1
|
Castañeda J, Hidalgo Y, Sauma D, Rosemblatt M, Bono MR, Núñez S. The Multifaceted Roles of B Cells in the Thymus: From Immune Tolerance to Autoimmunity. Front Immunol 2021; 12:766698. [PMID: 34790201 PMCID: PMC8591215 DOI: 10.3389/fimmu.2021.766698] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/14/2021] [Indexed: 12/02/2022] Open
Abstract
The thymus is home to a significant number of resident B cells which possess several unique characteristics regarding their origin, phenotype and function. Evidence shows that they originate both from precursors that mature intrathymically and as the entry of recirculating mature B cells. Under steady-state conditions they exhibit hallmark signatures of activated B cells, undergo immunoglobulin class-switch, and express the Aire transcription factor. These features are imprinted within the thymus and enable B cells to act as specialized antigen-presenting cells in the thymic medulla that contribute negative selection of self-reactive T cells. Though, most studies have focused on B cells located in the medulla, a second contingent of B cells is also present in non-epithelial perivascular spaces of the thymus. This latter group of B cells, which includes memory B cells and plasma cells, is not readily detected in the thymus of infants or young mice but gradually accumulates during normal aging. Remarkably, in many autoimmune diseases the thymus suffers severe structural atrophy and infiltration of B cells in the perivascular spaces, which organize into follicles similar to those typically found in secondary lymphoid organs. This review provides an overview of the pathways involved in thymic B cell origin and presents an integrated view of both thymic medullary and perivascular B cells and their respective physiological and pathological roles in central tolerance and autoimmune diseases.
Collapse
Affiliation(s)
- Justine Castañeda
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Yessia Hidalgo
- Cells for cells-Consorcio Regenero, Universidad de Los Andes, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Fundación Ciencia y Vida, Santiago, Chile
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
2
|
Pabst R. The thymus is relevant in the migration of mature lymphocytes. Cell Tissue Res 2019; 376:19-24. [DOI: 10.1007/s00441-019-02994-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
|
3
|
Nuñez S, Moore C, Gao B, Rogers K, Hidalgo Y, Del Nido PJ, Restaino S, Naka Y, Bhagat G, Madsen JC, Bono MR, Zorn E. The human thymus perivascular space is a functional niche for viral-specific plasma cells. Sci Immunol 2016; 1. [PMID: 28459117 DOI: 10.1126/sciimmunol.aah4447] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human thymus is susceptible to viral infections that can severely alter thymopoiesis and compromise the mechanisms of acquired tolerance to self-antigens. In humans, plasma cells residing primarily in the bone marrow confer long-lasting protection to common viruses by secreting antigen-specific antibodies. Since the thymus also houses B cells, we examined the phenotypic complexity of these thymic resident cells and their possible protective role against viral infections. Using tissue specimens collected from subjects ranging in age from 5 days to 71 years, we found that starting during the first year of life, CD138+ plasma cells (PC) begin accumulating in the thymic perivascular space (PVS) where they constitutively produce IgG without the need for additional stimulation. These, thymic PC secrete almost exclusively IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Moreover, using antigen-specific ELISpot assays, we demonstrated that thymic PC include a high frequency of cells reactive to common viral proteins. Our study reveals an unrecognized role of the PVS as a functional niche for viral-specific PCs. The PVS is located between the thymic epithelial areas and the circulation. PCs located in this compartment may therefore provide internal protection against pathogen infections and preserve the integrity and function of the organ.
Collapse
Affiliation(s)
- Sarah Nuñez
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA.,Department of Biology, University of Chile, Santiago, Chile
| | - Carolina Moore
- MGH Transplant Center and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Baoshan Gao
- MGH Transplant Center and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yessia Hidalgo
- Department of Biology, University of Chile, Santiago, Chile
| | - Pedro J Del Nido
- Department of Surgery, Boston Children Hospital, Boston, MA, USA
| | - Susan Restaino
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yoshifumi Naka
- Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Joren C Madsen
- MGH Transplant Center and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Sinkora M, Butler JE. Progress in the use of swine in developmental immunology of B and T lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:1-17. [PMID: 26708608 DOI: 10.1016/j.dci.2015.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
The adaptive immune system of higher vertebrates is believed to have evolved to counter the ability of pathogens to avoid expulsion because their high rate of germline mutations. Vertebrates developed this adaptive immune response through the evolution of lymphocytes capable of somatic generation of a diverse repertoire of their antigenic receptors without the need to increase the frequency of germline mutation. The focus of our research and this article is on the ontogenetic development of the lymphocytes, and the repertoires they generate in swine. Several features are discussed including (a) the "closed" porcine placenta means that de novo fetal development can be studied for 114 days without passive influence from the mother, (b) newborn piglets are precocial permitting them to be reared without their mothers in germ-free isolators, (c) swine are members of the γδ-high group of mammals and thus provides a greater opportunity to characterize the role of γδ T cells and (d) because swine have a simplified variable heavy and light chain genome they offer a convenient system to study antibody repertoire development.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic.
| | - John E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Rubic-Schneider T, Christen B, Brees D, Kammüller M. Minipigs in Translational Immunosafety Sciences: A Perspective. Toxicol Pathol 2016; 44:315-24. [PMID: 26839327 DOI: 10.1177/0192623315621628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The porcine immune system has been studied especially with regard to infectious diseases of the domestic pig, highlighting the economic importance of the pig in agriculture. Recently, in particular, minipigs have received attention as alternative species to dogs or nonhuman primates in drug safety evaluations. The increasing number of new drug targets investigated to modulate immunological pathways has triggered renewed interest to further explore the porcine immune system. Comparative immunological studies of minipigs with other species broaden the translational models investigated in drug safety evaluations. The porcine immune system overall seems functionally similar to other mammalian species, but there are some anatomical, immunophenotypical, and functional differences. Here, we briefly review current knowledge of the innate and adaptive immune system in pigs and minipigs. In conclusion, more systematic and cross-species comparisons are needed to assess the significance of immunological findings in minipigs in the context of translational safety sciences.
Collapse
Affiliation(s)
| | | | - Dominique Brees
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
6
|
Cheng C, Sun WK, Liu R, Wang RM, Chen YH, Wang Y, Li JL, Lu XB, Gao R. Comparison of gene expression of Toll-like receptors and antimicrobial peptides in immune organs and tissues between Yorkshire and Tibetan pigs. Anim Genet 2015; 46:272-9. [PMID: 25917299 DOI: 10.1111/age.12286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2015] [Indexed: 11/29/2022]
Abstract
Toll-like receptors (TLRs), an important family of pattern-recognition receptors, and antimicrobial peptides (AMPs) contribute to the first line of innate protection of mammals against microbes. To compare characteristics of innate immunity between Tibetan and Yorkshire pigs, we investigated the mRNA abundance of TLR genes (TLR1-TLR9) and two AMP-encoding genes (PBD-1 and PR-39) in thymus, spleen, blood, palatine tonsils, and mesenteric and pulmonary hilar lymph nodes of the two breeds at ages of 6, 12 and 24 weeks using quantitative real-time PCR. Results showed that all mRNAs were detected in all tissues. Transcript levels of the major TLR genes of Tibetan pigs were significantly higher than those of Yorkshires in most tissues of the immune system, with a higher abundance of porcine (PBD-1) (beta-defensin-1) and PR-39 mRNA in lymphoid organs and tissues, especially blood, palatine tonsils, and mesenteric and pulmonary hilar lymph nodes. Our data suggest that Tibetan pigs have stronger innate immunity for triggering local and/or systemic immune responses to eliminate infections with pathogenic microorganisms.
Collapse
Affiliation(s)
- C Cheng
- Key Laboratory for Bio-resource and Eco-environment of the Education Ministry, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, China; Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, China; College of Bioengineering, Sichuan University of Science & Engineering, Zigong, Sichuan, 643000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
de Koning D, Damen E, Nieuwland M, van Grevenhof E, Hazeleger W, Kemp B, Parmentier H. Association of natural (auto-) antibodies in young gilts with osteochondrosis at slaughter. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Influence of maternal immunization with allergens on the thymic maturation of lymphocytes with regulatory potential in children: a broad field for further exploration. J Immunol Res 2014; 2014:780386. [PMID: 25009823 PMCID: PMC4070472 DOI: 10.1155/2014/780386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022] Open
Abstract
A variety of mechanisms are involved in the regulation of offspring allergy development through maternal immunization with allergens. The passive transfer of antigens, antibodies, and cytokines, the induction of phenotypic alterations in offspring lymphocytes, and the induction of regulatory populations in offspring have been proposed, but these mechanisms remain incompletely understood. It is likely that maternal immunization could affect the intrathymic maturation of offspring TCD4+, TCD8+, γδT, nTreg, iNKT, and B lymphocytes, although there are currently no human maternal immunization protocols for the regulation of allergic responses in children. Some studies have suggested a direct interaction between the maternal immune status and the offspring intrathymic microenvironment; this interaction could influence the maturation of offspring regulatory cells and must be explored for the development of therapies to control allergy development in children.
Collapse
|
9
|
Levast B, Berri M, Wilson HL, Meurens F, Salmon H. Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:235-244. [PMID: 24384471 DOI: 10.1016/j.dci.2013.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
The current review focuses on pre- and post-natal development of intestinal immunoglobulin A (IgA) production in pig. IgA production is influenced by intrinsic genetic factors in the foetus as well as extrinsic environmental factors during the post-natal period. At birth, piglets are exposed to new antigens through maternal colostrums/milk as well as exogenous microbiota. This exposure to new antigens is critical for the proper development of the gut mucosal immune system and is characterized mainly by the establishment of IgA response. A second critical period for neonatal intestinal immune system development occurs at weaning time when the gut environment is exposed to new dietary antigens. Neonate needs to establish oral tolerance and in the absence of protective milk need to fight potential new pathogens. To improve knowledge about the immune response in the neonates, it is important to identify intrinsic and extrinsic factors which influence the intestinal immune system development and to elucidate their mechanism of action.
Collapse
Affiliation(s)
- Benoît Levast
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Mustapha Berri
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - François Meurens
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Henri Salmon
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| |
Collapse
|
10
|
Rezaei N, Abolhassani H, Aghamohammadi A, Ochs HD. Indications and safety of intravenous and subcutaneous immunoglobulin therapy. Expert Rev Clin Immunol 2014; 7:301-16. [DOI: 10.1586/eci.10.104] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Failure of neonatal B-cell tolerance induction by ABO-incompatible kidney grafts in piglets. Transplantation 2013; 96:519-28. [PMID: 23860083 DOI: 10.1097/tp.0b013e31829b0840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND ABO-incompatible (ABOi) infant heart transplantation results in B-cell tolerance to graft A/B antigens, confirming human susceptibility to acquired immunologic or "neonatal" tolerance as described originally in murine models. Starting with this clinical observation, we sought to model neonatal ABOi organ transplantation to allow mechanistic studies of tolerance. METHODS Plasma anti-A/B antibodies were measured over time in piglets to establish developmental antibody kinetics. Blood group O piglets received kidney allografts from group A (AO-incompatible) or group O (AO-compatible) donors under cyclosporine immunosuppression. Anti-A antibodies were measured serially after transplantation; A/H antigen expression and allograft rejection were assessed in graft biopsies. RESULTS Anti-A antibodies developed in naïve piglets in a kinetic pattern analogous to human infants; anti-B remained low. After transplantation, anti-A antibodies developed similarly in AO-incompatible and AO-compatible groups and were not suppressed by cyclosporine. A/H antigen expression was persistent in all graft biopsies; however, A/H antigens were not detected in vascular endothelium. Cellular and antibody-mediated rejection was absent or minimal in early and late biopsies in both groups, with one exception. CONCLUSIONS Naturally delayed isohemagglutinin production in piglets is analogous to the developmental kinetics in human infants. However, in contrast to deficient anti-A antibody production as seen long-term after "A-into-O" infant heart transplant recipients, normal anti-A antibody production after "A-into-O" piglet kidney transplantation indicates that tolerance did not develop despite graft A antigen persistence. These findings suggest that the impact on the host immune system of exposure to nonself ABH antigens during early life in human heart versus porcine kidney grafts may depend on expression in vascular endothelium.
Collapse
|
12
|
Sun X, Wertz N, Lager K, Sinkora M, Stepanova K, Tobin G, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XXII. λ Rearrangement precedes κ rearrangement during B-cell lymphogenesis in swine. Immunology 2012; 137:149-59. [PMID: 22724577 PMCID: PMC3461396 DOI: 10.1111/j.1365-2567.2012.03615.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 01/01/2023] Open
Abstract
VDJ and VJ rearrangements, expression of RAG-1, Tdt and VpreB, and the presence of signal joint circles (SJC) were used to identify sites of B-cell lymphogenesis. VDJ, VλJλ but not VκJκ rearrangements or SJC were recovered from yolk sac (YS) at 20 days of gestation (DG) along with strong expression of VpreB and RAG-1 but weak Tdt expression. VλJλ rearrangements but not VκJκ rearrangements were recovered from fetal liver at 30-50 DG. SJC were pronounced in bone marrow at 95 DG where VκJκ rearrangements were first recovered. The VλJλ rearrangements recovered at 20-50 DG used some of the same Vλ and Jλ segments seen in older fetuses and adult animals. Hence the textbook paradigm for the order of light-chain rearrangement does not apply to swine. Consistent with weak Tdt expression in early sites of lymphogenesis, N-region additions in VDJ rearrangements were more frequent at 95 DG. Junctional diversity in VλJλ rearrangement was limited at all stages of development. There was little evidence for B-cell lymphogenesis in the ileal Peyer's patches. The widespread recovery of VpreB transcripts in whole, non-lymphoid tissue was unexpected as was its recovery from bone marrow and peripheral blood monocytes. Based on recovery of SJC, B-cell lymphogenesis continues for at least 5 weeks postpartum.
Collapse
Affiliation(s)
- Xiuzhu Sun
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Butler JE, Santiago-Mateo K, Sun XZ, Wertz N, Sinkora M, Francis DH. Antibody Repertoire Development in Fetal and Neonatal Piglets. XX. B Cell Lymphogenesis Is Absent in the Ileal Peyer’s Patches, Their Repertoire Development Is Antigen Dependent, and They Are Not Required for B Cell Maintenance. THE JOURNAL OF IMMUNOLOGY 2011; 187:5141-9. [DOI: 10.4049/jimmunol.1101871] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Schwartz-Albiez R, Monteiro RC, Rodriguez M, Binder CJ, Shoenfeld Y. Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clin Exp Immunol 2010; 158 Suppl 1:43-50. [PMID: 19883423 DOI: 10.1111/j.1365-2249.2009.04026.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Natural antibodies are produced by B lymphocytes in the absence of external antigen stimulation. With their ability to recognize self, altered self and foreign antigens, they comprise an important first-line defence against invading pathogens, but are also important for tissue homeostasis. By recognizing oligosaccharides expressed on tumour cells and modified cell surface structures accompanying necrosis, natural antibodies have an important anti-tumorigenic function. IVIg contains a wide spectrum of specificities presented in normal plasma including natural antibodies and has been shown to exert inhibitory effects on tumour cells through a subfraction of anti-vascular endothelial growth factor immunoglobulin (Ig)G antibodies with anti-angiogenic properties. IgA antibodies also have potent immunomodulatory properties, being able to both induce and suppress immune responses. IgA-mediated inhibitory function is able to inhibit several inflammatory diseases including asthma and glomerulonephritis. Autoantibodies of the IgM type, on the other hand, have shown promising results in the treatment of multiple sclerosis. These autoantibodies promote remyelination rather than modulating inflammation. Oxidation-specific epitopes, as found in atherosclerotic lesions and on apoptotic cells, comprise one important target of natural antibodies. By recognizing these epitopes, natural antibodies neutralize proinflammatory responses and mediate atheroprotection.
Collapse
|
15
|
Sinkora M, Butler JE. The ontogeny of the porcine immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:273-83. [PMID: 18762210 PMCID: PMC7103207 DOI: 10.1016/j.dci.2008.07.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 05/22/2023]
Abstract
Cellular and humoral aspects of the immune response develop sequentially in the fetus. During the ontogeny, the pluripotent stem cells emerge and differentiate into all hematopoietic lineages. Basic questions including the identification of the first lympho-hematopoietic sites, the origin of T and B lymphocytes, the development of different subpopulations of alphabeta T, gammadelta T and B lymphocytes as well as development of innate immunity and the acquisition of full immunological capacities are discussed here for swine and compared with other species. The description of related topics such as fertilization, morphogenesis, maternal-fetal-neonatal physiology and early neonatal development are also discussed.
Collapse
Affiliation(s)
- Marek Sinkora
- Department of Immunology and Gnotobiology, Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Doly 183, 54922 Nový Hrádek, Czech Republic.
| | | |
Collapse
|
16
|
Rothkötter HJ. Anatomical particularities of the porcine immune system--a physician's view. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:267-272. [PMID: 18775744 DOI: 10.1016/j.dci.2008.06.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 05/26/2023]
Abstract
In this article the anatomical structure of the porcine immune organs is described. The focus is on their particularities that are related to the use of pigs as an animal model. Key issues of the intrauterine development of the lymphoid organs are presented, such as the specific epithelio-chorial placenta, the appearance of the thymic tissue and the initial development of B cells. The role of the thymus for the development of alpha/beta and gamma/delta T cells and the location of tonsillar tissue in the naso-pharynx, in the oral cavity and at the basis of the tongue are described. The porcine spleen is of interest for surgical techniques to treat splenic trauma adequately. The observation of the inverted lymph node structure of pigs is puzzling and it remains unclear why only few species have this distinct morphological organisation. Based on the functional differences in lymphocyte recirculation observed in pigs, specific lymph cannulation experiments are possible in the porcine immune system. The porcine intestinal lymphoid tissue and the lymphocytes in the mucosal epithelium and lamina propria are of interest for studying the gut immune responses. For use as a model the fact that the pig is a monogastric omnivorous animal represents an advantage, although the porcine ileal Peyer's patch has no obvious anatomical equivalent in man. Based on the detailed knowledge of porcine immune morphology the pig is suitable as model animal for immunology--in addition to the various experimental approaches in physiology, pharmacology, surgery, etc. that are applicable to human medicine.
Collapse
Affiliation(s)
- Hermann-Josef Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| |
Collapse
|
17
|
Isolator and other neonatal piglet models in developmental immunology and identification of virulence factors. Anim Health Res Rev 2009; 10:35-52. [DOI: 10.1017/s1466252308001618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe postnatal period is a ‘critical window’, a time when innate and passive immunity protect the newborn mammal while its own adaptive immune system is developing. Neonatal piglets, especially those reared in isolators, provide valuable tools for studying immunological development during this period, since environmental factors that cause ambiguity in studies with conventional animals are controlled by the experimenter. However, these models have limited value unless the swine immune system is first characterized and the necessary immunological reagents developed. Characterization has revealed numerous features of the swine immune system that did not fit mouse paradigms but may be more generally true for most mammals. These include fetal class switch recombination that is uncoupled from somatic hypermutation, the relative importance of the molecular mechanisms used to develop the antibody repertoire, the role of gut lymphoid tissue in that process, and the limited heavy chain repertoire but diverse IgG subclass repertoire. Knowledge gained from studies of adaptive immunity in isolator-reared neonatal pigs suggests that isolator piglets can be valuable in identification of virulence factors that are often masked in studies using conventional animals.
Collapse
|
18
|
Butler JE, Sinkora M. The isolator piglet: a model for studying the development of adaptive immunity. Immunol Res 2008; 39:33-51. [PMID: 17917054 DOI: 10.1007/s12026-007-0062-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/28/2022]
Abstract
The period from late gestation to weaning in neonatal mammals is a critical window when the adaptive immune system develops and replaces the protection temporarily provided by passive immunity and pre-adaptive antibodies. It is also when oral tolerance to dietary antigen and the distinction between commensal and pathogenic gut bacteria becomes established resulting in immune homeostasis. The reproductive biology of swine provides a unique model for distinguishing the effects of different factors on immune development during this critical period because all extrinsic factors are controlled by the experimenter. This chapter reviews this early stage of development and the usefulness of the piglet model for understanding events during this transitional stage. The review also describes the major features of the porcine immune system and the immune stimulatory and dysregulatory factors that act during this period. The value of the model to medical science in such areas as food allergy, organ transplantation, cystic fibrosis and the production of humanized antibodies for immuno-therapy is discussed.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology and Interdisciplinary Graduate Immunology Program, University of Iowa, 3-550 BSB, 51 Newton Rd, Iowa City, IA 52242, USA.
| | | |
Collapse
|
19
|
Butler JE, Wertz N. Antibody Repertoire Development in Fetal and Neonatal Piglets. XVII. IgG Subclass Transcription Revisited with Emphasis on New IgG3. THE JOURNAL OF IMMUNOLOGY 2006; 177:5480-9. [PMID: 17015734 DOI: 10.4049/jimmunol.177.8.5480] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal piglets offer an in vivo model for determining whether Ag-independent IgG subclass transcription proceeds in a manner that differs from subclass transcription in pigs exposed to environmental Ags and TLR ligands. Our data from approximately 12,000 Cgamma clones from > 60 piglets provide the first report on the relative usage of all known porcine Cgamma genes in fetal and young pigs. Studies revealed that among the six Cgamma genes, allelic variants of IgG1 comprised 50-80% of the repertoire, and IgG2 alleles comprised < 10% in nearly all tissues. However, relative transcription of allelic variants of IgG1 randomly deviate from the 1:1 ratio expected in heterozygotes. Most surprising was the finding that IgG3 accounted for half of all Cgamma transcripts in the ileal Peyer's patches (IPPs) and mesenteric lymph nodes but on average only approximately 5% of the clones from the thymus, tonsil, spleen, peripheral blood, and bone marrow of newborns. Lymphoid tissues from late term fetuses revealed a similar expression pattern. Except for IgG3 in the IPPs and mesenteric lymph nodes, no stochastic pattern of Cgamma expression during development was seen in animals from mid-gestation through 5 mo. The age and tissue dependence of IgG3 transcription paralleled the developmental persistence of the IPP, and its near disappearance corresponds to the diversification of the preimmune VDJ repertoire in young piglets. We hypothesize that long-hinged porcine IgG3 may be important in preadaptive responses to T cell-independent Ags similar to those described for its murine namesake.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
20
|
Butler JE, Sun J, Wertz N, Sinkora M. Antibody repertoire development in swine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:199-221. [PMID: 16168480 DOI: 10.1016/j.dci.2005.06.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Swine belong to the Order Artiodactyla and like mice and humans, express IgM, IgD, IgG, IgE and IgA antibodies but a larger number of IgG subclasses. Like rabbits and chickens, expressed V(H) genes belong to the ancestral V(H)3 family and only 5 comprise >80% of the pre-immune repertoire. Since they use primarily two D(H) segments and have a single J(H) like chickens, junctional diversity plays a relatively greater role in repertoire formation than in humans and mice. Proportional light chain usage surprisingly resembles that in humans and is therefore distinctly different from the predominant kappa chain usage (>90%) of lab rodents and predominant lambda chain usage in other ungulates (>90%). The pre-immune V(kappa) repertoire also appears restricted since >95% of V(kappa)J(kappa) rearrangements use only a few members of the IGKV2 family and only J(kappa)2. Two V(lambda) families (IGLV3 and IGLV8) are used in forming the pre-immune repertoire. Antibodies that do not utilize light chains as in camelids, or the lengthy CDR3 regions seen in cattle that use V(H)4 family genes, have not been reported in swine. B cell lymphogenesis first occurs in the yolk sac but early VDJ rearrangements differ from mice and humans in that nearly 100% are in-frame and N-region additions are already present. Swine possess ileal Peyers patches like sheep which may be important for antigen-independent B cell repertoire diversification. The presence of pro B-like cells in interlobular areas of thymus and mature B cells in the thymic medulla that have switched to especially IgA in early gestation, is so far unique among mammals. The offspring of swine are believed to receive no passive immunity in utero and are precosial. Thus, they are a useful model for studies on fetal-neonatal immunological development. The model has already shown that: (a) colonization of the gut is required for responsiveness to TD and TI-2 antigens, (b) responsiveness due to colonization depends on bacterial PAMPs and (c) some viral pathogens can interfere with the establishment of immune homeostasis in neonates. Studies on swine reinforce concerns that caution be used when paradigms arising from studies in one mammal are extrapolated to other mammals, even when similarities are predicted by taxonomy and phylogeny. Swine exemplify a situation in which evolutionary diversification of the immune system is not characteristic of an entire order or even of other related systems in the same species.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
21
|
Boros P, Gondolesi G, Bromberg JS. High dose intravenous immunoglobulin treatment: mechanisms of action. Liver Transpl 2005; 11:1469-80. [PMID: 16315304 DOI: 10.1002/lt.20594] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intravenous immunoglobulin (IVIg) treatment was introduced as replacement therapy for patients with antibody deficiencies, but evidence suggests that a wide range of immune-mediated conditions could benefit from IVIg. The immunoglobulins are precipitated from human plasma by fractionation methods. In conclusion, the differences in basic fractionation methods and the addition of various modifications for purification, stabilization, and virus inactivation result in products significantly different from each other.
Collapse
Affiliation(s)
- Peter Boros
- Recanati/Miller Transplantation Institute, The Mount Sinai School of Medicine, PO Box 1504, New York, NY 10029-6574, USA.
| | | | | |
Collapse
|
22
|
McAleer J, Weber P, Sun J, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XI. The thymic B-cell repertoire develops independently from that in blood and mesenteric lymph nodes. Immunology 2005; 114:171-83. [PMID: 15667562 PMCID: PMC1782081 DOI: 10.1111/j.1365-2567.2004.02101.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 10/15/2004] [Accepted: 10/15/2004] [Indexed: 12/01/2022] Open
Abstract
The origin and function of thymic B cells is currently unresolved. In the present study we compared V(H) gene repertoire diversification in >3500 cloned VDJs (from 11 animals at three time-points, using three to five animals per time-point) that were expressed with immunoglobulin (Ig)M, IgD, IgG, IgA and IgE in thymus, mesenteric lymph nodes (MLN) and peripheral blood B cells (PBB) of newborn piglets and 5-week-old isolator piglets maintained germfree (GF) or colonized with Escherichia coli. The results showed that the repertoire expressed with IgM, IgD, IgG and IgA in PBB and MLN remained polyclonal, undiversified and unselected in piglets maintained GF for 5 weeks, that age and colonization resulted in significant repertoire diversification of IgG and IgA in the MLN and of IgG in blood, that the thymic B-cell repertoire was polyclonal, unaffected by colonization and showed no clonal selection in any isotype, and that the thymic IgA and IgE repertoires were more diverse at birth than the repertoire of any isotype in MLN or PBB. IgD was seldom recovered from the PBB of newborn piglets or at any time-point in thymus, but was recovered in the MLN of all 11 animals examined. The IgD and IgM repertoires in all tissues remained polyclonal and unselected, although V(H) usage by IgD transcripts did not always parallel that of IgM in the same tissue. Therefore, isotype-switched B cells in the thymic medulla cannot be accounted for by immigration of B cells diversified by colonization of the gut, and thymic B cells undergo switch recombination and repertoire diversification before birth without clonal selection.
Collapse
Affiliation(s)
- Jeremy McAleer
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | | | | | | |
Collapse
|
23
|
Butler JE, Wertz N, Sun J, Wang H, Chardon P, Piumi F, Wells K. Antibody repertoire development in fetal and neonatal pigs. VII. Characterization of the preimmune kappa light chain repertoire. THE JOURNAL OF IMMUNOLOGY 2005; 173:6794-805. [PMID: 15557173 DOI: 10.4049/jimmunol.173.11.6794] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Combinatorial diversity is highly restricted in the preimmune porcine H chain repertoire compared with that in humans and mice. This raised the question of whether similar restriction characterized the preimmune L chain repertoire. In this study we present evidence that >90% of all expressed Vkappa genes in the porcine preimmune repertoire belong to three subfamilies of Vkappa genes that share 87% sequence similarity with human IGKV2. This porcine Vkappa family also shares sequence similarity with some, but not all, Vkappa genes from sheep. Hybridization with sperm DNA and sequence analyses of polynucleotides from overlapping bacterial artificial chromosome clones suggest swine possess approximately 60 IGVK2 genes. The latter method also revealed that certain IGKV2 subfamilies are not expressed in the preimmune repertoire. Six members of an IGVK1 family were also expressed as part of the preimmune repertoire, and these shared 87% sequence similarity with human IGVK1. Five Jkappa segments, complete with recombination signal sequences and separated by approximately 300 nt, were identified approximately 3 kb upstream of a single Ckappa. Surprisingly, Jkappa2 accounted for >90% of all framework region 4 sequences in the preimmune repertoire. These findings show that swine use approximately 10 IGVK2 genes from three of six subfamilies and preferentially one Jkappa segment to generate their preimmune kappa repertoire. These studies, like those of porcine Ig constant regions and MHC genes, also indicate unexpected high sequence similarity with their human counterparts despite differences in phylogeny and the mechanism of repertoire diversification.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Amino Acid Sequence
- Animals
- Animals, Newborn/genetics
- Animals, Newborn/immunology
- Antibody Diversity/genetics
- Base Sequence
- Chromosomes, Artificial, Bacterial
- Cloning, Molecular/methods
- Fetal Development/genetics
- Fetal Development/immunology
- Gene Expression Regulation, Developmental/immunology
- Gene Rearrangement, B-Lymphocyte, Light Chain
- Genes, Overlapping
- Genome
- Humans
- Immunoglobulin J-Chains/biosynthesis
- Immunoglobulin J-Chains/chemistry
- Immunoglobulin J-Chains/genetics
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/genetics
- Immunoglobulin kappa-Chains/biosynthesis
- Immunoglobulin kappa-Chains/chemistry
- Immunoglobulin kappa-Chains/genetics
- Male
- Molecular Sequence Data
- Multigene Family/immunology
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Swine
- Terminology as Topic
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Intravenous immunoglobulin (IVIG) preparations are fractionated from a plasma pool of several thousand donors. IVIG contain immune antibodies and physiologic autoantibodies. Immune antibodies reflect the immunologic experience of the donor population. This fraction of IVIG preparations is useful for replacement therapy and passive immunisation. Natural autoantibodies are able to react with the immune system of the recipient of IVIG and are suggested to help to correct immune deregulation. Immunomodulatory and anti-inflammatory properties are based on multiple mechanisms of action which are described. These mechanisms are effective concomitantly and synergistically at every occasion of use of IVIG in inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- H U Simon
- Department of Pharmacology, University of Bern, Switzerland; ZLB Bioplasma AG, Bern, Switzerland
| | | |
Collapse
|
25
|
Rooke J, Carranca C, Bland I, Sinclair A, Ewen M, Bland V, Edwards S. Relationships between passive absorption of immunoglobulin G by the piglet and plasma concentrations of immunoglobulin G at weaning. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0301-6226(02)00260-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
|
27
|
Butler JE, Sun J, Weber P, Ford SP, Rehakova Z, Sinkora J, Francis D, Lager K. Switch recombination in fetal porcine thymus is uncoupled from somatic mutation. Vet Immunol Immunopathol 2002; 87:307-19. [PMID: 12072251 DOI: 10.1016/s0165-2427(02)00057-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since fetal serum Ig isotype profiles suggested that IgG and IgA could be of de novo origin, we studied their transcription and secretion. IgM transcripts were present at 50 days of gestation in major fetal lymphoid tissues, IgG and IgA transcription was pronounced at 60 days in fetal thymus and both transcription and secretion in this organ increased in late fetal life. The CDR3 spectratype of thymic IgG and IgA transcripts was as polyclonal as that of IgM already at 70 days in utero indicating a broad repertoire of switched B-cells. However, VDJs transcribed with the switched isotypes were not hypermutated as were those from immunized fetuses, indicating that switch recombination and somatic mutation are not coupled in utero in piglets. This finding and the fact that the oligoclonal IgA and IgM repertoires in a non-inductive site of the mucosal immune system (parotid gland) becomes polyclonal in piglets reared germ-free, suggest that initial expansion of switched B-cells in fetal and neonatal piglets is not driven by environmental antigen. Our findings collectively suggest that all IgA and IgM may result from de novo synthesis while some IgG probably results from selective transport. The latter is consistent with the gradual decline in serum IgG concentration in germ-free isolator piglets and the expression of FcRn in the porcine placenta.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sinkora J, Rehakova Z, Sinkora M, Cukrowska B, Tlaskalova-Hogenova H. Early development of immune system in pigs. Vet Immunol Immunopathol 2002; 87:301-6. [PMID: 12072250 DOI: 10.1016/s0165-2427(02)00056-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prenatal and early postnatal immune system development has been studied in minipigs. First leukocytes were observed in the yolk sac and fetal liver (FL) on the 17th day of gestation, the majority of them being SWC3(+). The colonization of the thymus (TH) with leukocytes was observed 21 days later. Two waves of fetal TH colonization with pro-T cells were deduced from the frequency of thymocyte subsets. Thymic B cells and immunoglobulin-secreting cells (Ig-SC) were studied by flow cytometry and ELISPOT, respectively. When the total numbers of fetal Ig-SC were compared, the TH was identified as the main source of natural antibodies and the only site of IgA and IgG synthesis. In germ-free animals, the TH also represented the major site of IgG and IgA production and the number of Ig-SC was not influenced by colonization with microflora. FL and bone marrow were identified as primary B lymphopoietic sites. The phenotype of B precursors was characterized and pre-B II cells were shown to be the dominant mononuclear fraction between DG50 and DG105. In the periphery, relative proportions of lymphocyte subsets were determined. Studies in gnotobiotic piglets have revealed that the appearance of CD4(+)CD8(+) T cells and CD2(-) B cells is absolutely dependent on the contact of immune system with live viruses and bacteria, respectively.
Collapse
Affiliation(s)
- J Sinkora
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
29
|
Abstract
There are many limitations to analyse the developing immune system in humans, thus there is need for experimental animal models to study the environmental influences during the ontogeny of the immune system. However risk assessment is difficult in using rodent models alone, especially as the intrauterine period of development is much shorter than that of humans. In addition to studies in dogs, the pig provides a variety of experimental approaches for developmental immunotoxicology. The gestation period is 115 days and the occurrence of the different lines of T and B lymphocytes in the blood and organs of the porcine embryo and fetus is well documented. Fetal porcine B cells represent a naive population developing without maternal idiotypic-antiidiotypic influences. The postnatal development is highly correlated to sufficient uptake of colostrum during the first 48 hours. Although many immunotoxicological experiments have been performed, there is a limited number of original publications about these studies. With the different strains of standard pigs and miniature pigs available and the rapid growing amount of immunological reagents, the pig represents an important experimental model for cost-effective studies in developmental immunotoxicology to analyse the risk of environmental hazards.
Collapse
Affiliation(s)
- H J Rothkötter
- Center of Anatomy (4120), Medical School, Hannover, Germany.
| | | | | |
Collapse
|
30
|
Butler JE, Sun J, Weber P, Ford SP, Rehakova Z, Sinkora J, Lager K. Antibody repertoire development in fetal and neonatal piglets. IV. Switch recombination, primarily in fetal thymus, occurs independent of environmental antigen and is only weakly associated with repertoire diversification. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3239-49. [PMID: 11544311 DOI: 10.4049/jimmunol.167.6.3239] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The epitheliochorial placenta of swine is considered a barrier to Ag and selective transport of IgG, so this species should be an excellent model with which to determine whether switch recombination is Ag dependent. Analysis of Ig levels and Ig isotype profiles in >150 normal and virus-infected fetuses from 38-110 days of gestation (DG) suggested that IgG, IgA, and IgM were most likely the result of de novo fetal synthesis. Although transcripts for IgM could be recovered at DG 50 (114 DG is full gestation) in all major fetal lymphoid tissues, those for IgG and IgA first became prominent at 60 DG in thymus, and transcription and spontaneous secretion became especially pronounced in this organ in older fetuses. Data on transcription, secretion, and serum isotype profiles suggest that although all fetal IgA and IgM may result from de novo synthesis, some IgG may result from low-level selective transport. The complementarity-determining region 3 spectratypes of thymic IgA and IgG transcripts at 70 and 90 days, respectively, were as polyclonal as that of IgM, indicating a broad repertoire of switched B cells although the VDJs transcribed with these switched isotypes in normal fetuses were not diversified in comparison to those from animals exposed to environmental Ags such as age-matched, virus-infected fetuses, colonized isolator piglets, and conventional adults. However, VDJs expressed with switched isotypes were more diversified than those expressed with IgM. Thus, switch recombination in fetal life does not appear to be driven by environmental Ag and is only weakly coupled to VDJ diversification. These findings, and the fact that the oligoclonal IgA and IgM repertoires in a noninductive site of the mucosal immune system (parotid gland) become polyclonal in piglets reared germfree, suggest that initial expansion of the switched cells in the B cell compartment of fetal and neonatal piglets is not driven by environmental Ag.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Sinkora J, Rehakova Z, Samankova L, Haverson K, Butler JE, Zwart R, Boersma W. Characterization of monoclonal antibodies recognizing immunoglobulin kappa and lambda chains in pigs by flow cytometry. Vet Immunol Immunopathol 2001; 80:79-91. [PMID: 11445220 DOI: 10.1016/s0165-2427(01)00277-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The existence of two types of the immunoglobulin (Ig) light chain in pigs was documented>30 years ago and has been confirmed by the cloning of porcine light chain genes homologous to human and murine Ig kappa (Igkappa) and Ig lambda (Iglambda). However, immunochemical reagents defining these two light chain isotypes have not been characterized. Here, we show that rabbit antisera specific for human Igkappa and Iglambda and certain anti-porcine light chain monoclonal antibodies (mAb) are useful in distinguishing light chain isotypes by flow cytometry (FCM). Porcine B cell lines L23 and L35 stained positive only with anti-human Iglambda antiserum and were negative when tested using anti-human Igkappa antiserum. While mAbs K139.3E1, 1G6 and 27.7.1 also tested positive on these cell lines, mAb 27.2.1 did not. Therefore, FCM was used to examine the hypothesis that K139.3E1, 1G6 and 27.7.1 are Iglambda-specific whereas mAb 27.2.1 recognizes the Igkappa chain in pigs. Double staining of peripheral blood mononuclear cells (PBMC) with pairs of anti-light chain mAbs and using cocktails of anti-light chain mAbs and anti-human polyclonal antiserum, confirmed this hypothesis with the exception that mAb K139.3E1 appears to recognize only a subset of Iglambda(+) B cells in most pigs. In summary, we identified two pan-specific anti-pig Iglambda mAbs, one anti-lambda mAb that recognizes a lambda-light chain subset and one anti-pig Igkappa mAb.
Collapse
Affiliation(s)
- J Sinkora
- Institute of Microbiology, Department of Immunology and Gnotobiology, Novy Hradek, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
32
|
Butler JE, Weber P, Sinkora M, Sun J, Ford SJ, Christenson RK. Antibody repertoire development in fetal and neonatal piglets. II. Characterization of heavy chain complementarity-determining region 3 diversity in the developing fetus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6999-7010. [PMID: 11120827 DOI: 10.4049/jimmunol.165.12.6999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the actual combinatorial diversity in the V(H) repertoire in fetal piglets represents <1% of the potential in mice and humans, we wondered whether 1) complementarity-determining region 3 (CDR3) diversity was also restricted; 2) CDR3 diversity changed with fetal age; and 3) to what extent CDR3 contributed to the preimmune VDJ repertoire. CDR3 spectratyping and sequence analyses of 213 CDR3s recovered from >30 fetal animals of different ages showed that >95% of VDJ diversity resulted from junctional diversity. Unlike sheep and cattle, somatic hypermutation does not contribute to the repertoire. These studies also revealed that 1) N region additions are as extensive in VDJ rearrangements recovered at 30 days as those in late term fetuses, suggesting that TdT is fully active at the onset of VDJ rearrangement; 2) nearly 90% of all rearrangement are in-frame until late gestation; 3) the oligoclonal CDR3 spectratype of 30-day fetal liver becomes polyclonal by 50 days, while this change occurs much later in spleen; 4) there is little evidence of individual variation in CDR3 spectratype or differences in spectratype among lymphoid tissues with the exception of the thymus; and 4) there is a tendency for usage of the most J(H) proximal D(H) segment (D(H)B) to decrease in older fetuses and for the longer D(H) segment to be trimmed to the same length as the shorter D(H) when used in CDR3. These findings suggest that in the fetal piglet, highly restricted combinatorial diversity and the lack of somatic mutation are compensated by early onset of TdT activity and other mechanisms that contribute to CDR3 junctional diversity.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology and Iowa Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Navarro P, Christensen RK, Weber P, Rothschild M, Ekhardt G, Butler JE. Porcine IgA allotypes are not equally transcribed or expressed in heterozygous swine. Mol Immunol 2000; 37:653-64. [PMID: 11164893 DOI: 10.1016/s0161-5890(00)00086-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The prediction of 1:1 expression of constant region allotypes in heterozygous animals assumes that productive VDJ rearrangements occur at random between chromosomes, switch recombination is random, there is no allele-related defect in switching and there is no selection for a B-cell receptor bearing a certain constant region allotype. In data reported here, this prediction was often not fulfilled for the transcripts encoding the IgAa and IgAb alleles of porcine IgA including those from late term fetal piglets that are not in contact with environmental antigens or maternal regulatory factors. In the spleen, thymus, mesenteric lymph node (MLN), ileal Peyer patches, parotid gland and PBLs of 5-week-old conventionally-reared Duroc pigs, ratios of IgAa to IgAb transcripts as high as 4:1 were observed. Since White Cross animals had significantly higher levels of IgAb than IgAa (some >3-fold), a allele-linked switch defect cannot explain the deviation from the expected 1:1 ratio. When the IgAa:IgAb ratios in older Durocs and those reared at a different site were studied, no evidence for breed dependence of differential transcription was found. Total serum IgA levels paralleled total transcript levels in PBLs while particularly in White Cross animals, the IgAa:IgAb ratio in serum was higher in many animals than the IgAa:IgAb transcript ratio in their PBLs. We conclude that deviations from the expected 1:1 ratio of allotype transcripts and secreted IgA in young pigs is normal and deviations from this ratio also occur during fetal life in the absence of environmental antigens and maternal regulatory factors. We speculate that postnatal deviations result from: (A) exposure to environmental antigens that selectively expand B-cells expressing V(H) gene alleles linked to either IgAa or IgAb or (B) some form of colostrum-dependent regulation. Pre-natal regulation may depend on the selection of B-cells bearing certain V(H) or C(H) encoded BCRs by stromal ligands such as fetal B-cell superantigens.
Collapse
Affiliation(s)
- P Navarro
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
34
|
Butler JE, Sun J, Weber P, Navarro P, Francis D. Antibody repertoire development in fetal and newborn piglets, III. Colonization of the gastrointestinal tract selectively diversifies the preimmune repertoire in mucosal lymphoid tissues. Immunology 2000; 100:119-30. [PMID: 10809967 PMCID: PMC2326983 DOI: 10.1046/j.1365-2567.2000.00013.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1999] [Revised: 12/21/1999] [Accepted: 01/05/2000] [Indexed: 11/20/2022] Open
Abstract
Changes in the VH-region repertoire of isolator piglets reared for 6 weeks under germ-free (GF) conditions and those colonized (COL) with a defined exclusion flora on the 1st day of life were compared. Although serum immunoglobulin levels were 20-100-fold higher in COL piglets than GF piglets, an analysis of peripheral blood B cells (PBBs) indicated that: GF and COL piglets used the same four VH genes and two DH segments during the 6-week period; proportional usage of VH genes and DH segments was the same as in fetal animals; and VH and DH usage did not differ between COL and GF animals. This pattern differed from the PBBs from 6-week-old conventional (CONV) piglets. When the sequences of 73 splenic CDR3 segments were analysed, DH usage and mutation frequency were the same in sequences from both 6-week-old GF and COL piglets; mutations were infrequent and occurred with the same frequency as in 110-day fetal spleen. However, the median CDR3 length in COL piglets was shifted upward due to 3' DH N-nucleotide additions. Neither COL nor GF animals made specific serum antibodies to phosphoryl choline given parenterally on a T-cell dependent carrier. In contrast to the near absence of a colonization effect in PBBs and splenic DNA, rearranged variable heavy-chain gene segments (VDJs) recovered from the DNA of mucosal lymphoid tissues of COL piglets showed pronounced differences from those recovered from GF animals in usage of DHA-, DHB-and VHB- and in the frequency of point mutation. The mucosal VDJ transcripts and those from the spleen were similarly affected by colonization. This effect on mucosal lymphoid tissue was consistent with the five-fold selective increase in serum immunoglobulin A (IgA) levels relative to IgM and IgG. Comparison of IgM and IgA transcripts from mucosal tissues suggested that IgA and IgM clones diversify in parallel. Our findings are the first to show that colonization of the gastrointestinal tract of offspring separated from their mothers, differs from 'conventionalized' GF animals in that colonization preferentially influences diversification and expansion of the preimmune IgM and IgA repertoire in mucosal lymphoid tissues but not in PBBs and seldom/modestly in VDJs from splenic DNA.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology and Interdisciplinary Immunology Program, The University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | | | | | |
Collapse
|
35
|
Bianchi AT, Scholten JW, Moonen Leusen BH, Boersma WJ. Development of the natural response of immunoglobulin secreting cells in the pig as a function of organ, age and housing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1999; 23:511-520. [PMID: 10512461 DOI: 10.1016/s0145-305x(99)00026-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We analysed the development of the natural immunoglobulin-secreting cell (Ig-SC) response in systemic- and mucosal-lymphoid tissues of specified pathogen free pigs between 1 and 40 weeks of age. As antigen exposure may influence the development of the Ig-SC repertoire we also compared the frequencies of Ig-SC in various lymphoid tissues of 40 weeks old specified pathogen free pigs and conventional pigs. A procedure to isolate lamina propria cells from porcine intestine was adapted for this study. The frequencies of IgM-, IgG-, and IgA-secreting (spot forming) cells were determined with a reversed enzyme linked immunospot assay, which was also adapted for detection of Ig-SC in pigs. The Ig-SC frequencies were calculated as percentage of the mononuclear leukocytes isolated from the various organs. The observations till 40 weeks of age were as follows: Splenic IgM-SC predominated at all ages and reached a plateau of 0.1-0.2% of the mononuclear leukocytes already at 4 weeks of age. The IgM-SC of mesenteric lymph node (MLN) predominated up till 12 weeks of age and reached an optimum of 0.15% reached at 4 weeks of age. The frequencies of IgG-SC of spleen and MLN had dips around 4 weeks of age and increased thereafter till 40 weeks of age (spleen 0.025%, MLN 0.05% at 40 weeks of age). The frequencies of IgA-SC were low in the spleen (< or =0.003%) and moderate in the MLN (0.01-0.02%) at all ages tested. In peripheral lymph node (PLN) and bone marrow (BM), the frequencies of IgM-SC (0.03-0.05%) were much lower than in the spleen. The IgG-SC frequencies of BM and MLN also had dips around 4 weeks of age and increased thereafter. The IgG-SC frequency of BM reached a plateau at 12 weeks of age (0.15%) and for PLN the highest frequency was observed at 40 weeks of age (0.05%). The frequencies of IgA-SC were low in BM and PLN (<0.003%). High frequencies of IgA-SC were observed in mucosa associated tissue like Peyer's patches (PP) and intestinal lamina propria (till 20% of the mononuclear leukocytes in intestinal lamina propria of 12-40 weeks of age). IgM and IgA are both important isotypes in mucosal lymphoid organs in the pig. The shift from IgM to IgAas predominant, mucosal isotype was first observed in duodenum and jejunum (12 weeks) and later in ileum (40 weeks). The influence of ageing on the frequency of Ig-SC in PP was only observed in jejunal PP. whereas in ileal PP the frequencies of Ig-SC did not vary over time. We combined our data about the frequencies of IgM-, IgG-, and IgA-SC in various organs with data obtained by others about the distribution of lymphocytes over porcine lymphoid organs at about 12 weeks of age. Based on these calculations we concluded that the small intestine, with more than 80% of all Ig-SC, is fair most the major site of Ig production in the pig. We also concluded that the small intestine is the major site of IgA and IgM production cells in the pig. Although IgA becomes predominant along the intestine, the results demonstrated that in the pig IgM is more a mucosal isotype compared with other species. With 40% of all IgG-SC the porcine BM appeared to be the major site of IgG production. Unexpected results were obtained for IgG-SC in the systemic lymphoid organs. In these organs the frequencies of IgG-SC dropped firstly from 1 to 4 weeks of age and steadily increased thereafter till 40 weeks of age. This observation is discussed in relation to the possibility that systemic IgG-SC at one week of age were passively acquired from maternal colostrum. The influence of housing/antigenic load at 40 weeks of age was mainly expressed by an increase (2-8x) of the frequency of IgG-SC in spleen, PLN, BM, and intestinal lamina propria, whereas the typical mucosal IgA-SC frequencies in the lamina propria were hardly affected.
Collapse
Affiliation(s)
- A T Bianchi
- Department of Mammalian Virology, DLO-Institute of Animal Science and Health, Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Sinkora J, Reháková Z, Sinkora M, Cukrowska B, Tlaskalová-Hogenová H, Bianchi AT, De Geus B. Expression of CD2 on porcine B lymphocytes. Immunol Suppl 1998; 95:443-9. [PMID: 9824509 PMCID: PMC1364412 DOI: 10.1046/j.1365-2567.1998.00621.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Remarkable interspecies differences in CD2 expression on B lymphocytes have been reported in mammals. Human and rat B cells lack CD2, whilst B lymphocytes in mice are CD2+. In pigs, B cells have been supposed not to express CD2. We show here, however, that CD2 is present at a low level on a prominent subset of porcine B cells. Moreover, we describe changes in the proportions of CD2+ and CD2- B-cell subsets during ontogeny. Before contact with microflora, the majority of peripheral surface immunoglobulin M+ (sIgM+) B cells express CD2 and sIgM+CD2- B cells are rare. Shortly after colonization of conventional (CV) piglets with complex intestinal microflora, numerous CD2- B cells appear in the periphery and their relative number increases with age in both CV and specific pathogen-free (SPF) pigs. However, monoassociation of germ-free (GF) piglets with a single Escherichia coli strain does not result in a significant increase of sIgM+CD2- B cells in the periphery. We suggest that CD2 is down-regulated in porcine B lymphocytes upon activation with microflora in mucosa-associated lymphatic tissues. In bone marrow (BM), we identified putative porcine B-cell precursors. These cells express CD2 at low density and do not bear either the common myelomonocytic antigen or T and B-lymphocyte receptors. Similar to mouse and human pre-B cells, this lymphocyte-sized subset expresses CD25 and class II antigens. CD2 positivity of these cells indicates that CD2 is expressed earlier than sIgM during B lymphopoiesis in pigs.
Collapse
Affiliation(s)
- J Sinkora
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek
| | | | | | | | | | | | | |
Collapse
|
37
|
Cukrowska B, Sinkora J, Reháková Z, Sinkora M, Splíchal I, Tucková L, Avrameas S, Saalmüller A, Barot-Ciorbaru R, Tlaskalová-Hogenová H. Isotype and antibody specificity of spontaneously formed immunoglobulins in pig fetuses and germ-free piglets: production by CD5- B cells. Immunol Suppl 1996; 88:611-7. [PMID: 8881765 PMCID: PMC1456642 DOI: 10.1046/j.1365-2567.1996.d01-699.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pig fetuses, colostrum-deprived newborns and germ-free (GF) piglets, animals in which B-cell development is not influenced by maternal regulatory factors, were employed to study the occurrence and specificity of natural antibodies (NAb). Serum immunoglobulins of all isotypes were found in 44-day-old fetuses (the gestation period in pigs lasts 114 days) and their level, with predominating IgM, was increased during fetal ontogeny. In sera of fetuses at the end of embryonic life as well as of newborns and older GF piglets, antibody activity against autoantigens (thyroglobulin, hormones, ssDNA), phylogenetically conserved proteins (myosin), haptens (trinitrophenyl; TNP) and bacterial components (Escherichia coli O86, tetanic anatoxin) was detected by enzyme-linked immunosorbent assay. The antigen-biding activity of IgM NAb increased after isolation of the serum immunoglobulins on a Staphylococcus Protein A (SPA)-Sepharose column. IgM reactivity similar to that detected in serum was found in supernatants from polyclonally stimulated cultures of spleen of 8- and 12-day-old GF piglets. Pig fetal liver IgM+ B cells, which were able to produce IgM after polyclonal stimulation, did not express the CD5 molecule. Our results indicate that pig preimmune repertoire is comparable to that described in humans and mice, although in contrast to these species pig B-1 cells do not express CD5.
Collapse
Affiliation(s)
- B Cukrowska
- Division of Immunology and Gnotobiology, Czech Academy of Sciences, Prague
| | | | | | | | | | | | | | | | | | | |
Collapse
|