152 decreased GSH and increased the thiols in the form of NAC and I-152. Under these experimental conditions, GSH-C4 and I-152 enhanced and suppressed respectively the mRNA expression levels of IL-12 p40 induced by LPS/IFN-γ as assessed by Real-Time PCR. The protein production of IL-12 p40 was increased by GSH-C4 and decreased by I-152 as determined by Enzyme-linked immunosorbent assay. Western immunoblot and electrophoretic mobility shift assays revealed that Nuclear Factor -kB (NF-kB) activation was inhibited by I-152 and prolonged by GSH-C4. Twenty mM I-152 stimulated IL-27 p28 gene expression and sustained Signal Transducer and Activator of Transcription (STAT)-mediated interferon regulator factor 1 (IRF-1) de novo synthesis. By contrast, 20 mM GSH-C4 did not exert any effect on IL-27 p28 gene expression. CONCLUSIONS AND SIGNIFICANCE an increase in the intra-macrophage redox state by GSH-C4 and I-152 enhances Th1 cytokine production although the chemical structure and the intra-cellular metabolism influence differently signalling pathways involved in IL-27 or IL-12 production. GSH-C4 and I-152 may be used as Th1 immunomodulators in some pathologies and in ageing where GSH depletion may contribute to the Th1/Th2 imbalance, and in new immunization strategies.
Collapse
Affiliation(s)
- Alessandra Fraternale
- Department of Biomolecular Sciences University of Urbino Carlo Bo, Urbino (PU), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mukaro VR, Bylund J, Hodge G, Holmes M, Jersmann H, Reynolds PN, Hodge S. Lectins offer new perspectives in the development of macrophage-targeted therapies for COPD/emphysema. PLoS One 2013; 8:e56147. [PMID: 23441163 PMCID: PMC3575470 DOI: 10.1371/journal.pone.0056147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 01/07/2013] [Indexed: 01/29/2023] Open
Abstract
We have previously shown that the defective ability of alveolar macrophages (AM) to phagocytose apoptotic cells (‘efferocytosis’) in chronic obstructive pulmonary disease/emphysema (COPD) could be therapeutically improved using the C-type lectin, mannose binding lectin (MBL), although the exact mechanisms underlying this effect are unknown. An S-type lectin, galectin-3, is also known to regulate macrophage phenotype and function, via interaction with its receptor CD98. We hypothesized that defective expression of galectin/CD98 would be associated with defective efferocytosis in COPD and that mechanisms would include effects on cytoskeletal remodeling and macrophage phenotype and glutathione (GSH) availability. Galectin-3 was measured by ELISA in BAL from controls, smokers and current/ex-smokers with COPD. CD98 was measured on AM using flow cytometry. We assessed the effects of galectin-3 on efferocytosis, CD98, GSH, actin polymerisation, rac activation, and the involvement of PI3K (using β-actin probing and wortmannin inhibition) in vitro using human AM and/or MH-S macrophage cell line. Significant decreases in BAL galectin-3 and AM CD98 were observed in BAL from both current- and ex-smoker COPD subjects vs controls. Galectin 3 increased efferocytosis via an increase in active GTP bound Rac1. This was confirmed with β-actin probing and the role of PI3K was confirmed using wortmannin inhibition. The increased efferocytosis was associated with increases in available glutathione and expression of CD98. We provide evidence for a role of airway lectins in the failed efferocytosis in COPD, supporting their further investigation as potential macrophage-targeted therapies.
Collapse
Affiliation(s)
- Violet R. Mukaro
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Johan Bylund
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Greg Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark Holmes
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Hubertus Jersmann
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul N. Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
42
|
Systemic human orbital fat-derived stem/stromal cell transplantation ameliorates acute inflammation in lipopolysaccharide-induced acute lung injury. Crit Care Med 2012; 40:1245-53. [DOI: 10.1097/ccm.0b013e31823bc89a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Thornthwaite JT, Shah H, Shah P, Respess H. The Natural Killer Cell: A Historical Perspective and the Use of Supplements to Enhance NKC Activity. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jibtva.2012.13004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Kigerl KA, Ankeny DP, Garg SK, Wei P, Guan Z, Lai W, McTigue DM, Banerjee R, Popovich PG. System x(c)(-) regulates microglia and macrophage glutamate excitotoxicity in vivo. Exp Neurol 2011; 233:333-41. [PMID: 22079587 DOI: 10.1016/j.expneurol.2011.10.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 10/05/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
Abstract
It is widely believed that microglia and monocyte-derived macrophages (collectively referred to as central nervous system (CNS) macrophages) cause excitotoxicity in the diseased or injured CNS. This view has evolved mostly from in vitro studies showing that neurotoxic concentrations of glutamate are released from CNS macrophages stimulated with lipopolysaccharide (LPS), a potent inflammogen. We hypothesized that excitotoxic killing by CNS macrophages is more rigorously controlled in vivo, requiring both the activation of the glutamate/cystine antiporter (system x(c)(-)) and an increase in extracellular cystine, the substrate that drives glutamate release. Here, we show that non-traumatic microinjection of low-dose LPS into spinal cord gray matter activates CNS macrophages but without causing overt neuropathology. In contrast, neurotoxic inflammation occurs when LPS and cystine are co-injected. Simultaneous injection of NBQX, an antagonist of AMPA glutamate receptors, reduces the neurotoxic effects of LPS+cystine, implicating glutamate as a mediator of neuronal cell death in this model. Surprisingly, neither LPS nor LPS+cystine adversely affects survival of oligodendrocytes or oligodendrocyte progenitor cells. Ex vivo analyses show that redox balance in microglia and macrophages is controlled by induction of system x(c)(-) and that high GSH:GSSG ratios predict the neurotoxic potential of these cells. Together, these data indicate that modulation of redox balance in CNS macrophages, perhaps through regulating system x(c)(-), could be a novel approach for attenuating injurious neuroinflammatory cascades.
Collapse
Affiliation(s)
- Kristina A Kigerl
- Center for Brain and Spinal Cord Repair, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sekine K, Mochizuki H, Inoue Y, Kobayashi T, Suganuma E, Matsuda S, Arakawa H. Regulation of Oxidative Stress in Patients with Kawasaki Disease. Inflammation 2011; 35:952-8. [DOI: 10.1007/s10753-011-9398-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Gould NS, Min E, Day BJ. Macropinocytosis of extracellular glutathione ameliorates tumor necrosis factor α release in activated macrophages. PLoS One 2011; 6:e25704. [PMID: 21991336 PMCID: PMC3185039 DOI: 10.1371/journal.pone.0025704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/08/2011] [Indexed: 02/07/2023] Open
Abstract
A number of inflammatory lung diseases have abnormally low glutathione (GSH) levels in the airway fluids. Lung macrophages are common mediators of inflammation, make up the majority of cells that are found in the airway epithelial lining fluid (ELF), and are commonly elevated in many lung diseases. Several animal models with altered ELF GSH levels are associated with similar alterations in the intracellular GSH levels of bronchoalveolar lavage (BAL) cells. The possible mechanisms and outcomes for this association between ELF GSH levels and intracellular BAL cell GSH are unknown. To investigate these issues, macrophages were grown in media supplemented with 500 µM GSH. GSH supplementation resulted in a 2–3 fold increase in macrophage intracellular GSH levels. The increase in macrophage intracellular GSH levels was associated with a significant reduction in NF-κB nuclear translocation and tumor necrosis factor α (TNFα) release upon LPS stimulation. Furthermore, co-treatment of macrophages with GSH and inhibitors of GSH breakdown or synthesis did not block GSH accumulation. In contrast, treatment with cytochalasin D, an inhibitor of actin dependent endocytosis, and amiloride, an inhibitor of macropinocytosis blocked, at least in part, GSH uptake. Furthermore, using two cigarette smoke exposure paradigms that result in two different GSH levels in the ELF and thus in the BAL cells resulted in modulation of cytokine release when stimulated with LPS ex vivo. These data suggest that macrophages are able to utilize extracellular GSH which can then modulate inflammatory signaling in response to proinflammatory stimuli. This data also suggests the lung can modulate inflammatory responses triggered by proinflammatory stimuli by altering ELF GSH levels and may help explain the dysregulated inflammation associated with lung diseases that have low ELF GSH levels.
Collapse
Affiliation(s)
- Neal S. Gould
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Elysia Min
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Brian J. Day
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Immunology, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
47
|
Kamide Y, Utsugi M, Dobashi K, Ono A, Ishizuka T, Hisada T, Koga Y, Uno K, Hamuro J, Mori M. Intracellular glutathione redox status in human dendritic cells regulates IL-27 production and T-cell polarization. Allergy 2011; 66:1183-92. [PMID: 21545428 DOI: 10.1111/j.1398-9995.2011.02611.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Glutathione redox status, changes in intracellular reduced (GSH) or oxidized (GSSG) glutathione, plays a significant role in various aspects of cellular function. In this study, we examined whether intracellular glutathione redox status in human dendritic cells (DCs) regulates the polarization of Th1/Th2 balance. METHODS Human monocyte-derived DCs (MD-DCs) treated with glutathione reduced form ethyl ester (GSH-OEt) or L-buthionine-(S,R)-sulfoximine (BSO) were stimulated by lipopolysaccharide (LPS), and the levels of polarization cytokines were measured. Next, DCs matured by LPS or thymic stromal lymphopoietin (TSLP) were cocultured with allogeneic CD4(+) naive T cells and Th1/Th2 balance was evaluated by cytokine production from the primed T cells. RESULTS Monocyte-derived DCs exposed to GSH-OEt and BSO had increased and decreased intracellular GSH contents, respectively. Lipopolysaccharide-induced interleukin (IL)-27 production was enhanced by GSH-OEt and suppressed by BSO, but neither GSH-OEt nor BSO affected the expression of HLA-DR, CD80, CD83, or CD86. Mature GSH-OEt-treated MD-DCs enhanced interferon (IFN)-γ production from CD4(+) T cells compared with nontreated MD-DCs, and small interfering RNA (siRNA) against IL-27 suppressed the effect of GSH-OEt on IFN-γ production. Additionally, although human myeloid DCs activated by TSLP (TSLP-DCs) prime naïve CD4(+) T cells to differentiate into Th2 cells, treatment of TSLP-DCs with GSH-OEt reduced IL-13 production and enhanced IFN-γ production by CD4(+) T cells. Interleukin-27 siRNA attenuated the inhibitory effect of GSH-OEt on Th2 polarization. CONCLUSION Our results reveal that Th1 and Th2 responses are controlled by intracellular glutathione redox status in DCs through IL-27 production.
Collapse
Affiliation(s)
- Y Kamide
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Modulation of Th1/Th2 immune responses to HIV-1 Tat by new pro-GSH molecules. Vaccine 2011; 29:6823-9. [PMID: 21816192 DOI: 10.1016/j.vaccine.2011.07.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 06/15/2011] [Accepted: 07/21/2011] [Indexed: 11/23/2022]
Abstract
We have previously demonstrated that in Ova-immunized mice the increase in intra-macrophage thiol pool induced by pro-GSH molecules modulates the Th1/Th2 balance in favour of a Th1-type immune response. We show now that the same molecules can support a Th1-type over Th2-type immunity against Tat, which is an early HIV-1 regulatory protein and a Th1 polarizing immunomodulator that is increasingly considered in new anti-HIV vaccination strategies. Our results indicate that Tat-immunized mice pre-treated with the C4 (n-butanoyl) derivative of reduced glutathione (GSH-C4) or a pro-drug of N-acetylcysteine (NAC) and beta-mercaptoethylamine (MEA) (I-152), have decreased levels of anti-Tat IgG1 as well as increased levels of anti-Tat IgG2a and IgG2b isotypes suggesting a Th1-type response. Moreover, Th1-(IFN-γ and IL-2) Ag-specific cellular responses were detected by ELISPOT assay in splenocytes of the same animals as well as an increase of IL-12 levels in the plasma. These findings suggest that the Th1 immune response to HIV-1 Tat could be further polarized by these molecules. These results together with those previously reported suggest that pro-GSH molecules could be used to modulate the immune response towards different antigens and may be further exploited for inducing specific Th1 immune responses against other HIV antigens as well as other intracellular pathogens in new Tat-based vaccination protocols.
Collapse
|
49
|
Catarzi S, Favilli F, Romagnoli C, Marcucci T, Picariello L, Tonelli F, Vincenzini MT, Iantomasi T. Oxidative state and IL-6 production in intestinal myofibroblasts of Crohn's disease patients. Inflamm Bowel Dis 2011; 17:1674-84. [PMID: 21744422 DOI: 10.1002/ibd.21552] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal subepithelial myofibroblasts (ISEMFs) produce inflammatory cytokines in response to certain stimuli. In the intestine of patients with Crohn's disease (CD), cytokine synthesis is modified and an increased number of myofibroblasts has been observed. The intracellular redox state influences cytokine production and oxidative stress is present in the intestinal mucosa of CD patients. METHODS This study was performed in ISEMFs isolated from the colon of patients with active CD and in a myofibroblast cell line derived from human colonic mucosa: 18Co cells. Cellular glutathione (GSH) levels were modulated by treatment with buthionine sulfoximine, an inhibitor of GSH synthesis, or N-acetylcysteine, a GSH precursor. GSH and oxidized glutathione (GSSG) levels were measured by high-performance liquid chromatography (HPLC) methods. Interleukin (IL)-6 production was detected by enzyme-linked immunosorbent assay (ELISA). RESULTS ISEMFs of CD patients exhibited an increased oxidative state due to a decrease in the GSH/GSSG ratio, which is related to an increase in basal IL-6 production or is stimulated by tumor necrosis factor alpha (TNFα) or bacterial products. This relationship was also confirmed in 18Co cells. Phosphorylation and activation of ERK1/2 and p38 MAPK, which are signaling factors involved in the IL-6 synthesis, were also increased when there is oxidative stress in ISEMFs. CONCLUSIONS This study shows for the first time in ISEMFs of CD patients an increased production of IL-6 synthesis related to the decrease in the GSH/GSSH ratio, suggesting redox regulation with the involvement of specific kinase activation. The present data shed light on the pathogenesis of inflammatory chronic processes and relapses that occur in this pathology.
Collapse
Affiliation(s)
- Serena Catarzi
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Firenze, Italia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Anti-inflammatory properties of N-acetylcysteine on lipopolysaccharide-activated macrophages. Inflamm Res 2011; 60:695-704. [DOI: 10.1007/s00011-011-0323-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/11/2011] [Accepted: 02/28/2011] [Indexed: 11/25/2022] Open
|