1
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Pinos I, Coronel J, Albakri A, Blanco A, McQueen P, Molina D, Sim J, Fisher EA, Amengual J. β-Carotene accelerates the resolution of atherosclerosis in mice. eLife 2024; 12:RP87430. [PMID: 38319073 PMCID: PMC10945528 DOI: 10.7554/elife.87430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
β-Carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of β-carotene on atherosclerosis resolution. To explore the direct implication of dietary β-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that β-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of β-carotene on atherosclerosis resolution. Our data highlight the potential of β-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Asma'a Albakri
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Amparo Blanco
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - JaeYoung Sim
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, New York University Grossman School of Medicine, NYU Langone Medical CenterNew YorkUnited States
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| |
Collapse
|
3
|
Galpin KJC, Rodriguez GM, Maranda V, Cook DP, Macdonald E, Murshed H, Zhao S, McCloskey CW, Chruscinski A, Levy GA, Ardolino M, Vanderhyden BC. FGL2 promotes tumour growth and attenuates infiltration of activated immune cells in melanoma and ovarian cancer models. Sci Rep 2024; 14:787. [PMID: 38191799 PMCID: PMC10774293 DOI: 10.1038/s41598-024-51217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
The tumour microenvironment is infiltrated by immunosuppressive cells, such as regulatory T cells (Tregs), which contribute to tumour escape and impede immunotherapy outcomes. Soluble fibrinogen-like protein 2 (sFGL2), a Treg effector protein, inhibits immune cell populations, via receptors FcγRIIB and FcγRIII, leading to downregulation of CD86 in antigen presenting cells and limiting T cell activation. Increased FGL2 expression is associated with tumour progression and poor survival in several different cancers, such as glioblastoma multiforme, lung, renal, liver, colorectal, and prostate cancer. Querying scRNA-seq human cancer data shows FGL2 is produced by cells in the tumour microenvironment (TME), particularly monocytes and macrophages as well as T cells and dendritic cells (DCs), while cancer cells have minimal expression of FGL2. We studied the role of FGL2 exclusively produced by cells in the TME, by leveraging Fgl2 knockout mice. We tested two murine models of cancer in which the role of FGL2 has not been previously studied: epithelial ovarian cancer and melanoma. We show that absence of FGL2 leads to a more activated TME, including activated DCs (CD86+, CD40+) and T cells (CD25+, TIGIT+), as well as demonstrating for the first time that the absence of FGL2 leads to more activated natural killer cells (DNAM-1+, NKG2D+) in the TME. Furthermore, the absence of FGL2 leads to prolonged survival in the B16F10 melanoma model, while the absence of FGL2 synergizes with oncolytic virus to prolong survival in the ID8-p53-/-Brca2-/- ovarian cancer model. In conclusion, targeting FGL2 is a promising cancer treatment strategy alone and in combination immunotherapies.
Collapse
Affiliation(s)
- Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Vincent Maranda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Elizabeth Macdonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shan Zhao
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrzej Chruscinski
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gary A Levy
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Bi Y, Kong R, Peng Y, Yu H, Zhou Z. Umbilical cord blood and peripheral blood-derived regulatory T cells therapy: Progress in type 1 diabetes. Clin Immunol 2023; 255:109716. [PMID: 37544491 DOI: 10.1016/j.clim.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Regulatory T cells (Tregs) are key regulators for the inflammatory response and play a role in maintaining the immune tolerance. Type 1 diabetes (T1D) is a relatively common autoimmune disease that results from the loss of immune tolerance to β-cell-associated antigens. Preclinical models have demonstrated the safety and efficacy of Tregs given in transplant rejection and autoimmune diseases such as T1D. Adoptive transfer of Tregs has been utilized in clinical trials for over a decade. However, the achievement of the adoptive transfer of Tregs therapy in clinical application remains challenging. In this review, we highlight the characterization of Tregs and compare the differences between umbilical cord blood and adult peripheral blood-derived Tregs. Additionally, we summarize conditional modifications in the expansion of Tregs in clinical trials, especially for the treatment of T1D. Finally, we discuss the existing technical challenges for Tregs in clinical trials for the treatment of T1D.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Homeostatic cytokines tune naivety and stemness of cord blood-derived transgenic T cells. Cancer Gene Ther 2022; 29:961-972. [PMID: 34645974 DOI: 10.1038/s41417-021-00395-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022]
Abstract
Engineered T-cell therapies have proven to be successful in cancer and their clinical effectiveness is directly correlated with the infused T-cell differentiation profile. Indeed, stem cell memory and central memory T cells proliferate and persist longer in vivo compared with more-differentiated T cells, while conferring enhanced antitumor activity. Here, we propose an optimized process using cord blood (CB) to generate minimally differentiated T-cell products in terms of phenotype, function, gene expression, and metabolism, using peripheral blood (PB)-derived T cells cultured with IL-2 as a standard. Phenotypically, CB-derived T cells, particularly CD4 T cells, are less differentiated than their PB counterparts when cultured with IL-2 or with IL-7 and IL-15. Furthermore, culture with IL-7 and IL-15 enables better preservation of less-differentiated CB-derived T cells compared with IL-2. In addition, transcriptomic and metabolic assessments of CB-derived transgenic T cells cultured with IL-7 and IL-15 point out their naivety and stemness signature. These relatively quiescent transgenic T cells are nevertheless primed for secondary stimulation and cytokine production. In conclusion, our study indicates that CB may be used as a source of early differentiated T cells to develop more effective adoptive cancer immunotherapy.
Collapse
|
6
|
Zhu X, Tang B, Sun Z. Umbilical cord blood transplantation: Still growing and improving. Stem Cells Transl Med 2021; 10 Suppl 2:S62-S74. [PMID: 34724722 PMCID: PMC8560197 DOI: 10.1002/sctm.20-0495] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/26/2022] Open
Abstract
Umbilical cord blood transplantation (UCBT) has been performed in the clinic for over 30 years. The biological and immunological characteristics of umbilical cord blood (UCB) have been re-recognized in recent years. UCB, previously considered medical waste, is rich in hematopoietic stem cells (HSCs), which are naïve and more energetic and more easily expanded than other stem cells. UCB has been identified as a reliable source of HSCs for allogeneic hematopoietic stem cell transplantation (allo-HSCT). UCBT has several advantages over other methods, including no harm to mothers and donors, an off-the-shelf product for urgent use, less stringent HLA match, lower incidence and severity of chronic graft-vs-host disease (GVHD), and probably a stronger graft-vs-leukemia effect, especially for minimal residual disease-positive patients before transplant. Recent studies have shown that the outcome of UCBT has been improved and is comparable to other types of allo-HSCT. Currently, UCBT is widely used in malignant, nonmalignant, hematological, congenital and metabolic diseases. The number of UCB banks and transplantation procedures increased exponentially before 2013. However, the number of UCBTs increased steadily in Asia and China but decreased in the United States and Europe year-on-year from 2013 to 2019. In this review, we focus on the development of UCBT over the past 30 years, the challenges it faces and the strategies for future improvement, including increasing UCB numbers, cord blood unit selection, conditioning regimens and GVHD prophylaxis for UCBT, and management of complications of UCBT.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Blood and Cell Therapy Institute, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Anhui Provincial Key Laboratory of Blood Research and ApplicationsHefeiPeople's Republic of China
| | - Baolin Tang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Blood and Cell Therapy Institute, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Anhui Provincial Key Laboratory of Blood Research and ApplicationsHefeiPeople's Republic of China
| | - Zimin Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Blood and Cell Therapy Institute, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Anhui Provincial Key Laboratory of Blood Research and ApplicationsHefeiPeople's Republic of China
| |
Collapse
|
7
|
Matos TR, Hirakawa M, Alho AC, Neleman L, Graca L, Ritz J. Maturation and Phenotypic Heterogeneity of Human CD4+ Regulatory T Cells From Birth to Adulthood and After Allogeneic Stem Cell Transplantation. Front Immunol 2021; 11:570550. [PMID: 33537026 PMCID: PMC7848157 DOI: 10.3389/fimmu.2020.570550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/27/2020] [Indexed: 01/20/2023] Open
Abstract
CD4+ Regulatory T cells (Treg) play a critical role in maintaining immune homeostasis. Various Treg subsets have been identified, however the heterogeneity of Treg subpopulations during development remains uncharacterized. Using mass cytometry we obtained single cell data on expression of 35 functional markers to examine the heterogeneity of Treg cells at birth and in adults. Unsupervised clustering algorithms FlowSOM and ACCENSE were used to quantify Treg heterogeneity. As expected, Treg in umbilical cord blood were predominately naïve while Treg in adult blood were predominately central memory and effector memory cells. Although umbilical cord blood Treg are mostly naïve cells, we observed multiple phenotypic Treg subsets in cord blood. Nevertheless, peripheral blood in adults contained higher percentages of Treg and the heterogeneity of Treg was significantly increased in adults. We also studied Treg heterogeneity throughout a 2-year period after allogeneic hematopoietic stem cell transplantation (alloHSCT) and in patients with chronic graft-versus-host disease (cGVHD). Treg heterogeneity recovered rapidly after alloHSCT and gradually increased in the first two years post-transplant. However, patients with cGVHD had significantly fewer distinct Treg subpopulations, proposing a correlation between a disrupted Treg heterogeneity and cGVHD. Our study is the first to compare human Treg heterogeneity at birth, in healthy adults and in patients after alloHSCT with and without cGVHD. This approach to characterize Treg heterogeneity based on expression of a large panel of functional markers may enable future studies to identify specific Treg defects that contribute to immune dysfunction.
Collapse
Affiliation(s)
- Tiago R. Matos
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Amsterdam University Medical Centers, Department of Dermatology, University of Amsterdam, Amsterdam, Netherlands
| | - Masahiro Hirakawa
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ana C. Alho
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lars Neleman
- Amsterdam University Medical Centers, Department of Dermatology, University of Amsterdam, Amsterdam, Netherlands
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jerome Ritz
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Colamatteo A, Carbone F, Bruzzaniti S, Galgani M, Fusco C, Maniscalco GT, Di Rella F, de Candia P, De Rosa V. Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. Front Immunol 2020; 10:3136. [PMID: 32117202 PMCID: PMC7008726 DOI: 10.3389/fimmu.2019.03136] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the transcription factor Forkhead box-p3 (Foxp3) has shed fundamental insights into the understanding of the molecular determinants leading to generation and maintenance of T regulatory (Treg) cells, a cell population with a key immunoregulatory role. Work over the past few years has shown that fine-tuned transcriptional and epigenetic events are required to ensure stable expression of Foxp3 in Treg cells. The equilibrium between phenotypic plasticity and stability of Treg cells is controlled at the molecular level by networks of transcription factors that bind regulatory sequences, such as enhancers and promoters, to regulate Foxp3 expression. Recent reports have suggested that specific modifications of DNA and histones are required for the establishment of the chromatin structure in conventional CD4+ T (Tconv) cells for their future differentiation into the Treg cell lineage. In this review, we discuss the molecular events that control Foxp3 gene expression and address the associated alterations observed in human diseases. Also, we explore how Foxp3 influences the gene expression programs in Treg cells and how unique properties of Treg cell subsets are defined by other transcription factors.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mario Galgani
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli", Naples, Italy
| | - Francesca Di Rella
- Clinical and Experimental Senology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | | | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
9
|
Cryopreservation timing is a critical process parameter in a thymic regulatory T-cell therapy manufacturing protocol. Cytotherapy 2019; 21:1216-1233. [PMID: 31810768 DOI: 10.1016/j.jcyt.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022]
Abstract
Regulatory T cells (Tregs) are a promising therapy for several immune-mediated conditions but manufacturing a homogeneous and consistent product, especially one that includes cryopreservation, has been challenging. Discarded pediatric thymuses are an excellent source of therapeutic Tregs with advantages including cell quantity, homogeneity and stability. Here we report systematic testing of activation reagents, cell culture media, restimulation timing and cryopreservation to develop a Good Manufacturing Practice (GMP)-compatible method to expand and cryopreserve Tregs. By comparing activation reagents, including soluble antibody tetramers, antibody-conjugated beads and artificial antigen-presenting cells (aAPCs) and different media, we found that the combination of Dynabeads Treg Xpander and ImmunoCult-XF medium preserved FOXP3 expression and suppressive function and resulted in expansion that was comparable with a single stimulation with aAPCs. Cryopreservation tests revealed a critical timing effect: only cells cryopreserved 1-3 days, but not >3 days, after restimulation maintained high viability and FOXP3 expression upon thawing. Restimulation timing was a less critical process parameter than the time between restimulation and cryopreservation. This systematic testing of key variables provides increased certainty regarding methods for in vitro expansion and cryopreservation of Tregs. The ability to cryopreserve expanded Tregs will have broad-ranging applications including enabling centralized manufacturing and long-term storage of cell products.
Collapse
|
10
|
MacDonald KN, Piret JM, Levings MK. Methods to manufacture regulatory T cells for cell therapy. Clin Exp Immunol 2019; 197:52-63. [PMID: 30913302 DOI: 10.1111/cei.13297] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cell (Treg ) therapy has shown promise in early clinical trials for treating graft-versus-host disease, transplant rejection and autoimmune disorders. A challenge has been to isolate sufficiently pure Tregs and expand them to a clinical dose. However, there has been considerable progress in the development and optimization of these methods, resulting in a variety of manufacturing protocols being tested in clinical trials. In this review, we summarize methods that have been used to manufacture Tregs for clinical trials, including the choice of cell source and protocols for cell isolation and expansion. We also discuss alternative culture or genome editing methods for modulating Treg specificity, function or stability that could be applied to future clinical manufacturing protocols to increase the efficacy of Treg therapy.
Collapse
Affiliation(s)
- K N MacDonald
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - J M Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - M K Levings
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Nafady A, Nafady-Hego H, Abdelwahab NM, Eltellawy RHN, Abu Faddan NH. Peripheral lymphocytes analyses in children with chronic hepatitis C virus infection. Eur J Clin Invest 2018; 48:e13004. [PMID: 30022474 DOI: 10.1111/eci.13004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV)-specific immune response is believed to play a crucial role in viral clearance. There is, nevertheless, no reliable parameter to monitor this immune response or predict chronic HCV infection development. METHOD An observational case-control study was performed to identify such parameters, peripheral blood mononuclear cells from 57 children with chronic HCV were systemically phenotyped, and the serum level of Interferon gamma and interleukin (IL) -17 was measured. The data were compared with 37 age-matched healthy volunteers (controls). RESULTS Children with chronic HCV infection had a lower frequency of natural killer cells (NK) cells, CD56Dim NK cells and expansion of CD56Bright NK cells compared with controls (P = 0.001, P < 0.0001 and P < 0.0001 respectively). Increased CD56Dim NK cells were negatively correlated with the higher viral load, R2 = 0.29, P = 0.05, while, increased NK T cells were positively correlated with high viral load, R2 = 0.17, P = 0.011. T helper cells, naive T cells, CD127 negative T cells, and HLA-DR-positive T cells significantly increased in patients than in controls. The frequency of CD4+CD25high+ T regulatory (Treg) cells increased in HCV-infected patients, compared with those in control, and FOXP3 was upregulated within them. Treg cells' increase was positively correlated with high viral load, R2 = 0.45, P = 0.004. The level of IL-17 was higher in HCV patients than that in control, P < 0.0001. CONCLUSION Although the contribution of those markers to the chronic HCV establishment in children remains elusive, the results may provide important clues for reliable indicators of HCV infection.
Collapse
Affiliation(s)
- Asmaa Nafady
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Clinical and Chemical Pathology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Hanaa Nafady-Hego
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nadia M Abdelwahab
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Radwa H N Eltellawy
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nagla H Abu Faddan
- Department of Pediatrics, children hospital, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Falcão PL, Campos TPRD. The role of regulatory T cells, interleukin-10 and in vivo scintigraphy in autoimmune and idiopathic diseases - Therapeutic perspectives and prognosis. ACTA ACUST UNITED AC 2018; 63:1090-1099. [PMID: 29489986 DOI: 10.1590/1806-9282.63.12.1090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/07/2017] [Indexed: 12/29/2022]
Abstract
Previous studies have demonstrated the expression of the CD25 marker on the surface of naturally occurring T cells (Tregs) of mice, which have a self-reactive cellular profile. Recently, expression of other markers that aid in the identification of these cells has been detected in lymphocyte subtypes of individuals suffering of autoimmune and idiopathic diseases, including: CD25, CTLA-4 (cytotoxic T-lymphocyte antigen 4), HLA-DR (human leukocyte antigen) and Interleukin 10 (IL-10), opening new perspectives for a better understanding of an association between such receptors present on the cell surface and the prognosis of autoimmune diseases. The role of these molecules has already been described in the literature for the modulation of the inflammatory response in infectious and parasitic diseases. Thus, the function, phenotype and frequency of expression of the a-chain receptor of IL-2 (CD25) and IL-10 in lymphocyte subtypes were investigated. Murine models have been used to demonstrate a possible correlation between the expression of the CD25 marker (on the surface of CD4 lymphocytes) and the control of self-tolerance mechanisms. These studies provided support for the presentation of a review of the role of cells expressing IL-2, IL-10, HLA-DR and CTLA-4 receptors in the monitoring of immunosuppression in diseases classified as autoimmune, providing perspectives for understanding peripheral regulation mechanisms and the pathophysiology of these diseases in humans. In addition, a therapeutic approach based on the manipulation of the phenotype of these cells and ways of scintigraphically monitoring the manifestations of these diseases by labeling their receptors is discussed as a perspective. In this paper, we have included the description of experiments in ex vivo regulation of IL-10 and synthesis of thio-sugars and poly-sugars to produce radiopharmaceuticals for monitoring inflammation. These experiments may yield benefits for the treatment and prognosis of autoimmune diseases.
Collapse
Affiliation(s)
- Patrícia Lima Falcão
- Departament of Nuclear Engineering, Program of Nuclear Science and Techniques, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tarcisio Passos Ribeiro de Campos
- Departament of Nuclear Engineering, Program of Nuclear Science and Techniques, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
13
|
Saudemont A, Jespers L, Clay T. Current Status of Gene Engineering Cell Therapeutics. Front Immunol 2018; 9:153. [PMID: 29459866 PMCID: PMC5807372 DOI: 10.3389/fimmu.2018.00153] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/17/2018] [Indexed: 12/27/2022] Open
Abstract
Ex vivo manipulations of autologous patient’s cells or gene-engineered cell therapeutics have allowed the development of cell and gene therapy approaches to treat otherwise incurable diseases. These modalities of personalized medicine have already shown great promises including product commercialization for some rare diseases. The transfer of a chimeric antigen receptor or T cell receptor genes into autologous T cells has led to very promising outcomes for some cancers, and particularly for hematological malignancies. In addition, gene-engineered cell therapeutics are also being explored to induce tolerance and regulate inflammation. Here, we review the latest gene-engineered cell therapeutic approaches being currently explored to induce an efficient immune response against cancer cells or viruses by engineering T cells, natural killer cells, gamma delta T cells, or cytokine-induced killer cells and to modulate inflammation using regulatory T cells.
Collapse
Affiliation(s)
| | | | - Timothy Clay
- GlaxoSmithKline, Collegeville, PA, United States
| |
Collapse
|
14
|
Yang X, Huo B, Zhong X, Su W, Liu W, Li Y, He Z, Bai J. Imbalance between Subpopulations of Regulatory T Cells in Patients with Acute Exacerbation of COPD. COPD 2017; 14:618-625. [PMID: 29166179 DOI: 10.1080/15412555.2017.1385055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human regulatory T cells (Tregs) have been reported to be not significantly different in the peripheral blood of patients with chronic obstructive pulmonary disease (COPD) and healthy controls. Recent research has identified some new markers for Tregs and indicated that Tregs are composed of distinct subpopulations. The aim of the study was to describe the changing patterns of circulating Treg subpopulations in patients with acute exacerbation of COPD (AECOPD) and healthy controls, and to explore their potential roles in AECOPD pathogenesis. Blood samples were obtained from 30 never-smokers with normal lung function and 30 patients with COPD before and after they had an exacerbation. The proportions of Treg subpopulations were evaluated using flow cytometry. In the peripheral blood, decreased proportions of CD4+CD25+CD127low Tregs, CD4+CD25+CD45RA+ Tregs, and CD4+CD25+CD62L+ Tregs and an increased proportion of CD4+CD25+CD45RO+ Tregs were found in patients with stable COPD compared with non-smokers with normal lung function. The patients showed further changes in Treg subpopulations when they had an AECOPD, with an overall decrease in a suppressive subset, indicating that the immune negative regulatory population of Tregs did not play an effective role. Immune homeostasis favored inflammation, and a negative correlation between the circulating tumor necrosis factor-alpha and the proportions of CD4+CD25+CD62L+ cells (r = -0.698, p < 0.05) in patients with AECOPD was found. The imbalance between the suppressive subsets and the proinflammatory subset of Tregs and the decline of Treg subpopulations with immunosuppressive activity may play important roles in AECOPD progression.
Collapse
Affiliation(s)
- Xia Yang
- a Department of Respiratory Medicine , First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Bo Huo
- a Department of Respiratory Medicine , First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Xiaoning Zhong
- a Department of Respiratory Medicine , First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Wenyan Su
- a Department of Respiratory Medicine , First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Wenting Liu
- a Department of Respiratory Medicine , First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Yumei Li
- a Department of Respiratory Medicine , First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Zhiyi He
- a Department of Respiratory Medicine , First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Jing Bai
- a Department of Respiratory Medicine , First Affiliated Hospital of Guangxi Medical University , Nanning , China
| |
Collapse
|
15
|
Ndure J, Noho-Konteh F, Adetifa JU, Cox M, Barker F, Le MT, Sanyang LC, Drammeh A, Whittle HC, Clarke E, Plebanski M, Rowland-Jones SL, Flanagan KL. Negative Correlation between Circulating CD4 +FOXP3 +CD127 - Regulatory T Cells and Subsequent Antibody Responses to Infant Measles Vaccine but Not Diphtheria-Tetanus-Pertussis Vaccine Implies a Regulatory Role. Front Immunol 2017; 8:921. [PMID: 28855899 PMCID: PMC5557771 DOI: 10.3389/fimmu.2017.00921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/20/2017] [Indexed: 01/19/2023] Open
Abstract
Regulatory T cells (Tregs) play a key homeostatic role by suppressing immune responses. They have been targeted in mouse and human cancer studies to improve vaccine immunogenicity and tumor clearance. A number of commercially available drugs and experimental vaccine adjuvants have been shown to target Tregs. Infants have high numbers of Tregs and often have poor responses to vaccination, yet the role Tregs play in controlling vaccine immunogenicity has not been explored in this age group. Herein, we explore the role of CD4+FOXP3+CD127- Tregs in controlling immunity in infant males and females to vaccination with diphtheria-tetanus-whole cell pertussis (DTP) and/or measles vaccine (MV). We find correlative evidence that circulating Tregs at the time of vaccination suppress antibody responses to MV but not DTP; and Tregs 4 weeks after DTP vaccination may suppress vaccine-specific cellular immunity. This opens the exciting possibility that Tregs may provide a future target for improved vaccine responses in early life, including reducing the number of doses of vaccine required. Such an approach would need to be safe and the benefits outweigh the risks, thus further research in this area is required.
Collapse
Affiliation(s)
- Jorjoh Ndure
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Fatou Noho-Konteh
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Jane U Adetifa
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Momodou Cox
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Francis Barker
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - My Thanh Le
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Lady C Sanyang
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Adboulie Drammeh
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Hilton C Whittle
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ed Clarke
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Prahran, VIC, Australia
| | | | - Katie L Flanagan
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,Department of Immunology and Pathology, Monash University, Prahran, VIC, Australia
| |
Collapse
|
16
|
Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q, Liu Z, Dong M, Hu X, Ouyang W, Peng J, Zhang Z. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell 2017. [PMID: 28622514 DOI: 10.1016/j.cell.2017.05.035] [Citation(s) in RCA: 1453] [Impact Index Per Article: 181.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systematic interrogation of tumor-infiltrating lymphocytes is key to the development of immunotherapies and the prediction of their clinical responses in cancers. Here, we perform deep single-cell RNA sequencing on 5,063 single T cells isolated from peripheral blood, tumor, and adjacent normal tissues from six hepatocellular carcinoma patients. The transcriptional profiles of these individual cells, coupled with assembled T cell receptor (TCR) sequences, enable us to identify 11 T cell subsets based on their molecular and functional properties and delineate their developmental trajectory. Specific subsets such as exhausted CD8+ T cells and Tregs are preferentially enriched and potentially clonally expanded in hepatocellular carcinoma (HCC), and we identified signature genes for each subset. One of the genes, layilin, is upregulated on activated CD8+ T cells and Tregs and represses the CD8+ T cell functions in vitro. This compendium of transcriptome data provides valuable insights and a rich resource for understanding the immune landscape in cancers.
Collapse
Affiliation(s)
- Chunhong Zheng
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Liangtao Zheng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jae-Kwang Yoo
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Huahu Guo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Ninth School of Clinical Medicine, Peking University, Beijing 100038, China; School of Oncology, Capital Medical University, Beijing 100038, China
| | - Yuanyuan Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xinyi Guo
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Boxi Kang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruozhen Hu
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Julie Y Huang
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA 94080, USA
| | - Qiming Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhouzerui Liu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Minghui Dong
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueda Hu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA 94080, USA.
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Ninth School of Clinical Medicine, Peking University, Beijing 100038, China; School of Oncology, Capital Medical University, Beijing 100038, China.
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Moreno Ayala MA, Gottardo MF, Asad AS, Zuccato C, Nicola A, Seilicovich A, Candolfi M. Immunotherapy for the treatment of breast cancer. Expert Opin Biol Ther 2017; 17:797-812. [PMID: 28446053 DOI: 10.1080/14712598.2017.1324566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Breast cancer is the most common cancer as well as the first cause of death by cancer in women worldwide. Although routine treatment improves the outcome of early stage breast cancer patients, there is no effective therapy for the disseminated disease. Immunotherapy has emerged as a powerful therapeutic strategy for the treatment of many cancers. Although traditionally conceived as a non-immunogenic tumor, breast cancer is now considered a potential target for immunotherapy. Areas covered: In this review, the authors discuss different immunotherapeutic strategies that are currently being tested for the treatment of breast cancer: These strategies include: (i) blockade of immunological checkpoints, (ii) antitumor vaccines, (iii) regulatory T cell blockade, (iv) adoptive T cell transfer therapy, (iv) adoptive immunotherapy with monoclonal antibodies, and (v) combination of immunotherapy with chemotherapy. Expert opinion: A growing body of evidence indicates that immunotherapeutic strategies can benefit a larger cohort of breast cancer patients than hitherto anticipated. Since breast tumors entail multiple mechanisms to impair antitumor immunity, the immunological characterization of individual tumors and the selection of suitable combinations of chemotherapeutic and immunotherapeutic approaches are required to achieve significant clinical benefit in these patients.
Collapse
Affiliation(s)
- Mariela A Moreno Ayala
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Maria Florencia Gottardo
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Antonela S Asad
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Camila Zuccato
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Alejandro Nicola
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Adriana Seilicovich
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Marianela Candolfi
- a Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
18
|
Schröder PC, Illi S, Casaca VI, Lluis A, Böck A, Roduit C, Depner M, Frei R, Genuneit J, Pfefferle PI, Roponen M, Weber J, Braun-Fahrländer C, Riedler J, Dalphin J, Pekkanen J, Lauener R, von Mutius E, Schaub B. A switch in regulatory T cells through farm exposure during immune maturation in childhood. Allergy 2017; 72:604-615. [PMID: 27732759 DOI: 10.1111/all.13069] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Farm exposure protects against development of allergies early in life. At 4.5 years, protection against asthma by farm-milk exposure was partially mediated by regulatory T cells (Tregs). The aim of this study was to investigate the critical time window of the 'asthma-protective' farm effect via Tregs during childhood immune maturation. METHODS Tregs were assessed longitudinally at 4.5 and 6 years in 111 children (56 farm and 55 reference children) from the PASTURE/EFRAIM birth cohort (flow cytometry). Peripheral blood mononuclear cells were cultured unstimulated (U), with phorbol 12-myristate 13-acetate/ionomycin (PI) or lipopolysaccharide (LPS), and stained for Tregs (CD4+ CD25high FOXP3upper20% ). mRNA expression of Treg/Th1/Th2/Th17-associated cell markers was measured ex vivo. Suppressive capacity of Tregs on effector cells and cytokines was assessed. Detailed questionnaires assessing farm exposures and clinical phenotypes from birth until age 6 years were answered by the parents. RESULTS Treg percentage before and after stimulation and FOXP3mRNA expression ex vivo decreased from age 4.5 to 6 years (P(U,LPS) < 0.001; P(PI) = 0.051; P(FOXP3) < 0.001). High vs low farm-milk and animal-stable exposure was associated with decreased LPS-stimulated Treg percentage at age 6 years (P(LPS) = 0.045). Elevated LPS-stimulated-Treg percentage at age 6 was associated with increased risk of asthma (aOR = 11.29, CI: 0.96-132.28, P = 0.053). Tregs from asthmatics vs nonasthmatics suppressed IFN-γ (P = 0.015) and IL-9 (P = 0.023) less efficiently. mRNA expression of Th1/Th2/Th17-associated cell markers decreased between 4.5 and 6 years (P < 0.001). CONCLUSIONS Tregs at the age of 6 years were decreased with farm exposure and increased within asthmatics, opposite to age 4.5 years. This immunological switch defines a critical 'time window' for Treg-mediated asthma protection via environmental exposure before age 6 years.
Collapse
Affiliation(s)
- P. C. Schröder
- LMU Munich; University Children's Hospital; Munich Germany
| | - S. Illi
- LMU Munich; University Children's Hospital; Munich Germany
| | - V. I. Casaca
- LMU Munich; University Children's Hospital; Munich Germany
| | - A. Lluis
- National Jewish Health; Denver CO USA
| | - A. Böck
- LMU Munich; University Children's Hospital; Munich Germany
| | - C. Roduit
- Children's Hospital; University of Zürich; Zürich Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - M. Depner
- LMU Munich; University Children's Hospital; Munich Germany
| | - R. Frei
- Christine Kühne - Center for Allergy Research and Education (CK-CARE); Davos Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - J. Genuneit
- Institute of Epidemiology and Medical Biometry; Ulm University; Ulm Germany
| | - P. I. Pfefferle
- Comprehensive Biomaterial Bank Marburg CBBM; Fachbereich Medizin der Philipps Universität Marburg; Zentrum für Tumor und Immunbiologie ZTI; Marburg Germany
- Member of the German Centre for Lung Research (DZL); Munich Germany
| | - M. Roponen
- Department of Environmental Science; Inhalation Toxicology Laboratory; University of Eastern Finland; Kuopio Finland
| | - J. Weber
- LMU Munich; University Children's Hospital; Munich Germany
| | - C. Braun-Fahrländer
- Swiss Tropical and Public Health Institute; Basel Switzerland
- University of Basel; Basel Switzerland
| | - J. Riedler
- Children's Hospital Schwarzach; Schwarzach Austria
- Teaching Hospital of Paracelsus Medical Private University Salzburg; Salzburg Austria
| | - J.C. Dalphin
- Department of Respiratory Disease; University Hospital; University of Besançon; Besançon France
| | - J. Pekkanen
- Department of Health Protection; National Institute for Health and Welfare; Kuopio Finland
- Department of Public Health; University of Helsinki; Helsinki Finland
| | - R. Lauener
- Christine Kühne - Center for Allergy Research and Education (CK-CARE); Davos Switzerland
- Children's Hospital of Eastern Switzerland; St. Gallen Switzerland
| | - E. von Mutius
- LMU Munich; University Children's Hospital; Munich Germany
- Comprehensive Pneumology Centre Munich (CPC-M); German Centre for Lung Research (DZL); Munich Germany
| | - B. Schaub
- LMU Munich; University Children's Hospital; Munich Germany
- Comprehensive Pneumology Centre Munich (CPC-M); German Centre for Lung Research (DZL); Munich Germany
| | | |
Collapse
|
19
|
Fessler J, Raicht A, Husic R, Ficjan A, Schwarz C, Duftner C, Schwinger W, Graninger WB, Stradner MH, Dejaco C. Novel Senescent Regulatory T-Cell Subset with Impaired Suppressive Function in Rheumatoid Arthritis. Front Immunol 2017; 8:300. [PMID: 28373873 PMCID: PMC5357868 DOI: 10.3389/fimmu.2017.00300] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/03/2017] [Indexed: 11/15/2022] Open
Abstract
Objective Premature senescence of lymphocytes is a hallmark of inflammatory rheumatic diseases such as rheumatoid arthritis (RA). Early T-cell aging affects conventional T-cells but is presumably not limited to this cell population; rather it might also occur in the regulatory T-cells (Tregs) compartment. In RA, Tregs fail to halt aberrant immune reactions and disease progression. Whether this is associated with early Treg senescence leading to phenotypic and functional changes of this subset is elusive so far. Methods Eighty-four RA patients and 75 healthy controls were prospectively enrolled into the study. Flow cytometry, magnetic-associated cell sorting, and cell culture experiments were performed for phenotypic and functional analyses of Treg subsets. T-cell receptor excision circle (TREC) levels and telomere lengths were determined using RT-PCR. Results In this paper, we describe the novel CD4+FoxP3+CD28− T-cell subset (CD28− Treg-like cells) in RA patients revealing features of both Tregs and senescent T-cells: Treg surface/intracellular markers such as CD25, CTLA-4, and PD-1 as well as FOXP3 were all expressed by CD28− Treg-like cells, and they yielded signs of premature senescence including reduced TREC levels and an accumulation of γH2AX. CD28− Treg-like could be generated in vitro by stimulation of (CD28+) Tregs with TNF-α. CD28− Treg-like cells insufficiently suppressed the proliferation of effector T-cells and yielded a pro-inflammatory cytokine profile. Conclusion In conclusion, we describe a novel T-cell subset with features of Tregs and senescent non-Tregs. These cells may be linked to an aberrant balance between regulatory and effector functions in RA.
Collapse
Affiliation(s)
- Johannes Fessler
- Department of Rheumatology and Immunology, Medical University of Graz , Graz , Austria
| | - Andrea Raicht
- Department of Pediatric Hemato-Oncology, Medical University of Graz , Graz , Austria
| | - Rusmir Husic
- Department of Rheumatology and Immunology, Medical University of Graz , Graz , Austria
| | - Anja Ficjan
- Department of Rheumatology and Immunology, Medical University of Graz , Graz , Austria
| | - Christine Schwarz
- Department of Pediatric Hemato-Oncology, Medical University of Graz , Graz , Austria
| | - Christina Duftner
- Department of Internal Medicine VI, Innsbruck Medical University , Innsbruck , Austria
| | - Wolfgang Schwinger
- Department of Pediatric Hemato-Oncology, Medical University of Graz , Graz , Austria
| | - Winfried B Graninger
- Department of Rheumatology and Immunology, Medical University of Graz , Graz , Austria
| | - Martin H Stradner
- Department of Rheumatology and Immunology, Medical University of Graz , Graz , Austria
| | - Christian Dejaco
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria; Rheumatology Service, South Tyrolian Health Trust, Hospital Bruneck, Bruneck, Italy
| |
Collapse
|
20
|
Saudemont A, Madrigal JA. Immunotherapy after hematopoietic stem cell transplantation using umbilical cord blood-derived products. Cancer Immunol Immunother 2017; 66:215-221. [PMID: 27271550 PMCID: PMC11028513 DOI: 10.1007/s00262-016-1852-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/25/2016] [Indexed: 02/02/2023]
Abstract
Umbilical cord blood (UCB) is being increasingly used as a source of hematopoietic stem cells (HSC) for transplantation. UCB transplantation (UCBT) has some advantages such as less stringent HLA-matching requirements, fast availability of the graft and reduced incidence and severity of graft-versus-host disease. However, UCBT is also associated with a higher incidence of infection, graft failure, slow engraftment and slow immune reconstitution. UCB is mainly used as a source of HSC; however, it is also rich in immune cells that could be used to treat some of the main complications post-UCBT as well as other diseases, thus implicating the use of UCB for immunotherapy. Here, we aim to describe some of the therapies currently developed that use UCB as a cell source, focusing in particular on regulatory T cells and natural killer cells.
Collapse
Affiliation(s)
- Aurore Saudemont
- University College London, London, UK
- Anthony Nolan Research Institute, Fleet Road, London, NW3 2QG, UK
| | - J Alejandro Madrigal
- University College London, London, UK.
- Anthony Nolan Research Institute, Fleet Road, London, NW3 2QG, UK.
| |
Collapse
|
21
|
Volpe E, Sambucci M, Battistini L, Borsellino G. Fas-Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis. Front Immunol 2016; 7:382. [PMID: 27729910 PMCID: PMC5037862 DOI: 10.3389/fimmu.2016.00382] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas–FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas–FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas–FasL in regulating Th17 and Treg cells’ functions, in the context of MS.
Collapse
|
22
|
Nafady-Hego H, Li Y, Ohe H, Elgendy H, Zhao X, Sakaguchi S, Bishop GA, Koshiba T. Utility of CD127 combined with FOXP3 for identification of operational tolerance after liver transplantation. Transpl Immunol 2016; 36:1-8. [PMID: 27105585 DOI: 10.1016/j.trim.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 11/26/2022]
Abstract
Loss of cell surface expression of CD127 on CD4(+)CD25(++) regulatory T-cells (Tregs) may be a useful marker to efficiently isolate Tregs. As FOXP3 was specifically used to identify Tregs, combining these two markers could give better identification for patient with operational tolerance (OT) after liver transplantation. To testify this mixed lymphocyte reaction (MLR), the function of circulating CD4(+)CD25(++)CD127(dim) cells (CD127(dim) cells) was examined in immunosuppression (IS)-free pediatric recipients after liver transplantation (LTx) (group operational tolerance: OT) (Gr-tol n=25) compared to recipients who could not stop IS due to clinically overt rejection (group intolerance) (Gr-intol n=18), recipients who were weaning IS (Gr-weaning n=11) and age-matched healthy volunteers (Gr-vol n=11). In addition, the frequencies of CD127(dim) cells vs CD4(+)CD25(++)CD127(dim)FOXP3(+) (CD127(dim)FOXP3(+)) cells were compared in these four groups by FACS analyses. Our results showed that The proliferation of CD4 cells to donor antigens was reduced compared to third-party antigens only in Gr-tol (P=0.022) but not in other groups (P=NS). Depletion of CD127(dim) cells resulted in a donor antigen-specific abrogation of this MLR hyporesponsiveness in Gr-tol (P<0.001) but not other groups (P=NS). This implied that CD127 efficiently isolated donor antigen-specific Tregs. The frequencies of CD127(dim) cells were significantly lower in Gr-intol (5.2%±1.9%) compared to those in Gr-tol (7.8%±1.8%) (P<0.001) as were the frequencies of CD127(dim) FOXP3(+) cells (Gr-tol: 5.4%±1.7% vs Gr-intol: 2.9%±1.0%, P<0.001). Of interest, there were fewer CD127(dim)FOXP3(+) cells in Gr-intol (2.9%±1%) than in Gr-weaning (5.1%±1.8%) (P=0.002), but no difference in CD127(dim) cells (Gr-intol: 5.2%±1.9% vs Gr-weaning: 6.7%±2.0%) (NS). Thus, combining FOXP3 with CD127 for phenotype analysis demonstrated an unequivocal difference between Gr-intol and Gr-weaning that was not detected by CD127 alone. In conclusion CD127 was a useful surface marker to isolate donor-antigen-specific-Tregs in OT after LTx. The additive effect of its combination with FOXP3 is important in phenotypical Treg analyses of OT patients.
Collapse
Affiliation(s)
- Hanaa Nafady-Hego
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; Department of Hematology and Immunology, College of Medicine, Umm Al-Qura University, Mecca 50431, Saudi Arabia
| | - Ying Li
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hidenori Ohe
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hamed Elgendy
- Department of Anesthesia, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; Department of Anesthesiology, King Abdullah Medical City, Mecca 21955, Saudi Arabia
| | - Xiangdong Zhao
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shimon Sakaguchi
- World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - G Alex Bishop
- Transplantation Laboratory, The University of Sydney, Sydney, NSW 2006, Australia
| | - Takaaki Koshiba
- Department of Disaster and Comprehensive Medicine, Fukushima Medical University, Fukushima 960-1295, Japan.
| |
Collapse
|
23
|
Thompson PA, Rezvani K, Hosing CM, Oran B, Olson AL, Popat UR, Alousi AM, Shah ND, Parmar S, Bollard C, Hanley P, Kebriaei P, Cooper L, Kellner J, McNiece IK, Shpall EJ. Umbilical cord blood graft engineering: challenges and opportunities. Bone Marrow Transplant 2016; 50 Suppl 2:S55-62. [PMID: 26039209 DOI: 10.1038/bmt.2015.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We are entering a very exciting era in umbilical cord blood transplantation (UCBT), where many of the associated formidable challenges may become treatable by ex vivo graft manipulation and/or adoptive immunotherapy utilizing specific cellular products. We envisage the use of double UCBT rather than single UCBT for most patients; this allows for greater ability to treat larger patients as well as to manipulate the graft. Ex vivo expansion and/or fucosylation of one cord will achieve more rapid engraftment, minimize the period of neutropenia and also give certainty that the other cord will provide long-term engraftment/immune reconstitution. The non-expanded (and future dominant) cord could be chosen for characteristics such as better HLA matching to minimize GvHD, or larger cell counts to enable part of the unit to be utilized for the development of specific cellular therapies such as the production of virus-specific T-cells or chimeric-antigen receptor T-cells which are reviewed in this study.
Collapse
Affiliation(s)
- P A Thompson
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - K Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - C M Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - B Oran
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - A L Olson
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - U R Popat
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - A M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - N D Shah
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - S Parmar
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - C Bollard
- Center for Cell Therapy and Department of Immunology, Baylor College of Medicine, Houston, TX, USA
| | - P Hanley
- Center for Cell Therapy and Department of Immunology, Baylor College of Medicine, Houston, TX, USA
| | - P Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - L Cooper
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - J Kellner
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - I K McNiece
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| | - E J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Dijke IE, Hoeppli RE, Ellis T, Pearcey J, Huang Q, McMurchy AN, Boer K, Peeters AMA, Aubert G, Larsen I, Ross DB, Rebeyka I, Campbell A, Baan CC, Levings MK, West LJ. Discarded Human Thymus Is a Novel Source of Stable and Long-Lived Therapeutic Regulatory T Cells. Am J Transplant 2016; 16:58-71. [PMID: 26414799 DOI: 10.1111/ajt.13456] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 01/25/2023]
Abstract
Regulatory T cell (Treg)-based therapy is a promising approach to treat many immune-mediated disorders such as autoimmune diseases, organ transplant rejection, and graft-versus-host disease (GVHD). Challenges to successful clinical implementation of adoptive Treg therapy include difficulties isolating homogeneous cell populations and developing expansion protocols that result in adequate numbers of cells that remain stable, even under inflammatory conditions. We investigated the potential of discarded human thymuses, routinely removed during pediatric cardiac surgery, to be used as a novel source of therapeutic Tregs. Here, we show that large numbers of FOXP3(+) Tregs can be isolated and expanded from a single thymus. Expanded thymic Tregs had stable FOXP3 expression and long telomeres, and suppressed proliferation and cytokine production of activated allogeneic T cells in vitro. Moreover, expanded thymic Tregs delayed development of xenogeneic GVHD in vivo more effectively than expanded Tregs isolated based on CD25 expression from peripheral blood. Importantly, in contrast to expanded blood Tregs, expanded thymic Tregs remained stable under inflammatory conditions. Our results demonstrate that discarded pediatric thymuses are an excellent source of therapeutic Tregs, having the potential to overcome limitations currently hindering the use of Tregs derived from peripheral or cord blood.
Collapse
Affiliation(s)
- I E Dijke
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | - R E Hoeppli
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - T Ellis
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | - J Pearcey
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | - Q Huang
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - A N McMurchy
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - K Boer
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, the Netherlands
| | - A M A Peeters
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, the Netherlands
| | - G Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - I Larsen
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | - D B Ross
- Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - I Rebeyka
- Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - A Campbell
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - C C Baan
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, the Netherlands
| | - M K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - L J West
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Caramalho Í, Nunes-Cabaço H, Foxall RB, Sousa AE. Regulatory T-Cell Development in the Human Thymus. Front Immunol 2015; 6:395. [PMID: 26284077 PMCID: PMC4522873 DOI: 10.3389/fimmu.2015.00395] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/19/2015] [Indexed: 12/23/2022] Open
Abstract
The thymus generates a lineage-committed subset of regulatory T-cells (Tregs), best identified by the expression of the transcription factor FOXP3. The development of thymus-derived Tregs is known to require high-avidity interaction with MHC-self peptides leading to the generation of self-reactive Tregs fundamental for the maintenance of self-tolerance. Notwithstanding their crucial role in the control of immune responses, human thymic Treg differentiation remains poorly understood. In this mini-review, we will focus on the developmental stages at which Treg lineage commitment occurs, and their spatial localization in the human thymus, reviewing the molecular requirements, including T-cell receptor and cytokine signaling, as well as the cellular interactions involved. An overview of the impact of described thymic defects on the Treg compartment will be provided, illustrating the importance of these in vivo models to investigate human Treg development.
Collapse
Affiliation(s)
- Íris Caramalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Russell B Foxall
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
26
|
Ndure J, Flanagan KL. Targeting regulatory T cells to improve vaccine immunogenicity in early life. Front Microbiol 2014; 5:477. [PMID: 25309517 PMCID: PMC4161046 DOI: 10.3389/fmicb.2014.00477] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/25/2014] [Indexed: 12/26/2022] Open
Abstract
Human newborns and infants are bombarded with multiple pathogens on leaving the sterile intra-uterine environment, and yet have suboptimal innate immunity and limited immunological memory, thus leading to increased susceptibility to infections in early life. They are thus the target age group for a host of vaccines against common bacterial and viral pathogens. They are also the target group for many vaccines in development, including those against tuberculosis (TB), malaria, and HIV infection. However, neonatal and infant responses too many vaccines are suboptimal, and in the case of the polysaccharide vaccines, it has been necessary to develop the alternative conjugated formulations in order to induce immunity in early life. Immunoregulatory factors are an intrinsic component of natural immunity necessary to dampen or control immune responses, with the caveat that they may also decrease immunity to infections or lead to chronic infection. This review explores the key immunoregulatory factors at play in early life, with a particular emphasis on regulatory T cells (Tregs). It goes on to explore the role that Tregs play in limiting vaccine immunogenicity, and describes animal and human studies in which Tregs have been depleted in order to enhance vaccine responses. A deeper understanding of the role that Tregs play in limiting or controlling vaccine-induced immunity would provide strategies to improve vaccine immunogenicity in this critical age group. New adjuvants and drugs are being developed that can transiently suppress Treg function, and their use as part of human vaccination strategies against infections is becoming a real prospect for the future.
Collapse
Affiliation(s)
- Jorjoh Ndure
- Infant Immunology Group, Vaccinology Theme, Medical Research Council Laboratories Fajara, The Gambia
| | - Katie L Flanagan
- Vaccine and Infectious Diseases Laboratory, Department of Immunology, Monash University Melbourne, VIC, Australia
| |
Collapse
|
27
|
Schumacher A, Zenclussen AC. Regulatory T cells: regulators of life. Am J Reprod Immunol 2014; 72:158-70. [PMID: 24661545 DOI: 10.1111/aji.12238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022] Open
Abstract
Pregnancy still represents one of the most fascinating paradoxical phenomena in science. Immediately after conception, the maternal immune system is challenged by the presence of foreign paternal antigens in the semen. This triggers mechanisms of recognition and tolerance that all together allow the embryo to implant and later the fetus to develop. Tolerance mechanisms to maintain pregnancy are of special interest as they defy the classical immunology rules. Several cell types, soluble factors, and immune regulatory molecules have been proposed to contribute to fetal tolerance. Within these, regulatory T cells (Treg) are one of the most studied immune cell populations lately. They are reportedly involved in fetal acceptance. Here, we summarize several aspects of Treg biology in normal and pathologic pregnancies focusing on Treg frequencies, subtypes, antigen specificity, and activity as well as on factors influencing Treg generation, recruitment, and function. This review also highlights the contribution of fetal Treg in tolerance induction and addresses the role of Treg in autoimmune diseases and infections during gestation. Finally, the potential of Treg as a predictive marker for the success of assisted reproductive techniques and for therapeutic interventions is discussed.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics & Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | |
Collapse
|
28
|
Zhang X, Chang Li X, Xiao X, Sun R, Tian Z, Wei H. CD4(+)CD62L(+) central memory T cells can be converted to Foxp3(+) T cells. PLoS One 2013; 8:e77322. [PMID: 24155942 PMCID: PMC3796486 DOI: 10.1371/journal.pone.0077322] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
The peripheral Foxp3(+) Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4(+) T cells can be readily converted to Foxp3(+) iTreg in vitro, and memory CD4(+) T cells are resistant to conversion. In this study, we investigated the induction of Foxp3(+) T cells from various CD4(+) T-cell subsets in human peripheral blood. Though naive CD4(+) T cells were readily converted to Foxp3(+) T cells with TGF-β and IL-2 treatment in vitro, such Foxp3(+) T cells did not express the memory marker CD45RO as do Foxp3(+) T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4(+) T cells, defined as CD62L(+) central memory T cells, could be induced by TGF-β to differentiate into Foxp3(+) T cells. It is well known that Foxp3(+) T cells derived from human CD4(+)CD25(-) T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4(+)CD62L(+) central memory T cell-derived Foxp3(+) T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4(+) T cell-derived Foxp3(+) T cells. But further research showed that mouse CD4(+) central memory T cells also could be induced to differentiate into Foxp3(+) T cells, such Foxp3(+) T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4(+)CD62L(+) central memory T cells as a novel potential source of iTreg.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Institute of Immunology, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| | - Xian Chang Li
- Transplant Research Center, Brigham and Women's Hospital & Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiang Xiao
- Transplant Research Center, Brigham and Women's Hospital & Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rui Sun
- Institute of Immunology, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail: (HW); (ZT)
| | - Haiming Wei
- Institute of Immunology, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail: (HW); (ZT)
| |
Collapse
|
29
|
Xufré C, Costa M, Roura-Mir C, Codina-Busqueta E, Usero L, Pizarro E, Obiols G, Jaraquemada D, Martí M. Low frequency of GITR+ T cells in ex vivo and in vitro expanded Treg cells from type 1 diabetic patients. Int Immunol 2013; 25:563-74. [DOI: 10.1093/intimm/dxt020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
30
|
Fessler J, Ficjan A, Duftner C, Dejaco C. The impact of aging on regulatory T-cells. Front Immunol 2013; 4:231. [PMID: 23964277 PMCID: PMC3734364 DOI: 10.3389/fimmu.2013.00231] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/22/2013] [Indexed: 01/10/2023] Open
Abstract
Age-related deviations of the immune system contribute to a higher likelihood of infections, cancer, and autoimmunity in the elderly. Senescence of T-lymphocytes is characterized by phenotypical and functional changes including the loss of characteristic T-cell surface markers, while an increase of stimulatory receptors, cytotoxicity as well as resistance against apoptosis is observed. One of the key mediators of immune regulation are naturally occurring regulatory T-cells (Tregs). Tregs express high levels of CD25 and the intracellular protein forkhead box P3; they exert their suppressive functions in contact-dependent as well as contact-independent manners. Quantitative and qualitative defects of Tregs were observed in patients with autoimmune diseases. Increased Treg activity was shown to suppress anti-tumor and anti-infection immunity. The effect of aging on Tregs, and the possible contribution of age-related changes of the Treg pool to the pathophysiology of diseases in the elderly are still poorly understood. Treg homeostasis depends on an intact thymic function and current data suggest that conversion of non-regulatory T-cells into Tregs as well as peripheral expansion of existing Tregs compensates for thymic involution after puberty to maintain constant Treg numbers. In the conventional T-cell subset, peripheral proliferation of T-cells is associated with replicative senescence leading to phenotypical and functional changes. For Tregs, different developmental stages were also described; however, replicative senescence of Tregs has not been observed yet.
Collapse
Affiliation(s)
- Johannes Fessler
- Department of Rheumatology and Immunology, Medical University Graz , Graz , Austria
| | | | | | | |
Collapse
|
31
|
Pieper J, Herrath J, Raghavan S, Muhammad K, Vollenhoven RV, Malmström V. CTLA4-Ig (abatacept) therapy modulates T cell effector functions in autoantibody-positive rheumatoid arthritis patients. BMC Immunol 2013; 14:34. [PMID: 23915385 PMCID: PMC3750242 DOI: 10.1186/1471-2172-14-34] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/31/2013] [Indexed: 12/02/2022] Open
Abstract
Background Rheumatoid arthritis is a chronic inflammatory disease with a strong MHC class II component and where many patients develop characteristic autoantibodies towards the noncoding amino acid citrulline. Such anti-citrullinated protein antibodies (ACPA) have recently been put forward as an independent predictive factor for treatment response by co-stimulation blockade by CTLA4-Ig (abatacept). We have performed a mechanism of action study to dissect T cell functionality in RA patients with long-standing disease undergoing abatacept treatment and the influence of ACPA status. Results Peripheral blood samples were collected from RA patients as they started CTLA4-Ig treatment and 3 and 6 months later. A general decrease of regulatory T cell subsets was observed in the cohort. Additionally within the ACPA-positive group significant down-regulation of all key T cell effector subsets including Th1, Th2, and Th17 was observed by analyzing cytokines by intracellular flow cytometry and in cell culture supernatants. RA synovial fluid samples were cultured in vitro in the presence or absence of CTLA4-Ig (abatacept). T cell cytokine production was diminished, but without increasing the functional capacity of CD4+CD25hi regulatory T cells as previously demonstrated in the context of TNF-blockade and anti-IL6R therapy. Conclusions Our immunological study of T cell functionality in RA patients, both ACPA-positive and ACPA-negative, starting biological therapy with the co-stimulation blockade abatacept (CTLA4-Ig) supports the recently published registry study implicating ACPA seropositivity as an independent predictive factor to treatment response as we observed the most striking effect on T cell subset modulation in ACPA-positive patients. These data further support the notion of RA as a disease with several sub-entities, where the ACPA-positive fraction represents a classical HLA-associated autoimmune disorder while ACPA-negative patients may have other driving forces apart from classical adaptive immune responses.
Collapse
Affiliation(s)
- Jennifer Pieper
- Rheumatology Unit, Department of Medicine at Karolinska University Hospital, Karolinska Institute, Solna, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Gołąb K, Krzystyniak A, Marek-Trzonkowska N, Misawa R, Wang LJ, Wang X, Cochet O, Tibudan M, Langa P, Millis JM, Trzonkowski P, Witkowski P. Impact of culture medium on CD4+ CD25highCD127lo/neg Treg expansion for the purpose of clinical application. Int Immunopharmacol 2013; 16:358-63. [DOI: 10.1016/j.intimp.2013.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/18/2013] [Indexed: 01/26/2023]
|
33
|
Stelmaszczyk-Emmel A, Zawadzka-Krajewska A, Szypowska A, Kulus M, Demkow U. Frequency and activation of CD4+CD25 FoxP3+ regulatory T cells in peripheral blood from children with atopic allergy. Int Arch Allergy Immunol 2013; 162:16-24. [PMID: 23817221 DOI: 10.1159/000350769] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Atopic allergy is among the immune tolerance-related disorders resulting from a failure of the regulatory network. Regulatory T cells (Tregs) play a leading role in the development of homeostasis in the immune system. The aim of this study was to determine the role of Tregs in the pathogenesis of atopic diseases in children by exploring the relationship between Treg frequency, activation markers and the clinical manifestations of the disease. METHODS Twenty allergic and 50 healthy children were enrolled to the study. Peripheral blood mononuclear cells were stained with monoclonal antibodies (anti-CD25-CD4-CD127-FoxP3-CD69-CD71) and evaluated using flow cytometry. Tregs were identified as CD4+CD25(+/high)FoxP3+CD127- T cells. RESULTS The percentage of Tregs in allergic patients (2.3%) was significantly decreased in comparison to healthy controls (4.6%, p = 0.003). The frequency of Tregs in patients with symptoms of atopic dermatitis and/or food allergy (1.7%) was significantly lower than in patients without these symptoms (2.9%, p = 0.04). A significant correlation between the percentage of Tregs and the sIgE serum concentration was observed (p = 0.037). Relative fluorescence intensities of FoxP3 expression in allergic patients were higher than in healthy controls (p = 0.00004). The frequency of CD4+CD25(high)CD127-CD71+ cells did not differ between the groups. CONCLUSIONS Tregs display substantial deficiencies in atopic children, especially in children with multiorgan involvement, compared to patients with single organ manifestations. Additionally, there is an association between Tregs and the sIgE serum concentration. Better identification and characterization of Tregs in allergy is needed as they limit responses to foreign antigens, thereby minimizing T cell-mediated immunopathology in allergic diseases.
Collapse
Affiliation(s)
- Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
34
|
The similarity of Type 1 autoimmune pancreatitis to pancreatic ductal adenocarcinoma with significant IgG4-positive plasma cell infiltration. J Gastroenterol 2013; 48:751-61. [PMID: 23053421 DOI: 10.1007/s00535-012-0677-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/23/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND High serum immunoglobulin G4 (IgG4) levels and infiltration of IgG4-positive cells are characteristic of Type 1 autoimmune pancreatitis (AIP). We previously reported that increased regulatory T cells (Tregs) may regulate IgG4 production in AIP. Although an increased serum IgG4 concentration is observed in some patients with pancreatic ductal adenocarcinoma (PDA), clarification is still necessary. We have therefore studied the correlations between IgG4-positive cells and Tregs in patients with PDA. SUBJECTS AND METHODS A total of 21 PDA and nine AIP patients were enrolled in our study. The numbers and ratios of Tregs, IgG4-positive, and IgG-positive cells immunohistochemically stained with anti-Foxp3, IgG4, and IgG antibodies, respectively, were counted in three areas of resected pancreata in PDA, peritumoral pancreatitis (PT), and obstructive pancreatitis (OP). RESULTS In PDA, PT, OP area, the number of IgG4-Positive cells (5.183 ± 1.061, 2.250 ± 0.431, 4.033 ± 1.018, respectively; p < 0.05) and the ratio of IgG4/IgG (0.391 ± 0.045, 0.259 ± 0.054, 0.210 ± 0.048, respectively; p < 0.05) were significantly lower than those in AIP (21.667 ± 2.436 and 0.306 ± 0.052, respectively). The numbers of IgG4-positive cells did not differ significantly among the three areas of resected pancreata examined. However, the IgG4/IgG (0.391 ± 0.045) and Foxp3/monocyte (0.051 ± 0.008) ratios in PDA area were significantly (p < 0.05) higher than those in OP area (IgG4/IgG: 0.210 ± 0.048; oxp3/monocyte: 0.0332 ± 0.005), but not in PT area. Of the 21 cases of PDA, the ratio of IgG4/IgG was >40 % in nine (43%), six (29%) and three (14%) cases in PDA, PT and OP area, respectively. Foxp3 and IgG4 were positively correlated in OP area, but not in PDA and PT area. CONCLUSIONS Clinicians should be careful when basing a differential diagnosis of PDA and AIP on the numbers of IgG4-positive cells and the ratio of IgG4/IgG, especially when determined using a small biopsied sample.
Collapse
|
35
|
Milward K, Issa F, Hester J, Figueroa-Tentori D, Madrigal A, Wood KJ. Multiple unit pooled umbilical cord blood is a viable source of therapeutic regulatory T cells. Transplantation 2013; 95:85-93. [PMID: 23263503 PMCID: PMC4516307 DOI: 10.1097/tp.0b013e31827722ed] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Regulatory T cells (Treg) are potentially a useful therapeutic option for the treatment of immunopathological conditions including graft-versus-host disease. Umbilical cord blood (UCB) offers certain advantages over adult peripheral blood (APB) as a source of Treg for cellular therapy but yields far fewer Treg per unit. Pooling of Treg from multiple donors may overcome this challenge. METHODS In this study, we assessed the in vitro and in vivo efficacy of multiple donor pooled UCB or APB-derived Treg. RESULTS In vitro, pooled freshly isolated UCB-derived Treg were as suppressive as APB-derived Treg. However, in a mouse model of human skin allodestruction, pooled UCB-derived Treg were more potent at suppressing alloresponses and prolonging skin survival compared with pooled APB-derived Treg. Improved survival of UCB Treg in an in vivo cell survival assay and their lower expression of human leukocyte antigen-ABC suggested that lower immunogenicity may account for their superior efficacy in vivo. CONCLUSION Multiple-unit UCB is therefore a viable source of human Treg for cellular therapy, and pooling of Treg from multiple donors offers a useful strategy for achieving required therapeutic doses.
Collapse
Affiliation(s)
- Kate Milward
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Alejandro Madrigal
- Anthony Nolan Research Institute, The Royal Free Hospital, UCL Cancer Institute, London, UK
| | - Kathryn J. Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Lin SJ, Yan DC, Lee YC, Hsiao HS, Lee PT, Liang YW, Kuo ML. Umbilical cord blood immunology: relevance to stem cell transplantation. Clin Rev Allergy Immunol 2012; 42:45-57. [PMID: 22134956 DOI: 10.1007/s12016-011-8289-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Because of its easier accessibility and less severe graft-versus-host disease, umbilical cord blood (UCB) has been increasingly used as an alternative to bone marrow for hematopoietic stem cell transplantation. Naiveté of UCB lymphocytes, however, results in delayed immune reconstitution and infection-related mortality in transplant recipients. This review updates the phenotypic and functional deficiencies of various immune cell populations in UCB compared with their adult counterparts and discusses clinical implications and possible therapeutic strategies to improve the outcome of stem cell transplantation.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Haematopoietic cell transplantation (HCT) is the most widely used form of cellular therapy. It is the only known cure for some haematological malignancies and has recently been used in additional clinical settings, such as allograft tolerance induction and treatment of autoimmune diseases. Recent advances have enabled HCT in a wider range of patients with improved outcomes. This Review summarizes the latest developments in this therapy, focusing on issues that will affect future advancement.
Collapse
Affiliation(s)
- Hao Wei Li
- Columbia Center for Translational Immunology, Columbia University Medical Center, 650 West 168th Street, BB 15-02, New York, New York 10032, USA
| | | |
Collapse
|
38
|
Stelmaszczyk-Emmel A, Jackowska T, Rutkowska-Sak L, Marusak-Banacka M, Wąsik M. Identification, frequency, activation and function of CD4+ CD25(high)FoxP3+ regulatory T cells in children with juvenile idiopathic arthritis. Rheumatol Int 2012; 32:1147-54. [PMID: 21249500 PMCID: PMC3336051 DOI: 10.1007/s00296-010-1728-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 12/30/2010] [Indexed: 11/25/2022]
Abstract
The aim of the study was to test the frequency of CD4+ CD25(high)FoxP3 regulatory T cells in JIA patients and to assess their activation status and functional activity. The study involved 12 children with JIA and 35 healthy control subjects. PBMC were stained with monoclonal antibodies (anti-CD25, anti-CD4, anti-CD127, anti-CD69, anti-CD71, and anti-FoxP3). The samples were evaluated using flow cytometer. CD4+ CD25- and CD4+ CD25+ cells were isolated by negative and positive selection with magnetic microbeads. CD4+ CD25+ and CD4+ CD25- cells were cultured separately and co-cultured (1:1) with or without PHA. The percentage of Tregs in JIA patients was significantly decreased in comparison with controls (median, 3.2 vs. 4.6; P = 0.042). Relative fluorescence intensities of FoxP3 were higher in JIA patients than in controls (median, 9.1 vs. 6.8). The percentage of activated Tregs (CD71+) was significantly higher in JIA patients in comparison with controls (median, 6.5 vs. 2.8; P = 0.00043). CD4+ CD25+ cells derived from JIA patients and controls were anergic upon PHA stimulation, while CD4+ CD25- cells showed intensive proliferative response. The proliferation rate of CD4+ CD25- cells stimulated by PHA was decreased in co-cultures. In JIA patients, the inhibition of proliferation of CD4+ CD25- cells by CD4+ CD25+ cells was 37.9%, whereas in controls it was significantly lower (55.7%, P = 0.046). JIA patients had statistically lower percentage of Tregs in peripheral blood compared to controls. CD4+ CD25+ cells sorted from peripheral blood of JIA patients had statistically lower ability to suppress CD4+ CD25- cell proliferation in comparison with cells obtained from controls.
Collapse
Affiliation(s)
- Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, ul. Marszalkowska 24, 00-576 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
39
|
Svensson A, Nordström I, Rudin A, Bergström T, Eriksson K. Enveloped virus but not bacteria block IL-13 responses in human cord blood T cells in vitro. Scand J Immunol 2012; 75:409-18. [PMID: 22229804 PMCID: PMC7190188 DOI: 10.1111/j.1365-3083.2012.02676.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Infections that occur early in life may have a beneficial effect on the immune system and thereby reduce the risk of allergen sensitization and/or allergic disease. It is not yet clear to what extent specific virus and/or bacteria can mediate this effect. The purpose of this study was to assess the role of virus and bacteria in CD4+ T cell‐derived cytokine production in newborns. We compared the effects of five bacteria (Staphlococcus aureus, Escherichia coli, Clostridium difficile, Lactobacillus rhamnosus and Bifidobacterium bifidus) and seven virus (adenovirus, coronavirus, cytomegalovirus, herpes simplex virus, influenza virus, morbillivirus and poliovirus) on the Th1/Th2 cytokine production in mixed lymphocyte reactions using CD4+ T cells from cord blood cocultured with allogenic myeloid or plasmacytoid dendritic cells. When comparing the baseline cytokine production prior to microbial stimulation, we observed that cord plasmacytoid DC were stronger inducers of Th2 cytokines (IL‐5 and IL‐13) compared with cord myeloid DC and to adult DC. When adding microbes to these cultures, bacteria and virus differed in two major respects; Firstly, all enveloped viruses, but none of the bacteria, blocked Th2 (IL‐13) production by cord CD4+ cells. Secondly, all Gram‐positive bacteria, but none of the virus, induced IL‐12p40 responses, but the IL‐12p40 responses did not affect Th1 cytokine production (IFN‐γ). Instead, Th1 responses were correlated with the capacity to induce IFN‐α secretion, which in cord cells were induced by S. aureus and influenza virus alone. These data imply that enveloped virus can deviate Th2 responses in human cord T cells.
Collapse
Affiliation(s)
- A Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
40
|
Rodriguez-Pinto D, Navas A, Blanco VM, Ramírez L, Garcerant D, Cruz A, Craft N, Saravia NG. Regulatory T cells in the pathogenesis and healing of chronic human dermal leishmaniasis caused by Leishmania (Viannia) species. PLoS Negl Trop Dis 2012; 6:e1627. [PMID: 22545172 PMCID: PMC3335885 DOI: 10.1371/journal.pntd.0001627] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/09/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The inflammatory response is prominent in the pathogenesis of dermal leishmaniasis. We hypothesized that regulatory T cells (Tregs) may be diminished in chronic dermal leishmaniasis (CDL) and contribute to healing during treatment. METHODOLOGY/PRINCIPAL FINDINGS The frequency and functional capacity of Tregs were evaluated at diagnosis and following treatment of CDL patients having lesions of ≥6 months duration and asymptomatically infected residents of endemic foci. The frequency of CD4(+)CD25(hi) cells expressing Foxp3 or GITR or lacking expression of CD127 in peripheral blood was determined by flow cytometry. The capacity of CD4(+)CD25(+) cells to inhibit Leishmania-specific responses was determined by co-culture with effector CD4(+)CD25(-) cells. The expression of FOXP3, IFNG, IL10 and IDO was determined in lesion and leishmanin skin test site biopsies by qRT-PCR. Although CDL patients presented higher frequency of CD4(+)CD25(hi)Foxp3(+) cells in peripheral blood and higher expression of FOXP3 at leishmanin skin test sites, their CD4(+)CD25(+) cells were significantly less capable of suppressing antigen specific-IFN-γ secretion by effector cells compared with asymptomatically infected individuals. At the end of treatment, both the frequency of CD4(+)CD25(hi)CD127(-) cells and their capacity to inhibit proliferation and IFN-γ secretion increased and coincided with healing of cutaneous lesions. IDO was downregulated during healing of lesions and its expression was positively correlated with IFNG but not FOXP3. CONCLUSIONS/SIGNIFICANCE The disparity between CD25(hi)Foxp3(+) CD4 T cell frequency in peripheral blood, Foxp3 expression at the site of cutaneous responses to leishmanin, and suppressive capacity provides evidence of impaired Treg function in the pathogenesis of CDL. Moreover, the concurrence of increased Leishmania-specific suppressive capacity with induction of a CD25(hi)CD127(-) subset of CD4 T cells during healing supports the participation of Tregs in the resolution of chronic dermal lesions. Treg subsets may therefore be relevant in designing immunotherapeutic strategies for recalcitrant dermal leishmaniasis caused by Leishmania (Viannia) species.
Collapse
Affiliation(s)
- Daniel Rodriguez-Pinto
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Orsini G, Legitimo A, Failli A, Massei F, Biver P, Consolini R. Enumeration of human peripheral blood dendritic cells throughout the life. Int Immunol 2012; 24:347-56. [PMID: 22345276 DOI: 10.1093/intimm/dxs006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human aging is associated with immunosenescence, a process characterized by alterations in numerical and functional features of immune system components. Dendritic cells (DCs) are the main antigen-presenting cells, playing a pivotal role in adaptive and innate immunity. Therefore, we investigated the distribution of human circulating DCs throughout the life, in order to contribute to the knowledge of the physiological background underlying the aging of immune system. Cytofluorimetric analysis of peripheral blood samples by all-aged healthy population showed a significant decrease of circulating DCs and of their two main subsets among age. This reduction was limited to the plasmacytoid cell subtype when young and old subjects were analyzed separately. The analysis of circulating Treg cell number in a cohort of the subjects showed a significant reduction with increasing age and a positive significant correlation to myeloid or plasmacytoid absolute numbers. In conclusion, this work provides a large set of data of normal reference values of peripheral blood dendritic cells in healthy population suitable for comparative clinical studies concerning pathological immune dysfunctions.
Collapse
Affiliation(s)
- Giulia Orsini
- Department of Surgery, University of Pisa, 56126 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Reber AJ, Chirkova T, Kim JH, Cao W, Biber R, Shay DK, Sambhara S. Immunosenescence and Challenges of Vaccination against Influenza in the Aging Population. Aging Dis 2012; 3:68-90. [PMID: 22500272 PMCID: PMC3320806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 05/31/2023] Open
Abstract
Influenza is an important contributor to morbidity and mortality worldwide. Accumulation of genetic mutations termed antigenic drift, allows influenza viruses to inflict yearly epidemics that may result in 250,000 to 500,000 deaths annually. Over 90% of influenza-related deaths occur in the older adult population. This is at least in part a result of increasing dysregulation of the immune system with age, termed immunosenescence. This dysregulation results in reduced capacity to cope with infections and decreased responsiveness to vaccination. The older adult population is in dire need of improved vaccines capable of eliciting protective responses in the face of a waning immune system. This review focuses on the status of immunity, responses to influenza vaccination, and strategies that are currently being explored to elicit enhanced immune responses in this high risk population.
Collapse
Affiliation(s)
- Adrian J. Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Tatiana Chirkova
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Jin Hyang Kim
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Weiping Cao
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Renata Biber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - David K. Shay
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| |
Collapse
|
43
|
Mayer E, Bannert C, Gruber S, Klunker S, Spittler A, Akdis CA, Szépfalusi Z, Eiwegger T. Cord blood derived CD4+ CD25(high) T cells become functional regulatory T cells upon antigen encounter. PLoS One 2012; 7:e29355. [PMID: 22272233 PMCID: PMC3260151 DOI: 10.1371/journal.pone.0029355] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/27/2011] [Indexed: 01/16/2023] Open
Abstract
Background: Upon antigen exposure, cord blood derived T cells respond to ubiquitous environmental antigens by high proliferation. To date it remains unclear whether these “excessive” responses relate to different regulatory properties of the putative T regulatory cell (Treg) compartment or even expansion of the Treg compartment itself. Methods: Cord blood (>37 week of gestation) and peripheral blood (healthy controls) were obtained and different Treg cell subsets were isolated. The suppressive potential of Treg populations after antigen exposure was evaluated via functional inhibition assays ([3H]thymidine incorporation assay and CFSE staining) with or without allergen stimulation. The frequency and markers of CD4+CD25highFoxP3+ T cells were characterized by mRNA analysis and flow cytometry. Results: Cord blood derived CD4+CD25high cells did not show substantial suppressor capacity upon TCR activation, in contrast to CD4+CD25high cells freshly purified from adult blood. This could not be explained by a lower frequency of FoxP3+CD4+CD25highcells or FOXP3 mRNA expression. However, after antigen-specific stimulation in vitro, these cells showed strong proliferation and expansion and gained potent suppressive properties. The efficiency of their suppressive capacity can be enhanced in the presence of endotoxins. If T-cells were sorted according to their CD127 expression, a tiny subset of Treg cells (CD4+CD25+CD127low) is highly suppressive even without prior antigen exposure. Conclusion: Cord blood harbors a very small subset of CD4+CD25high Treg cells that requires antigen-stimulation to show expansion and become functional suppressive Tregs.
Collapse
Affiliation(s)
- Elisabeth Mayer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Christina Bannert
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Saskia Gruber
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Sven Klunker
- University of Zurich, Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Andreas Spittler
- Surgical Research Laboratories and Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Cezmi A. Akdis
- University of Zurich, Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Eiwegger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- University of Zurich, Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
- * E-mail:
| |
Collapse
|
44
|
Ernerudh J, Berg G, Mjösberg J. Regulatory T helper cells in pregnancy and their roles in systemic versus local immune tolerance. Am J Reprod Immunol 2011; 66 Suppl 1:31-43. [PMID: 21726336 DOI: 10.1111/j.1600-0897.2011.01049.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PROBLEM During pregnancy, the maternal immune system needs to adapt in order not to reject the semi-allogenic fetus. METHOD In this review, we describe and discuss the role of regulatory T (Treg) cells in fetal tolerance. RESULTS Treg cells constitute a T helper lineage that is derived from thymus (natural Treg cells) or is induced in the periphery (induced Treg cells). Treg cells are enriched at the fetal-maternal interface, showing a suppressive phenotype. In contrast, Treg cells are not increased in the circulation of pregnant women, and the suppressive capacity is similar to that in non-pregnant women. However, aberrations in Treg frequencies and functions, both systemically and in the uterus, may be involved in the complications of pregnancy. CONCLUSION Treg cells seem to have distinguished roles locally versus systemically, based on their distribution and phenotype.
Collapse
Affiliation(s)
- Jan Ernerudh
- Division of Clinical Immunology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
45
|
Tulic MK, Andrews D, Crook ML, Charles A, Tourigny MR, Moqbel R, Prescott SL. Changes in thymic regulatory T-cell maturation from birth to puberty: differences in atopic children. J Allergy Clin Immunol 2011; 129:199-206.e1-4. [PMID: 22104606 DOI: 10.1016/j.jaci.2011.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 10/09/2011] [Accepted: 10/13/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Characterization of regulatory immune pathways is a research priority for both the pathogenesis of allergic disease and potential therapeutic strategies. OBJECTIVE The thymus is a rich source of regulatory T (Treg) cells, which offers a novel opportunity to document the maturation of these pathways beyond limited studies on small volumes of peripheral blood available from young children. METHODS Thymus tissue was collected from children undergoing cardiac surgery (age, 1 week to 14 years), and skin prick testing was performed from 12 months of age. The ontogeny of Treg cell maturation and function was examined in atopic (n = 20) and nonatopic (n = 20) children by assessing their phenotype, enumeration, proliferation, and suppressive ability. RESULTS Age-related changes in the thymic cytokine milieu paralleled the changes seen in peripheral immune function. Specifically, the thymic microenvironment is similarly T(H)2 skewed during the early postnatal period, and this undergoes age-related suppression as the T(H)1 (IFN-γ) response increased. We detected CD4(+)CD25(+)CD127(lo/-) forkhead box protein 3 (FOXP3)-positive Treg cells in the neonatal thymus. These cells suppressed the proliferative response to allogeneic stimulation of CD4(+)CD25(-) T cells dose dependently. In nonatopic children Treg cell turnover and suppressive function increased with age and paralleled the increase in global thymic FOXP3 mRNA expression, whereas in atopic children Treg cell maturation was significantly delayed compared with that seen in age-matched nonatopic children. CONCLUSION These data suggest that the developmental changes in the thymus parallel the recognized changes in peripheral blood responses. There is also a developmental delay in the function of thymic regulatory cells in atopic compared with nonatopic children. These differences are fundamental to understanding early events that lead to immune dysregulation and might predispose to allergic disease.
Collapse
Affiliation(s)
- Meri K Tulic
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Yang J, Fan H, Hao J, Ren Y, Chen L, Li G, Xie R, Yang Y, Qian K, Liu M. Amelioration of acute graft-versus-host disease by adoptive transfer of ex vivo expanded human cord blood CD4+CD25+ forkhead box protein 3+ regulatory T cells is associated with the polarization of Treg/Th17 balance in a mouse model. Transfusion 2011; 52:1333-47. [PMID: 22098312 DOI: 10.1111/j.1537-2995.2011.03448.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human cord blood (CB) is a superior source of regulatory T cells (Tregs) compared with peripheral blood. Initial studies have shown that CB-derived Tregs can be effectively expanded ex vivo. However, in vitro suppressor activity of expanded CB-Tregs and their efficacy in the prevention of acute graft-versus-host disease (aGVHD) in vivo are poorly understood. STUDY DESIGN AND METHODS In vitro, human CB CD4+CD25+ T cells expanded with anti-CD3/CD28 beads plus interleukin (IL)-2 and the phenotypes, expression of cytokines, and suppression of expanded cells were analyzed after two cycles of stimulation. In vivo, the addition of human CB-Tregs was transferred in the major histocompatibility complex-mismatched aGVHD mouse model. Survival, body weight, GVHD scoring, histopathologic specimens, serum cytokines, and Th subsets were analyzed in CB-Treg-treated mice and untreated controls. RESULTS After being expanded ex vivo, human CB-derived Tregs with potent suppressor function could meet clinical demands. Up to 85% of mice with CB-Tregs treatment survived beyond Day 63 after bone marrow transplantation; however, all aGVHD mice died within 18 days. In the serum of the CB-Treg-treated mice, the production of transforming growth factor-β increased continuously, as opposed to IL-17, which decreased quickly. Consistent with the changes of cytokines, the percentage of mouse CD4+ forkhead box protein 3+ Tregs increased while that of Th17 cells decreased. CONCLUSION Ex vivo expanded human CB-Tregs significantly prevented allogeneic aGVHD in vivo by modulating various cytokine secretion and polarizing the Treg/Th17 balance toward Treg, which suggests the potential use of expanded CB-Tregs as a therapeutic approach for GVHD.
Collapse
Affiliation(s)
- Jie Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Baïz N, Slama R, Béné MC, Charles MA, Kolopp-Sarda MN, Magnan A, Thiebaugeorges O, Faure G, Annesi-Maesano I. Maternal exposure to air pollution before and during pregnancy related to changes in newborn's cord blood lymphocyte subpopulations. The EDEN study cohort. BMC Pregnancy Childbirth 2011; 11:87. [PMID: 22047167 PMCID: PMC3227583 DOI: 10.1186/1471-2393-11-87] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/02/2011] [Indexed: 12/14/2022] Open
Abstract
Background Toxicants can cross the placenta and expose the developing fetus to chemical contamination leading to possible adverse health effects, by potentially inducing alterations in immune competence. Our aim was to investigate the impacts of maternal exposure to air pollution before and during pregnancy on newborn's immune system. Methods Exposure to background particulate matter less than 10 μm in diameter (PM10) and nitrogen dioxide (NO2) was assessed in 370 women three months before and during pregnancy using monitoring stations. Personal exposure to four volatile organic compounds (VOCs) was measured in a subsample of 56 non-smoking women with a diffusive air sampler during the second trimester of pregnancy. Cord blood was analyzed at birth by multi-parameter flow cytometry to determine lymphocyte subsets. Results Among other immunophenotypic changes in cord blood, decreases in the CD4+CD25+ T-cell percentage of 0.82% (p = 0.01), 0.71% (p = 0.04), 0.88% (p = 0.02), and 0.59% (p = 0.04) for a 10 μg/m3 increase in PM10 levels three months before and during the first, second and third trimester of pregnancy, respectively, were observed after adjusting for confounders. A similar decrease in CD4+CD25+ T-cell percentage was observed in association with personal exposure to benzene. A similar trend was observed between NO2 exposure and CD4+CD25+ T-cell percentage; however the association was stronger between NO2 exposure and an increased percentage of CD8+ T-cells. Conclusions These data suggest that maternal exposure to air pollution before and during pregnancy may alter the immune competence in offspring thus increasing the child's risk of developing health conditions later in life, including asthma and allergies.
Collapse
Affiliation(s)
- Nour Baïz
- Inserm, Institut national de la santé et de la recherche médicale, Epidemiology of Allergic and Respiratory (EPAR) Department, UMR-S707, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nunes-Cabaço H, Caramalho Í, Sepúlveda N, Sousa AE. Differentiation of human thymic regulatory T cells at the double positive stage. Eur J Immunol 2011; 41:3604-14. [DOI: 10.1002/eji.201141614] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 12/30/2022]
|
49
|
Involvement of inducible costimulator- and interleukin 10-positive regulatory T cells in the development of IgG4-related autoimmune pancreatitis. Pancreas 2011; 40:1120-30. [PMID: 21926547 DOI: 10.1097/mpa.0b013e31821fc796] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Immunoglobulin G4 (IgG4)-related autoimmune pancreatitis (AIP) is a new clinical entity of pancreatic disorder. There are immunologic and histological abnormalities, including increased serum IgG4 levels and the infiltration of IgG4-positive plasmacytes. However, the role of IgG4 is unclear. Recently, regulatory T cells (Tregs) were reported to contribute to the development of various autoimmune diseases as well as in B-cell shifting to IgG4-producing plasmacytes. We studied Tregs in the pancreas and peripheral blood. METHODS We recruited 44 patients with IgG4-related AIP. For comparison, we recruited 37 patients with other pancreatic diseases and 27 healthy subjects as controls. We studied infiltrating cells in the pancreas by immunohistochemistry and analyzed inducible costimulator-positive Tregs and interleukin 10-positive Tregs in the peripheral blood by flow cytometry. RESULTS The ratio of Foxp3-positive cells to infiltrated mononuclear cells (Foxp3/Mono) in AIP patients was significantly higher than in patients with alcoholic chronic pancreatitis. In AIP, Foxp3/Mono and IgG4/Mono were positively correlated. Inducible costimulator-positive Tregs were significantly higher in AIP patients than in the patients with other pancreatic diseases and the healthy control group. Interleukin 10-positive Tregs were significantly higher in AIP patients than in the healthy control group. CONCLUSIONS Increased quantities of inducible costimulator-positive Tregs may influence IgG4 production in IgG4-related AIP.
Collapse
|
50
|
Jacobson CA, Turki AT, McDonough SM, Stevenson KE, Kim HT, Kao G, Herrera MI, Reynolds CG, Alyea EP, Ho VT, Koreth J, Armand P, Chen YB, Ballen K, Soiffer RJ, Antin JH, Cutler CS, Ritz J. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2011; 18:565-74. [PMID: 21875503 DOI: 10.1016/j.bbmt.2011.08.018] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/19/2011] [Indexed: 12/16/2022]
Abstract
Double umbilical cord blood (DUCB) transplantation is an accepted transplantation strategy for patients without suitable human leukocyte antigen (HLA) matched donors. However, DUCB transplantation is associated with increased morbidity and mortality because of slow recovery of immunity and a high risk of infection. To define the differences in immune reconstitution between DUCB transplantation and HLA matched unrelated donor (MUD) transplantation, we performed a detailed, prospective analysis of immune reconstitution in 42 DUCB recipients and 102 filgrastim-mobilized unrelated peripheral blood stem cell recipients. Reconstitution of CD3 T cells was significantly delayed in the DUCB cohort compared with the MUD cohort for 1 to 6 months posttransplantation (P < .001), including naive (CD45RO-) and memory (CD45RO+) CD4 T cells, regulatory (CD4CD25) T cells, and CD8 T cells. In contrast, CD19 B cells recovered more rapidly in the DUCB cohort and numbers remained significantly greater from 3 to 24 months after transplantation (P = .001). CD56CD16 natural killer (NK) cells also recovered more rapidly in DUCB recipients and remained significantly greater from 1 to 24 months after transplantation. B cell activating factor (BAFF) levels were higher in the DUCB cohort at 1 month (P < .001), were similar in both cohorts at 3 and 6 months, and were lower in the DUCB cohort at 12 months (P = .002). BAFF/CD19 B cell ratios were lower in the DUCB cohort at 3 (P = .045), 6 (P = .02), and 12 months (P = .002) after transplantation. DUCB recipients had more infections within the first 100 days after transplantation (P < .001), and there was less chronic graft-versus-host disease (P < .001), but there were no differences in cumulative incidence of relapse, nonrelapse death, progression-free survival, or overall survival between the 2 groups. These results suggest that increased risk of infections is specifically associated with delayed reconstitution of all major T cell subsets, but the increased risk is limited to the first 3 months after DUCB transplantation. There is no increased risk of relapse, suggesting that graft-versus-leukemia activity is maintained. Early reconstitution of B cells and NK cells may, in part, account for these findings.
Collapse
Affiliation(s)
- Caron A Jacobson
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|