1
|
Amiri A, Bandani AR. Callosobruchus maculatus males and females respond differently to grandparental effects. PLoS One 2023; 18:e0295937. [PMID: 38134132 PMCID: PMC10745144 DOI: 10.1371/journal.pone.0295937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we used the cowpea weevil Callosobruchus maculatus (Coleoptera: Chrysomelidae) and two essential oils (mint and rosemary) to investigate the effect of the parents (F0) exposure to a sublethal dose of essential oil on grand offspring (F2) encountering the same essential oil. Then we evaluated biological parameters, including immature development time, sex ratio, adult emergence, egg number, egg hatch, longevity, and mating behaviors in three generations (F0, F1, and F2). Results showed when F0 experienced essential oil in the embryonic stage, parental and grandparental effects were more severe than adulthood experiences. Also, grandparental effects increased or decreased reactions of F2 generation when faced with a similar essential oil, depending on grand offspring sex. For example, when grandparents experienced rosemary essential oil in the embryonic stage, they produced more tolerant female grand offspring with a better ability to cope with the same essential oil (increased adult longevity and egg number). However, male grandoffspring were more sensitive (had a higher mortality percentage and less copulation success). Grandparental effects of exposure to mint essential oil diminished female grand offspring longevity and improved male copulation behavior parameters such as increased copulation duration and decreased rejection by females. In all, grandparental effects were different in male and female grand offspring based on the essential oil type experienced by F0.
Collapse
Affiliation(s)
- Azam Amiri
- College of Geography and Environmental Planning. University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali R. Bandani
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
2
|
The contribution of maternal and paternal body size to offspring early adulthood life histories in a parasitoid wasp, Lysiphlebus fabarum. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Scharf I, Segal D, Bar A, Gottlieb D. Negative effects of fluctuating temperatures around the optimal temperature on reproduction and survival of the red flour beetle. J Therm Biol 2022; 103:103165. [PMID: 35027185 DOI: 10.1016/j.jtherbio.2021.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Whereas the vast majority of animals in nature experience daily or seasonal thermal fluctuations, most laboratory experiments use constant temperatures. We examined the effect of fluctuating temperatures on reproduction and survival under starvation, two important components of fitness. We used the red flour beetle as a model organism, which is a significant pest in grain mills around the world. Fluctuations around the optimal temperature were always negative for the adult survival under starvation. The effect of thermal fluctuations on the number of offspring reaching adulthood was negative as well but increased with the extent of exposure. It was the strongest when the adult parents were kept and the offspring were raised under fluctuating temperatures. However, the later the offspring were exposed to fluctuations during their development, the weaker the effect of fluctuating temperatures was. Moreover, raising the parents under fluctuating temperatures but keeping them after pupation at constant temperatures fully alleviated the negative effects of fluctuations on the offspring. Finally, we demonstrate that keeping the parents a few days under fluctuating temperatures is required to induce negative effects on the number of offspring reaching adulthood. Our study disentangles between the effects of thermal fluctuations experienced during the parental and offspring stage thus contributing to the ongoing research of insects under fluctuating temperatures.
Collapse
Affiliation(s)
- Inon Scharf
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Daniella Segal
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Bar
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Gottlieb
- Department of Food Science, Institute of Post-Harvest and Food Science, The Volcani Center, ARO, Israel
| |
Collapse
|
4
|
Arya H, Toltesi R, Eng M, Garg D, Merritt TJS, Rajpurohit S. No water, no mating: Connecting dots from behaviour to pathways. PLoS One 2021; 16:e0252920. [PMID: 34111165 PMCID: PMC8192009 DOI: 10.1371/journal.pone.0252920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Insects hold considerable ecological and agricultural importance making it vital to understand the factors impacting their reproductive output. Environmental stressors are examples of such factors which have a substantial and significant influence on insect reproductive fitness. Insects are also ectothermic and small in size which makes them even more susceptible to environmental stresses. The present study assesses the consequence of desiccation on the mating latency and copulations duration in tropical Drosophila melanogaster. We tested flies for these reproductive behavioral parameters at varying body water levels and with whole metabolome analysis in order to gain a further understanding of the physiological response to desiccation. Our results showed that the duration of desiccation is positively correlated with mating latency and mating failure, while having no influence on the copulation duration. The metabolomic analysis revealed three biological pathways highly affected by desiccation: starch and sucrose metabolism, galactose metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis. These results are consistent with carbohydrate metabolism providing an energy source in desiccated flies and also suggests that the phenylalanine biosynthesis pathway plays a role in the reproductive fitness of the flies. Desiccation is a common issue with smaller insects, like Drosophila and other tropical insects, and our findings indicate that this lack of ambient water can immediately and drastically affect the insect reproductive behaviour, which becomes more crucial because of unpredictable and dynamic weather conditions.
Collapse
Affiliation(s)
- Homica Arya
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India
| | - Regan Toltesi
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Michelle Eng
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Divita Garg
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India
| | - Thomas J. S. Merritt
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Subhash Rajpurohit
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India
- * E-mail:
| |
Collapse
|
5
|
Tariel J, Luquet É, Plénet S. Interactions Between Maternal, Paternal, Developmental, and Immediate Environmental Effects on Anti-predator Behavior of the Snail Physa acuta. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.591074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transgenerational plasticity, which occurs when the environment experienced by parents changes the phenotype of offspring, is widespread in animal and plant species. Both maternal and paternal environments can underlie transgenerational plasticity, but experimental studies unraveling how their effects interact together and with the personal (both developmental and immediate) environments are still rare. Yet unraveling these interactions is fundamental to understanding how offspring integrate past and present environmental cues to produce adaptive phenotype. Using the hermaphroditic and freshwater snail Physa acuta, we tested how predator cues experienced by offspring, mothers and fathers interact to shape offspring anti-predator behavior. We raised a first generation of snails in the laboratory with or without chemical predator cues and realized full-factorial crosses to disentangle maternal and paternal cues. We then raised the second generation of snails with or without predator cues and assessed, when adults, their escape behavior in two immediate environments (with or without predator cues) and activity in the immediate environment without predator cues. We found that personal, maternal, and paternal predator cues interacted to shape offspring escape behavior and activity. Firstly, for escape behavior, snails integrated the cues from developmental and parental environments only when exposed to predator cues in their immediate environment, suggesting that personal immediate experience must corroborate the risky parental environment to reveal transgenerational plasticity. For activity, this same hypothesis helps explain why no clear pattern of transgenerational plasticity was revealed, as activity was only measured without predator cues in the immediate environment. Secondly, a single maternal exposure to predator cues decreased offspring escape behavior while a single paternal exposure had no effect, surprisingly demonstrating sex-specific transgenerational plasticity for a simultaneous hermaphroditic species. Thirdly, when both mother and father were exposed, paternal cues were integrated by offspring according to their own developmental environment. The paternal exposure then mitigated the reduction in escape behavior due to the maternal exposure only when offspring developed in control condition. Overall, our study highlighted complex patterns of sex-specific transgenerational plasticity resulting from non-additive interactions between parental, developmental and immediate experiences.
Collapse
|
6
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Pei Y, Forstmeier W, Kempenaers B. Offspring performance is well buffered against stress experienced by ancestors. Evolution 2020; 74:1525-1539. [PMID: 32463119 DOI: 10.1111/evo.14026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 11/27/2022]
Abstract
Evolution should render individuals resistant to stress and particularly to stress experienced by ancestors. However, many studies report negative effects of stress experienced by one generation on the performance of subsequent generations. To assess the strength of such transgenerational effects we propose a strategy aimed at overcoming the problem of type I errors when testing multiple proxies of stress in multiple ancestors against multiple offspring performance traits, and we apply it to a large observational dataset on captive zebra finches (Taeniopygia guttata). We combine clear one-tailed hypotheses with steps of validation, meta-analytic summary of mean effect sizes, and independent confirmatory testing. We find that drastic differences in early growth conditions (nestling body mass 8 days after hatching varied sevenfold between 1.7 and 12.4 g) had only moderate direct effects on adult morphology (95% confidence interval [CI]: r = 0.19-0.27) and small direct effects on adult fitness traits (r = 0.02-0.12). In contrast, we found no indirect effects of parental or grandparental condition (r = -0.017 to 0.002; meta-analytic summary of 138 effect sizes), and mixed evidence for small benefits of matching environments between parents and offspring, as the latter was not robust to confirmatory testing in independent datasets. This study shows that evolution has led to a remarkable robustness of zebra finches against undernourishment. Our study suggests that transgenerational effects are absent in this species, because CIs exclude all biologically relevant effect sizes.
Collapse
Affiliation(s)
- Yifan Pei
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| |
Collapse
|
8
|
Vangansbeke D, Duarte MV, Gobin B, Tirry L, Wäckers F, De Clercq P. Cold-born killers: exploiting temperature-size rule enhances predation capacity of a predatory mite. PEST MANAGEMENT SCIENCE 2020; 76:1841-1846. [PMID: 31825551 DOI: 10.1002/ps.5713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The temperature-size rule is a well-known example of phenotypic plasticity in ectothermic organisms. When exposed to colder temperatures, ectotherms develop more slowly, but mature at larger body sizes and vice versa at higher temperatures. We investigated whether a phytoseiid predatory mite can obtain a larger body size by rearing it at a low temperature and how the increased body size affected predatory performance on its natural prey. Therefore, we allowed the predatory mite Amblydromalus limonicus (Garman & McGregor) (Acari: Phytoseiidae) to develop at either 15 or 25 °C. RESULTS A. limonicus reared at 15 °C had a 6% larger body size than those reared at 25 °C. Larger predators showed higher predation rates on first instars of the western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), with 9.6 instars/female/day and 8.5 instars/female/day, for larger and standard-sized females, respectively. After three generations reared at 15 °C, body size did not increase any further. When reared for five generations at 15 °C, larger A. limonicus females demonstrated a better ability to subdue second-instar F. occidentalis. CONCLUSION Low juvenile rearing temperatures may result in phytoseiid predators with a predator/prey size benefit that could improve their biological control function. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dominiek Vangansbeke
- Laboratory of Agrozoology, Department of Plants & Crops, Ghent University, Ghent, Belgium
- R&D Department, Biobest Group N.V., Westerlo, Belgium
| | | | - Bruno Gobin
- PCS-Ornamental Plant Research, Destelbergen, Belgium
| | - Luc Tirry
- Laboratory of Agrozoology, Department of Plants & Crops, Ghent University, Ghent, Belgium
| | - Felix Wäckers
- R&D Department, Biobest Group N.V., Westerlo, Belgium
| | - Patrick De Clercq
- Laboratory of Agrozoology, Department of Plants & Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Tariel J, Plénet S, Luquet É. Transgenerational plasticity of inducible defences: Combined effects of grand-parental, parental and current environments. Ecol Evol 2020; 10:2367-2376. [PMID: 32184987 PMCID: PMC7069331 DOI: 10.1002/ece3.6046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/03/2023] Open
Abstract
Phenotypic plasticity can occur across generations (transgenerational plasticity) when environments experienced by the previous generations influenced offspring phenotype. The evolutionary importance of transgenerational plasticity, especially regarding within-generational plasticity, is a currently hot topic in the plasticity framework. How long an environmental effect can persist across generations and whether multigenerational effects are cumulative are primordial-for the evolutionary significance of transgenerational plasticity-but still unresolved questions. In this study, we investigated how the grand-parental, parental and offspring exposures to predation cues shape the predator-induced defences of offspring in the Physa acuta snail. We expected that the offspring phenotypes result from a three-way interaction among grand-parental, parental and offspring environments. We exposed three generations of snails without and with predator cues according to a full factorial design and measured offspring inducible defences. We found that both grand-parental and parental exposures to predator cues impacted offspring antipredator defences, but their effects were not cumulative and depended on the defences considered. We also highlighted that the grand-parental environment did alter reaction norms of offspring shell thickness, demonstrating an interaction between the grand-parental transgenerational plasticity and the within-generational plasticity. We concluded that the effects of multigenerational exposure to predator cues resulted on complex offspring phenotypic patterns which are difficult to relate to adaptive antipredator advantages.
Collapse
Affiliation(s)
- Juliette Tariel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNAVilleurbanneFrance
| | - Sandrine Plénet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNAVilleurbanneFrance
| | - Émilien Luquet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNAVilleurbanneFrance
| |
Collapse
|
10
|
Hoffmann AA, Sgrò CM. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: How much environmental control is needed? Integr Zool 2019; 13:355-371. [PMID: 29168624 PMCID: PMC6099205 DOI: 10.1111/1749-4877.12297] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Researchers and practitioners are increasingly using comparative assessments of critical thermal and physiological limits to assess the relative vulnerability of ectothermic species to extreme thermal and aridity conditions occurring under climate change. In most assessments of vulnerability, critical limits are compared across taxa exposed to different environmental and developmental conditions. However, many aspects of vulnerability should ideally be compared when species are exposed to the same environmental conditions, allowing a partitioning of sources of variation such as used in quantitative genetics. This is particularly important when assessing the importance of different types of plasticity to critical limits, using phylogenetic analyses to test for evolutionary constraints, isolating genetic variants that contribute to limits, characterizing evolutionary interactions among traits limiting adaptive responses, and when assessing the role of cross generation effects. However, vulnerability assessments based on critical thermal/physiological limits also need to take place within a context that is relevant to field conditions, which is not easily provided under controlled environmental conditions where behavior, microhabitat, stress exposure rates and other factors will differ from field conditions. There are ways of reconciling these requirements, such as by taking organisms from controlled environments and then testing their performance under field conditions (or vice versa). While comparisons under controlled environments are challenging for many taxa, assessments of critical thermal limits and vulnerability will always be incomplete unless environmental effects within and across generations are considered, and where the ecological relevance of assays measuring critical limits can be established.
Collapse
Affiliation(s)
- Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
11
|
Karunakar P, Bhalla A, Sharma A. Transgenerational inheritance of cold temperature response in Drosophila. FEBS Lett 2019; 593:594-600. [PMID: 30779346 DOI: 10.1002/1873-3468.13343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Intergenerational inheritance of transcriptional responses induced by low temperature rearing has recently been shown in Drosophila. Besides germline inheritance, fecal transfer experiments indirectly suggested that the acquired microbiome may also have contributed to the transcriptional responses in offspring. Here, we analyze expression data on inheritance of the cold-induced effects in conjunction with previously reported transcriptomic differences between flies with a microbiota or axenic flies and provide support for a contribution of the acquired microbiome to the offspring phenotype. Also, based on a similar analysis in conjunction with diet- and metabolism-related fly transcriptome data, we predicted and, then, experimentally confirmed that cold regulates triglyceride levels both inter- as well as trans-generationally.
Collapse
Affiliation(s)
- Pinreddy Karunakar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Ameek Bhalla
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
12
|
Dasgupta P, Sarkar S, Das AA, Verma T, Nandy B. Intergenerational paternal effect of adult density in Drosophila melanogaster. Ecol Evol 2019; 9:3553-3563. [PMID: 30962910 PMCID: PMC6434557 DOI: 10.1002/ece3.4988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Notwithstanding recent evidences, paternal environment is thought to be a potential but unlikely source of fitness variation that can affect trait evolution. Here we studied intergenerational effects of males' exposure to varying adult density in Drosophila melanogasterlaboratory populations.We held sires at normal (N), medium (M) and high (H) adult densities for 2 days before allowing them to mate with virgin females. This treatment did not introduce selection through differential mortality. Further, we randomly paired males and females and allowed a single round of mating between the sires and the dams. We then collected eggs from the dams and measured the egg size. Finally, we investigated the effect of the paternal treatment on juvenile and adult (male) fitness components.We found a significant treatment effect on juvenile competitive ability where the progeny sired by the H-males had higher competitive ability. Since we did not find the treatment to affect egg size, this effect is unlikely to be mediated through variation in female provisioning.Male fitness components were also found to have a significant treatment effect: M-sons had lower dry weight at eclosion, higher mating latency, and lower competitive mating success.While being the first study to show both adaptive and non-adaptive effect of the paternal density in Drosophila, our results highlight the importance of considering paternal environment as important source of fitness variation.
Collapse
Affiliation(s)
- Purbasha Dasgupta
- Indian Institute of Science Education and Research BerhampurBerhampurIndia
| | | | | | - Tanya Verma
- Indian Institute of Science Education and Research BerhampurBerhampurIndia
| | - Bodhisatta Nandy
- Indian Institute of Science Education and Research BerhampurBerhampurIndia
| |
Collapse
|
13
|
Crocker KC, Hunter MD. Environmental causes and transgenerational consequences of ecdysteroid hormone provisioning in Acheta domesticus. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:69-78. [PMID: 29890170 DOI: 10.1016/j.jinsphys.2018.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
An animal's phenotype may be shaped by its genes, but also reflects its own environment and often that of its parents. Nongenetic parental effects are often mediated by steroid hormones, and operate between parents and offspring through mechanisms that are well described in vertebrate and model systems. However, less is understood about the strength and frequency of hormone mediated nongenetic parental effects across more than one generation of descendants, and in nonmodel systems. Here we show that the concentration of active ecdysteroid hormones provided by a female house cricket (Acheta domesticus) affects the growth rate of her offspring. We also reveal that variation in the active ecdysteroid hormones provided by a female house cricket to her eggs derives primarily from the quality of nutrition available to her maternal grandmother, regardless of genetic background. This finding is in stark contrast to most previous work that documents a decline in the strength of environmentally based parental effects with each passing generation. Strong grandparental effects may be adaptive under predictable, cyclical changes in the environment. Our results also suggest that hormone-mediated grand-maternal effects represent an important potential mechanism by which organisms can respond to environmental variability, and that further study of hormone-mediated carryover effects in this context could be profitable.
Collapse
Affiliation(s)
- Katherine C Crocker
- 1105 North University Ave, Kraus Natural Sciences Building, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA.
| | - Mark D Hunter
- 1105 North University Ave, Kraus Natural Sciences Building, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| |
Collapse
|
14
|
Johnstone M, Schiffer M, Hoffmann AA. Separating multiple sources of variation on heat resistance in Drosophila hydei. JOURNAL OF INSECT PHYSIOLOGY 2017; 96:122-127. [PMID: 27816712 DOI: 10.1016/j.jinsphys.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 05/23/2023]
Abstract
While numerous insect studies have demonstrated the effects environmental conditions, genetic variation and other factors have on thermal resistance, often showing patterns consistent with adaptive plasticity and local adaptation, few experiments have considered the effects of multiple factors simultaneously. Here however, we have investigated the impact of sex, rearing conditions, hardening, population, and laboratory rearing period on adult heat resistance in stocks of Drosophila hydei, a cosmopolitan species that occurs across a range of climatic zones. We show that population and putative laboratory adaptation effects are larger than those associated with rearing temperature and hardening, although there was also a notable interaction between hardening and sex, in that females showed a cost of hardening that was not present in males. In separate experiments, we found that environmental effects across a generation were small and similar in magnitude to those within a generation. These findings suggest multiple sources of variation on heat resistance and place potential genetic versus environmental sources in context.
Collapse
Affiliation(s)
- Michele Johnstone
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | - Michele Schiffer
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia; Daintree Rainforest Observatory, Division of Research and Innovation, James Cook University, Cairns, Queensland 4878, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
15
|
Moon J, Kwak JI, Kim SW, An YJ. Multigenerational effects of gold nanoparticles in Caenorhabditis elegans: Continuous versus intermittent exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:46-52. [PMID: 27634002 DOI: 10.1016/j.envpol.2016.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 05/29/2023]
Abstract
Nanomaterials can become disseminated directly or indirectly into the soil ecosystem through various exposure routes. Thus, it is important to study various deposition routes of nanomaterials into the soil, as well as their toxicities. Here, we investigated the multigenerational effects of gold nanoparticles (AuNPs) on C. elegans after continuous or intermittent food intake. Following continuous exposure, significant differences were observed in the reproduction rate of C. elegans in the F2-F4 generations, which were associated with reproductive system abnormalities. However, following intermittent AuNP exposure in P0 and F3, reproductive system abnormalities and inhibited reproduction rates were observed in F2 and F3. While continuous AuNP exposure impaired reproduction from F2 to F4, intermittent exposure caused more pronounced effects on F3 worms, which may have resulted from damage during the convalescence period up through F2. These data showed the occurrence of multigenerational effects following different exposure patterns, exposure levels, and recovery periods. To our knowledge, this is the first study to demonstrate that multigenerational nano-toxicity is caused by different exposure patterns and provides insights into the unpredictable exposure scenarios of AuNPs and their adverse effects.
Collapse
Affiliation(s)
- Jongmin Moon
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shin Woong Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
16
|
Bonduriansky R, Runagall‐McNaull A, Crean AJ. The nutritional geometry of parental effects: maternal and paternal macronutrient consumption and offspring phenotype in a neriid fly. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Russell Bonduriansky
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Australia Sydney NSW 2052 Australia
| | - Aidan Runagall‐McNaull
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Australia Sydney NSW 2052 Australia
| | - Angela J. Crean
- Evolution & Ecology Research Centre School of Biological, Earth and Environmental Sciences UNSW Australia Sydney NSW 2052 Australia
| |
Collapse
|
17
|
Sgrò CM, Terblanche JS, Hoffmann AA. What Can Plasticity Contribute to Insect Responses to Climate Change? ANNUAL REVIEW OF ENTOMOLOGY 2015; 61:433-51. [PMID: 26667379 DOI: 10.1146/annurev-ento-010715-023859] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plastic responses figure prominently in discussions on insect adaptation to climate change. Here we review the different types of plastic responses and whether they contribute much to adaptation. Under climate change, plastic responses involving diapause are often critical for population persistence, but key diapause responses under dry and hot conditions remain poorly understood. Climate variability can impose large fitness costs on insects showing diapause and other life cycle responses, threatening population persistence. In response to stressful climatic conditions, insects also undergo ontogenetic changes including hardening and acclimation. Environmental conditions experienced across developmental stages or by prior generations can influence hardening and acclimation, although evidence for the latter remains weak. Costs and constraints influence patterns of plasticity across insect clades, but they are poorly understood within field contexts. Plastic responses and their evolution should be considered when predicting vulnerability to climate change-but meaningful empirical data lag behind theory.
Collapse
Affiliation(s)
- Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland 7602, South Africa;
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne 3010, Australia;
| |
Collapse
|
18
|
Sinclair BJ, Coello Alvarado LE, Ferguson LV. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J Therm Biol 2015; 53:180-97. [DOI: 10.1016/j.jtherbio.2015.11.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023]
|
19
|
Noble DWA, McFarlane SE, Keogh JS, Whiting MJ. Maternal and additive genetic effects contribute to variation in offspring traits in a lizard. Behav Ecol 2014. [DOI: 10.1093/beheco/aru032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Massamba-N'Siala G, Prevedelli D, Simonini R. Trans-generational plasticity in physiological thermal tolerance is modulated by maternal pre-reproductive environment in the polychaete Ophryotrocha labronica. J Exp Biol 2014; 217:2004-12. [DOI: 10.1242/jeb.094474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Maternal temperature is known to affect many aspects of offspring phenotype, but its effect on offspring physiological thermal tolerance has received less attention, despite the importance of physiological traits in defining organismal ability to cope with temperature changes. To fill this gap, we used the marine polychaete, Ophryotrocha labronica, to investigate the influence of maternal temperature on offspring upper and lower thermal tolerance limits, and assess whether maternal influence changed according to the stage of offspring pre-zygotic development at which a thermal cue was provided. Measurements were taken on adult offspring acclimated to 18°C or 30°C, produced by mothers previously reared at 24°C and then exposed to 18°C or 30°C at an early and late stage of oogenesis. When the shift from 24°C was provided early during oogenesis, mothers produced offspring with greater cold and heat tolerance whenever mother-offspring temperatures did not match, respect to when they matched, suggesting the presence of an anticipatory maternal effect triggered by the thermal variation. Conversely, when the cue was provided later during oogenesis, more tolerant offspring were observed when temperatures persisted across generations. In this case, maternal exposure to 18°C or 30°C may have benefited offspring performance, while limitations in the transmission of the thermal cue may account for the lack of correlation between maternal experiences and offspring performance when mother-offspring environments did not match. Our results provided evidence for a trans-generational effect of temperature on physiological performance characterised by a high context-dependency, and were discussed in the light of maternal pre-reproductive experiences.
Collapse
|
21
|
Guyot S, Pottier L, Hartmann A, Ragon M, Hauck Tiburski J, Molin P, Ferret E, Gervais P. Extremely rapid acclimation of Escherichia coli to high temperature over a few generations of a fed-batch culture during slow warming. Microbiologyopen 2013; 3:52-63. [PMID: 24357618 PMCID: PMC3937729 DOI: 10.1002/mbo3.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/27/2013] [Accepted: 11/07/2013] [Indexed: 11/08/2022] Open
Abstract
This study aimed to demonstrate that adequate slow heating rate allows two strains of Escherichia coli rapid acclimation to higher temperature than upper growth and survival limits known to be strain-dependent. A laboratory (K12-TG1) and an environmental (DPD3084) strain of E. coli were subjected to rapid (few seconds) or slow warming (1°C 12 h(-1)) in order to (re)evaluate upper survival and growth limits. The slow warming was applied from the ancestral temperature 37°C to total cell death 46-54°C: about 30 generations were propagated. Upper survival and growth limits for rapid warming (46°C) were lower than for slow warming (46-54°C). The thermal limit of survival for slow warming was higher for DPD3084 (50-54°C). Further experiments conducted on DPD3084, showed that mechanisms involved in this type of thermotolerance were abolished by a following cooling step to 37°C, which allowed to imply reversible mechanisms as acclimation ones. Acquisition of acclimation mechanisms was related to physical properties of the plasma membrane but was not inhibited by unavoidable appearance of aggregated proteins. In conclusion, E.coli could be rapidly acclimated within few generations over thermal limits described in the literature. Such a study led us to propose that rapid acclimation may give supplementary time to the species to acquire a stable adaptation through a random mutation.
Collapse
Affiliation(s)
- Stéphane Guyot
- UMR A 02.102 Procédés Alimentaires et Microbiologiques, Equipe Procédés Microbiologiques et Biotechnologiques, AgroSup Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21000, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gaitán-Espitia JD, Belén Arias M, Lardies MA, Nespolo RF. Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum. PLoS One 2013; 8:e70662. [PMID: 23940617 PMCID: PMC3734266 DOI: 10.1371/journal.pone.0070662] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022] Open
Abstract
The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC), in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e.g., critical and lethal limits), influencing the biogeographic patterns of species' distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation). We tested two competing hypotheses regarding thermal adaptation (the "hotter is better" and the generalist-specialist trade-offs). Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints ("hotter is better") and thermal adaptations to their local environments (generalist-specialist trade-offs). This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery.
Collapse
Affiliation(s)
- Juan Diego Gaitán-Espitia
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - María Belén Arias
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibañez, Peñalolen, Santiago, Chile
| | - Marco A. Lardies
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibañez, Peñalolen, Santiago, Chile
- Departamento de Ciencias, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Peñalolen, Santiago, Chile
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
23
|
Schiffer M, Hangartner S, Hoffmann AA. Assessing the relative importance of environmental effects, carry-over effects and species differences in thermal stress resistance: a comparison of Drosophilids across field and laboratory generations. ACTA ACUST UNITED AC 2013; 216:3790-8. [PMID: 23821714 DOI: 10.1242/jeb.085126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is increasing interest in comparing species of related organisms for their susceptibility to thermal extremes in order to evaluate potential vulnerability to climate change. Comparisons are typically undertaken on individuals collected from the field with or without a period of acclimation. However, this approach does not allow the potential contributions of environmental and carry-over effects across generations to be separated from inherent species differences in susceptibility. To assess the importance of these different sources of variation, we here considered heat and cold resistance in Drosophilid species from tropical and temperate sites in the field and across two laboratory generations. Resistance in field-collected individuals tended to be lower when compared with F1 and F2 laboratory generations, and species differences in field flies were only weakly correlated to differences established under controlled rearing conditions, unlike in F1-F2 comparisons. This reflected large environmental effects on resistance associated with different sites and conditions experienced within sites. For the 8 h cold recovery assay there was no strong evidence of carry-over effects, whereas for the heat knockdown and 2 h cold recovery assays there was some evidence for such effects. However, for heat these were species specific in direction. Variance components for inherent species differences were substantial for resistance to heat and 8 h cold stress, but small for 2 h cold stress, though this may be a reflection of the species being considered in the comparisons. These findings highlight that inherent differences among species are difficult to characterise accurately without controlling for environmental sources of variation and carry-over effects. Moreover, they also emphasise the complex nature of carry-over effects that vary depending on the nature of stress traits and the species being evaluated.
Collapse
Affiliation(s)
- Michele Schiffer
- Climate Change Adaptation Group, Department of Genetics, Bio21 Institute, The University of Melbourne, Parkville 3010, Vic, Australia
| | | | | |
Collapse
|
24
|
Bonduriansky R, Day T. Nongenetic inheritance and the evolution of costly female preference. J Evol Biol 2012; 26:76-87. [DOI: 10.1111/jeb.12028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 01/08/2023]
Affiliation(s)
- R. Bonduriansky
- Evolution & Ecology Research Centre; School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW Australia
| | - T. Day
- Departments of Mathematics and Biology; Queen's University; Kingston ON Canada
| |
Collapse
|
25
|
Piiroinen S, Lyytinen A, Lindström L. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect. Evol Appl 2012; 6:313-23. [PMID: 23467574 PMCID: PMC3586620 DOI: 10.1111/eva.12001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 07/11/2012] [Indexed: 01/03/2023] Open
Abstract
Adaptation to stressful environments is one important factor influencing species invasion success. Tolerance to one stress may be complicated by exposure to other stressors experienced by the preceding generations. We studied whether parental temperature stress affects tolerance to insecticide in the invasive Colorado potato beetle Leptinotarsa decemlineata. Field-collected pyrethroid-resistant beetles were reared under either stressful (17°C) or favourable (23°C) insecticide-free environments for three generations. Then, larvae were exposed to pyrethroid insecticides in common garden conditions (23°C). Beetles were in general tolerant to stress. The parental temperature stress alone affected beetles positively (increased adult weight) but it impaired their tolerance to insecticide exposure. In contrast, offspring from the favourable temperature regime showed compensatory weight gain in response to insecticide exposure. Our study emphasizes the potential of cross-generational effects modifying species stress tolerance. When resistant pest populations invade benign environments, a re-application of insecticides may enhance their performance via hormetic effects. In turn, opposite effects may arise if parental generations have been exposed to temperature stress. Thus, the outcome of management practices of invasive pest species is difficult to predict unless we also incorporate knowledge of the evolutionary and recent (preceding generations) stress history of the given populations into pest management.
Collapse
Affiliation(s)
- Saija Piiroinen
- Centre of Excellence in Biological Interactions Research, Department of Biological and Environmental Science, University of Jyväskylä Jyväskylä, Finland
| | | | | |
Collapse
|
26
|
Pölkki M, Kangassalo K, Rantala MJ. Transgenerational effects of heavy metal pollution on immune defense of the blow fly Protophormia terraenovae. PLoS One 2012; 7:e38832. [PMID: 22719959 PMCID: PMC3373569 DOI: 10.1371/journal.pone.0038832] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/15/2012] [Indexed: 01/19/2023] Open
Abstract
Recently environmental conditions during early parental development have been found to have transgenerational effects on immunity and other condition-dependent traits. However, potential transgenerational effects of heavy metal pollution have not previously been studied. Here we show that direct exposure to heavy metal (copper) upregulates the immune system of the blow fly, Protophormia terraenovae, reared in copper contaminated food. In the second experiment, to test transgenerational effects of heavy metal, the parental generation of the P. terraenovae was reared in food supplemented with copper, and the immunocompetence of their offspring, reared on uncontaminated food, was measured. Copper concentration used in this study was, in the preliminary test, found to have no effect on mortality of the flies. Immunity was tested on the imago stage by measuring encapsulation response against an artificial antigen, nylon monofilament. We found that exposure to copper during the parental development stages through the larval diet resulted in immune responses that were still apparent in the next generation that was not exposed to the heavy metal. We found that individuals reared on copper-contaminated food developed more slowly compared with those reared on uncontaminated food. The treatment groups did not differ in their dry body mass. However, parental exposure to copper did not have an effect on the development time or body mass of their offspring. Our study suggests that heavy metal pollution has positive feedback effect on encapsulation response through generations which multiplies the harmful effects of heavy metal pollution in following generations.
Collapse
Affiliation(s)
- Mari Pölkki
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland.
| | | | | |
Collapse
|
27
|
Valtonen TM, Kangassalo K, Pölkki M, Rantala MJ. Transgenerational effects of parental larval diet on offspring development time, adult body size and pathogen resistance in Drosophila melanogaster. PLoS One 2012; 7:e31611. [PMID: 22359607 PMCID: PMC3281084 DOI: 10.1371/journal.pone.0031611] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 01/16/2012] [Indexed: 01/08/2023] Open
Abstract
Environmental conditions experienced by parents are increasingly recognized to affect offspring performance. We set out to investigate the effect of parental larval diet on offspring development time, adult body size and adult resistance to the bacterium Serratia marcescens in Drosophila melanogaster. Flies for the parental generation were raised on either poor or standard diet and then mated in the four possible sex-by-parental diet crosses. Females that were raised on poor food produced larger offspring than females that were raised on standard food. Furthermore, male progeny sired by fathers that were raised on poor food were larger than male progeny sired by males raised on standard food. Development times were shortest for offspring whose one parent (mother or the father) was raised on standard and the other parent on poor food and longest for offspring whose parents both were raised on poor food. No evidence for transgenerational effects of parental diet on offspring disease resistance was found. Although paternal effects have been previously demonstrated in D. melanogaster, no earlier studies have investigated male-mediated transgenerational effects of diet in this species. The results highlight the importance of not only considering the relative contribution each parental sex has on progeny performance but also the combined effects that the two sexes may have on offspring performance.
Collapse
Affiliation(s)
- Terhi M Valtonen
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland.
| | | | | | | |
Collapse
|
28
|
Bonduriansky R, Crean AJ, Day T. The implications of nongenetic inheritance for evolution in changing environments. Evol Appl 2011; 5:192-201. [PMID: 25568041 PMCID: PMC3353344 DOI: 10.1111/j.1752-4571.2011.00213.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022] Open
Abstract
Nongenetic inheritance is a potentially important but poorly understood factor in population responses to rapid environmental change. Accumulating evidence indicates that nongenetic inheritance influences a diverse array of traits in all organisms and can allow for the transmission of environmentally induced phenotypic changes ('acquired traits'), as well as spontaneously arising and highly mutable variants. We review models of adaptation to changing environments under the assumption of a broadened model of inheritance that incorporates nongenetic mechanisms of transmission, and survey relevant empirical examples. Theory suggests that nongenetic inheritance can increase the rate of both phenotypic and genetic change and, in some cases, alter the direction of change. Empirical evidence shows that a diversity of phenotypes - spanning a continuum from adaptive to pathological - can be transmitted nongenetically. The presence of nongenetic inheritance therefore complicates our understanding of evolutionary responses to environmental change. We outline a research program encompassing experimental studies that test for transgenerational effects of a range of environmental factors, followed by theoretical and empirical studies on the population-level consequences of such effects.
Collapse
Affiliation(s)
- Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, NSW, Australia
| | - Angela J Crean
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, NSW, Australia
| | - Troy Day
- Department of Mathematics and Statistics, Queen's University Kingston, ON, Canada ; Department of Biology, Queen's University Kingston, ON, Canada
| |
Collapse
|
29
|
Hafer N, Ebil S, Uller T, Pike N. Transgenerational effects of food availability on age at maturity and reproductive output in an asexual collembolan species. Biol Lett 2011; 7:755-8. [PMID: 21411448 DOI: 10.1098/rsbl.2011.0139] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Transgenerational effects of environmental conditions can have several important ecological and evolutionary implications. We conducted a fully factorial experiment manipulating food availability across three generations in the collembolan Folsomia candida, a springtail species that inhabits soil and leaf litter environments which vary in resource availability. Maternal and grandmaternal food availability influenced age at maturity and reproductive output. These effects appear to be cumulative rather than adaptive transgenerational life-history adjustments. Such cumulative effects can profoundly influence eco-evolutionary dynamics in both stable and fluctuating environments.
Collapse
Affiliation(s)
- Nina Hafer
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | |
Collapse
|
30
|
Roux O, Le Lann C, van Alphen JJM, van Baaren J. How does heat shock affect the life history traits of adults and progeny of the aphid parasitoid Aphidius avenae (Hymenoptera: Aphidiidae)? BULLETIN OF ENTOMOLOGICAL RESEARCH 2010; 100:543-9. [PMID: 20102660 DOI: 10.1017/s0007485309990575] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Because insects are ectotherms, their physiology, behaviour and fitness are influenced by the ambient temperature. Any changes in environmental temperatures may impact the fitness and life history traits of insects and, thus, affect population dynamics. Here, we experimentally tested the impact of heat shock on the fitness and life history traits of adults of the aphid parasitoid Aphidius avenae and on the later repercussions for their progeny. Our results show that short exposure (1 h) to an elevated temperature (36 degrees C), which is frequently experienced by parasitoids during the summer, resulted in high mortality rates in a parasitoid population and strongly affected the fitness of survivors by drastically reducing reproductive output and triggering a sex-dependent effect on lifespan. Heat stress resulted in greater longevity in surviving females and in shorter longevity in surviving males in comparison with untreated individuals. Viability and the developmental rates of progeny were also affected in a sex-dependent manner. These results underline the ecological importance of the thermal stress response of parasitoid species, not only for survival, but also for maintaining reproductive activities.
Collapse
Affiliation(s)
- O Roux
- Laboratoire d'Ecologie Fonctionnelle, UMR 5245 CNRS-UPS-INPT, Université Paul Sabatier, 31062 Toulouse cedex 04, France.
| | | | | | | |
Collapse
|
31
|
|
32
|
Bonduriansky R, Day T. Nongenetic Inheritance and Its Evolutionary Implications. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.39.110707.173441] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Russell Bonduriansky
- Evolution & Ecology Research Center and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia;
| | - Troy Day
- Departments of Mathematics and Biology, Queen's University, Kingston, Ontario, Canada;
| |
Collapse
|
33
|
Edmands S, Northrup SL, Hwang AS. MALADAPTED GENE COMPLEXES WITHIN POPULATIONS OF THE INTERTIDAL COPEPODTIGRIOPUS CALIFORNICUS? Evolution 2009; 63:2184-92. [DOI: 10.1111/j.1558-5646.2009.00689.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Plaistow SJ, Benton TG. The influence of context-dependent maternal effects on population dynamics: an experimental test. Philos Trans R Soc Lond B Biol Sci 2009; 364:1049-58. [PMID: 19324610 PMCID: PMC2666682 DOI: 10.1098/rstb.2008.0251] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parental effects arise when either the maternal or paternal phenotype influences the phenotypes of subsequent generations. Simple analytical models assume maternal effects are a mechanism creating delayed density dependence. Such models predict that maternal effects can very easily lead to population cycles. Despite this, unambiguous maternal-effect mediated cycles have not been demonstrated in any system. Additionally, much evidence has arisen to invalidate the underlying assumption that there is a simple positive correlation between maternal performance and offspring performance. A key issue in understanding how maternal effects may affect population dynamics is determining how the expression of parental effects changes in different environments. In this study, we tested the hypothesis that maternal effects influence population dynamics in a context-dependent way. Populations of the soil mite, Sancassania berlesei, were set up at high density (500 eggs) or low density (50 eggs), with eggs that were either laid by young mothers or old mothers (a previously documented maternal effect in this system). The influence of maternal age on both population and egg and body-size dynamics was only observed in the populations initiated under low density rather than high density. This difference was attributable to the context-dependence of maternal effects at the individual level. In low-density (high food) conditions, maternal effects have an impact on offspring reproductive performance, creating an impact on the population growth rate. In high density (low food), maternal effects impact more on juvenile survival (not adult size or reproduction), creating a smaller impact on the population growth rate. This context dependence of effects at the population level means that, in fluctuating populations, maternal effects cause intermittent delayed density dependence that does not lead to persistent cycles.
Collapse
Affiliation(s)
- S J Plaistow
- School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
| | | |
Collapse
|
35
|
Bowler K, Terblanche JS. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev Camb Philos Soc 2008; 83:339-55. [PMID: 18979595 DOI: 10.1111/j.1469-185x.2008.00046.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Temperature has dramatic evolutionary fitness consequences and is therefore a major factor determining the geographic distribution and abundance of ectotherms. However, the role that age might have on insect thermal tolerance is often overlooked in studies of behaviour, ecology, physiology and evolutionary biology. Here, we review the evidence for ontogenetic and ageing effects on traits of high- and low-temperature tolerance in insects and show that these effects are typically pronounced for most taxa in which data are available. We therefore argue that basal thermal tolerance and acclimation responses (i.e. phenotypic plasticity) are strongly influenced by age and/or ontogeny and may confound studies of temperature responses if unaccounted for. We outline three alternative hypotheses which can be distinguished to propose why development affects thermal tolerance in insects. At present no studies have been undertaken to directly address these options. The implications of these age-related changes in thermal biology are discussed and, most significantly, suggest that the temperature tolerance of insects should be defined within the age-demographics of a particular population or species. Although we conclude that age is a source of variation that should be carefully controlled for in thermal biology, we also suggest that it can be used as a valuable tool for testing evolutionary theories of ageing and the cellular and genetic basis of thermal tolerance.
Collapse
Affiliation(s)
- Ken Bowler
- Department of Biological and Biomedical Sciences, University of Durham, Durham City, DH1 3LE, UK
| | | |
Collapse
|
36
|
Rajamohan A, Sinclair BJ. Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:708-18. [PMID: 18342328 PMCID: PMC2384116 DOI: 10.1016/j.jinsphys.2008.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/29/2008] [Accepted: 01/29/2008] [Indexed: 05/09/2023]
Abstract
We quantified the variation and plasticity in cold tolerance among four larval stages of four laboratory strains of Drosophila melanogaster in response to both acute (<2h of cold exposure) and chronic ( approximately 7h of cold exposure) cold exposure. We observed significant differences in basal cold tolerance between the strains and among larval stages. Early larval instars were generally more tolerant of acute cold exposures than third-instar larvae. However, wandering larvae were more tolerant of chronic cold exposures than the other stages. Early stages also displayed a more pronounced rapid cold-hardening response than the later stages. Heat pre-treatment did not confer a significant increase in cold tolerance to any of the strains at any stage, pointing to different mechanisms being involved in resolving heat- and cold-elicited damage. However, when heat pre-treatment was combined with rapid cold-hardening as sequential pre-treatments, both positive (heat first) and negative (heat second) effects on cold tolerance were observed. We discuss possible mechanisms underlying cold-hardening and the effects of acute and chronic cold exposures.
Collapse
Affiliation(s)
| | - Brent J. Sinclair
- Corresponding Author: Tel: 1−519−661−2111 ext 83138, fax 1−519−661−3935
| |
Collapse
|
37
|
Bonduriansky R, Head M. Maternal and paternal condition effects on offspring phenotype in Telostylinus angusticollis (Diptera: Neriidae). J Evol Biol 2007; 20:2379-88. [PMID: 17956399 DOI: 10.1111/j.1420-9101.2007.01419.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R Bonduriansky
- Evolution and Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | |
Collapse
|
38
|
Badyaev AV. Maternal inheritance and rapid evolution of sexual size dimorphism: passive effects or active strategies? Am Nat 2007; 166 Suppl 4:S17-30. [PMID: 16224709 DOI: 10.1086/444601] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Adaptive evolution is often strongly influenced by maternal inheritance that transfers the parental strategies across generations. The consequences of maternal effects for the offspring generation depend on the between-generation similarity in environments and on the evolved sensitivity of the offspring's ontogeny to maternal effects. When these factors differ between sons and daughters, maternal effects can influence the evolution of sexual dimorphism. The establishment of house finch populations across western Montana during the last 30 years was accompanied by rapid evolutionary change in sexual size dimorphism. Here I show that traits that changed the most across generations were most influenced by maternal effects in males but not females. Maternal effects differentially affected sons' and daughters' survival; greater maternal effects were commonly associated with higher survival of sons, especially when maternal and offspring environments were similar. Stronger maternal effects extended preselection phenotypic variance in morphological traits of males, thereby producing some locally adaptive phenotypes and lessening juvenile mortality. Thus, the observed sex-specific maternal effects and their contribution to the evolution of sexual size dimorphism are likely a passive consequence of the distinct sensitivity of sons and daughters to maternal adaptations to breeding in ecologically distinct parts of the house finch's expanding range.
Collapse
Affiliation(s)
- Alexander V Badyaev
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
39
|
Rako L, Anderson AR, Sgrò CM, Stocker AJ, Hoffmann AA. The association between inversion In(3R)Payne and clinally varying traits in Drosophila melanogaster. Genetica 2007; 128:373-84. [PMID: 17028965 DOI: 10.1007/s10709-006-7375-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 02/14/2006] [Indexed: 11/24/2022]
Abstract
In Drosophila melanogaster, inversion In(3R)Payne increases in frequency towards low latitudes and has been putatively associated with variation in size and thermal resistance, traits that also vary clinally. To assess the association between size and inversion, we obtained isofemale lines of inverted and standard karyotype of In(3R)Payne from the ends of the Australian D. melanogaster east coast cline. In the northern population, there was a significant association between In(3R)Payne and body size, with standard lines from this population being relatively larger than inverted lines. In contrast, the inversion had no influence on development time or cold resistance. We strengthened our findings further in a separate study with flies from populations from the middle of the cline as well as from the cline ends. These flies were scored for wing size and the presence of In(3R)Payne using a molecular marker. In females, the inversion accounted for around 30% of the size difference between cline ends, while in males the equivalent figure was 60%. Adaptive shifts in size but not in the other traits are therefore likely to have involved genes closely associated with In(3R)Payne. Because the size difference between karyotypes was similar in different populations, there was no evidence for coadaptation within populations.
Collapse
Affiliation(s)
- L Rako
- Department of Genetics Centre for Environmental Stress and Adaptation Research-CESAR, The University of Melbourne, 3010, Parkville, Vic, Australia.
| | | | | | | | | |
Collapse
|
40
|
Rako L, Hoffmann AA. Complexity of the cold acclimation response in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:94-104. [PMID: 16257412 DOI: 10.1016/j.jinsphys.2005.09.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 05/05/2023]
Abstract
Insects can increase their resistance to cold stress when they are exposed to non-lethal conditions prior to the stress; these plastic responses are normally described only in terms of immediate effects on mortality. Here we examine in Drosophila melanogaster the short- and longer-term effects of different conditions on several measures of cold resistance, but particularly chill coma recovery. Short-term exposure to sublethal temperature (cold hardening) did not decrease chill coma recovery times even though it decreased mortality. Exposure to 12 degrees C for 2 days (acclimation) decreased chill coma recovery times for a range of stressful temperatures when flies were cultured at 25 degrees C, but did not usually affect recovery times when flies were cultured at 19 degrees C. In contrast, 2-day exposure to 12 degrees C decreased mortality regardless of rearing temperature. Rearing at 19 degrees C decreased mortality and chill coma recovery time relative to rearing at 25 degrees C. Acclimation increased the eclosion rate of eggs from stressed females, but did not affect development time or size of the offspring. These results indicate that plastic responses to cold in D. melanogaster are complex when resistance is scored in different ways, and that effects can extend across generations.
Collapse
Affiliation(s)
- Lea Rako
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, The University of Melbourne, Parkville, Vic 3010, Australia.
| | | |
Collapse
|
41
|
Plaistow SJ, Lapsley CT, Benton TG. Context-dependent intergenerational effects: the interaction between past and present environments and its effect on population dynamics. Am Nat 2005; 167:206-15. [PMID: 16670981 DOI: 10.1086/499380] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 09/07/2005] [Indexed: 11/04/2022]
Abstract
Intergenerational effects arise when parents' actions influence the reproduction and survival of their offspring and possibly later descendants. Models suggest that intergenerational effects have important implications for both population dynamical patterns and the evolution of life-history traits. However, these will depend on the nature and duration of intergenerational effects. Here we show that manipulating parental food environments of soil mites produced intergenerational effects that were still detectable in the life histories of descendents three generations later. Intergenerational effects varied in different environments and from one generation to the next. In low-food environments, variation in egg size altered a trade-off between age and size at maturity and had little effect on the size of eggs produced in subsequent generations. Consequently, intergenerational effects decreased over time. In contrast, in high-food environments, variation in egg size predominantly influenced a trade-off between fecundity and adult survival and generated increasing variation in egg size. As a result, the persistence and significance of intergenerational effects varied between high- and low-food environments. Context-dependent intergenerational effects can therefore have complex but important effects on population dynamics.
Collapse
Affiliation(s)
- Stewart J Plaistow
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | | | | |
Collapse
|
42
|
Faurby S, Kjaersgaard A, Pertoldi C, Loeschcke V. The effect of maternal and grandmaternal age in benign and high temperature environments. Exp Gerontol 2005; 40:988-96. [PMID: 16188416 DOI: 10.1016/j.exger.2005.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/02/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
Maternal age is known to be of importance for the fitness of the offspring. Few studies have, however, been able to analyse this phenomenon as an isolated effect without confounding effects through genetic variation. This difficulty can be circumvented by working with parthenogenetic organisms. We investigated the effect of maternal and grandmaternal age on wing traits, pupal survival and developmental instability (DI) in both a benign and a high temperature environment using two different parthenogenetic strains of Drosophila mercatorum. Both the maternal and grandmaternal age was found to influence all the traits. Two opposing factors seem to shape the effects of maternal age. Senescence in older mothers leads to a reduction in offspring fitness, whereas, plastic responses lead to more competitive and stress resistant offspring from older mothers. The relative importance of these factors is trait specific and is influenced by environmental factors. DI is mostly influenced by senescence whereas wing sizes are influenced mostly by plastic responses towards higher competition. This means that any analysis of fitness should take age composition of at least two generations into account.
Collapse
Affiliation(s)
- Søren Faurby
- Department of Ecology and Genetics, Institute of Biological Sciences, University of Aarhus, Ny Munkegade, Building 1540, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
43
|
Zani PA, Swanson SET, Corbin D, Cohnstaedt LW, Agotsch MD, Bradshaw WE, Holzapfel CM. GEOGRAPHIC VARIATION IN TOLERANCE OF TRANSIENT THERMAL STRESS IN THE MOSQUITO WYEOMYIA SMITHII. Ecology 2005. [DOI: 10.1890/04-1248] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Vaiserman AM, Koshel NM, Mechova LV, Voitenko VP. Cross-life stage and cross-generational effects of ? irradiations at the egg stage on Drosophila melanogaster life histories. Biogerontology 2004; 5:327-37. [PMID: 15547320 DOI: 10.1007/s10522-004-2571-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The long-term effects of X-irradiation with 0.25, 0.5, 0.75 and 1 Gy of 1 h eggs on the fitness-related life history traits in adult Drosophila melanogaster fruit flies and their offspring were investigated. Following irradiation with 0.25, 0.5 and 0.75 Gy, both F0 and F1 flies have decreased adult body weight and increased locomotor (photo- and geotactic) activity, whereas metabolic rate measured as the rate of CO2 production was unchanged or even increased, and female fecundity was slightly reduced compared to appropriate controls. In some cases, irradiation resulted in hormetic effects increased resistance to both starvation and heat shock stresses as well as life extension. An explanation of the beneficial long lasting effects induced by early irradiation is offered, which suggests that these effects are due to cross-life stage and cross-generational adaptive phenotypic plasticity.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- Laboratory of Mathematical Modelling of Aging Processes, Institute of Gerontology, Vyshgorodskaya st. 67, Kiev 04114, Ukraine.
| | | | | | | |
Collapse
|
45
|
Macdonald SS, Rako L, Batterham P, Hoffmann AA. Dissecting chill coma recovery as a measure of cold resistance: evidence for a biphasic response in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:695-700. [PMID: 15288203 DOI: 10.1016/j.jinsphys.2004.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 05/24/2023]
Abstract
Cold resistance in insects has traditionally been measured in terms of survival following a stress, but alternative methods are increasingly being used because of their relevance to the ecology of organisms and their utility in characterizing variation among species, populations and individuals. One such method capable of discriminating among Drosophila species and conspecific Drosophila populations from different environments is adult chill coma recovery time, the time taken for adults to become active again after being knocked down by a cold stress. Here we characterized the chill coma response of D. melanogaster in detail. Adults were exposed to a range of temperatures and stressful periods prior to measuring recovery. Recovery from chill coma in D. melanogaster was biphasic; as flies were stressed under cooler temperatures, recovery times leveled off and then decreased before sharply increasing again as mortality starts to occur. This biphasic response has previously been observed in D. subobscura where it has a somewhat different shape. A second mechanism therefore acts at relatively lower temperatures to ameliorate the effects of the cold stress. When D. melanogaster were reared at 19 and 25 degrees C for two generations, the shape of the curve relating temperature to recovery time was similar, but flies from the warmer temperature had longer recovery times and showed responses that leveled off and then decreased at relatively higher temperatures. As exposure time to cold stress was increased, recovery times also increased except at mild stress levels. Chill coma recovery in D. melanogaster is a complex trait and likely to reflect multiple underlying components.
Collapse
Affiliation(s)
- S S Macdonald
- Centre for Environmental Stress and Adaptation Research (CESAR), Department of Genetics, University of Melbourne, Parkville, Vic. 3010, Australia
| | | | | | | |
Collapse
|
46
|
Magiafoglou A, Hoffmann A. Thermal adaptation inDrosophila serrata under conditions linked to its southern border: Unexpected patterns from laboratory selection suggest limited evolutionary potential. J Genet 2003; 82:179-89. [PMID: 15133194 DOI: 10.1007/bf02715817] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To investigate the ability of Drosophila serrata to adapt to thermal conditions over winter at the species southern border, replicate lines from three source locations were held as discrete generations over three years at either 19 degrees C (40 generations) or temperatures fluctuating between 7 degrees C and 18 degrees C (20 generations). Populations in the fluctuating environment were maintained either with an adult 0 degrees C cold shock or without a shock. These conditions were expected to result in temperature-specific directional selection for increased viability and productivity under both temperature regimes, and reduced development time under the fluctuating-temperature regime. Selection responses of all lines were tested under both temperature regimes after controlling for carry-over effects by rearing lines in these environments for two generations. When tested in the 19 degrees C environment, lines evolving at 19 degrees C showed a faster development time and a lower productivity relative to the other lines, while cold shock reduced development time and productivity of all lines. When tested in the fluctuating environment, productivity of the 7-18 degrees C lines selected with a cold shock was relatively lower than that of lines selected without a shock, but this pattern was not observed in the other populations. Viability and body size as measured by wing length were not altered by selection or cold shock, although there were consistent effects of source population on wing length. These results provide little evidence for temperature-specific adaptation in D. serrata-although the lines had diverged for some traits, these changes were not consistent with a priori predictions. In particular, there was no evidence for life-history changes reflecting adaptation to winter conditions at the southern border. The potential for D. serrata to adapt to winter conditions may therefore be limited.
Collapse
Affiliation(s)
- Andréa Magiafoglou
- Centre for Environmental Stress and Adaptation Research, La Trobe University, Bundoora, Victoria 3086, Australia
| | | |
Collapse
|