1
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
2
|
Ray A, Liu J, Ayoubi P, Pope C. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats. Toxicol Appl Pharmacol 2010; 248:144-55. [PMID: 20691718 PMCID: PMC2946483 DOI: 10.1016/j.taap.2010.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/16/2010] [Accepted: 07/27/2010] [Indexed: 12/27/2022]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2mg/kg) gene expression profiles and changes in cell signaling pathways 24h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clustering while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis®. Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2mg/kg CPF (MAPK, oxidative stress, NFΚB, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse/synaptic transmission and transcription/translation. Nine genes were differentially affected in all four CPF dosing groups. We conclude that the most robust, consistent changes in differential gene expression in neonatal forebrain across a range of acute CPF dosages occurred at an exposure level associated with the classical marker of OP toxicity, AChE inhibition. Disruption of multiple cellular pathways, in particular cell adhesion, may contribute to the developmental neurotoxicity potential of this pesticide.
Collapse
Affiliation(s)
- Anamika Ray
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | | | | | | |
Collapse
|
3
|
Kroening S, Stix J, Keller C, Streiff C, Goppelt-Struebe M. Matrix-independent stimulation of human tubular epithelial cell migration by Rho kinase inhibitors. J Cell Physiol 2010; 223:703-12. [PMID: 20175114 DOI: 10.1002/jcp.22079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proximal tubular epithelial cells differ from other epithelial cells in the expression of N-cadherin as major adherens junction protein instead of E-cadherin. Migration of proximal epithelial cells (HKC-8) was analyzed by scratch wounding and by a barrier assay, which allowed determination of migration velocity on different extracellular matrices. Migration velocity was about threefold higher on fibronectin compared to collagen IV. The differential migration velocity was reflected by the orientation of F-actin stress fibers. TGF-beta activated secretion of fibronectin and thus increased migration on collagen IV, but did not further promote migration on fibronectin. Pharmacological inhibition of Rho kinases (ROCKs) by Y-27632, hydroxyfasudil and H-1152, or siRNA against ROCKs significantly increased migration velocity independently of the extracellular matrix. Cells at the migration front showed long filopodia, which could not be mimicked by overexpression of consitutively active Cdc42, indicative of a more complex regulation of F-actin structures. N-cadherin was reorganized from tight zipper-like structures into loosened cell-cell contacts upon incubation with Y-27632, but HKC-8 cells still migrated as cohort. Migration through single cell pores in a modified Boyden chamber assay was also stimulated by ROCK inhibitors. ROCK inhibitors enhanced migration of primary cultures of renal tubular cells which consisted of proximal and distal tubular cells expressing N-cadherin and E-cadherin, respectively. There was no indication of a switch in cadherin expression in these cells or a preferential migration of N-cadherin expressing cells. Pharmacologic inhibition of ROCKs may thus favor repair processes in renal tubules by increasing the migratory capacity of tubular epithelial cells.
Collapse
Affiliation(s)
- Sven Kroening
- Department of Nephrology and Hypertension, Medical Clinic 4, University Hospital of Erlangen, Erlangen, Germany
| | | | | | | | | |
Collapse
|
4
|
Nakanishi H, Takai Y. Frabin and other related Cdc42-specific guanine nucleotide exchange factors couple the actin cytoskeleton with the plasma membrane. J Cell Mol Med 2008; 12:1169-76. [PMID: 18410521 PMCID: PMC3865658 DOI: 10.1111/j.1582-4934.2008.00345.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Frabin, together with, at least, FGD1, FGD2, FGD3 and FGD1-related Cdc42-GEF (FRG), is a member of a family of Cdc42-specific gua-nine nucleotide exchange factors (GEFs). These proteins have multiple phosphoinositide-binding domains, including two pleckstrin homology (PH) domains and an FYVE or FERM domain. It is likely that they couple the actin cytoskeleton with the plasma membrane. Frabin associates with a specific actin structure(s) and induces the direct activation of Cdc42 in the vicinity of this structure(s), resulting in actin reorganization. Furthermore, frabin associates with a specific membrane structure(s) and induces the indirect activation of Rac in the vicinity of this structure(s), resulting in the reorganization of the actin cytoskeleton. This reorganization of the actin cytoskeleton induces cell shape changes such as the formation of filopodia and lamellipodia.
Collapse
Affiliation(s)
- Hiroyuki Nakanishi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
5
|
Delague V, Jacquier A, Hamadouche T, Poitelon Y, Baudot C, Boccaccio I, Chouery E, Chaouch M, Kassouri N, Jabbour R, Grid D, Mégarbané A, Haase G, Lévy N. Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am J Hum Genet 2007; 81:1-16. [PMID: 17564959 PMCID: PMC1950914 DOI: 10.1086/518428] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 03/15/2007] [Indexed: 12/11/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disorders are a clinically and genetically heterogeneous group of hereditary motor and sensory neuropathies characterized by muscle weakness and wasting, foot and hand deformities, and electrophysiological changes. The CMT4H subtype is an autosomal recessive demyelinating form of CMT that was recently mapped to a 15.8-Mb region at chromosome 12p11.21-q13.11, in two consanguineous families of Mediterranean origin, by homozygosity mapping. We report here the identification of mutations in FGD4, encoding FGD4 or FRABIN (FGD1-related F-actin binding protein), in both families. FRABIN is a GDP/GTP nucleotide exchange factor (GEF), specific to Cdc42, a member of the Rho family of small guanosine triphosphate (GTP)-binding proteins (Rho GTPases). Rho GTPases play a key role in regulating signal-transduction pathways in eukaryotes. In particular, they have a pivotal role in mediating actin cytoskeleton changes during cell migration, morphogenesis, polarization, and division. Consistent with these reported functions, expression of truncated FRABIN mutants in rat primary motoneurons and rat Schwann cells induced significantly fewer microspikes than expression of wild-type FRABIN. To our knowledge, this is the first report of mutations in a Rho GEF protein being involved in CMT.
Collapse
Affiliation(s)
- Valérie Delague
- INSERM U491, Génétique Médicale et Développement, Faculté de Médecine de la Timone, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Stendel C, Roos A, Deconinck T, Pereira J, Castagner F, Niemann A, Kirschner J, Korinthenberg R, Ketelsen UP, Battaloglu E, Parman Y, Nicholson G, Ouvrier R, Seeger J, De Jonghe P, Weis J, Krüttgen A, Rudnik-Schöneborn S, Bergmann C, Suter U, Zerres K, Timmerman V, Relvas JB, Senderek J. Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am J Hum Genet 2007; 81:158-64. [PMID: 17564972 PMCID: PMC1950925 DOI: 10.1086/518770] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 03/26/2007] [Indexed: 01/23/2023] Open
Abstract
GTPases of the Rho subfamily are widely involved in the myelination of the vertebrate nervous system. Rho GTPase activity is temporally and spatially regulated by a set of specific guanine nucleotide exchange factors (GEFs). Here, we report that disruption of frabin/FGD4, a GEF for the Rho GTPase cell-division cycle 42 (Cdc42), causes peripheral nerve demyelination in patients with autosomal recessive Charcot-Marie-Tooth (CMT) neuropathy. These data, together with the ability of frabin to induce Cdc42-mediated cell-shape changes in transfected Schwann cells, suggest that Rho GTPase signaling is essential for proper myelination of the peripheral nervous system.
Collapse
Affiliation(s)
- Claudia Stendel
- Institute of Cell Biology, ETH Zürich, Schafmattstrasse 18, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Delague V, Jacquier A, Hamadouche T, Poitelon Y, Baudot C, Boccaccio I, Chouery E, Chaouch M, Kassouri N, Jabbour R, Grid D, Mégarbané A, Haase G, Lévy N. Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am J Hum Genet 2007. [PMID: 17564959 DOI: 10.1086/518428/s0002-9297(07)62812-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disorders are a clinically and genetically heterogeneous group of hereditary motor and sensory neuropathies characterized by muscle weakness and wasting, foot and hand deformities, and electrophysiological changes. The CMT4H subtype is an autosomal recessive demyelinating form of CMT that was recently mapped to a 15.8-Mb region at chromosome 12p11.21-q13.11, in two consanguineous families of Mediterranean origin, by homozygosity mapping. We report here the identification of mutations in FGD4, encoding FGD4 or FRABIN (FGD1-related F-actin binding protein), in both families. FRABIN is a GDP/GTP nucleotide exchange factor (GEF), specific to Cdc42, a member of the Rho family of small guanosine triphosphate (GTP)-binding proteins (Rho GTPases). Rho GTPases play a key role in regulating signal-transduction pathways in eukaryotes. In particular, they have a pivotal role in mediating actin cytoskeleton changes during cell migration, morphogenesis, polarization, and division. Consistent with these reported functions, expression of truncated FRABIN mutants in rat primary motoneurons and rat Schwann cells induced significantly fewer microspikes than expression of wild-type FRABIN. To our knowledge, this is the first report of mutations in a Rho GEF protein being involved in CMT.
Collapse
Affiliation(s)
- Valérie Delague
- INSERM U491, Génétique Médicale et Développement, Faculté de Médecine de la Timone, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nakahara H, Otani T, Sasaki T, Miura Y, Takai Y, Kogo M. Involvement of Cdc42 and Rac small G proteins in invadopodia formation of RPMI7951 cells. Genes Cells 2004; 8:1019-27. [PMID: 14750956 DOI: 10.1111/j.1365-2443.2003.00695.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Invadopodia are membrane protrusions into the extracellular matrix by aggressive tumour cells. These structures are associated with sites of matrix degradation and invasiveness of malignant tumour cells in an in vitro fibronectin degradation/invasion assay. The Rho family small G proteins, consisting of the Rho, Rac and Cdc42 subfamilies, are implicated in various cell functions, such as cell shape change, adhesion, and motility, through reorganization of the actin cytoskeleton. We studied the roles of the Rho family small G proteins in invadopodia formation. RESULTS We first demonstrated that invadopodia of RPMI7951 human melanoma cells extended into the matrix substratum on a vertical view using a laser scanning confocal microscope system. We confirmed that invadopodia were rich in actin filaments (F-actin) and visualized clearly with F-actin staining on a vertical view as well as on a horizontal view. We then studied the roles of Rho, Rac, and Cdc42 in invasiveness of the same cell line. In the in vitro fibronectin degradation/invasion assay, a dominant active mutant of Cdc42 enhanced dot-like degradation, whereas a dominant active mutant of Rac enhanced diffuse-type degradation. Furthermore, frabin, a GDP/GTP exchange protein for Cdc42 with F-actin-binding activity, enhanced both dot-like and diffuse-type degradation. However, a dominant active mutant of Rho did not affect the fibronectin degradation. Moreover, inhibition of phosphatidylinositol-3 kinase (PI3K) disrupted the Rac and Cdc42-dependent actin structures and blocked the fibronectin degradation. CONCLUSION These results suggest that Cdc42 and Rac play important roles in fibronectin degradation and invasiveness in a coordinate manner through the frabin-Cdc42/Rac-PI3K signalling pathway.
Collapse
Affiliation(s)
- Hirokazu Nakahara
- The First Department of Oral & Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Palovuori R, Myrsky E, Eskelinen S. Membrane potential and endocytic activity control disintegration of cell-cell adhesion and cell fusion in vinculin-injected MDBK cells. J Cell Physiol 2004; 200:417-27. [PMID: 15254970 DOI: 10.1002/jcp.20024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell fusion occurs during fertilization and in the formation of organs such as muscles, placenta, and bones. We have developed an experimental model for epithelial cell fusion which permits analysis of the processes during junction disintegration and formation of polykaryons (Palovuori and Eskelinen [2000] Eur. J. Cell. Biol. 79: 961-974). In the present work, we analyzed the process in detail. Cell fusion was achieved by microinjecting into the cytoplasm of kidney epithelial Madin-Darby bovine kidney (MDBK) cells TAMRA-tagged vinculin, which incorporated into lateral membranes, focal adhesions and nucleus, and, prior fusion, induced internalization of actin, cadherin and plakoglobin to small clusters in cytoplasm. Injected vinculin was still visible at lateral membranes after removal of junctional proteins indicating that it was tightly associated and perturbed the cell-cell contact sites resulting in membrane fragmentation. Injection of active Rac together with vinculin induced accumulation of cadherin to the membranes, but did not affect vinculin-membrane association. However, it hampered cell fusion probably by supporting adherens junctions. In order to stop endocytosis, we lowered intracellular pH of vinculin-injected cells to 5.5 with the aid of nigericin in KCl buffer. In acidified cells, injected vinculin delineated lateral membranes as thick layers, cadherin remained in situ, and cell fusion was completely inhibited. Since this treatment also leads to cell depolarization, we checked the vinculin incorporation in a KCl solution containing nigericin at neutral pH. In these circumstances, both endogenous and injected vinculin delineated lateral membranes as very thin discontinuous layers, but still fusion was hampered most likely due to perturbation in the initial vinculin-membrane association. We suggest that vinculin might function as a sensor of the environment triggering cell fusion during development in circumstances where membrane potential and local and transient pH gradients play a role.
Collapse
Affiliation(s)
- Riitta Palovuori
- Biocenter Oulu and the Department of Pathology, University of Oulu, University of Oulu, Finland
| | | | | |
Collapse
|
10
|
Ikeda W, Kakunaga S, Takekuni K, Shingai T, Satoh K, Morimoto K, Takeuchi M, Imai T, Takai Y. Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-dependent, Nectin-3-independent manner. J Biol Chem 2004; 279:18015-25. [PMID: 14871893 DOI: 10.1074/jbc.m312969200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell migration plays roles in invasion of transformed cells and scattering of embryonic mesenchymal cells into surrounding tissues. We have found that Ig-like Necl-5/Tage4 is up-regulated in NIH3T3 cells transformed by an oncogenic Ras (V12Ras-NIH3T3 cells) and heterophilically trans-interacts with a Ca(2+)-independent Ig-like cell adhesion molecule nectin-3, eventually enhancing their intercellular motility. We show here that Necl-5 furthermore enhances cell migration in a nectin-3-independent manner. Studies using L fibroblasts expressing various mutants of Necl-5, NIH3T3 cells, and V12Ras-NIH3T3 cells have revealed that Necl-5 enhances serum- and platelet-derived growth factor-induced cell migration. The extracellular region of Necl-5 is necessary for directional cell migration, but not for random cell motility. The cytoplasmic region of Necl-5 is necessary for both directional and random cell movement. Necl-5 colocalizes with integrin alpha(V)beta(3) at leading edges of migrating cells. Analyses using an inhibitor or an activator of integrin alpha(V)beta(3) or a dominant negative mutant of Necl-5 have shown the functional association of Necl-5 with integrin alpha(V)beta(3) in cell motility. Cdc42 and Rac small G proteins are activated by the action of Necl-5 and required for the serum-induced, Necl-5-enhanced cell motility. These results indicate that Necl-5 regulates serum- and platelet-derived growth factor-induced cell migration in an integrin-dependent, nectin-3-independent manner, when cells do not contact other cells. We furthermore show here that enhanced motility and metastasis of V12Ras-NIH3T3 cells are at least partly the result of up-regulated Necl-5.
Collapse
Affiliation(s)
- Wataru Ikeda
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fukuhara A, Shimizu K, Kawakatsu T, Fukuhara T, Takai Y. Involvement of Nectin-activated Cdc42 Small G Protein in Organization of Adherens and Tight Junctions in Madin-Darby Canine Kidney Cells. J Biol Chem 2003; 278:51885-93. [PMID: 14530286 DOI: 10.1074/jbc.m308015200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nectins, Ca2+-independent immunoglobulin-like cell-cell adhesion molecules, trans-interact and form cell-cell adhesion, which increases the velocities of the formation of the E-cadherin-based adherens junctions (AJs) and the claudin-based tight junctions (TJs) in Madin-Darby canine kidney (MDCK) cells. The trans-interactions of nectins furthermore induce activation of Cdc42 and Rac small G proteins, but the roles of these small G proteins activated in this way remain unknown. We examined here the role and the mode of action of Cdc42 in the organization of AJs and TJs in MDCK cells. We first made the NWASP-Cdc42 and Rac interactive binding (CRIB) domain, an inhibitor of activated Cdc42, fused to the Ki-Ras CAAX motif (NWASP-CRIB-CAAX; where A is aliphatic amino acid), which was targeted to the cell-cell adhesion sites. We then found that overexpression of NWASP-CRIB-CAAX reduced the velocities of the formation of AJs and TJs. Conversely, overexpression of a constitutively active mutant of Cdc42 (V12Cdc42) increased their velocities, and the inhibitory effect of NWASP-CRIB-CAAX was suppressed by co-expression with V12Cdc42. The inhibitory effect of NWASP-CRIB-CAAX on the formation of AJs and TJs was suppressed by co-expression of nectin-1 of which trans-interaction activated endogenous Cdc42. Moreover, the formation of the claudin-based TJs required a greater amount of activated Cdc42 than that of the E-cadherin-based AJs. These results indicate that the Cdc42 activated by the trans-interactions of nectins is involved in the organization of AJs and TJs in different mechanisms in MDCK cells.
Collapse
Affiliation(s)
- Atsunori Fukuhara
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | |
Collapse
|
12
|
Reverte CG, Yuan L, Keady BT, Lacza C, Attfield KR, Mahon GM, Freeman B, Whitehead IP, Hake LE. XGef is a CPEB-interacting protein involved in Xenopus oocyte maturation. Dev Biol 2003; 255:383-98. [PMID: 12648498 DOI: 10.1016/s0012-1606(02)00089-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
XGef was isolated in a screen for proteins interacting with CPEB, a regulator of mRNA translation in early Xenopus development. XGef is a Rho-family guanine nucleotide exchange factor and activates Cdc42 in mammalian cells. Endogenous XGef (58 kDa) interacts with recombinant CPEB, and recombinant XGef interacts with endogenous CPEB in Xenopus oocytes. Injection of XGef antibodies into stage VI Xenopus oocytes blocks progesterone-induced oocyte maturation and prevents the polyadenylation and translation of c-mos mRNA; injection of XGef rescues these events. Overexpression of XGef in oocytes accelerates progesterone-induced oocyte maturation and the polyadenylation and translation of c-mos mRNA. Overexpression of a nucleotide exchange deficient version of XGef, which retains the ability to interact with CPEB, no longer accelerates oocyte maturation or Mos synthesis, suggesting that XGef exchange factor activity is required for the influence of overexpressed XGef on oocyte maturation. XGef overexpression continues to accelerate c-mos polyadenylation in the absence of Mos protein, but does not stimulate MAPK phosphorylation, MPF activation, or oocyte maturation, indicating that XGef may function through the Mos pathway to influence oocyte maturation. These results suggest that XGef may be an early acting component of the progesterone-induced oocyte maturation pathway.
Collapse
Affiliation(s)
- Carlos G Reverte
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hu WY, Fukuda N, Kanmatsuse K. Growth characteristics, angiotensin II generation, and microarray-determined gene expression in vascular smooth muscle cells from young spontaneously hypertensive rats. J Hypertens 2002; 20:1323-33. [PMID: 12131529 DOI: 10.1097/00004872-200207000-00019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We have demonstrated that vascular smooth muscle cells (VSMCs) derived from spontaneously hypertensive rats (SHR) show exaggerated growth and produce angiotensin (Ang) II and growth factors. These may reflect intrinsic abnormalities in SHR that are not caused by excessive blood pressure, and are associated with genetic abnormalities. OBJECTIVE To evaluate whether these characteristics of VSMCs from SHR are associated with hypertension or genetic factors. DESIGN AND METHODS VSMCs were obtained by an explant method from aortas of 4-week-old male SHR/Izumo and Wistar-Kyoto (WKY)/Izumo rats. We evaluated growth characteristics by [3H]thymidine incorporation and cell number increases, immunofluorescence of alpha-smooth muscle (alpha-SM) actin, mRNA expressions of phenotype markers, Ang II-generating system components, and growth factors by reverse transcription and polymerase chain reaction analysis, and Ang II levels by radioimmunoassay in VSMCs. Expression of 850 genes in VSMCs was evaluated by microarray. RESULTS VSMCs from young SHR showed increased basal DNA synthesis and higher responses of DNA synthesis and cell numbers in response to calf serum. Ang II was significantly increased in conditioned medium and cell extracts from SHR-derived VSMCs than in those from WKY rat-derived VSMCs. mRNA expression of Ang II-generating proteinases, such as cathepsin D and angiotensin-converting enzyme, was greater in VSMCs from SHRs than in cells from WKY rats. Expression of transforming growth factor-beta1, platelet-derived growth factor A-chain and basic fibroblast growth factor mRNAs was greater in VSMCs from SHRs than in cells from WKY rats. Expression of mRNAs of phenotype markers, such as matrix gamma-carboxyglutamic acid (Gla) and osteopontin, was also greater in VSMCs from SHR than in cells from WYK rats. Microarray study showed that VSMCs derived from young SHR increasingly express genes for many enzymes, adhesion molecules and cytokines. CONCLUSION This study determined that VSMCs derived from young SHR show exaggerated growth, produce Ang II and increasingly express several enzymes, adhesion molecules and cytokines, which are independent of hypertension and possibly associated with genetic abnormalities.
Collapse
MESH Headings
- Age Factors
- Angiotensin II/biosynthesis
- Angiotensin II/genetics
- Animals
- Blood Pressure/physiology
- Disease Models, Animal
- Gene Expression Profiling/methods
- Genetic Markers/genetics
- Genetic Predisposition to Disease/genetics
- Intercellular Signaling Peptides and Proteins/genetics
- Male
- Models, Cardiovascular
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/physiology
- Oligonucleotide Array Sequence Analysis/methods
- Phenotype
- RNA, Messenger/genetics
- Rats
- Rats, Inbred SHR/genetics
- Rats, Inbred SHR/growth & development
- Rats, Inbred WKY
- Systole/physiology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Wen-Yang Hu
- Second Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
14
|
Kim Y, Ikeda W, Nakanishi H, Tanaka Y, Takekuni K, Itoh S, Monden M, Takai Y. Association of frabin with specific actin and membrane structures. Genes Cells 2002; 7:413-20. [PMID: 11952837 DOI: 10.1046/j.1365-2443.2002.00524.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Frabin is an actin filament (F-actin)-binding protein with GDP/GTP exchange activity specific for Cdc42 small G protein. Expression of frabin forms filopodia-like microspikes through the direct activation of Cdc42, and lamellipodia through indirect activation of Rac small G protein. Frabin consists of the F-actin-binding domain (FAB), the Dbl homology domain (DH), the first pleckstrin homology domain (PH1), the FYVE-finger domain (FYVE), the second PH domain (PH2) from the N-terminus in this order. Although DH and PH1 show exchange activity, FAB, in addition to DH and PH1, is required for the formation of microspikes, whereas FYVE and PH2, in addition to DH and PH1, are required for the formation of lamellipodia. RESULTS Various truncated mutants of frabin were co-expressed with a dominant active mutant (DA) of Cdc42, Rac1DA, or full-length frabin in L fibroblasts. FAB was recruited to the Cdc42DA-formed filopodia-like microspikes. FAB and a fragment containing DH, PH1, FYVE and PH2 were recruited to the Rac1DA-formed membrane ruffles. Furthermore, each of these fragments served as a dominant negative mutant of frabin when co-expressed with full-length frabin, and inhibited the full-length frabin-formed morphological changes. CONCLUSION These results suggest that frabin recognizes a specific actin structure(s) through FAB and a specific membrane structure(s) through FAB and the region containing DH, PH1, FYVE and PH2. It is likely that frabin associates with the specific actin and membrane structures and activates Cdc42 and Rac in the vicinity of these structures, eventually leading to morphological changes.
Collapse
Affiliation(s)
- Yongman Kim
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ikeda W, Nakanishi H, Takekuni K, Itoh S, Takai Y. Identification of splicing variants of Frabin with partly different functions and tissue distribution. Biochem Biophys Res Commun 2001; 286:1066-72. [PMID: 11527409 DOI: 10.1006/bbrc.2001.5481] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frabin is a GDP/GTP exchange protein for Cdc42 small G protein with actin filament-binding activity. Frabin consists of the actin filament-binding domain, the Dbl homology domain, the first pleckstrin homology domain, the FYVE-finger domain, and the second pleckstrin homology domain in this order from the N-terminus. Frabin forms filopodia through direct activation of Cdc42 and lamellipodia through indirect activation of Rac small G protein. We isolated here two smaller splicing variants of frabin and named the original one, middle-size one, and smallest one frabin-alpha, -beta, and -gamma, respectively. Frabin-beta lacked the second pleckstrin homology domain and frabin-gamma lacked the FYVE-finger domain and the second pleckstrin homology domain. These three variants were expressed in all of the tissues examined but their expression levels are different depending on tissues. In L fibroblasts, all the three variants formed filopodia. As to lamellipodia, frabin-alpha formed them; frabin-beta formed them to a small extent; and frabin-gamma did not. In MDCK epithelial cells, frabin-alpha formed microspikes but frabin-beta or -gamma did not.
Collapse
Affiliation(s)
- W Ikeda
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, 565-0871, Japan
| | | | | | | | | |
Collapse
|
16
|
Ikeda W, Nakanishi H, Tanaka Y, Tachibana K, Takai Y. Cooperation of Cdc42 small G protein-activating and actin filament-binding activities of frabin in microspike formation. Oncogene 2001; 20:3457-63. [PMID: 11429692 DOI: 10.1038/sj.onc.1204463] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2001] [Revised: 03/07/2001] [Accepted: 03/14/2001] [Indexed: 11/09/2022]
Abstract
Frabin is a GDP/GTP exchange protein for Cdc42 with actin filament (F-actin)-binding activity. Cdc42 is a small GTP-binding protein that forms filopodia-like microspikes in a variety of cells. Expression of frabin indeed forms microspikes through at least activation of Cdc42 in MDCK cells and fibroblasts such as COS7, L, and NIH3T3 cells. However, the role of the F-actin-binding activity of frabin in the microspike formation remains unknown. We have examined here this role of frabin by expressing various frabin mutants, which have lost Cdc42-activating or F-actin-binding activity, with or without a dominant active mutant of Cdc42 in MDCK and COS7 cells. We show here that for the microspike formation, either of the Cdc42-activating and F- actin-binding activities of frabin alone is not sufficient and both the activities are necessary and that both the activities play a cooperative role in the microspike formation. The present results, together with the earlier finding that Cdc42 reorganizes the actin cytoskeleton at least through the N-WASP-Arp2/3 complex, suggest that frabin directly and indirectly reorganizes the actin cytoskeleton through its F-actin-binding and Cdc42-activating activities, respectively, in a cooperative manner, eventually leading to microspike formation.
Collapse
Affiliation(s)
- W Ikeda
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | |
Collapse
|