1
|
Antwi FD, Awad T, Larin M, Heesom K, Lewis P, Reddell P, Poghosyan Z, Dewitt S, Moseley R, Knäuper V. Tigilanol Tiglate-Induced Changes in Secretome Profiles Alter C-Met Phosphorylation and Cell Surface Protein Expression in H357 Head and Neck Cancer Cells. Cells 2024; 13:982. [PMID: 38891113 PMCID: PMC11171882 DOI: 10.3390/cells13110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Tigilanol tiglate (TT, also known as EBC-46) is a novel, plant-derived diterpene ester possessing anticancer and wound-healing properties. Here, we show that TT-evoked PKC-dependent S985 phosphorylation of the tyrosine kinase MET leads to subsequent degradation of tyrosine phosphorylated p-Y1003 and p-Y1234/5 MET species. PKC inhibition with BIM-1 blocked S985 phosphorylation of MET and led to MET cell surface accumulation. Treatment with metalloproteinase inhibitors prevented MET-ECD release into cell culture media, which was also blocked by PKC inhibitors. Furthermore, unbiased secretome analysis, performed using TMT-technology, identified additional targets of TT-dependent release of cell surface proteins from H357 head and neck cancer cells. We confirm that the MET co-signalling receptor syndecan-1 was cleaved from the cell surface in response to TT treatment. This was accompanied by rapid cleavage of the cellular junction adhesion protein Nectin-1 and the nerve growth factor receptor NGFRp75/TNFR16. These findings, that TT is a novel negative regulator of protumorigenic c-MET and NGFRp75/TNFR16 signalling, as well as regulating Nectin-1-mediated cell adhesion, further contribute to our understanding of the mode of action and efficacy of TT in the treatment of solid tumours.
Collapse
Affiliation(s)
- Frank Dickson Antwi
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK (S.D.); (R.M.)
| | - Tufaha Awad
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK (S.D.); (R.M.)
| | - Meghan Larin
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK (S.D.); (R.M.)
| | - Kate Heesom
- Bristol Proteomics Facility, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Phil Lewis
- Bristol Proteomics Facility, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | | - Zaruhi Poghosyan
- School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Sharon Dewitt
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK (S.D.); (R.M.)
| | - Ryan Moseley
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK (S.D.); (R.M.)
| | - Vera Knäuper
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK (S.D.); (R.M.)
| |
Collapse
|
2
|
Abstract
Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Rikki M Garner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
3
|
Ogawa H, Fujikura D, Namba H, Yamashita N, Honda T, Yamada M. Nectin-2 Acts as a Viral Entry Mediated Molecule That Binds to Human Herpesvirus 6B Glycoprotein B. Viruses 2022; 14:v14010160. [PMID: 35062364 PMCID: PMC8779676 DOI: 10.3390/v14010160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B) is a T-lymphotropic virus and the etiological agent of exanthem subitum. HHV-6B is present in a latent or persistent form after primary infection and is produced in the salivary glands or transmitted to this organ. Infected individuals continue to secrete the virus in their saliva, which is thus considered a source for virus transmission. HHV-6B primarily propagates in T cells because its entry receptor, CD134, is mainly expressed by activated T cells. The virus then spreads to the host’s organs, including the salivary glands, nervous system, and liver. However, CD134 expression is not detected in these organs. Therefore, HHV-6B may be entering cells via a currently unidentified cell surface molecule, but the mechanisms for this have not yet been investigated. In this study, we investigated a CD134-independent virus entry mechanism in the parotid-derived cell line HSY. First, we confirmed viral infection in CD134-membrane unanchored HSY cells. We then determined that nectin cell adhesion molecule 2 (nectin-2) mediated virus entry and that HHV-6B-insensitive T-cells transduced with nectin-2 were transformed into virus-permissive cells. We also found that virus entry was significantly reduced in nectin-2 knockout parotid-derived cells. Furthermore, we showed that HHV-6B glycoprotein B (gB) interacted with the nectin-2 V-set domain. The results suggest that nectin-2 acts as an HHV-6B entry-mediated protein.
Collapse
Affiliation(s)
- Hirohito Ogawa
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (H.N.); (N.Y.); (T.H.)
- Correspondence: (H.O.); (M.Y.)
| | - Daisuke Fujikura
- School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada 034-8628, Japan;
| | - Hikaru Namba
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (H.N.); (N.Y.); (T.H.)
| | - Nobuko Yamashita
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (H.N.); (N.Y.); (T.H.)
| | - Tomoyuki Honda
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (H.N.); (N.Y.); (T.H.)
| | - Masao Yamada
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (H.N.); (N.Y.); (T.H.)
- Correspondence: (H.O.); (M.Y.)
| |
Collapse
|
4
|
Vasquez CG, de la Serna EL, Dunn AR. How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion. J Cell Sci 2021; 134:272658. [PMID: 34714332 DOI: 10.1242/jcs.248757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
Collapse
Affiliation(s)
- Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
The role of mucosal barriers in human gut health. Arch Pharm Res 2021; 44:325-341. [PMID: 33890250 DOI: 10.1007/s12272-021-01327-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
The intestinal mucosa is continuously exposed to a large number of commensal or pathogenic microbiota and foreign food antigens. The intestinal epithelium forms a dynamic physicochemical barrier to maintain immune homeostasis. To efficiently absorb nutrients from food, the epithelium in the small intestine has thin, permeable layers spread over a vast surface area. Epithelial cells are renewed from the crypt toward the villi, accompanying epithelial cell death and shedding, to control bacterial colonization. Tight junction and adherens junction proteins provide epithelial cell-cell integrity. Microbial signals are recognized by epithelial cells via toll-like receptors. Environmental signals from short-chain fatty acids derived from commensal microbiota metabolites, aryl hydrocarbon receptors, and hypoxia-induced factors fortify gut barrier function. Here we summarize recent findings regarding various environmental factors for gut barrier function. Further, we discuss the role of gut barriers in the pathogenesis of human intestinal disease and the challenges of therapeutic strategies targeting gut barrier restoration.
Collapse
|
6
|
Huxham J, Tabariès S, Siegel PM. Afadin (AF6) in cancer progression: A multidomain scaffold protein with complex and contradictory roles. Bioessays 2020; 43:e2000221. [PMID: 33165933 DOI: 10.1002/bies.202000221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022]
Abstract
Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.
Collapse
Affiliation(s)
- Jennifer Huxham
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada.,Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada.,Department of Oncology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
7
|
Tomorsky J, Parker PRL, Doe CQ, Niell CM. Precise levels of nectin-3 are required for proper synapse formation in postnatal visual cortex. Neural Dev 2020; 15:13. [PMID: 33160402 PMCID: PMC7648993 DOI: 10.1186/s13064-020-00150-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Developing cortical neurons express a tightly choreographed sequence of cytoskeletal and transmembrane proteins to form and strengthen specific synaptic connections during circuit formation. Nectin-3 is a cell-adhesion molecule with previously described roles in synapse formation and maintenance. This protein and its binding partner, nectin-1, are selectively expressed in upper-layer neurons of mouse visual cortex, but their role in the development of cortical circuits is unknown. METHODS Here we block nectin-3 expression (via shRNA) or overexpress nectin-3 in developing layer 2/3 visual cortical neurons using in utero electroporation. We then assay dendritic spine densities at three developmental time points: eye opening (postnatal day (P)14), one week following eye opening after a period of heightened synaptogenesis (P21), and at the close of the critical period for ocular dominance plasticity (P35). RESULTS Knockdown of nectin-3 beginning at E15.5 or ~ P19 increased dendritic spine densities at P21 or P35, respectively. Conversely, overexpressing full length nectin-3 at E15.5 decreased dendritic spine densities when all ages were considered together. The effects of nectin-3 knockdown and overexpression on dendritic spine densities were most significant on proximal secondary apical dendrites. Interestingly, an even greater decrease in dendritic spine densities, particularly on basal dendrites at P21, was observed when we overexpressed nectin-3 lacking its afadin binding domain. CONCLUSION These data collectively suggest that the proper levels and functioning of nectin-3 facilitate normal synapse formation after eye opening on apical and basal dendrites in layer 2/3 of visual cortex.
Collapse
Affiliation(s)
- Johanna Tomorsky
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA.
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
- Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.
| | - Philip R L Parker
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
- Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Cristopher M Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA.
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
8
|
Garcia MA, Nelson WJ, Chavez N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol 2018; 10:a029181. [PMID: 28600395 PMCID: PMC5773398 DOI: 10.1101/cshperspect.a029181] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-cell junctions link cells to each other in tissues, and regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers. Here, we discuss the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelium (epidermis). Studies in these tissues reveal similarities and differences in the organization and functions of different cell-cell junctions that meet the requirements for the specialized functions of each tissue. We discuss cell-cell junction responses to genetic and environmental perturbations that provide further insights into their roles in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Miguel A Garcia
- Department of Biology, Stanford University, Stanford, California 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, California 94305
- Departments of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
9
|
Sakakibara S, Maruo T, Miyata M, Mizutani K, Takai Y. Requirement of the F-actin-binding activity of l-afadin for enhancing the formation of adherens and tight junctions. Genes Cells 2018; 23:185-199. [DOI: 10.1111/gtc.12566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Shotaro Sakakibara
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
10
|
|
11
|
Nectin spot: a novel type of nectin-mediated cell adhesion apparatus. Biochem J 2017; 473:2691-715. [PMID: 27621480 DOI: 10.1042/bcj20160235] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/23/2016] [Indexed: 01/10/2023]
Abstract
Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily cell adhesion molecules constituting a family with four members, all of which have three Ig-like loops at their extracellular regions. Nectins play roles in the formation of a variety of cell-cell adhesion apparatuses. There are at least three types of nectin-mediated cell adhesions: afadin- and cadherin-dependent, afadin-dependent and cadherin-independent, and afadin- and cadherin-independent. In addition, nectins trans-interact with nectin-like molecules (Necls) with three Ig-like loops and other Ig-like molecules with one to three Ig-like loops. Furthermore, nectins and Necls cis-interact with membrane receptors and integrins, some of which are associated with the nectin-mediated cell adhesions, and play roles in the regulation of many cellular functions, such as cell polarization, movement, proliferation, differentiation, and survival, co-operatively with these cell surface proteins. The nectin-mediated cell adhesions are implicated in a variety of diseases, including genetic disorders, neural disorders, and cancers. Of the three types of nectin-mediated cell adhesions, the afadin- and cadherin-dependent apparatus has been most extensively investigated, but the examples of the third type of apparatus independent of afadin and cadherin are recently increasing and its morphological and functional properties have been well characterized. We review here recent advances in research on this type of nectin-mediated cell adhesion apparatus, which is named nectin spot.
Collapse
|
12
|
Nectins and nectin-like molecules (Necls): Recent findings and their role and regulation in spermatogenesis. Semin Cell Dev Biol 2016; 59:54-61. [DOI: 10.1016/j.semcdb.2016.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/29/2022]
|
13
|
Togashi H. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia. Front Cell Dev Biol 2016; 4:104. [PMID: 27695692 PMCID: PMC5023662 DOI: 10.3389/fcell.2016.00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/31/2016] [Indexed: 11/13/2022] Open
Abstract
Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.
Collapse
Affiliation(s)
- Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine Kobe, Japan
| |
Collapse
|
14
|
Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, Komori T, Shimono Y, Takai Y. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem 2016; 291:5817-5831. [PMID: 26757815 PMCID: PMC4786717 DOI: 10.1074/jbc.m115.685917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development.
Collapse
Affiliation(s)
- Midori Kitayama
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and; Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kiyohito Mizutani
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and
| | - Masahiro Maruoka
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and
| | - Kenji Mandai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and
| | - Shotaro Sakakibara
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and
| | - Yuki Ueda
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and
| | - Yoshimi Takai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and.
| |
Collapse
|
15
|
Mandai K, Rikitake Y, Mori M, Takai Y. Nectins and nectin-like molecules in development and disease. Curr Top Dev Biol 2015; 112:197-231. [PMID: 25733141 DOI: 10.1016/bs.ctdb.2014.11.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Nectins and nectin-like molecules (Necls)/Cadms are Ca(2+)-independent immunoglobulin superfamily cell adhesion molecules, expressed in most cell types. Nectins mediate not only homotypic but also heterotypic cell-cell adhesion, in contrast to classic cadherins which participate only in homophilic adhesion. Nectins and Necls function in organogenesis of the eye, inner ear, tooth, and cerebral cortex and in a variety of developmental processes including spermatogenesis, axon guidance, synapse formation, and myelination. They are also involved in various diseases, such as viral infection, hereditary ectodermal dysplasia, Alzheimer's disease, autism spectrum disorder, and cancer. Thus, nectins and Necls are crucial for both physiology and pathology. This review summarizes recent advances in research on these cell adhesion molecules in development and pathogenesis.
Collapse
Affiliation(s)
- Kenji Mandai
- Division of Pathogenetic Signaling, Kobe University Graduate School of Medicine, Kobe, Japan; CREST, Japan Science and Technology Agency, Kobe, Japan
| | - Yoshiyuki Rikitake
- CREST, Japan Science and Technology Agency, Kobe, Japan; Division of Signal Transduction, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Mori
- CREST, Japan Science and Technology Agency, Kobe, Japan; Division of Neurophysiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan; Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Kobe University Graduate School of Medicine, Kobe, Japan; CREST, Japan Science and Technology Agency, Kobe, Japan.
| |
Collapse
|
16
|
Fujiwara Y, Goda N, Tamashiro T, Narita H, Satomura K, Tenno T, Nakagawa A, Oda M, Suzuki M, Sakisaka T, Takai Y, Hiroaki H. Crystal structure of afadin PDZ domain-nectin-3 complex shows the structural plasticity of the ligand-binding site. Protein Sci 2015; 24:376-85. [PMID: 25534554 DOI: 10.1002/pro.2628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
Afadin, a scaffold protein localized in adherens junctions (AJs), links nectins to the actin cytoskeleton. Nectins are the major cell adhesion molecules of AJs. At the initial stage of cell-cell junction formation, the nectin-afadin interaction plays an indispensable role in AJ biogenesis via recruiting and tethering other components. The afadin PDZ domain (AFPDZ) is responsible for binding the cytoplasmic C-terminus of nectins. AFPDZ is a class II PDZ domain member, which prefers ligands containing a class II PDZ-binding motif, X-Φ-X-Φ (Φ, hydrophobic residues); both nectins and other physiological AFPDZ targets contain this class II motif. Here, we report the first crystal structure of the AFPDZ in complex with the nectin-3 C-terminal peptide containing the class II motif. We engineered the nectin-3 C-terminal peptide and AFPDZ to produce an AFPDZ-nectin-3 fusion protein and succeeded in obtaining crystals of this complex as a dimer. This novel dimer interface was created by forming an antiparallel β sheet between β2 strands. A major structural change compared with the known AFPDZ structures was observed in the α2 helix. We found an approximately 2.5 Å-wider ligand-binding groove, which allows the PDZ to accept bulky class II ligands. Apparently, the last three amino acids of the nectin-3 C-terminus were sufficient to bind AFPDZ, in which the two hydrophobic residues are important.
Collapse
Affiliation(s)
- Yoshie Fujiwara
- Division of Structural Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan; Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan; Global-COE (Center of Excellence) Program for Integrative Membrane Biology, Kobe University, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo, 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fortugno P, Josselin E, Tsiakas K, Agolini E, Cestra G, Teson M, Santer R, Castiglia D, Novelli G, Dallapiccola B, Kurth I, Lopez M, Zambruno G, Brancati F. Nectin-4 mutations causing ectodermal dysplasia with syndactyly perturb the rac1 pathway and the kinetics of adherens junction formation. J Invest Dermatol 2014; 134:2146-2153. [PMID: 24577405 DOI: 10.1038/jid.2014.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/16/2014] [Accepted: 02/04/2014] [Indexed: 01/19/2023]
Abstract
Defective nectin-1 and -4 have been implicated in ectodermal dysplasia (ED) syndromes with variably associated features including orofacial and limb defects. In particular, nectin-1 mutations cause cleft lip/palate ED (CLPED1; OMIM#225060), whereas defective nectin-4 is associated with ED-syndactyly syndrome (EDSS1; OMIM#613573). Although the broad phenotypic overlap suggests a common mode of action of nectin-1 and -4, little is known about the pathogenic mechanisms involved. We report the identification of, to our knowledge, a previously undescribed nectin-4 homozygous p.Val242Met missense mutation in a patient with EDSS1. We used patient skin biopsy and primary keratinocytes, as well as nectin-4 ectopic expression in epithelial cell lines, to characterize functional consequences of p.Val242Met and p.Thr185Met mutations, the latter previously identified in compound heterozygosity with a truncating mutation. We show that nectin-4-altered expression perturbs nectin-1 clustering at keratinocyte contact sites and delays, but does not impede cell-cell aggregation and cadherin recruitment at adherens junctions (AJs). Moreover, trans-interaction of nectin-1 and -4 induces the activation of Rac1, a member of the Rho family of small GTPases, and regulates E-cadherin-mediated cell-cell adhesion. These data outline a synergistic action of nectin-1 and -4 in the early steps of AJ formation and implicate this interaction in modulating the Rac1 signaling pathway.
Collapse
Affiliation(s)
- Paola Fortugno
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emmanuelle Josselin
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille University, Marseille, France; Inserm-U1068 (Laboratoire d'Oncologie Moléculaire), CNRS-UMR7258, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | | | - Emanuele Agolini
- Mendel Laboratory, Casa Sollievo Della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Gianluca Cestra
- IBPM, Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Massimo Teson
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
| | - Giuseppe Novelli
- Genetics Section, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Bruno Dallapiccola
- Department of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Marc Lopez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille University, Marseille, France; Inserm-U1068 (Laboratoire d'Oncologie Moléculaire), CNRS-UMR7258, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | - Giovanna Zambruno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
| | - Francesco Brancati
- Department of Medical, Oral and Biotechnological Sciences, Gabriele D'Annunzio University of Chieti-Pescara, Chieti, Italy; Medical Genetics Unit, Policlinico Tor Vergata University Hospital, Rome, Italy.
| |
Collapse
|
18
|
Indra I, Troyanovsky R, Troyanovsky SM. Afadin controls cadherin cluster stability using clathrin-independent mechanism. Tissue Barriers 2014; 2:e28687. [PMID: 25045601 PMCID: PMC4092309 DOI: 10.4161/tisb.28687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/23/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
Afadin is an actin-binding protein that interacts with the intracellular region of the transmembrane proteins, nectins. In collaboration with other transmembrane proteins, cadherins, nectins form adherens junctions, a major type of cell-cell adhesive structures in the multicellular organisms. To elucidate the afadin function, we studied adherens junction defects induced by afadin depletion in epithelial A431 cells. We have found that the cells lacking afadin exhibit no abnormalities in morphology or in general dynamics of adherens junctions in the confluent cell cultures. The only observed difference is a slight increase in the rate of cadherin turnover in these junctions. However, afadin depletion strongly affects the assembly of new adherens junctions immediately after two cells touch one another: initiation of new junctions is significantly delayed, the growth of the nascent junctions stagnates, and their lifetime shortens. As a result, the afadin-depleted cells need much more time to establish the mature junctional structures. This defect is not caused by the clathrin-dependent endocytosis of cadherin clusters that was monitored using live-cell imaging of A431 cells co-expressing GFP-tagged E-cadherin and mCherry-tagged clathrin light chain. Taken together our data show that afadin reinforces adherens junctions and that this process is crucial for the fast formation of adherens junctions at the sites of new cell-cell contacts.
Collapse
Affiliation(s)
- Indrajyoti Indra
- Department of Dermatology; The Feinberg School of Medicine; Chicago, Illinois
| | - Regina Troyanovsky
- Department of Dermatology; The Feinberg School of Medicine; Chicago, Illinois
| | | |
Collapse
|
19
|
Ivanov AI, Naydenov NG. Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:27-99. [PMID: 23445808 DOI: 10.1016/b978-0-12-407697-6.00002-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adherens junctions (AJs) are evolutionarily conserved plasma-membrane structures that mediate cell-cell adhesions in multicellular organisms. They are organized by several types of adhesive integral membrane proteins, most notably cadherins and nectins that are clustered and stabilized by a number of cytoplasmic scaffolds. AJs are key regulators of tissue architecture and dynamics via control of cell proliferation, polarity, shape, motility, and survival. They are absolutely critical for normal tissue morphogenesis and their disruption results in pathological abnormalities in different tissues. Although the field of adherens-junction research dramatically progressed in recent years, a number of important questions remain controversial and poorly understood. This review outlines basic principles that regulate organization of AJs in mammalian epithelia and discusses recent advances and standing controversies in the field. A special attention is paid to the regulation of AJs by vesicle trafficking and the intracellular cytoskeleton as well as roles and mechanisms of adherens-junction disruption during tumor progression and tissue inflammation.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | | |
Collapse
|
20
|
Yamada T, Kuramitsu K, Rikitsu E, Kurita S, Ikeda W, Takai Y. Nectin and junctional adhesion molecule are critical cell adhesion molecules for the apico-basal alignment of adherens and tight junctions in epithelial cells. Genes Cells 2013; 18:985-98. [PMID: 24112238 DOI: 10.1111/gtc.12091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/30/2013] [Indexed: 02/02/2023]
Abstract
Tight junctions (TJs) and adherens junctions (AJs) form an apical junctional complex at the apical side of the lateral membranes of epithelial cells, in which TJs are aligned at the apical side of AJs. Many cell adhesion molecules (CAMs) and cell polarity molecules (CPMs) cooperatively regulate the formation of the apical junctional complex, but the mechanism for the alignment of TJs at the apical side of AJs is not fully understood. We developed a cellular system with which epithelial-like TJs and AJs were reconstituted in fibroblasts and analyzed the cooperative roles of CAMs and CPMs. We exogenously expressed various combinations of CAMs and CPMs in fibroblasts that express negligible amounts of these molecules endogenously. In these cells, the nectin-based cell-cell adhesion was formed at the apical side of the junctional adhesion molecule (JAM)-based cell-cell adhesion, and cadherin and claudin were recruited to the nectin-3- and JAM-based cell-cell adhesion sites to form AJ-like and TJ-like domains, respectively. This inversed alignment of the AJ-like and TJ-like domains was reversed by complementary expression of CPMs Par-3, atypical protein kinase C, Par-6, Crb3, Pals1 and Patj. We describe the cooperative roles of these CAMs and CPMs in the apico-basal alignment of TJs and AJs in epithelial cells.
Collapse
Affiliation(s)
- Tomohiro Yamada
- KAN Research Institute, Inc., 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Kurita S, Yamada T, Rikitsu E, Ikeda W, Takai Y. Binding between the junctional proteins afadin and PLEKHA7 and implication in the formation of adherens junction in epithelial cells. J Biol Chem 2013; 288:29356-68. [PMID: 23990464 DOI: 10.1074/jbc.m113.453464] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Adherens junction (AJ) is a specialized cell-cell junction structure that plays a role in mechanically connecting adjacent cells to resist strong contractile forces and to maintain tissue structure, particularly in the epithelium. AJ is mainly comprised of cell adhesion molecules cadherin and nectin and their associating cytoplasmic proteins including β-catenin, α-catenin, p120(ctn), and afadin. Our series of studies have revealed that nectin first forms cell-cell adhesion and then recruits cadherin to form AJ. The recruitment of cadherin by nectin is mediated by the binding of α-catenin and p120(ctn) to afadin. Recent studies showed that PLEKHA7 binds to p120(ctn), which is associated with E-cadherin, and maintains the integrity of AJ in epithelial cells. In this study, we showed that PLEKHA7 bound to afadin in addition to p120(ctn) and was recruited to the nectin-3α-based cell-cell adhesion site in a manner dependent on afadin, but not on p120(ctn). The binding of PLEKHA7 to afadin was required for the proper formation of AJ, but not for the formation of tight junction, in EpH4 mouse mammary gland epithelial cells. These results indicate that PLEKHA7 plays a cooperative role with nectin and afadin in the proper formation of AJ in epithelial cells.
Collapse
Affiliation(s)
- Souichi Kurita
- From the Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | |
Collapse
|
22
|
Yang Z, Zimmerman S, Brakeman PR, Beaudoin GM, Reichardt LF, Marciano DK. De novo lumen formation and elongation in the developing nephron: a central role for afadin in apical polarity. Development 2013; 140:1774-84. [PMID: 23487309 DOI: 10.1242/dev.087957] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fundamental process in biology is the de novo formation and morphogenesis of polarized tubules. Although these processes are essential for the formation of multiple metazoan organ systems, little is known about the molecular mechanisms that regulate them. In this study, we have characterized several steps in tubule formation and morphogenesis using the mouse kidney as a model system. We report that kidney mesenchymal cells contain discrete Par3-expressing membrane microdomains that become restricted to an apical domain, coinciding with lumen formation. Once lumen formation has been initiated, elongation occurs by simultaneous extension and additional de novo lumen generation. We demonstrate that lumen formation and elongation require afadin, a nectin adaptor protein implicated in adherens junction formation. Mice that lack afadin in nephron precursors show evidence of Par3-expressing membrane microdomains, but fail to develop normal apical-basal polarity and generate a continuous lumen. Absence of afadin led to delayed and diminished integration of nectin complexes and failure to recruit R-cadherin. Furthermore, we demonstrate that afadin is required for Par complex formation. Together, these results suggest that afadin acts upstream of the Par complex to regulate the integration and/or coalescence of membrane microdomains, thereby establishing apical-basal polarity and lumen formation/elongation during kidney tubulogenesis.
Collapse
Affiliation(s)
- Zhufeng Yang
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
23
|
Mandai K, Rikitake Y, Shimono Y, Takai Y. Afadin/AF-6 and Canoe. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:433-54. [DOI: 10.1016/b978-0-12-394311-8.00019-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Irie K, Shimizu K, Sakisaka T, Ikeda W, Takai Y. Roles of nectins in cell adhesion, signaling and polarization. Handb Exp Pharmacol 2012:343-72. [PMID: 20455098 DOI: 10.1007/978-3-540-68170-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules which constitute a family of four members. Nectins homophilically and heterophilically trans-interact and cause cell-cell adhesion. This nectin-based cell-cell adhesion plays roles in the organization of adherens junctions in epithelial cells and fibroblasts and synaptic junctions in neurons in cooperation with cadherins. The nectin-based cell-cell adhesion plays roles in the contacts between commissural axons and floor plate cells and in the organization of Sertoli cell-spermatid junctions in the testis, independently of cadherins. Nectins furthermore regulate intracellular signaling through Cdc42 and Rac small G proteins and cell polarization through cell polarity proteins. Pathologically, nectins serve as entry and cell-cell spread mediators of herpes simplex viruses.
Collapse
Affiliation(s)
- K Irie
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
25
|
Twiss F, Le Duc Q, Van Der Horst S, Tabdili H, Van Der Krogt G, Wang N, Rehmann H, Huveneers S, Leckband DE, De Rooij J. Vinculin-dependent Cadherin mechanosensing regulates efficient epithelial barrier formation. Biol Open 2012; 1:1128-40. [PMID: 23213393 PMCID: PMC3507192 DOI: 10.1242/bio.20122428] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/13/2012] [Indexed: 11/20/2022] Open
Abstract
Proper regulation of the formation and stabilization of epithelial cell–cell adhesion is crucial in embryonic morphogenesis and tissue repair processes. Defects in this process lead to organ malformation and defective epithelial barrier function. A combination of chemical and mechanical cues is used by cells to drive this process. We have investigated the role of the actomyosin cytoskeleton and its connection to cell–cell junction complexes in the formation of an epithelial barrier in MDCK cells. We find that the E-cadherin complex is sufficient to mediate a functional link between cell–cell contacts and the actomyosin cytoskeleton. This link involves the actin binding capacity of α-catenin and the recruitment of the mechanosensitive protein Vinculin to tensile, punctate cell–cell junctions that connect to radial F-actin bundles, which we name Focal Adherens Junctions (FAJ). When cell–cell adhesions mature, these FAJs disappear and linear junctions are formed that do not contain Vinculin. The rapid phase of barrier establishment (as measured by Trans Epithelial Electrical Resistance (TER)) correlates with the presence of FAJs. Moreover, the rate of barrier establishment is delayed when actomyosin contraction is blocked or when Vinculin recruitment to the Cadherin complex is prevented. Enhanced presence of Vinculin increases the rate of barrier formation. We conclude that E-cadherin-based FAJs connect forming cell–cell adhesions to the contractile actomyosin cytoskeleton. These specialized junctions are sites of Cadherin mechanosensing, which, through the recruitment of Vinculin, is a driving force in epithelial barrier formation.
Collapse
Affiliation(s)
- Floor Twiss
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht , PO Box 85164, 3508 AD Utrecht , The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shimono Y, Rikitake Y, Mandai K, Mori M, Takai Y. Immunoglobulin superfamily receptors and adherens junctions. Subcell Biochem 2012; 60:137-170. [PMID: 22674071 DOI: 10.1007/978-94-007-4186-7_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The immunogroblin (Ig) superfamily proteins characterized by the presence of Ig-like domains are involved in various cellular functions. The properties of the Ig-like domains to form rod-like structures and to bind specifically to other proteins make them ideal for cell surface receptors and cell adhesion molecules (CAMs). Ig-CAMs, nectins in mammals and Echinoid in Drosophila, are crucial components of cadherin-based adherens junctions in the epithelium. Nectins form cell-cell adhesion by their trans-interactions and recruit cadherins to the nectin-initiated cell-cell adhesion site to establish adherens junctions. Thereafter junction adhesion molecules, occludin, and claudins, are recruited to the apical side of adherens junctions to establish tight junctions. The recruitment of these molecules by nectins is mediated both by the direct and indirect interactions of afadin with many proteins, such as catenins, and zonula occludens proteins, and by the nectin-induced reorganization of the actin cytoskeleton. Nectins contribute to the formation of both homotypic and heterotypic types of cell-cell junctions, such as synapses in the brain, contacts between pigment and non-pigment cell layers of the ciliary epithelium in the eye, Sertoli cell-spermatid junctions in the testis, and sensory cells and supporting cells in the sensory organs. In addition, cis- and trans-interactions of nectins with various cell surface proteins, such as integrins, growth factor receptors, and nectin-like molecules (Necls) play important roles in the regulation of many cellular functions, such as cell polarization, movement, proliferation, differentiation, survival, and cell sorting. Furthermore, the Ig-CAMs are implicated in many human diseases including viral infections, ectodermal dysplasia, cancers, and Alzheimer's disease.
Collapse
Affiliation(s)
- Yohei Shimono
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 650-0017, Kobe, Japan
| | | | | | | | | |
Collapse
|
27
|
Lim ST, Chang A, Giuliano RE, Federoff HJ. Ectodomain shedding of nectin-1 regulates the maintenance of dendritic spine density. J Neurochem 2011; 120:741-51. [PMID: 22118475 DOI: 10.1111/j.1471-4159.2011.07592.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synaptic remodeling has been postulated as a mechanism underlying synaptic plasticity and cell adhesion molecules are thought to contribute to this process. We examined the role of nectin-1 ectodomain shedding on synaptogenesis in cultured rat hippocampal neurons. Nectins are Ca(2+) -independent immunoglobulin-like adhesion molecules, involved in cell-cell adherens junctions. Herein, we show that the processing of nectin-1 occurs by multiple endoproteolytic steps both in vivo and in vitro. We identified regions containing two distinct cleavage sites within the ectodomain of nectin-1. By alanine scanning mutagenesis, two point mutations that disrupt nectin-1 ectodomain cleavage events were identified. Expression of these mutants significantly alters the density of dendritic spines. These findings suggest that ectodomain shedding of nectin-1 regulates dendritic spine density and related synaptic functions.
Collapse
Affiliation(s)
- Seung T Lim
- Neuroscience Department, Georgetown University Medical Center, Washington, District of Columbia 20057, USA
| | | | | | | |
Collapse
|
28
|
Kurita S, Ogita H, Takai Y. Cooperative role of nectin-nectin and nectin-afadin interactions in formation of nectin-based cell-cell adhesion. J Biol Chem 2011; 286:36297-303. [PMID: 21880730 DOI: 10.1074/jbc.m111.261768] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nectin cell adhesion molecules interact in trans with each other through their extracellular regions and with afadin through their cytoplasmic tails, forming adherens junctions in cooperation with cadherins. In a single cell, Necl-5 (nectin-like molecule-5) localizes at the leading edge and regulates directional cell movement in response to a chemoattractant. In such a single cell, afadin also localizes at the leading edge without interacting with nectins or Necl-5. It remains unknown how the nectin-nectin and nectin-afadin interactions are initiated when moving cells contact each other to initiate the formation of adherens junctions. We show here that the Necl-5-nectin interaction induced by cell-cell contact enhances the nectin-afadin interaction. This interaction then enhances the nectin-nectin interaction, which further enhances the nectin-afadin interaction in a positive feedback manner. Thus, the Necl-5-nectin, nectin-nectin, and nectin-afadin interactions cooperatively increase the clustering of the nectin-afadin complex at the cell-cell contact sites, promoting the formation of the nectin-based cell-cell adhesion.
Collapse
Affiliation(s)
- Souichi Kurita
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | | | | |
Collapse
|
29
|
Kitt KN, Nelson WJ. Rapid suppression of activated Rac1 by cadherins and nectins during de novo cell-cell adhesion. PLoS One 2011; 6:e17841. [PMID: 21412440 PMCID: PMC3055898 DOI: 10.1371/journal.pone.0017841] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/15/2011] [Indexed: 12/22/2022] Open
Abstract
Cell-cell adhesion in simple epithelia involves the engagement of E-cadherin and nectins, and the reorganization of the actin cytoskeleton and membrane dynamics by Rho GTPases, particularly Rac1. However, it remains unclear whether E-cadherin and nectins up-regulate, maintain or suppress Rac1 activity during cell-cell adhesion. Roles for Rho GTPases are complicated by cell spreading and integrin-based adhesions to the extracellular matrix that occur concurrently with cell-cell adhesion, and which also require Rho GTPases. Here, we designed a simple approach to examine Rac1 activity upon cell-cell adhesion by MDCK epithelial cells, without cell spreading or integrin-based adhesion. Upon initiation of cell-cell contact in 3-D cell aggregates, we observed an initial peak of Rac1 activity that rapidly decreased by ∼66% within 5 minutes, and further decreased to a low baseline level after 30 minutes. Inhibition of E-cadherin engagement with DECMA-1 Fab fragments or competitive binding of soluble E-cadherin, or nectin2alpha extracellular domain completely inhibited Rac1 activity. These results indicate that cadherins and nectins cooperate to induce and then rapidly suppress Rac1 activity during initial cell-cell adhesion, which may be important in inhibiting the migratory cell phenotype and allowing the establishment of initially weak cell-cell adhesions.
Collapse
Affiliation(s)
- Khameeka N. Kitt
- Department of Biology, The James H. Clark Center, The Bio-X Program, Stanford University, Stanford, California, United States of America
| | - W. James Nelson
- Department of Biology, The James H. Clark Center, The Bio-X Program, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, The James H. Clark Center, The Bio-X Program, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Narita H, Yamamoto Y, Suzuki M, Miyazaki N, Yoshida A, Kawai K, Iwasaki K, Nakagawa A, Takai Y, Sakisaka T. Crystal Structure of the cis-Dimer of Nectin-1: implications for the architecture of cell-cell junctions. J Biol Chem 2011; 286:12659-69. [PMID: 21325282 DOI: 10.1074/jbc.m110.197368] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In multicellular organisms, cells are interconnected by cell adhesion molecules. Nectins are immunoglobulin (Ig)-like cell adhesion molecules that mediate homotypic and heterotypic cell-cell adhesion, playing key roles in tissue organization. To mediate cell-cell adhesion, nectin molecules dimerize in cis on the surface of the same cell, followed by trans-dimerization of the cis-dimers between the neighboring cells. Previous cell biological studies deduced that the first Ig-like domain of nectin and the second Ig-like domain are involved in trans-dimerization and cis-dimerization, respectively. However, to understand better the steps involved in nectin adhesion, the structural basis for the dimerization of nectin must be determined. In this study, we determined the first crystal structure of the entire extracellular region of nectin-1. In the crystal, nectin-1 formed a V-shaped homophilic dimer through the first Ig-like domain. Structure-based site-directed mutagenesis of the first Ig-like domain identified four essential residues that are involved in the homophilic dimerization. Upon mutating the four residues, nectin-1 significantly decreased cis-dimerization on the surface of cultured cells and abolished the homophilic and heterophilic adhesion activities. These results indicate that, in contrast with the previous notion, our structure represents a cis-dimer. Thus, our findings clearly reveal the structural basis for the cis-dimerization of nectins through the first Ig-like domains.
Collapse
Affiliation(s)
- Hirotaka Narita
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim J, Lilliehook C, Dudak A, Prox J, Saftig P, Federoff HJ, Lim ST. Activity-dependent alpha-cleavage of nectin-1 is mediated by a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem 2010; 285:22919-26. [PMID: 20501653 DOI: 10.1074/jbc.m110.126649] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nectin-1 is known to undergo ectodomain shedding by alpha-secretase and subsequent proteolytic processing by gamma-secretase. How secretase-mediated cleavage of nectin-1 is regulated in neuronal cells and how nectin-1 cleavage affects synaptic adhesion is poorly understood. We have investigated alpha-and gamma-secretase-mediated processing of nectin-1 in primary cortical neurons and identified which protease acts as a alpha-secretase. We report here that NMDA receptor activation, but not stimulation of AMPA or metabotropic glutamate receptors, resulted in robust alpha- and gamma-secretase cleavage of nectin-1 in mature cortical neurons. Cleavage of nectin-1 required influx of Ca(2+) through the NMDA receptor, and activation of calmodulin, but was not dependent on calcium/calmodulin-dependent protein kinase II (CaMKII) activation. We found that ADAM10 is the major secretase responsible for nectin-1 ectodomain cleavage in neurons and the brain. These observations suggest that alpha- and gamma-secretase processing of nectin-1 is a Ca(2+)/calmodulin-regulated event that occurs under conditions of activity-dependent synaptic plasticity and ADAM10 and gamma-secretase are responsible for these cleavage events.
Collapse
Affiliation(s)
- Jinsook Kim
- Neuroscience Department, Georgetown University Medical Center, Washington, D. C. 20057, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Ooshio T, Kobayashi R, Ikeda W, Miyata M, Fukumoto Y, Matsuzawa N, Ogita H, Takai Y. Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin-Darby canine kidney cells. J Biol Chem 2009; 285:5003-12. [PMID: 20008323 DOI: 10.1074/jbc.m109.043760] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with beta- and alpha-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-DeltaPR1-2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells.
Collapse
Affiliation(s)
- Takako Ooshio
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sawyer JK, Harris NJ, Slep KC, Gaul U, Peifer M. The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. ACTA ACUST UNITED AC 2009; 186:57-73. [PMID: 19596848 PMCID: PMC2712996 DOI: 10.1083/jcb.200904001] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cadherin-based adherens junctions (AJs) mediate cell adhesion and regulate cell shape change. The nectin–afadin complex also localizes to AJs and links to the cytoskeleton. Mammalian afadin has been suggested to be essential for adhesion and polarity establishment, but its mechanism of action is unclear. In contrast, Drosophila melanogaster’s afadin homologue Canoe (Cno) has suggested roles in signal transduction during morphogenesis. We completely removed Cno from embryos, testing these hypotheses. Surprisingly, Cno is not essential for AJ assembly or for AJ maintenance in many tissues. However, morphogenesis is impaired from the start. Apical constriction of mesodermal cells initiates but is not completed. The actomyosin cytoskeleton disconnects from AJs, uncoupling actomyosin constriction and cell shape change. Cno has multiple direct interactions with AJ proteins, but is not a core part of the cadherin–catenin complex. Instead, Cno localizes to AJs by a Rap1- and actin-dependent mechanism. These data suggest that Cno regulates linkage between AJs and the actin cytoskeleton during morphogenesis.
Collapse
Affiliation(s)
- Jessica K Sawyer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
34
|
Togashi H, Sakisaka T, Takai Y. Cell adhesion molecules in the central nervous system. Cell Adh Migr 2009; 3:29-35. [PMID: 19372758 DOI: 10.4161/cam.3.1.6773] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell-cell adhesion molecules play key roles at the intercellular junctions of a wide variety of cells, including interneuronal synapses and neuron-glia contacts. Functional studies suggest that adhesion molecules are implicated in many aspects of neural network formation, such as axon-guidance, synapse formation, regulation of synaptic structure and astrocyte-synapse contacts. Some basic cell biological aspects of the assembly of junctional complexes of neurons and glial cells resemble those of epithelial cells. However, the neuron specific junctional machineries are required to exert neuronal functions, such as synaptic transmission and plasticity. In this review, we describe the distribution and function of cell adhesion molecules at synapses and at contacts between synapses and astrocytes.
Collapse
Affiliation(s)
- Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | | | | |
Collapse
|
35
|
Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 2008; 9:603-15. [PMID: 18648374 DOI: 10.1038/nrm2457] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nectins and nectin-like molecules (Necls) are immunoglobulin-like transmembrane cell adhesion molecules that are expressed in various cell types. Homophilic and heterophilic engagements between family members provide cells with molecular tools for intercellular communications. Nectins primarily regulate cell-cell adhesions, whereas Necls are involved in a greater variety of cellular functions. Recent studies have revealed that nectins and NECL-5, in cooperation with integrin alphavbeta3 and platelet-derived growth factor receptor, are crucial for the mechanisms that underlie contact inhibition of cell movement and proliferation; this has important implications for the development and tissue regeneration of multicellular organisms and the phenotypes of cancer cells.
Collapse
Affiliation(s)
- Yoshimi Takai
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | |
Collapse
|
36
|
Kanzaki N, Ogita H, Komura H, Ozaki M, Sakamoto Y, Majima T, Ijuin T, Takenawa T, Takai Y. Involvement of the nectin-afadin complex in PDGF-induced cell survival. J Cell Sci 2008; 121:2008-17. [DOI: 10.1242/jcs.024620] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nectin-afadin complex is involved in the formation of cell-cell junctions, such as adherens junctions (AJs) and tight junctions (TJs). Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules, whereas afadin is an intracellular nectin-binding protein that connects nectins to the cadherin-catenin system at AJs and to the claudin–zona-occludens (ZO) protein system at TJs. Afadin–/– mice show embryonic lethality, resulting from impaired migration and improper differentiation of cells due to disorganization of cell-cell junctions during gastrulation. However, it remains to be elucidated whether disruption of afadin affects apoptosis. In the present study, we first found that embryoid bodies derived from afadin-knockout embryonic stem (ES) cells contained many more apoptotic cells than those derived from wild-type ES cells. We also revealed that apoptosis induced by serum starvation or Fas-ligand stimulation was increased in cultured NIH3T3 cells when afadin or nectin-3 was knocked down. The nectin-afadin complex was involved in the platelet-derived growth factor (PDGF)-induced activation of phosphatidylinositol 3-kinase (PI3K)-Akt signaling for cell survival. This complex was associated with PDGF receptor on the plasma membrane at cell-cell adhesion sites. Thus, the nectin-afadin complex is involved in PDGF-induced cell survival, at least through the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Noriyuki Kanzaki
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Hisakazu Ogita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Hitomi Komura
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Misa Ozaki
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Yasuhisa Sakamoto
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Takashi Majima
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Takeshi Ijuin
- Division of Lipid Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tadaomi Takenawa
- Division of Lipid Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshimi Takai
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
37
|
Nagamatsu Y, Rikitake Y, Takahashi M, Deki Y, Ikeda W, Hirata KI, Takai Y. Roles of Necl-5/Poliovirus Receptor and Rho-associated Kinase (ROCK) in the Regulation of Transformation of Integrin αVβ3-based Focal Complexes into Focal Adhesions. J Biol Chem 2008; 283:14532-41. [DOI: 10.1074/jbc.m801647200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
38
|
Ogita H, Takai Y. Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule. ACTA ACUST UNITED AC 2008; 265:1-54. [PMID: 18275885 DOI: 10.1016/s0074-7696(07)65001-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Integrin, cadherin, and growth factor receptor are key molecules for fundamental cellular functions including cell movement, proliferation, differentiation, adhesion, and survival. These cell surface molecules cross-talk with each other in the regulation of such cellular functions. Nectin and nectin-like molecule (Necl) have been identified as cell adhesion molecules that belong to the immunoglobulin superfamily. Nectin and Necl play important roles in the integration of integrin, cadherin, and growth factor receptor at the cell-cell adhesion sites of contacting cells and at the leading edges of moving cells, and thus are also involved in the fundamental cellular functions together with integrin, cadherin, and growth factor receptor. This chapter describes how newly identified cell adhesion molecules, nectin and Necl, modulate the cross-talk among integrin, cadherin, and growth factor receptor and how these integrated molecules act in the regulation of fundamental cellular functions.
Collapse
Affiliation(s)
- Hisakazu Ogita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
39
|
Lim ST, Lim KC, Giuliano RE, Federoff HJ. Temporal and spatial localization of nectin-1 and l-afadin during synaptogenesis in hippocampal neurons. J Comp Neurol 2008; 507:1228-44. [PMID: 18181141 DOI: 10.1002/cne.21608] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nectins are cell adhesion molecules that, together with the intracellular binding partner afadin, mediate adhesion and signaling at a variety of intercellular junctions. In this work we studied the distribution of nectin-1 and afadin during hippocampal synapse formation using cultured primary hippocampal neurons. Nectin-1 and afadin cluster at developing synapses between hippocampal neurons. These nectin-afadin clusters uniformly colocalize with N-cadherin-catenin pairs, suggesting that formation of developing synapses involves participation of both bimolecular systems. Nectin-1 is initially expressed at excitatory and inhibitory synapses but is progressively lost at inhibitory synapses during their maturation. Treatment of neurons with actin depolymerizing agents disrupts the synaptically localized nectin-1 and afadin cluster at an early stage and elicits nectin-1 ectodomain shedding. These data indicate that the synaptic localization of nectin-1 and l-afadin are F-actin-dependent and that the shedding of nectin-1 is a mechanism contributing to synaptic plasticity.
Collapse
Affiliation(s)
- Seung T Lim
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | |
Collapse
|
40
|
Sakamoto Y, Ogita H, Komura H, Takai Y. Involvement of Nectin in Inactivation of Integrin αvβ3 after the Establishment of Cell-Cell Adhesion. J Biol Chem 2008; 283:496-505. [DOI: 10.1074/jbc.m704195200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
41
|
Ooshio T, Fujita N, Yamada A, Sato T, Kitagawa Y, Okamoto R, Nakata S, Miki A, Irie K, Takai Y. Cooperative roles of Par-3 and afadin in the formation of adherens and tight junctions. J Cell Sci 2007; 120:2352-65. [PMID: 17606991 DOI: 10.1242/jcs.03470] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Par-3 is a cell-polarity protein that regulates the formation of tight junctions (TJs) in epithelial cells, where claudin is a major cell-cell adhesion molecule (CAM). TJs are formed at the apical side of adherens junctions (AJs), where E-cadherin and nectin are major CAMs. We have revealed that nectin first forms cell-cell adhesions, and then recruits cadherin to nectin-based cell-cell adhesion sites to form AJs and subsequently recruits claudin to the apical side of AJs to form TJs. The cytoplasmic tail of nectin binds afadin and Par-3. Afadin regulates the formation of AJs and TJs cooperatively with nectin. Here, we studied the role of Par-3 in the formation of these junctions by using Par-3-knockdown MDCK cells. Par-3 was necessary for the formation of AJs and TJs but was not necessary for nectin-based cell-cell adhesion. Par-3 promoted the association of afadin with nectin, whereas afadin was not necessary for the association of Par-3 with nectin. However, the association of afadin with nectin alone was not sufficient for the formation of AJs or TJs, and Par-3 and afadin cooperatively regulated it. We describe here these novel roles of Par-3 in the formation of junctional complexes.
Collapse
Affiliation(s)
- Takako Ooshio
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vedula SRK, Lim TS, Hui S, Kausalya PJ, Lane EB, Rajagopal G, Hunziker W, Lim CT. Molecular force spectroscopy of homophilic nectin-1 interactions. Biochem Biophys Res Commun 2007; 362:886-92. [PMID: 17822670 DOI: 10.1016/j.bbrc.2007.08.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 08/14/2007] [Indexed: 01/02/2023]
Abstract
Nectins are Ca2+ independent cell adhesion molecules localizing at the cadherin based adherens junctions. In this study, we have used atomic force microscopy to study interaction of a chimera of extra cellular fragment of nectin-1 and Fc of human IgG (nef-1) with wild type L-fibroblasts that express endogenous nectin-1 to elucidate the biophysical characteristics of homophilic nectin-1 trans-interactions at the level of single molecule. Bond strength distribution revealed three distinct bound states (or configurations) of trans-interactions between paired nectins, where each bound state has a unique unstressed off-rate and reactive compliance. Kinetic analysis of force-dependent off-rate of the bound state involving trans-interacting V-V domains between paired nectin-1 (unstressed off-rate approximately 1.465+/-0.779 s(-1), reactive compliance approximately 0.143+/-0.072 nm) was found to be closest to E-cadherin, indicating that V-V domain trans-interactions are probably necessary to initiate and promote adhesions of E-cadherin at adherens junctions (AJs).
Collapse
Affiliation(s)
- Sri Ram Krishna Vedula
- Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Miyoshi J, Takai Y. Nectin and nectin-like molecules: biology and pathology. Am J Nephrol 2007; 27:590-604. [PMID: 17823505 DOI: 10.1159/000108103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 07/17/2007] [Indexed: 12/13/2022]
Abstract
Nectins and nectin-like molecules (Necls) are structurally related transmembrane proteins primarily involved in cell adhesion. Nectins and afadin, the adaptor or anchoring protein, stabilize the epithelium and endothelium and establish apical-basal polarity of epithelial cells, independently or in cooperation with other cell adhesion molecules. Necls facilitate cell-cell communication implicated in cell movement and proliferation, immune responses, and cancer cell phenotypes. Necls interact with nectins and specific ligands at cell-cell contacts, whereas Necls associate with integrin alpha v beta 3 and growth factor receptors on the same cell surface. Besides their roles in cell adhesion, nectins regulate the activities of Rho family small G proteins which play critical roles in maintaining the apical junctions of epithelial cells through reorganization of the actin cytoskeleton. Since mice lacking the Rho GDP-dissociation inhibitor (GDI)alpha show massive proteinuria and degeneration of renal epithelial cells, nectins and other cell adhesion molecules may play roles in the structural and functional aspects of renal diseases. Here we summarize our knowledge of nectins and Necls and discuss cell adhesion biology in the kidney.
Collapse
Affiliation(s)
- Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | | |
Collapse
|
44
|
Kajita M, Ikeda W, Tamaru Y, Takai Y. Regulation of platelet-derived growth factor-induced Ras signaling by poliovirus receptor Necl-5 and negative growth regulator Sprouty2. Genes Cells 2007; 12:345-57. [PMID: 17352739 DOI: 10.1111/j.1365-2443.2007.01062.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Necl-5, known as a poliovirus receptor and up-regulated in many cancer cells, enhances platelet-derived growth factor (PDGF)-induced activation of Ras-Raf-MEK-ERK signaling, but not PDGF-induced tyrosine phosphorylation of PDGF receptor, resulting in facilitation of cell proliferation. Here, we showed that Necl-5 interacted with Sprouty2, known to be a negative regulator of growth factor-induced signaling, and reduced the inhibitory effect of Sprouty2 on PDGF-induced Ras signaling. Necl-5 was reported to be down-regulated by its trans-interaction with nectin-3 upon cell-cell contact, initiating cooperative cell-cell adhesion with cadherin. This down-regulation of Necl-5 caused tyrosine phosphorylation of Sprouty2 by c-Src, which was activated by PDGF receptor in response to PDGF, and inhibited PDGF-induced Ras signaling. Thus, Necl-5 and Sprouty2 cooperatively regulate PDGF-induced Ras signaling. The roles of Necl-5 and Sprouty2 in contact inhibition for cell proliferation are also discussed.
Collapse
Affiliation(s)
- Mihoko Kajita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
45
|
Tsukasaki Y, Kitamura K, Shimizu K, Iwane AH, Takai Y, Yanagida T. Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J Mol Biol 2006; 367:996-1006. [PMID: 17300801 DOI: 10.1016/j.jmb.2006.12.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/11/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Nectins and cadherins, members of cell adhesion molecules (CAMs), are the primary mediators for various types of cell-cell junctions. Here, intermolecular force microscopy (IFM) with force sensitivity at sub-picoNewtons is used to characterize the extracellular trans-interactions between paired nectins and paired cadherins at the single molecule level. Three and four different bound states between paired nectins and paired cadherins are, respectively, identified and characterized based on bond strength distributions where each bound state has a unique lifetime and bond length. The results indicate that multiple domains of nectins act uncooperatively, as a zipper-like multiply bonded system whereas those of cadherins act cooperatively, as a parallel-like multiply bonded system, consistent with a "fork initiation and zipper" hypothesis for the formation of cell-cell adhesion. The observed dynamic properties among multiple bonds are expected to be advantageous such that nectins search adaptively in the cell-cell exploratory recognition process while cadherins slowly stabilize in the cell-cell zippering process.
Collapse
Affiliation(s)
- Yoshikazu Tsukasaki
- Department of Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Minami Y, Ikeda W, Kajita M, Fujito T, Monden M, Takai Y. Involvement of up-regulated Necl-5/Tage4/PVR/CD155 in the loss of contact inhibition in transformed NIH3T3 cells. Biochem Biophys Res Commun 2006; 352:856-60. [PMID: 17156749 DOI: 10.1016/j.bbrc.2006.11.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 11/29/2022]
Abstract
Normal cells show contact inhibition of cell movement and proliferation, but this is lost following transformation. We found that Necl-5, originally identified as a poliovirus receptor and up-regulated in many cancer cells, enhances growth factor-induced cell movement and proliferation. We showed that when cells contact other cells, Necl-5 interacts in trans with nectin-3 and is removed by endocytosis from the cell surface, resulting in a reduction of cell movement and proliferation. We show here that up-regulation of the gene encoding Necl-5 by the oncogene V12-Ki-Ras causes enhanced cell movement and proliferation. Upon cell-cell contact, de novo synthesis of Necl-5 exceeds the rate of Necl-5 endocytosis, eventually resulting in a net increase in the amount of Necl-5 at the cell surface. In addition, expression of the gene encoding nectin-3 is markedly reduced in transformed cells. Thus, up-regulation of Necl-5 following transformation contributes to the loss of contact inhibition in transformed cells.
Collapse
Affiliation(s)
- Yukiko Minami
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Lorger M, Moelling K. Regulation of epithelial wound closure and intercellular adhesion by interaction of AF6 with actin cytoskeleton. J Cell Sci 2006; 119:3385-98. [PMID: 16882694 DOI: 10.1242/jcs.03027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AF6 is a human multi-domain protein involved in signaling and organization of cell junctions during embryogenesis. Its homologue in rat is called afadin. Three different AF6 transcripts are known, but only isoform 1 (AF6i1) has been characterized as protein. We focused on the AF6 isoform 3 (AF6i3), which differs from the AF6i1 by an additional C-terminal F-actin-binding site. Knockdown of AF6i3 in epithelial cells, which express only this isoform, resulted in impaired E-cadherin-dependent intercellular adhesion due to concomitantly reduced association of E-cadherin with F-actin and p120-catenin. Impaired intercellular adhesion also accelerated wound closure due to increased directionality of cell migration and delayed de novo formation of cell junctions. In contrast to AF6i3, the AF6i1 displayed a reduced association with the actin cytoskeleton and did not stabilize intercellular adhesion. Therefore, we propose that the AF6i3 protein stabilizes E-cadherin-dependent adhesion during dynamic processes, such as wound closure and formation of cell junctions, by linking the E-cadherin-catenin complex to the actin cytoskeleton via its F-actin-binding site.
Collapse
Affiliation(s)
- Mihaela Lorger
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland
| | | |
Collapse
|
48
|
Togashi H, Miyoshi J, Honda T, Sakisaka T, Takai Y, Takeichi M. Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. ACTA ACUST UNITED AC 2006; 174:141-51. [PMID: 16801389 PMCID: PMC2064171 DOI: 10.1083/jcb.200601089] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurites recognize their specific partners during the formation of interneuronal connections. In hippocampal pyramidal neurons, axons attach to dendrites for their synaptogenesis, but the dendrites do not form stable contacts with each other, suggesting the presence of a mechanism to allow their selective associations. Nectin-1 (N1), an immunoglobulin domain adhesive protein, is preferentially localized in axons, and its heterophilic partner, N3, is present in both axons and dendrites; we tested their potential roles in interneurite recognition. The overexpression of N1, causing its mislocalization to dendrites, induced atypical dendrodendritic as well as excessive axodendritic associations. On the contrary, the genetic deletion of N1 loosened the contacts between axons and dendritic spines. Those actions of nectins required cadherin–catenin activities, but the overexpression of cadherin itself could not accelerate neurite attachment. These results suggest that the axon-biased localization of N1 and its trans-interaction with N3 in cooperation with the cadherin machinery is critical for the ordered association of axons and dendrites.
Collapse
Affiliation(s)
- Hideru Togashi
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Makino A, Shimojima M, Miyazawa T, Kato K, Tohya Y, Akashi H. Junctional adhesion molecule 1 is a functional receptor for feline calicivirus. J Virol 2006; 80:4482-90. [PMID: 16611908 PMCID: PMC1472022 DOI: 10.1128/jvi.80.9.4482-4490.2006] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of calicivirus is not fully understood because most of the viruses cannot be propagated in tissue culture cells. We studied the mechanism of calicivirus entry into cells using feline calicivirus (FCV), a cultivable calicivirus. From the cDNA library of Crandell-Rees feline kidney (CRFK) cells, feline junctional adhesion molecule 1 (JAM-1), an immunoglobulin-like protein present in tight junctions, was identified as a cellular-binding molecule of the FCV F4 strain, a prototype strain in Japan. Feline JAM-1 expression in nonpermissive hamster lung cells led to binding and infection by F4 and all other strains tested. An anti-feline JAM-1 antibody reduced the binding of FCV to permissive CRFK cells and strongly suppressed the cytopathic effect (CPE) and FCV progeny production in infected cells. Some strains of FCV, such as F4 and F25, have the ability to replicate in Vero cells. We found that regardless of replication ability, FCV bound to Vero and 293T cells via simian and human JAM-1, respectively. In Vero cells, an anti-human JAM-1 antibody inhibited binding, CPE, and progeny production by F4 and F25. In addition, feline JAM-1 expression permitted FCV infection in 293T cells. Taken together, our results demonstrate that feline JAM-1 is a functional receptor for FCV, simian JAM-1 also functions as a receptor for some strains of FCV, and the interaction between FCV and JAM-1 molecules may be a determinant of viral tropism. This is the first report concerning a functional receptor for the viruses in the family Caliciviridae.
Collapse
Affiliation(s)
- Akiko Makino
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Sakamoto Y, Ogita H, Hirota T, Kawakatsu T, Fukuyama T, Yasumi M, Kanzaki N, Ozaki M, Takai Y. Interaction of integrin alpha(v)beta3 with nectin. Implication in cross-talk between cell-matrix and cell-cell junctions. J Biol Chem 2006; 281:19631-44. [PMID: 16679515 DOI: 10.1074/jbc.m600301200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell-matrix and cell-cell junctions cross-talk together, and these two junctions cooperatively regulate cell movement, proliferation, adhesion, and polarization. However, the mechanism of this cross-talk remains unknown. An immunoglobulin-like cell-cell adhesion molecule nectin first trans-interacts with each other to form cell-cell adhesion and induces activation of Rap1, Cdc42, and Rac small G proteins through c-Src. Trans-interacting nectin then recruits another cell-cell adhesion molecule cadherin to the nectin-based cell-cell adhesion sites and forms adherens junctions (AJs). Here, we show that integrin alpha(v)beta3 functionally and physically associates with nectin. Integrin alpha(v)beta3 colocalized with nectin at the nectin-based cell-cell adhesion sites. The association of integrin alpha(v)beta3 with nectin was direct and was mediated through their extracellular regions. This interaction was necessary for the nectin-induced signaling. Focal adhesion kinase, which relays the integrin-initiated outside-in signals to the intracellular signaling molecules, was also involved in the nectin-induced signaling. During the formation of AJs, the high affinity form of integrin alpha(v)beta3 co-localized with nectin at the primordial cell-cell contact sites, and then after the establishment of AJs, this high affinity form of integrin alpha(v)beta3 was converted to the low affinity form, which continued to co-localize with nectin. Thus, integrin alpha(v)beta3 and nectin play pivotal roles in the cross-talk between cell-matrix and cell-cell junctions and the formation of cadherin-based AJs.
Collapse
Affiliation(s)
- Yasuhisa Sakamoto
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|