1
|
Yang N, Li C, Liu R, Qi X, Qian X. Causality between immunocytes and polymyositis: A Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e40254. [PMID: 39470507 PMCID: PMC11521033 DOI: 10.1097/md.0000000000040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Polymyositis is a prominent subgroup of idiopathic inflammatory myopathy, considered to have an autoimmune etiology. However, research exploring the condition between immunocytes and polymyositis remains limited, indicating the need for further investigation to unravel these intricate associations. We employed bidirectional Mendelian randomization (MR) analysis to ascertain causality between 731 immunocytes and polymyositis. We also compared the positive immunocytes with dermatomyositis. Our primary analytical method was inverse variance weighted, supplemented by 4 other MR techniques. Additionally, Cochran Q test was performed to assess heterogeneity, MR-Egger to appraise pleiotropy, and MR-PRESSO to identify and eliminate potential outliers. Furthermore, the leave-one-out test evaluated the impact of each instrumental variable (IV) on the causal effect. The inverse variance weighted results revealed that 10 immunocytes exert a protective effect against polymyositis (P < .05, OR < 1), while 16 immunocytes are connected with an elevated risk of the disease (P < .05, OR > 1). In reverse MR, polymyositis was found to decrease the levels of 2 immune cells (P < .05, OR < 1) and elevate the expression of 5 immune cell phenotypes (P < .05, OR > 1). A complex correlation was found between polymyositis and the immunocyte phenotypes CD8, CD33dim, HLA-DR, CD11b, and CD45. Additionally, it was discovered that 15 types of immune cells share a causal relationship between polymyositis and dermatomyositis. All analyses demonstrated no heterogeneity or horizontal pleiotropy (P > .05). Our study provides compelling evidence regarding the intricate causal relationships between immunocytes and polymyositis. Polymyositis and dermatomyositis share common immunocytes' regulatory mechanisms. CD8, CD33dim, HLA-DR, CD11b, and CD45 may represent potential immune cell markers for polymyositis. These findings hold implications for planning prognosis and therapeutic strategies for polymyositis, offering novel insights for drug development.
Collapse
Affiliation(s)
- Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chang Li
- Qingdao Haici Traditional Chinese Medicine Medical Group North Campus (Qingdao Hongdao People’s Hospital), Preventive Medicine Department, Jinan, China
| | - Ruhui Liu
- Qingdao Haici Traditional Chinese Medicine Medical Group North Campus (Qingdao Hongdao People’s Hospital), Preventive Medicine Department, Jinan, China
| | - Xianghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xing Qian
- Qingdao Haici Traditional Chinese Medicine Medical Group North Campus (Qingdao Hongdao People’s Hospital), Preventive Medicine Department, Jinan, China
| |
Collapse
|
2
|
Jiang H, Acharya C, An G, Zhong M, Feng X, Wang L, Dasilva N, Song Z, Yang G, Adrian F, Qiu L, Richardson P, Munshi NC, Tai YT, Anderson KC. Retraction Note: SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia 2024:10.1038/s41375-024-02443-z. [PMID: 39438590 DOI: 10.1038/s41375-024-02443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Affiliation(s)
- H Jiang
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Myeloma and Lymphoma Centre, Department of Hematology, Chang Zheng Hospital, The Second Military Medical University, Shanghai, China
| | - C Acharya
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - G An
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Zhong
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - X Feng
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - L Wang
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N Dasilva
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Z Song
- Sanofi Oncology, Cambridge, MA, USA
| | - G Yang
- Sanofi Oncology, Cambridge, MA, USA
| | - F Adrian
- Sanofi Oncology, Cambridge, MA, USA
| | - L Qiu
- Institute of Hematology, CAMS & PUMC, Tianjin, China
| | - P Richardson
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N C Munshi
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Y -T Tai
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - K C Anderson
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Dabkowska A, Domka K, Firczuk M. Advancements in cancer immunotherapies targeting CD20: from pioneering monoclonal antibodies to chimeric antigen receptor-modified T cells. Front Immunol 2024; 15:1363102. [PMID: 38638442 PMCID: PMC11024268 DOI: 10.3389/fimmu.2024.1363102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
CD20 located predominantly on the B cells plays a crucial role in their development, differentiation, and activation, and serves as a key therapeutic target for the treatment of B-cell malignancies. The breakthrough of monoclonal antibodies directed against CD20, notably exemplified by rituximab, revolutionized the prognosis of B-cell malignancies. Rituximab, approved across various hematological malignancies, marked a paradigm shift in cancer treatment. In the current landscape, immunotherapies targeting CD20 continue to evolve rapidly. Beyond traditional mAbs, advancements include antibody-drug conjugates (ADCs), bispecific antibodies (BsAbs), and chimeric antigen receptor-modified (CAR) T cells. ADCs combine the precision of antibodies with the cytotoxic potential of drugs, presenting a promising avenue for enhanced therapeutic efficacy. BsAbs, particularly CD20xCD3 constructs, redirect cytotoxic T cells to eliminate cancer cells, thereby enhancing both precision and potency in their therapeutic action. CAR-T cells stand as a promising strategy for combatting hematological malignancies, representing one of the truly personalized therapeutic interventions. Many new therapies are currently being evaluated in clinical trials. This review serves as a comprehensive summary of CD20-targeted therapies, highlighting the progress and challenges that persist. Despite significant advancements, adverse events associated with these therapies and the development of resistance remain critical issues. Understanding and mitigating these challenges is paramount for the continued success of CD20-targeted immunotherapies.
Collapse
Affiliation(s)
- Agnieszka Dabkowska
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Domka
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Firczuk
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Gambles MT, Sborov D, Shami P, Yang J, Kopeček J. Obinutuzumab-Based Drug-Free Macromolecular Therapeutics Synergizes with Topoisomerase Inhibitors. Macromol Biosci 2024; 24:e2300375. [PMID: 37838941 DOI: 10.1002/mabi.202300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Drug-free macromolecular therapeutics (DFMT) utilizes modified monoclonal antibodies (or antibody fragments) to generate antigen-crosslinking-induced apoptosis in target cells. DFMT is a two-component system containing a morpholino oligonucleotide (MORF1) modified antibody (Ab-MORF1) and human serum albumin conjugated with multiple copies of complementary morpholino oligonucleotide (MORF2), (HSA-(MORF2)x ). The two components recognize each other via the Watson-Crick base pairing complementation of their respective MORFs. One HSA-(MORF2)x molecule can hybridize with multiple Ab-MORF1 molecules on the cell surface, thus serving as the therapeutic crosslink-inducing mechanism of action. Herein, various anti-neoplastic agents in combination with the anti-CD20 Obinutuzumab (OBN)-based DFMT system are examined. Three different classes of chemotherapies are examined: DNA alkylating agents; proliferation pathway inhibitors; and DNA replication inhibitors. Chou-Talalay combination index mathematics is utilized to determine which drugs engaged synergistically with OBN-based DFMT. It is determined that OBN-based DFMT synergizes with topoisomerase inhibitors and DNA nucleotide analogs but is antagonistic with proliferation pathway inhibitors. Cell mechanism experiments are performed to analyze points of synergism or antagonism by investigating Ca2+ influx, mitochondrial health, lysosomal stability, and cell cycle arrest. Finally, the synergistic drug combinatorial effects of OBN-based DFMT with etoposide in vivo are demonstrated using a human xenograft non-Hodgkin's lymphoma mouse model.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Douglas Sborov
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Paul Shami
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
5
|
Zhang J, Zhao H, Li X, Qian R, Gao P, Lu S, Ma Z. Efficacy of low-dose rituximab in minimal change disease and prevention of relapse. BMC Nephrol 2023; 24:112. [PMID: 37101300 PMCID: PMC10134665 DOI: 10.1186/s12882-023-03092-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 02/20/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Minimal change disease (MCD) is a major cause of nephrotic syndrome (NS) in children and a minority of adults. The higher tendency to relapse put patients at risk for prolonged exposure to steroids and other immunosuppressive agents. B cell depletion with rituximab (RTX) may be beneficial to the treatment and prevention of frequently relapsing MCD. Therefore, this study aimed to verify the therapeutic/preventive effects of low-dose RTX on the relapse in adult with MCD. METHODS A total of 33 adult patients were selected for the study, including 22 patients with relapsing MCD in relapse treatment group who were treated with low-dose RTX (200 mg per week × 4 following by 200 mg every 6 months) and 11 patients in relapse prevention group with complete remission (CR) after steroid therapy were treated with RTX (200 mg ×1 every 6 months) for preventing the relapse of MCD. RESULTS Of the 22 patients with MCD in relapse treatment group, there were 21 cases (95.45%) of remission [2 (9.09%) partial remission (PR), 19 (86.36%) CR], 1 (4.56%) no remission (NR) and 20 (90.90%) relapse-free. The Median duration of sustained remission was 16.3 months (3, 23.5 months, inter quartile range (IQR)). 11 patients in the relapse prevention group during a follow-up of 12 months (9-31 months) had no relapse. The average dose of prednisone in two groups after RTX treatment was significantly lower than before treatment. CONCLUSION The results of this study suggested low-dose RTX can significantly reduce relapse rate and steroid dose in adults with MCD with fewer side effects. Low-dose RTX regimens may be beneficial for the treatment of relapsing MCD in adults and may be the preferred regimen for patients at high risk for the development of adverse events from corticosteroids.
Collapse
Affiliation(s)
- Jian Zhang
- Division of nephrology, Gansu Provincial Hospital, Lanzhou, 730001, China
| | - Hui Zhao
- Division of nephrology, Gansu Provincial Hospital, Lanzhou, 730001, China
| | - Xiaoli Li
- Division of nephrology, Gansu Provincial Hospital, Lanzhou, 730001, China
| | - Rui Qian
- Division of nephrology, Gansu Provincial Hospital, Lanzhou, 730001, China
| | - Peijuan Gao
- Division of nephrology, Gansu Provincial Hospital, Lanzhou, 730001, China
| | - Shouyan Lu
- Division of nephrology, Gansu Provincial Hospital, Lanzhou, 730001, China
| | - Zhigang Ma
- Department of nephrology, The Second Affiliated Hospital, School of Medcine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
6
|
Fernandes DA. Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging. Technol Cancer Res Treat 2023; 22:15330338231191493. [PMID: 37642945 PMCID: PMC10467409 DOI: 10.1177/15330338231191493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 08/31/2023] Open
Abstract
Theranostic agents are promising due to their ability to diagnose, treat and monitor different types of cancer using a variety of imaging modalities. The advantage specifically of nanoparticles is that they can accumulate easily at the tumor site due to the large gaps in blood vessels near tumors. Such high concentration of theranostic agents at the target site can lead to enhancement in both imaging and therapy. This article provides an overview of nanoparticles that have been used for cancer theranostics, and the different imaging, treatment options and signaling pathways that are important when using nanoparticles for cancer theranostics. In particular, nanoparticles made of metal elements are emphasized due to their wide applications in cancer theranostics. One important aspect discussed is the ability to combine different types of metals in one nanoplatform for use as multimodal imaging and therapeutic agents for cancer.
Collapse
|
7
|
Krasnobaev VD, Galimzyanov TR, Akimov SA, Batishchev OV. Lysolipids regulate raft size distribution. Front Mol Biosci 2022; 9:1021321. [PMID: 36275621 PMCID: PMC9581197 DOI: 10.3389/fmolb.2022.1021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The lipid matrix of cellular membranes, directly and indirectly, regulates many vital functions of the cell. The diversity of lipids in membranes leads to the formation of ordered domains called rafts, which play a crucial role in signal transduction, protein sorting and other cellular processes. Rafts are believed to impact the development of different neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s ones, amyotrophic lateral sclerosis, some types of cancer, etc. These diseases correlate with the change in the membrane lipid composition resulting from an oxidative stress, age-related processes, dysfunction of proteins, and many others. In particular, a lot of studies report a significant rise in the level of lysolipids. Physicochemical properties of rafts are determined by membrane composition, in particular, by the content of lysolipids. Lysolipids may thus regulate raft-involving processes. However, the exact mechanism of such regulation is unknown. Although studying rafts in vivo still seems to be rather complicated, liquid-ordered domains are well observed in model systems. In the present study, we used atomic force microscopy (AFM) to examine how lysophospholipids influence the liquid-ordered domains in model ternary membranes. We demonstrated that even a small amount of lysolipids in a membrane significantly impacts domain size depending on the saturation of the lysolipid hydrocarbon tails and the amount of cholesterol. The mixture with the bigger relative fraction of cholesterol was more susceptible to the action of lysolipids. This data helped us to generalize our previous theoretical model of the domain size regulation by lipids with particular molecular shape expanding it to the case of lysolipids and dioleoylglycerol.
Collapse
Affiliation(s)
- Vladimir D. Krasnobaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Timur R. Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Oleg V. Batishchev,
| |
Collapse
|
8
|
MS4A15 drives ferroptosis resistance through calcium-restricted lipid remodeling. Cell Death Differ 2022; 29:670-686. [PMID: 34663908 PMCID: PMC8901757 DOI: 10.1038/s41418-021-00883-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death driven by biochemical processes that promote oxidation within the lipid compartment. Calcium (Ca2+) is a signaling molecule in diverse cellular processes such as migration, neurotransmission, and cell death. Here, we uncover a crucial link between ferroptosis and Ca2+ through the identification of the novel tetraspanin MS4A15. MS4A15 localizes to the endoplasmic reticulum, where it blocks ferroptosis by depleting luminal Ca2+ stores and reprogramming membrane phospholipids to ferroptosis-resistant species. Specifically, prolonged Ca2+ depletion inhibits lipid elongation and desaturation, driving lipid droplet dispersion and formation of shorter, more saturated ether lipids that protect phospholipids from ferroptotic reactive species. We further demonstrate that increasing luminal Ca2+ levels can preferentially sensitize refractory cancer cell lines. In summary, MS4A15 regulation of anti-ferroptotic lipid reservoirs provides a key resistance mechanism that is distinct from antioxidant and lipid detoxification pathways. Manipulating Ca2+ homeostasis offers a compelling strategy to balance cellular lipids and cell survival in ferroptosis-associated diseases.
Collapse
|
9
|
Wang J, Feng S, Zhu H. Influence of amphotericin B on the DPPC/DOPC/sterols mixed monolayer in the presence of calcium ions. Biophys Chem 2021; 279:106695. [PMID: 34649214 DOI: 10.1016/j.bpc.2021.106695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
Amphotericin B, an acquainted antifungal drug, has reattracted the attention of most scholars due to its one important advantage of making the fungus less resistant. Amphotericin B's antifungal properties are derived from its ability to interact with ergosterols on the fungal cells' membrane to form pores. However, the cholesterol in the human cell membranes is similar in structure to ergosterol, which cause the drug to produce certain toxicity and make the clinical use of amphotericin B limited. The study of the interaction between amphotericin B and lipid monolayer in the presence of cholesterol or ergosterol is crucial to understanding the mechanism of effect of the drug on cell membranes. Langmuir monolayer as a model for half of cell membranes can precisely control the proportion of components and the solution environment, which has been used to do a lot of research about the interaction of amphotericin B with lipids. It is noteworthy that some ions associated with life activities play an important role in it, such as calcium ions. In this work, the surface pressure-mean molecular area isotherms, elastic modulus and the surface pressure-time curves of DPPC/DOPC/sterol mixed monolayer with or without amphotericin B were studied in the different concentration of calcium ions. The morphology of the Langmuir-Blodgett films transferred on the mica were observed by atomic force microscopy. The results shown that AmB changed the elastic modulus and surface morphology of DPPC/DOPC/sterol mxied monolayer, which was significantly different with different types of sterols. Calcium ions can regulate the effect of this drug, which was clearly different due to different types of sterols. This work provides useful information to further understand the influence mechanism of calcium ions on the interaction between AmB and phospholipid/sterol monolayer, which is helpful to find out the effect mechanism of calcium ion on the interaction between AmB and phospholipid monolayer containing ergosterol or cholesterol and to understand the mechanism of AmB influencing on the membrane of fungal or human cells.
Collapse
Affiliation(s)
- Juan Wang
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an 710123, China.
| | - Shun Feng
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an 710123, China
| | - Hao Zhu
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an 710123, China
| |
Collapse
|
10
|
Jiang D, Mo Q, Sun X, Wang X, Dong M, Zhang G, Chen F, Zhao Q. Pyruvate dehydrogenase kinase 4-mediated metabolic reprogramming is involved in rituximab resistance in diffuse large B-cell lymphoma by affecting the expression of MS4A1/CD20. Cancer Sci 2021; 112:3585-3597. [PMID: 34252986 PMCID: PMC8409406 DOI: 10.1111/cas.15055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/18/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) heterogeneity promotes recurrence and anti‐CD20‐based therapeutic resistance. Previous studies have shown that downregulation of MS4A1/CD20 expression after chemoimmunotherapy with rituximab leads to rituximab resistance. However, the mechanisms of CD20 loss remain unknown. We identified that pyruvate dehydrogenase kinase 4 (PDK4) is markedly elevated in DLBCL cells derived from both patients and cell lines with R‐CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) resistance. We found that overexpression of PDK4 in DLBCL cells resulted in cell proliferation and resistance to rituximab in vitro and in vivo. Furthermore, loss of PDK4 expression or treatment with the PDK4 inhibitor dichloroacetate was able to significantly increase rituximab‐induced cell apoptosis in DLBCL cells. Further studies suggested PDK4 mediates a metabolic shift, in that the main energy source was changed from oxidative phosphorylation to glycolysis, and the metabolic changes could play an important role in rituximab resistance. Importantly, by knocking down or overexpressing PDK4 in DLBCL cells, we showed that PDK4 has a negative regulation effect on MS4A1/CD20 expression. Collectively, this is the first study showing that targeting PDK4 has the potential to overcome rituximab resistance in DLBCL.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xiaoying Sun
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, China
| | - Xiaotao Wang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Min Dong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guozhen Zhang
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Fangping Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, China.,Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Tang Y, Li X, Cao Y. Which factors matter the most? Revisiting and dissecting antibody therapeutic doses. Drug Discov Today 2021; 26:1980-1990. [PMID: 33895315 DOI: 10.1016/j.drudis.2021.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 01/22/2023]
Abstract
Factors such as antibody clearance and target affinity can influence antibodies' effective doses for specific indications. However, these factors vary considerably across antibody classes, precluding direct and quantitative comparisons. Here, we apply a dimensionless metric, the therapeutic exposure affinity ratio (TEAR), which normalizes the therapeutic doses by antibody bioavailability, systemic clearance and target-binding property to enable direct and quantitative comparisons of therapeutic doses. Using TEAR, we revisited and dissected the doses of up to 60 approved antibodies. We failed to detect a significant influence of target baselines, turnovers or anatomical locations on antibody therapeutic doses, challenging the traditional perceptions. We highlight the importance of antibodies' modes of action for therapeutic doses and dose selections; antibodies that work through neutralizing soluble targets show higher TEARs than those working through other mechanisms. Overall, our analysis provides insights into the factors that influence antibody doses, and the factors that are crucial for antibodies' pharmacological effects.
Collapse
Affiliation(s)
- Yu Tang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaobing Li
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Shah K, Cragg M, Leandro M, Reddy V. Anti-CD20 monoclonal antibodies in Systemic Lupus Erythematosus. Biologicals 2021; 69:1-14. [PMID: 33288390 DOI: 10.1016/j.biologicals.2020.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune inflammatory condition with a wide spectrum of disease manifestations and severities, resulting in significant morbidity and mortality. The aetiopathogenesis of SLE is complex. Young women and certain ethnicities are commonly affected, suggesting a significant hormonal and genetic influence. Diverse immunological abnormalities have been described. A characteristic abnormality is the presence of autoantibodies, implicating a central role for B cells in disease pathogenesis and/or perpetuation. Whilst conventional therapies have improved outcomes, a great unmet need remains. Recently, biological therapies are being explored. B-cell depletion therapy with rituximab has been in use off-label for nearly two decades. Inconsistent results between uncontrolled and controlled studies have raised doubts about its efficacy. In this review, we will focus on B cell abnormalities and the rationale behind B-cell depletion therapy with anti-CD20 monoclonal antibody (mAb), rituximab, will be explored including an evaluation of clinical and trial experience. Finally, we will discuss the mechanistic basis for considering alternative anti-CD20 mAbs.
Collapse
Affiliation(s)
- Kavina Shah
- Centre for Rheumatology, University College London Division of Medicine, Rayne Building 4th Floor, 5 University Street, London, WC1E 6JF, United Kingdom.
| | - Mark Cragg
- Centre for Cancer Immunology MP127, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Maria Leandro
- Centre for Rheumatology, University College London Division of Medicine, Rayne Building 4th Floor, 5 University Street, London, WC1E 6JF, United Kingdom.
| | - Venkat Reddy
- Centre for Rheumatology, University College London Division of Medicine, Rayne Building 4th Floor, 5 University Street, London, WC1E 6JF, United Kingdom.
| |
Collapse
|
13
|
Impact of rituximab on the T-cell flow cytometric crossmatch. Transpl Immunol 2020; 64:101360. [PMID: 33359130 DOI: 10.1016/j.trim.2020.101360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022]
Abstract
Rituximab is frequently used in the setting of ABO-incompatible renal transplants, and highly sensitized patients. Its interference with B-cell flow cytometric crossmatch (B-FCXM) is well known. However, its effect on the T-cell flow cytometric crossmatch (T-FCXM) has not been described. We aimed to evaluate the effect of rituximab on the T-FCXM using non-pronase and pronase treated donor lymphocytes and compare results with the single antigen bead (SAB) assay. In this retrospective study, 28 patients on rituximab therapy were evaluated against 30 donors. Using non-pronase treated donor lymphocytes, all 30 FCXMs showed strong B-cell positivity {median (IQR) B-cell ratio: 184.65 (253.17)} which significantly reduced {1.0 (1.18); p < 0.00001} with pronase treatment. 'T-cell tailing' phenomenon was observed in 17/30 FCXMs in the non-pronase group as a 'tail of T-cells', indicating a rare sub-population. However, it disappeared in the pronase-treated group. SAB assay did not show donor-specific antibodies (DSA) in all 17 patients with 'T-cell tailing' phenomenon. Although, rituximab is described to impact only B-FCXM, we have consistently found 'T-cell tailing' in 57% of T-FCXMs, which clears with pronase treatment. The 'T-cell tailing' led to weak positive T-FCMX ratios due to increased MFI in the FL1 channel. However, the absence of DSA in all recipients reinforces the fact that this is a false positive finding and should not be misconstrued as a possible class I DSA. Structural homology of Fc receptors on activated T-cells to CD20 could be a possible explanation of the same and provide insight into a novel mechanism of action of rituximab.
Collapse
|
14
|
Rütter M, Milošević N, David A. Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. J Control Release 2020; 330:1191-1207. [PMID: 33207257 DOI: 10.1016/j.jconrel.2020.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The vast majority of nanomedicines (NM) investigated today consists of a macromolecular carrier and a drug payload (conjugated or encapsulated), with a purpose of preferential delivery of the drug to the desired site of action, either through passive accumulation, or by active targeting via ligand-receptor interaction. Several drug delivery systems (DDS) have already been approved for clinical use. However, recent reports are corroborating the notion that NM do not necessarily need to include a drug payload, but can exert biological effects through specific binding/blocking of important target proteins at the site of action. The seminal work of Kopeček et al. on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing biorecognition motifs (peptides or oligonucleotides) for crosslinking cell surface non-internalizing receptors of malignant cells and inducing their apoptosis, without containing any low molecular weight drug, led to the definition of a special group of NM, termed Drug-Free Macromolecular Therapeutics (DFMT). Systems utilizing this approach are typically designed to employ pendant targeting-ligands on the same macromolecule to facilitate multivalent interactions with receptors. The lack of conventional small molecule drugs reduces toxicity and adverse effects at off-target sites. In this review, we describe different types of DFMT that possess biological activity without attached low molecular weight drugs. We classified the relevant research into several groups by their mechanisms of action, and compare the advantages and disadvantages of these different approaches. We show that identification of target sites, specificity of attached targeting ligands, binding affinity and the synthesis of carriers of defined size and ligand spacing are crucial aspects of DFMT development. We further discuss how knowledge in the field of NM accumulated in the past few decades can help in the design of a successful DFMT to speed up the translation into clinical practice.
Collapse
Affiliation(s)
- Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nenad Milošević
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
15
|
Tang Y, Cao Y. Modeling the dynamics of antibody-target binding in living tumors. Sci Rep 2020; 10:16764. [PMID: 33028895 PMCID: PMC7542163 DOI: 10.1038/s41598-020-73711-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Antibodies have become an attractive class of therapeutic agents for solid tumors, mainly because of their high target selectivity and affinity. The target binding properties of antibodies are critical for their efficacy and toxicity. Our lab has developed a bioluminescence resonance energy transfer (BRET) imaging approach that directly supports the measurement of the binding dynamics between antibodies and their targets in the native tumor environment. In the present study, we have developed a spatially resolved computational model analyzing the longitudinal BRET imaging data of antibody–target binding and exploring the mechanisms of biphasic binding dynamics between a model antibody cetuximab and its target, the epidermal growth factor receptor (EGFR). The model suggested that cetuximab is bound differently to EGFR in the stroma-rich area than in stroma-poor regions, which was confirmed by immunofluorescence staining. Compared to the binding in vitro, cetuximab bound to EGFR to a “slower-but-tighter” degree in the living tumors. These findings have provided spatially resolved characterizations of antibody–target binding in living tumors and have yielded many mechanistic insights into the factors that affect antibody interactions with its targets and treatment efficacy.
Collapse
Affiliation(s)
- Yu Tang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Qi J, Li W, Xu X, Jin F, Liu D, Du Y, Wang J, Ying X, You J, Du Y, Ji J. Cyto-friendly polymerization at cell surfaces modulates cell fate by clustering cell-surface receptors. Chem Sci 2020; 11:4221-4225. [PMID: 34122885 PMCID: PMC8152676 DOI: 10.1039/c9sc06385d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lots of strategies, e.g. using multivalent synthetic polymers, have been developed to control the spatial distribution of cell-surface receptors, thus modulating the cell function and fate in a custom-tailored manner. However, clustering cell-surface receptors via multivalent synthetic polymers is highly dependent on the structure as well as the ligand-density of the polymers, which may impose difficulties on the synthesis of polymers with a high density of ligands. Here, we pioneered the utilization of a cyto-friendly polymerization at the cell surface to cluster cell-surface receptors. As a proof of concept, an anti-CD20 aptamer conjugated macromer was initially synthesized, which was then efficiently and stably introduced onto the Raji cell surface via ligand–receptor interaction. With the assistance of an initiator, i.e. ammonium peroxysulfate (APS), the macromer bound onto the Raji cell surface polymerized, inducing the clustering of CD20 receptors, and thereby triggering cell apoptosis. This cell-surface polymerization induced cell-surface receptor crosslinking could alternatively be applied in modulating the fates and functions of other cells, especially those mediated by the spatial distribution of cell-surface receptors, such as T cell activation. Our work opens new possibilities in the area of chemical biology to some extent. Cell-surface polymerization of anti-CD20 aptamer modified macromer to induce CD20 receptor clustering, and effectively initiate the apoptotic signals in cells.![]()
Collapse
Affiliation(s)
- Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Weishuo Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China .,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University Nanjing 210009 China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Jun Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University Lishui 323000 China
| |
Collapse
|
17
|
Effects of rituximab therapy on B cell differentiation and depletion. Clin Rheumatol 2020; 39:1415-1421. [DOI: 10.1007/s10067-020-04996-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
|
18
|
Novel HDAC inhibitor Chidamide synergizes with Rituximab to inhibit diffuse large B-cell lymphoma tumour growth by upregulating CD20. Cell Death Dis 2020; 11:20. [PMID: 31907371 PMCID: PMC6944697 DOI: 10.1038/s41419-019-2210-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022]
Abstract
Loss of CD20 is a major obstacle for the retreatment of relapsed/refractory diffuse large B cell lymphoma (DLBCL) with Rituximab-associated regimens. Histone deacetylation causes gene silencing and inhibits CD20 expression. Chidamide is a novel inhibitor for histone deacetylases (HDACs). We hypothesize that Chidamide could overcome Rituximab-mediated down-regulation of CD20 and facilitate Rituximab-induced killing. In this study, we determine the mechanism of synergy of Chidamide with Rituximab in DLBCL using in vitro and in vivo models. We found that the levels of CD20 protein surface expression on five DLBCL cell lines were significantly and positively correlated with the sensitivities of cells to Rituximab. Treatment with Rituximab significantly reduced CD20 surface expression at the protein levels. RNA sequencing showed that Chidamide significantly increased expression of more than 2000 transcriptomes in DLBCL cells, around 1000 transcriptomes belong to the cell membrane and cell periphery pathways, including MS4A1. Chidamide significantly increased CD20 surface expression in DLBCL cell lines. Combination with Chidamide significantly synergized Rituximab-induced cell death in vitro and significantly inhibited tumour growth in DLBCL-bearing xenograft mice. A patient with relapsed/refractory DLBCL achieved a complete response after three cycles combined treatment with Chidamide and Rituximab. In conclusion, our data demonstrate for the first time that inhibition of HDACs by Chidamide significantly enhanced Rituximab-induced tumour growth inhibition in vitro and in vivo. We propose that CD20 surface expression should be used clinically to evaluate treatment response in patients with DLBCL. Chidamide is a promising sensitizer for the retreatment of DLBCL with Rituximab.
Collapse
|
19
|
Song L, Chen Y, Ding J, Wu H, Zhang W, Ma M, Zang F, Wang Z, Gu N, Zhang Y. Rituximab conjugated iron oxide nanoparticles for targeted imaging and enhanced treatment against CD20-positive lymphoma. J Mater Chem B 2020; 8:895-907. [DOI: 10.1039/c9tb02521a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Fe3O4-PEG-nAb multivalent nanoprobes provide a possible avenue to improve the cancer therapy of rituximab towards clinical application.
Collapse
|
20
|
Wu Y, Zhao Y, He X, He Z, Wang T, Wan L, Chen L, Yan N. Hydroxypropyl‑β‑cyclodextrin attenuates the epithelial‑to‑mesenchymal transition via endoplasmic reticulum stress in MDA‑MB‑231 breast cancer cells. Mol Med Rep 2019; 21:249-257. [PMID: 31746388 PMCID: PMC6896369 DOI: 10.3892/mmr.2019.10802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/02/2019] [Indexed: 01/04/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) has been reported to serve vital roles in regulating the progress of cancer metastasis. In addition, lipid rafts enriched in sphingolipids and cholesterol serve important roles in physiological and biochemical processes as a signaling platform. The present study explored the effects of hydroxypropyl-β-cyclodextrin (HP-β-CD), a cholesterol-depleting agent of lipid rafts, on the transforming growth factor (TGF)-β/Smad signaling pathway and endoplasmic reticulum (ER) stress in mediating EMT in MDA-MB-231 breast cancer cells. HP-β-CD treatment inhibited TGF-β1-induced EMT, based on increased expression of E-cadherin and decreased expression of vimentin. HP-β-CD reduced the expression of the TGF receptor TβRI and blocked the phosphorylation of Smad2. In addition, HP-β-CD increased the expression of ER stress-related proteins (binding immunoglobulin protein and activating transcription factor 6), but TGF-β1 could reverse these changes. Sodium 4-phenylbutyrate, an inhibitor of ER stress, suppressed these effects of HP-β-CD on EMT and TGF-β/Smad signaling pathway inhibition in breast cancer cells. Thus, HP-β-CD can block the TGF-β/Smad signaling pathway via diminishing the expression of TβRI which helps to activate ER stress and attenuate EMT in MDA-MB-231 cells, highlighting a potential target of lipid rafts for breast cancer treatment.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yiyang Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tian Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Linxi Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lai Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
21
|
Oostindie SC, van der Horst HJ, Lindorfer MA, Cook EM, Tupitza JC, Zent CS, Burack R, VanDerMeid KR, Strumane K, Chamuleau MED, Mutis T, de Jong RN, Schuurman J, Breij ECW, Beurskens FJ, Parren PWHI, Taylor RP. CD20 and CD37 antibodies synergize to activate complement by Fc-mediated clustering. Haematologica 2019; 104:1841-1852. [PMID: 30792198 PMCID: PMC6717598 DOI: 10.3324/haematol.2018.207266] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/19/2019] [Indexed: 11/24/2022] Open
Abstract
CD20 monoclonal antibody therapies have significantly improved the outlook for patients with B-cell malignancies. However, many patients acquire resistance, demonstrating the need for new and improved drugs. We previously demonstrated that the natural process of antibody hexamer formation on targeted cells allows for optimal induction of complement-dependent cytotoxicity. Complement-dependent cytotoxicity can be potentiated by introducing a single point mutation such as E430G in the IgG Fc domain that enhances intermolecular Fc-Fc interactions between cell-bound IgG molecules, thereby facilitating IgG hexamer formation. Antibodies specific for CD37, a target that is abundantly expressed on healthy and malignant B cells, are generally poor inducers of complement-dependent cytotoxicity. Here we demonstrate that introduction of the hexamerization-enhancing mutation E430G in CD37-specific antibodies facilitates highly potent complement-dependent cytotoxicity in chronic lymphocytic leukemia cells ex vivo. Strikingly, we observed that combinations of hexamerization-enhanced CD20 and CD37 antibodies cooperated in C1q binding and induced superior and synergistic complement-dependent cytotoxicity in patient-derived cancer cells compared to the single agents. Furthermore, CD20 and CD37 antibodies colocalized on the cell membrane, an effect that was potentiated by the hexamerization-enhancing mutation. Moreover, upon cell surface binding, CD20 and CD37 antibodies were shown to form mixed hexameric antibody complexes consisting of both antibodies each bound to their own cognate target, so-called hetero-hexamers. These findings provide novel insights into the mechanisms of synergy in antibody-mediated complement-dependent cytotoxicity and provide a rationale to explore Fc-engineering and antibody hetero-hexamerization as a tool to enhance the cooperativity and therapeutic efficacy of antibody combinations.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, the Netherlands .,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Hilma J van der Horst
- Department of Hematology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Erika M Cook
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jillian C Tupitza
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Clive S Zent
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard Burack
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Karl R VanDerMeid
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Martine E D Chamuleau
- Department of Hematology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | - Paul W H I Parren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.,Lava Therapeutics, Utrecht, the Netherlands
| | - Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Wang J, Li L, Yang J, Clair PM, Glenn MJ, Stephens DM, Radford DC, Kosak KM, Deininger MW, Shami PJ, Kopeček J. Drug-free macromolecular therapeutics induce apoptosis in cells isolated from patients with B cell malignancies with enhanced apoptosis induction by pretreatment with gemcitabine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:217-225. [PMID: 30639670 DOI: 10.1016/j.nano.2018.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022]
Abstract
Drug-free macromolecular therapeutics (DFMT) is a new paradigm for the treatment of B cell malignancies. Apoptosis is initiated by the biorecognition of complementary oligonucleotide motifs at the cell surface resulting in crosslinking of CD20 receptors. DMFT is composed from two nanoconjugates: 1) bispecific engager, Fab'-MORF1 (anti-CD20 Fab' fragment conjugated with morpholino oligonucleotide), and 2) a crosslinking (effector) component P-(MORF2)X (N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer grafted with multiple copies of complementary morpholino oligonucleotide). We evaluated this concept in 44 samples isolated from patients diagnosed with various subtypes of B cell malignancies. Apoptosis was observed in 65.9% of the samples tested. Pretreatment of cells with gemcitabine (GEM) or polymer-gemcitabine conjugate (2P-GEM) enhanced CD20 expression levels thus increasing apoptosis induced by DFMT. These positive results demonstrated that DFMT has remarkable therapeutic potential in various subtypes of B cell malignancies.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Phillip M Clair
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Martha J Glenn
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Deborah M Stephens
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Ken M Kosak
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Paul J Shami
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
23
|
Zhang L, Fang Y, Li L, Yang J, Radford DC, Kopeček J. Human Serum Albumin-Based Drug-Free Macromolecular Therapeutics: Apoptosis Induction by Coiled-Coil-Mediated Cross-Linking of CD20 Antigens on Lymphoma B Cell Surface. Macromol Biosci 2018; 18:e1800224. [PMID: 30259654 PMCID: PMC6392022 DOI: 10.1002/mabi.201800224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/10/2018] [Indexed: 01/25/2023]
Abstract
A therapeutic platform-drug-free macromolecular therapeutics (DFMT)-that induces apoptosis in B cells by cross-linking of CD20 receptors, without the need for low molecular weight cytotoxic drug, is developed. In this report, a DFMT system is synthesized and evaluated based on human serum albumin (HSA) and two complementary coiled-coil forming peptides, CCE and CCK. Fab' fragment of anti-CD20 monoclonal antibody rituximab is attached to CCE (Fab'-CCE); multiple grafts of CCK are conjugated to HSA (HSA-(CCK)7 ). The colocalization of both nanoconjugates at the surface of non-Hodgkin's lymphoma (NHL) Raji cells is demonstrated by confocal fluorescence microscopy. The colocalization leads to coiled-coil formation, CD20 cross-linking, and apoptosis induction. The apoptotic levels are evaluated by Annexin V, Caspase 3, and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. Selective surface binding of DFMT to CD20+ cells is validated in experiments on a coculture of CD20+ (Raji) and CD20-(DG-75) cells. It is found that DFMT can trigger calcium influx only in Raji cells, but not in DG-75 cells. A highly specific treatment for NHL and other B cell malignancies with considerable translational potential is presented by HSA-based DFMT system.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yixin Fang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
24
|
Yang J, Li L, Kopeček J. Biorecognition: A key to drug-free macromolecular therapeutics. Biomaterials 2018; 190-191:11-23. [PMID: 30391799 DOI: 10.1016/j.biomaterials.2018.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
This review highlights a new paradigm in macromolecular nanomedicine - drug-free macromolecular therapeutics (DFMT). The effectiveness of the new system is based on biorecognition events without the participation of low molecular weight drugs. Apoptosis of cells can be initiated by the biorecognition of complementary peptide/oligonucleotide motifs at the cell surface resulting in the crosslinking of slowly internalizing receptors. B-cell CD20 receptors and Non-Hodgkin lymphoma (NHL) were chosen as the first target. Exposing cells to a conjugate of one motif with a targeting ligand decorates the cells with this motif. Further exposure of decorated cells to a macromolecule (synthetic polymer or human serum albumin) containing multiple copies of the complementary motif as grafts results in receptor crosslinking and apoptosis induction in vitro and in vivo. The review focuses on recent developments and explores the mechanism of action of DFMT. The altered molecular signaling pathways demonstrated the great potential of DFMT to overcome rituximab resistance resulting from either down-regulation of CD20 or endocytosis and trogocytosis of rituximab/CD20 complexes. The suitability of this approach for the treatment of blood borne cancers is confirmed. In addition, the widespread applicability of DFMT as a new concept in macromolecular therapeutics for numerous diseases is exposed.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA.
| | - Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
25
|
Wang S, Li F, Hu X, Lv M, Fan C, Ling D. Tuning the Intrinsic Nanotoxicity in Advanced Therapeutics. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shuying Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Fangyuan Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Xi Hu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai 201800 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai 201800 China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Hangzhou Institute of Innovative Medicine; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou 310058 China
- Key Laboratory of Biomedical Engineering of the Ministry of Education; College of Biomedical Engineering and Instrument Science; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
26
|
Li H, Jin H, Wan W, Wu C, Wei L. Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine (Lond) 2018; 13:1639-1656. [PMID: 30035660 DOI: 10.2217/nnm-2018-0007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Targeting nanoparticles to cancers for improved therapeutic efficacy and decreased side effects remains a popular concept in the past decades. Although the enhanced permeability and retention effect serves as a key rationale for all the currently commercialized nanoformulations, it does not enable uniform delivery of nanoparticles to all tumorous regions in all patients with sufficient quantities. Also, the increase in overall survival is often modest. Many factors may influence the delivering process of nanoparticles, which must be taken into consideration for the promise of nanomedicine in patients to be realized. Herein, we review the mechanisms and influencing factors during the delivery of cancer therapeutics and summarize current strategies that have been developed for the fabrication of smart drug delivery systems.
Collapse
Affiliation(s)
- Huafei Li
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- Tumor Immunology & Gene Therapy Center, Third Affiliated Hospital of the Second Military Medical University, 225 Changhai Road, Shanghai, 200438, PR China
- International Joint Cancer Institute, Translational Medicine Institute, the Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, PR China
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, PR China
| | - Hai Jin
- Department of Thoracic Surgery/LaboratoryDiagnosis, First Affiliated Hospital of the Second Military Medical University,168 Changhai Road, Shanghai, 200438, PR China
| | - Wei Wan
- Department of Orthopedic Oncology, Spine Tumor Center, Second Affiliated Hospital of the Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, PR China
| | - Cong Wu
- Department of Thoracic Surgery/LaboratoryDiagnosis, First Affiliated Hospital of the Second Military Medical University,168 Changhai Road, Shanghai, 200438, PR China
| | - Lixin Wei
- Tumor Immunology & Gene Therapy Center, Third Affiliated Hospital of the Second Military Medical University, 225 Changhai Road, Shanghai, 200438, PR China
| |
Collapse
|
27
|
Pinto H, Oliveira N, Costa F, Alves R. Minimal change disease with maximum immunosuppression: successful treatment of steroid-dependent minimal change disease with rituximab. BMJ Case Rep 2018; 2018:bcr-2017-223407. [DOI: 10.1136/bcr-2017-223407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
28
|
Saesoo S, Sathornsumetee S, Anekwiang P, Treetidnipa C, Thuwajit P, Bunthot S, Maneeprakorn W, Maurizi L, Hofmann H, Rungsardthong RU, Saengkrit N. Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a novel theranostic agent for central nervous system lymphoma. Colloids Surf B Biointerfaces 2017; 161:497-507. [PMID: 29128836 DOI: 10.1016/j.colsurfb.2017.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 11/29/2022]
Abstract
Despite advances in neuroscience cancer research during the past decades, the survival of cancer patients has only marginally improved and the cure remains unlikely. The blood-brain barrier (BBB) is a major obstacle protecting the entry of therapeutic agents to central nervous system, especially for primary central nervous system lymphoma (PCNSL). Thus, the use of small nanoparticle as a drug carrier may be new strategies to overcome this problem. In this study, we fabricated liposome consisting of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with anti-CD20 (Rituximab; RTX). The designed nanoparticles have a theranostic property which is not only to improve drug delivery, but also to offer diagnostic and monitoring capabilities. TEM images revealed the spherical shape of liposome with the approximately average diameters about 140-190nm with slightly negatively charge surfaces. Superparamagnetic property of SPIONs-loaded liposomes was confirmed by VSM. Liposome colloidal could be prolonged at 4°C and 25°C storages. RTX conjugated liposome induced cell internalization and apoptosis effect in B-lymphoma cells. Drug targeting and therapeutic effect was investigated in BBB model. The result confirmed that liposome nanocarrier is required as a drug carrier for effectively RTX across the BBB.
Collapse
Affiliation(s)
- S Saesoo
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - S Sathornsumetee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; Departments of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand, Thailand
| | - P Anekwiang
- NANOTEC-Mahidol University Center of Excellence in Nanotechnology for Cancer Diagnosis and Treatment, Faculty of Medicine Siriraj Hospital, Mahidol University 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand, Thailand
| | - C Treetidnipa
- NANOTEC-Mahidol University Center of Excellence in Nanotechnology for Cancer Diagnosis and Treatment, Faculty of Medicine Siriraj Hospital, Mahidol University 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand, Thailand
| | - P Thuwajit
- NANOTEC-Mahidol University Center of Excellence in Nanotechnology for Cancer Diagnosis and Treatment, Faculty of Medicine Siriraj Hospital, Mahidol University 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand, Thailand; Departments of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand, Thailand
| | - S Bunthot
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - W Maneeprakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - L Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS - Université Bourgogne Franche-Comté, BP 47870, F-21078 Dijon cedex, France
| | - H Hofmann
- Powder Technology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - N Saengkrit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
29
|
Badana AK, Chintala M, Gavara MM, Naik S, Kumari S, Kappala VR, Iska BR, Malla RR. Lipid rafts disruption induces apoptosis by attenuating expression of LRP6 and survivin in triple negative breast cancer. Biomed Pharmacother 2017; 97:359-368. [PMID: 29091885 DOI: 10.1016/j.biopha.2017.10.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/18/2023] Open
Abstract
Triple negative breast cancer is a clinically challenging subtype due to lack of biomarker for rational targeted therapy. Lipid rafts are cholesterol enriched rigid platforms, which colocalize signalling molecules of cancer progression. This study explores the effect of lipid rafts disruption by cholesterol depleting agent, MβCD on induction of apoptosis and expression of WNT receptor LRP6, survivin and common apoptotic markers in TNBC cell lines. The in vitro effect of lipid rafts disruption on viability, single cell reproductive ability, proliferation and migration were evaluated by MTT, clonogenic, BrdU incorporation and wound scratch assays, respectively. The morphological changes were assessed by tryphan blue, Wright and Giemsa staining; nuclear changes by Hoechst staining. The induction of apoptosis was evaluated by AO/EtBr staining, DNA damage and DNA fragmentation assays. Expression of Caveolin-1, LRP6, β-Catenin, Survivin, Bcl2, BAX, Caspase-3, Ki67 and c-myc were analyzed by PCR and Western blotting techniques. The lipid raft disruption resulted in reduction of the proliferation of MDA-MB 231 and MDA-MB 468 cells by 56.3 and 42.0%; survival fraction by 54.7 and 59.4%; migration by 44.3 and 48.4%, respectively. It also induced apoptosis by causing cell shrinkage, membrane blebbing, nuclear condensation, chromatin cleavage, oligonucleotide fragmentation with an apoptotic index of 59.1 and 46.6% in MDA-MB 231 and 468 cells, respectively. Further, it downregulated the expression of caveolin-1, LRP6, β-catenin, survivin, Bcl2, ki67, c-myc and upregulated BAX, caspase-3. The cholesterol supplementation enhanced the clonogenic potential and upregulated the expression of caveolin-1 and LRP6. The results underline a potential effect of lipid rafts disruption on induction of apoptosis in TNBC cells.
Collapse
Affiliation(s)
- Anil Kumar Badana
- Cancer Biology Research Laboratory, Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India
| | - Madhuri Chintala
- Department of Obstetrics & Gynecology, Andhra Medical College, Visakhapatnam, India
| | - Murali Mohan Gavara
- Cancer Biology Research Laboratory, Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India
| | - Shailender Naik
- Cancer Biology Research Laboratory, Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India
| | - Seema Kumari
- Cancer Biology Research Laboratory, Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India
| | | | | | - Rama Rao Malla
- Cancer Biology Research Laboratory, Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India; Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India.
| |
Collapse
|
30
|
Li L, Yang J, Wang J, Kopeček J. Drug-Free Macromolecular Therapeutics Induce Apoptosis via Calcium Influx and Mitochondrial Signaling Pathway. Macromol Biosci 2017; 18. [PMID: 28805013 DOI: 10.1002/mabi.201700196] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/10/2017] [Indexed: 12/13/2022]
Abstract
Recently, an innovative paradigm has been proposed in macromolecular therapeutics for treatment of B-cell lymphomas that can specifically kill cancer cells without a drug. The design rationale of this drug-free macromolecular therapeutic (DFMT) system is crosslinking the cell surface receptor to initiate apoptosis. However, how the apoptosis signal is triggered after receptor hyper-crosslinking remains to be elucidated. Here, two pathways, calcium influx dependent pathway and mitochondrial signal pathway, are identified to play major roles in triggering the programmed cell death. With the first step pretargeting and second step multiple binding, receptor hyper-crosslinking is achieved in a highly specific, time-dependent manner and largely mediated by multivalence. As a consequence, extracellular calcium influx is triggered, which subsequently decreases the mitochondrial membrane potential and induces apoptosis. The mitochondrial depolarization also stems from the Bcl-2 inhibition mediated by DFMT, followed by the cytochrome c release that activates caspase signaling. With the participation of the two-pronged mechanism, a programmed apoptosis is induced in response to DFMT treatment. The current findings can offer important implications to optimize the anti-CD20 strategies to treat B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Lian Li
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiawei Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, UT, 84112, USA.,Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
31
|
Islam S, Qi W, Morales C, Cooke L, Spier C, Weterings E, Mahadevan D. Disruption of Aneuploidy and Senescence Induced by Aurora Inhibition Promotes Intrinsic Apoptosis in Double Hit or Double Expressor Diffuse Large B-cell Lymphomas. Mol Cancer Ther 2017; 16:2083-2093. [PMID: 28615297 DOI: 10.1158/1535-7163.mct-17-0089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/05/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Double hit (DH) or double expressor (DE) diffuse large B-cell lymphomas (DLBCL) are aggressive non-Hodgkin's lymphomas (NHL) with translocations and/or overexpressions of MYC and BCL-2, which are difficult to treat. Aurora kinase (AK) inhibition with alisertib in DH/DE-DLBCL induces cell death in ∼30%, while ∼70% are aneuploid and senescent cells (AASC), a mitotic escape mechanism contributing to drug resistance. These AASCs elaborated a high metabolic rate by increased AKT/mTOR and ERK/MAPK activity via BTK signaling through the chronic active B-cell receptor (BCR) pathway. Combinations of alisertib + ibrutinib or alisertib + ibrutinib + rituximab significantly reduced AASCs with enhanced intrinsic cell death. Inhibition of AK + BTK reduced phosphorylation of AKT/mTOR and ERK-1/2, upregulated phospho-H2A-X and Chk-2 (DNA damage), reduced Bcl-6, and decreased Bcl-2 and Bcl-xL and induced apoptosis by PARP cleavage. In a DE-DLBCL SCID mouse xenograft model, ibrutinib alone was inactive, while alisertib + ibrutinib was additive with a tumor growth inhibition (TGI) rate of ∼25%. However, TGI for ibrutinib + rituximab was ∼50% to 60%. In contrast, triple therapy showed a TGI rate of >90%. Kaplan-Meier survival analysis showed that 67% of mice were alive at day 89 with triple therapy versus 20% with ibrutinib + rituximab. All treatments were well tolerated with no changes in body weights. A novel triple therapy consisting of alisertib + ibrutinib + rituximab inhibits AASCs induced by AK inhibition in DH/DE-DLBCL leading to a significant antiproliferative signal, enhanced intrinsic apoptosis and may be of therapeutic potential in these lymphomas. Mol Cancer Ther; 16(10); 2083-93. ©2017 AACR.
Collapse
Affiliation(s)
- Shariful Islam
- University of Arizona Cancer Center, Cancer Biology Graduate Interdisciplinary Program, Tucson, Arizona
| | - Wenqing Qi
- West Cancer Center and University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Carla Morales
- West Cancer Center and University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Laurence Cooke
- University of Arizona Cancer Center, Department of Medicine, Tucson, Arizona
| | - Catherine Spier
- University of Arizona, Department of Pathology, Tucson, Arizona
| | - Eric Weterings
- University of Arizona, Department of Radiation Oncology, Tucson, Arizona
| | - Daruka Mahadevan
- University of Arizona Cancer Center, Department of Medicine, Tucson, Arizona.
| |
Collapse
|
32
|
Tomita A. Genetic and Epigenetic Modulation of CD20 Expression in B-Cell Malignancies: Molecular Mechanisms and Significance to Rituximab Resistance. J Clin Exp Hematop 2017; 56:89-99. [PMID: 27980307 DOI: 10.3960/jslrt.56.89] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CD20 is a differentiation related cell surface phosphoprotein that is expressed during early pre-B cell stages until plasma cell differentiation, and is a suitable molecular target for B-cell malignancies by monoclonal antibodies such as rituximab, ofatumumab, obinutuzumab and others. CD20 expression is confirmed in most B-cell malignancies; however, the protein expression level varies in each patient, even in de novo tumors, and down-modulation of CD20 expression after chemoimmunotherapy with rituximab, resulting in rituximab resistance, has been recognized in the clinical setting. Recent reports suggest that genetic and epigenetic mechanisms are correlated with aberrantly low CD20 expression in de novo tumors and relapsed/refractory disease after using rituximab. Furthermore, some targeting drugs, such as lenalidomide, bortezomib and ibrutinib, directly or indirectly affect CD20 protein expression. CD20-negative phenotypically-changed DLBCL after rituximab use tends to show an aggressive clinical course and poor outcome with resistance to not only rituximab, but also conventional salvage chemo-regimens. Understanding of the mechanisms of CD20-negative phenotype may contribute to establish strategies for overcoming chemo-refractory B-cell malignancies. In this manuscript, recent progress of research on molecular and clinical features of CD20 protein and CD20-negative B-cell malignancies was reviewed.
Collapse
Affiliation(s)
- Akihiro Tomita
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine
| |
Collapse
|
33
|
Redox Regulating Enzymes and Connected MicroRNA Regulators Have Prognostic Value in Classical Hodgkin Lymphomas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2696071. [PMID: 28377796 PMCID: PMC5362709 DOI: 10.1155/2017/2696071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 12/28/2022]
Abstract
There are no previous studies assessing the microRNAs that regulate antioxidant enzymes in Hodgkin lymphomas (HLs). We determined the mRNA levels of redox regulating enzymes peroxiredoxins (PRDXs) I–III, manganese superoxide dismutase (MnSOD), nuclear factor erythroid-derived 2-like 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) from a carefully collected set of 41 classical HL patients before receiving any treatments. The levels of redoxmiRs, miRNAs known to regulate the above-mentioned enzymes, were also assessed, along with CD3, CD20, and CD30 protein expression. RNAs were isolated from freshly frozen lymph node samples and the expression levels were analyzed by qPCR. mir23b correlated inversely with CD3 and CD20 expressions (p = 0.00076; r = −0.523 and p = 0.0012; r = −0.507) and miR144 with CD3, CD20, and CD30 (p = 0.030; r = −0.352, p = 0.041; r = −0.333 and p = 0.0032; r = −0.47, resp.). High MnSOD mRNA levels associated with poor HL-specific outcome in the patients with advanced disease (p = 0.045) and high miR-122 levels associated with worse HL-specific survival in the whole patient population (p = 0.015). When standardized according to the CD30 expression, high miR212 and miR510 predicted worse relapse-free survival (p = 0.049 and p = 0.0058, resp.). In conclusion, several redoxmiRs and redox regulating enzyme mRNA levels associate with aggressive disease outcome and may also produce prognostic information in classical HL.
Collapse
|
34
|
Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy: Successful Agents and Novel Approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:289-383. [PMID: 28325214 DOI: 10.1016/bs.ircmb.2016.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their discovery, antibodies have been viewed as ideal candidates or "magic bullets" for use in targeted therapy in the fields of cancer, autoimmunity, and chronic inflammatory disorders. A wave of antibody-dedicated research followed, which resulted in the clinical approval of a first generation of monoclonal antibodies for cancer therapy such as rituximab (1997) and cetuximab (2004), and infliximab (2002) for the treatment of autoimmune diseases. More recently, the development of antibodies that prevent checkpoint-mediated inhibition of T cell responses invigorated the field of cancer immunotherapy. Such antibodies induced unprecedented long-term remissions in patients with advanced stage malignancies, most notably melanoma and lung cancer, that do not respond to conventional therapies. In this review, we will recapitulate the development of antibody-based therapy, and detail recent advances and new functions, particularly in the field of cancer immunotherapy. With the advent of recombinant DNA engineering, a number of rationally designed molecular formats of antibodies and antibody-derived agents have become available, and we will discuss various molecular formats including antibodies with improved effector functions, bispecific antibodies, antibody-drug conjugates, antibody-cytokine fusion proteins, and T cells genetically modified with chimeric antigen receptors. With these exciting advances, new antibody-based treatment options will likely enter clinical practice and pave the way toward more successful control of malignant diseases.
Collapse
Affiliation(s)
- D Hendriks
- Department of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - G Choi
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - M de Bruyn
- Department of Obstetrics & Gynecology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - V R Wiersma
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| | - E Bremer
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands; University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
35
|
Yao Q, Cao F, Lang M, Feng C, Meng X, Zhang Y, Zhao Y, Wang XH. Rituxan nanoconjugation prolongs drug/cell interaction and enables simultaneous depletion and enhanced Raman detection of lymphoma cells. J Mater Chem B 2017; 5:5165-5175. [DOI: 10.1039/c7tb00152e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rituxan nanoconjugation prolongs drug/cell interaction and enables simultaneous depletion and enhanced Raman detection of lymphoma cells.
Collapse
Affiliation(s)
- Qian Yao
- Laboratory for Biomedical Photonics
- Institute of Laser Engineering
- Beijing University of Technology
- Beijing
- China
| | - Fei Cao
- Laboratory for Biomedical Photonics
- Institute of Laser Engineering
- Beijing University of Technology
- Beijing
- China
| | - Marion Lang
- Laboratory for Biomedical Photonics
- Institute of Laser Engineering
- Beijing University of Technology
- Beijing
- China
| | - Chao Feng
- Laboratory for Raman Spectroscopy
- Institute of Laser Engineering
- Beijing University of Technology
- Beijing
- China
| | - Xiaotong Meng
- Laboratory for Biomedical Photonics
- Institute of Laser Engineering
- Beijing University of Technology
- Beijing
- China
| | - Yongzhe Zhang
- College of Materials Science and Engineering
- Beijing University of Technology
- Beijing
- China
| | - Yan Zhao
- Laboratory for Raman Spectroscopy
- Institute of Laser Engineering
- Beijing University of Technology
- Beijing
- China
| | - Xiu-hong Wang
- Laboratory for Biomedical Photonics
- Institute of Laser Engineering
- Beijing University of Technology
- Beijing
- China
| |
Collapse
|
36
|
Zhang L, Fang Y, Yang J, Kopeček J. Drug-free macromolecular therapeutics: Impact of structure on induction of apoptosis in Raji B cells. J Control Release 2016; 263:139-150. [PMID: 28024916 DOI: 10.1016/j.jconrel.2016.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/31/2023]
Abstract
Recently, we developed a new paradigm in macromolecular therapeutics that avoids the use of low molecular weight drugs. The activity of the "drug-free macromolecular therapeutics" is based on the biorecognition of complementary motifs at cell surface resulting in receptor crosslinking and apoptosis induction. The system is composed of two nanoconjugates: (1) a single-stranded morpholino oligonucleotide (MORF1) attached to an anti-CD20 Fab' fragment (Fab'-MORF1); (2) multiple copies of complementary oligonucleotide MORF2 grafted to a linear polymer of N-(2-hydroxypropyl)methacrylamide (HPMA) - P-(MORF2)x. The two conjugates crosslink CD20 antigens via MORF1-MORF2 hybridization at the surface of CD20+ malignant B-cells and induce apoptosis. Preclinical studies in a murine model of human non-Hodgkin's lymphoma showed cancer cells eradication and long-term survivors. The aim of this study was to determine the relationship between the detailed structure of the nanoconjugates and apoptosis induction in Raji cells to allow system optimization. The factors studied include the length of the MORF sequence, the valence of P-(MORF2)x (varying x), molecular weight of P-(MORF2)x, incorporation of a miniPEG spacer between Fab' and MORF1 and between polymer backbone and pendant MORF2, and comparison of two Fab' fragments, one from 1F5 antibody (Fab'1F5), the other from Rituximab (Fab'RTX). The results of apoptosis induction in human Burkitt's B-cell non-Hodgkin's lymphoma (NHL) Raji cells as determined using three apoptotic assays (Annexin V, Caspase 3, and TUNEL) indicated that: a) An improvement of apoptotic activity was observed for a 28 base pair MORF sequence when compared to MORFs composed of 20 and 25 base pairs. The differences depended on type of assay, concentration and exposure schedule (consecutive vs. premixed). b) The higher the valence of P-(MORF2)x the higher the levels of apoptosis. c) Higher molecular weight of P-(MORF2)x induced higher levels of apoptosis. d) A miniPEG8 spacer was effective in enhancing apoptotic levels in contrast to a miniPEG2 spacer. e) There was not a statistically significant difference when comparing Fab'1F5-MORF1 with Fab'RTX-MORF1.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Yixin Fang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, CCCD, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
37
|
Takahashi Y, Ikezumi Y, Saitoh A. Rituximab protects podocytes and exerts anti-proteinuric effects in rat adriamycin-induced nephropathy independent of B-lymphocytes. Nephrology (Carlton) 2016; 22:49-57. [DOI: 10.1111/nep.12737] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/05/2016] [Accepted: 01/27/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Yuichi Takahashi
- Department of Pediatrics; Niigata University Medical and Dental Hospital; Niigata Japan
| | - Yohei Ikezumi
- Department of Pediatrics; Niigata University Medical and Dental Hospital; Niigata Japan
| | - Akihiko Saitoh
- Department of Pediatrics; Niigata University Medical and Dental Hospital; Niigata Japan
| |
Collapse
|
38
|
Chu TW, Kopeček J. Drug-Free Macromolecular Therapeutics--A New Paradigm in Polymeric Nanomedicines. Biomater Sci 2016; 3:908-22. [PMID: 26191406 DOI: 10.1039/c4bm00442f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review highlights a unique research area in polymer-based nanomedicine designs. Drug-free macromolecular therapeutics induce apoptosis of malignant cells by the crosslinking of surface non-internalizing receptors. The receptor crosslinking is mediated by the biorecognition of high-fidelity natural binding motifs (such as antiparallel coiled-coil peptides or complementary oligonucleotides) that are grafted to the side chains of polymers or attached to targeting moieties against cell receptors. This approach features the absence of low-molecular-weight cytotoxic compounds. Here, we summarize the rationales, different designs, and advantages of drug-free macromolecular therapeutics. Recent developments of novel therapeutic systems for B-cell lymphomas are discussed, as well as relevant approaches for other diseases. We conclude by pointing out various potential future directions in this exciting new field.
Collapse
Affiliation(s)
- Te-Wei Chu
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA ; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
39
|
Assessment of CD37 B-cell antigen and cell of origin significantly improves risk prediction in diffuse large B-cell lymphoma. Blood 2016; 128:3083-3100. [PMID: 27760757 DOI: 10.1182/blood-2016-05-715094] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023] Open
Abstract
CD37 (tetraspanin TSPAN26) is a B-cell surface antigen widely expressed on mature B cells. CD37 is involved in immune regulation and tumor suppression but its function has not been fully elucidated. We assessed CD37 expression in de novo diffuse large B-cell lymphoma (DLBCL), and investigated its clinical and biologic significance in 773 patients treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) and 231 patients treated with CHOP. We found that CD37 loss (CD37-) in ∼60% of DLBCL patients showed significantly decreased survival after R-CHOP treatment, independent of the International Prognostic Index (IPI), germinal center B-cell-like (GCB)/activated B-cell-like (ABC) cell of origin, nodal/extranodal primary origin, and the prognostic factors associated with CD37-, including TP53 mutation, NF-κBhigh, Mychigh, phosphorylated STAT3high, survivinhigh, p63-, and BCL6 translocation. CD37 positivity predicted superior survival, abolishing the prognostic impact of high IPI and above biomarkers in GCB-DLBCL but not in ABC-DLBCL. Combining risk scores for CD37- status and ABC cell of origin with the IPI, defined as molecularly adjusted IPI for R-CHOP (M-IPI-R), or IPI plus immunohistochemistry (IHC; IPI+IHC) for CD37, Myc, and Bcl-2, significantly improved risk prediction over IPI alone. Gene expression profiling suggested that decreased CD20 and increased PD-1 levels in CD37- DLBCL, ICOSLG upregulation in CD37+ GCB-DLBCL, and CD37 functions during R-CHOP treatment underlie the pivotal role of CD37 status in clinical outcomes. In conclusion, CD37 is a critical determinant of R-CHOP outcome in DLBCL especially in GCB-DLBCL, representing its importance for optimal rituximab action and sustained immune responses. The combined molecular and clinical prognostic indices, M-IPI-R and IPI+IHC, have remarkable predictive values in R-CHOP-treated DLBCL.
Collapse
|
40
|
Liu JL, Zabetakis D, Goldman ER, Anderson GP. Selection and characterization of single domain antibodies against human CD20. Mol Immunol 2016; 78:146-154. [DOI: 10.1016/j.molimm.2016.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/07/2016] [Accepted: 09/10/2016] [Indexed: 01/25/2023]
|
41
|
Yang J, Kopeček J. Design of smart HPMA copolymer-based nanomedicines. J Control Release 2016; 240:9-23. [DOI: 10.1016/j.jconrel.2015.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 01/13/2023]
|
42
|
Perez Horta Z, Goldberg JL, Sondel PM. Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy. Immunotherapy 2016; 8:1097-117. [PMID: 27485082 PMCID: PMC5619016 DOI: 10.2217/imt-2016-0021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the clinic, becoming an important approach for cancer immunotherapy. Due to its limited expression on normal tissue, the GD2 disialogangloside expressed on neuroblastoma cells is an excellent candidate for mAb therapy. In 2015, dinutuximab (an anti-GD2 mAb) was approved by the US FDA and is currently used in a combination immunotherapeutic regimen for the treatment of children with high-risk neuroblastoma. Here, we review the extensive preclinical and clinical development of anti-GD2 mAbs and the different mechanisms by which they mediate tumor cell killing. In addition, we discuss different mAb-based strategies that capitalize on the targeting ability of anti-GD2 mAbs to potentially deliver, as monotherapy, or in combination with other treatments, improved antitumor efficacy.
Collapse
Affiliation(s)
| | - Jacob L Goldberg
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics & Genetics, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| |
Collapse
|
43
|
Safdari Y, Ahmadzadeh V, Farajnia S. CD20-targeting in B-cell malignancies: novel prospects for antibodies and combination therapies. Invest New Drugs 2016; 34:497-512. [DOI: 10.1007/s10637-016-0349-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|
44
|
Lipowska-Bhalla G, Fagnano E, Illidge TM, Cheadle EJ. Improving therapeutic activity of anti-CD20 antibody therapy through immunomodulation in lymphoid malignancies. Leuk Lymphoma 2016; 57:1269-80. [PMID: 27050042 DOI: 10.3109/10428194.2016.1157874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nearly two decades ago rituximab heralded a new era in management of B cell malignancies significantly increasing response rates and survival. However, despite clear therapeutic advantage, significant numbers of patients become refractory to anti-CD20 mAb therapy, suggesting urgent improvements are required. It is now well recognized that the suppressive tumor microenvironment plays an important role in the outcome of anti-CD20 mAb therapy and that manipulation of this environment may improve the efficacy and produce long-term tumor control. The past few years have seen a surge of interest in immunomodulatory agents capable of overwriting immune suppressive networks into favorable clinical outcome. Currently, a number of such combinations with anti-CD20 mAb is under evaluation and some have produced encouraging outcomes in rituximab refractory disease. In this review, we give an outline of anti-CD20 mAbs and explore the combinations with immunomodulatory agents that enhance antitumor immunity through targeting stimulatory or inhibitory pathways and have proven potential to synergize with anti-CD20 mAb therapy. These agents, primarily mAbs, target CTLA-4, PD-1/PD-L1, and CD40.
Collapse
MESH Headings
- Animals
- Antigens, CD20
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- CD40 Antigens/antagonists & inhibitors
- CTLA-4 Antigen/antagonists & inhibitors
- Cytotoxicity, Immunologic/drug effects
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Immunomodulation/drug effects
- Leukemia, B-Cell/drug therapy
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/metabolism
- Leukemia, B-Cell/pathology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Molecular Targeted Therapy
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Grazyna Lipowska-Bhalla
- a Targeted Therapy Group, Institute of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre , Manchester , UK
| | - Ester Fagnano
- a Targeted Therapy Group, Institute of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre , Manchester , UK
| | - Timothy M Illidge
- a Targeted Therapy Group, Institute of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre , Manchester , UK
| | - Eleanor J Cheadle
- a Targeted Therapy Group, Institute of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre , Manchester , UK
| |
Collapse
|
45
|
Jiang H, Acharya C, An G, Zhong M, Feng X, Wang L, Dasilva N, Song Z, Yang G, Adrian F, Qiu L, Richardson P, Munshi NC, Tai YT, Anderson KC. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia 2016; 30:399-408. [PMID: 26338273 DOI: 10.1038/leu.2015.240] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022]
Abstract
The anti-CD38 monoclonal antibody SAR650984 (SAR) is showing promising clinical activity in treatment of relapsed and refractory multiple myeloma (MM). Besides effector-mediated antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity, we here define molecular mechanisms of SAR-directed MM cell death and enhanced anti-MM activity triggered by SAR with Pomalidomide (Pom). Without Fc-cross-linking agents or effector cells, SAR specifically induces homotypic aggregation (HA)-associated cell death in MM cells dependent on the level of cell surface CD38 expression, actin cytoskeleton and membrane lipid raft. SAR and its F(ab)'2 fragments trigger caspase 3/7-dependent apoptosis in MM cells highly expressing CD38, even with p53 mutation. Importantly, SAR specifically induces lysosome-dependent cell death (LCD) by enlarging lysosomes and increasing lysosomal membrane permeabilization associated with leakage of cathepsin B and LAMP-1, regardless of the presence of interleukin-6 or bone marrow stromal cells. Conversely, the lysosomal vacuolar H+-ATPase inhibitor blocks SAR-induced LCD. SAR further upregulates reactive oxygen species. Pom enhances SAR-induced direct and indirect killing even in MM cells resistant to Pom/Len. Taken together, SAR is the first therapeutic monoclonal antibody mediating direct cytotoxicity against MM cells via multiple mechanisms of action. Our data show that Pom augments both direct and effector cell-mediated MM cytotoxicity of SAR, providing the framework for combination clinical trials.
Collapse
Affiliation(s)
- H Jiang
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Myeloma and Lymphoma Centre, Department of Hematology, Chang Zheng Hospital, The Second Military Medical University, Shanghai, China
| | - C Acharya
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - G An
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Zhong
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - X Feng
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - L Wang
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N Dasilva
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Z Song
- Sanofi Oncology, Cambridge, MA, USA
| | - G Yang
- Sanofi Oncology, Cambridge, MA, USA
| | - F Adrian
- Sanofi Oncology, Cambridge, MA, USA
| | - L Qiu
- Institute of Hematology, CAMS & PUMC, Tianjin, China
| | - P Richardson
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N C Munshi
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Y-T Tai
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K C Anderson
- LeBow Institute for Myeloma Therapeutics and the Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Zhou Z, Zhang J, Zhang Y, Ma G, Su Z. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab′ Synthesis. Bioconjug Chem 2016; 27:238-46. [DOI: 10.1021/acs.bioconjchem.5b00626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhan Zhou
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun,
Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun,
Haidian District, Beijing 100190, China
| | - Yan Zhang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun,
Haidian District, Beijing 100190, China
| | - Guanghui Ma
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun,
Haidian District, Beijing 100190, China
| | - Zhiguo Su
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun,
Haidian District, Beijing 100190, China
| |
Collapse
|
47
|
Könitzer JD, Sieron A, Wacker A, Enenkel B. Reformatting Rituximab into Human IgG2 and IgG4 Isotypes Dramatically Improves Apoptosis Induction In Vitro. PLoS One 2015; 10:e0145633. [PMID: 26713448 PMCID: PMC4694715 DOI: 10.1371/journal.pone.0145633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/06/2015] [Indexed: 12/31/2022] Open
Abstract
The direct induction of cell death, or apoptosis, in target cells is one of the effector mechanisms for the anti CD20 antibody Rituximab. Here we provide evidence that Rituximab’s apoptotic ability is linked to the antibody IgG isotype. Reformatting Rituximab from the standard human IgG1 heavy chain into IgG2 or IgG4 boosted in vitro apoptosis induction in the Burkitt’s lymphoma B cell line Ramos five and four-fold respectively. The determinants for this behavior are located in the hinge region and CH1 domain of the heavy chain. By transplanting individual IgG2 or IgG4 specific amino acid residues onto otherwise IgG1 like backbones, thereby creating hybrid antibodies, the same enhancement of apoptosis induction could be achieved. The cysteines at position 131 of the CH1 domain and 219 in the hinge region, involved in IgG2 and IgG4 disulfide formation, were found to be of particular structural importance. Our data indicates that the hybrid antibodies possess a different CD20 binding mode than standard Rituximab, which appears to be key in enhancing apoptotic ability. The presented work opens up an interesting engineering route for enhancing the direct cytotoxic ability of therapeutic antibodies.
Collapse
Affiliation(s)
- Jennifer D. Könitzer
- Boehringer Ingelheim, Division Research Germany, Immune Modulation and Biotherapeutics Discovery, Biberach/Riß, Germany
- * E-mail:
| | - Annette Sieron
- Boehringer Ingelheim, Biopharma Operations Germany, Biberach/Riß, Germany
| | - Angelika Wacker
- Boehringer Ingelheim, Bioprocess and Pharmaceutical Development Germany, Biberach/Riß, Germany
| | - Barbara Enenkel
- Boehringer Ingelheim, Bioprocess and Pharmaceutical Development Germany, Biberach/Riß, Germany
| |
Collapse
|
48
|
Spatafora M, Bellini T, Giordano C, Ghiggeri GM. A mild form of rituximab-associated lung injury in two adolescents treated for nephrotic syndrome. BMJ Case Rep 2015; 2015:bcr-2015-212694. [PMID: 26661285 DOI: 10.1136/bcr-2015-212694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rituximab is used as a steroid/calcineurin inhibitor-saving agent in patients with nephrotic syndrome. Safety is a crucial issue for justifying widespread use of the drug in this clinical setting. Rituximab-associated lung injury (RALI) is a severe and potentially life-threatening complication in oncohaematological and rheumatological patients, while it has only been anecdotally reported in association with idiopathic nephrotic syndrome (2 cases described, 1 with fatal outcome). We describe a benign form of RALI occurring in two adolescents treated with rituximab (single pulse of 375 mg/m(2)) for nephrotic syndrome. Before treatment, the patients were in good clinical condition while receiving a combination of steroids and calcineurin inhibitors (tacrolimus, case 1 and cyclosporine, case 2). The two patients developed full blown RALI (ie, ground-glass lesions on CT, negative bronchoscopy with bronchoalveolar lavage and deficit in diffusion lung CO transfer), 14 and 40 days after rituximab infusion, respectively. Recovery was rapid and complete after administering steroids in case 1 and with no therapy in case 2. We conclude that RALI may occur in stable non-immunocompromised patients with nephrotic syndrome and its frequency may be higher than expected. Clinical presentation may be mild and resolve after steroids, suggesting hypersensitivity as the main mechanism. Rapid recognition and prompt steroid therapy, if needed, are mandatory for resolution.
Collapse
Affiliation(s)
- Mario Spatafora
- Division of Pneumology, Dipartimento Biomedico di Medicina Interna e Specialistica, Università di Palermo, Palermo, Italy
| | - Tommaso Bellini
- Division of Nephrology, Dialysis and Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy
| | - Carmela Giordano
- Division of Pneumology, Dipartimento Biomedico di Medicina Interna e Specialistica, Università di Palermo, Palermo, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy
| |
Collapse
|
49
|
Abstract
This overview intends to demonstrate the close relationship between the design of smart biomaterials and water-soluble polymer-drug conjugates. First, the discovery and systematic studies of hydrogels based on crosslinked poly(meth)acrylic acid esters and substituted amides is described. Then, the lessons learned for the design of water-soluble polymers as drug carriers are highlighted. The current state-of-the-art in water-soluble, mainly poly[N-(2-hydroxypropyl)methacylamide (HPMA), polymer-drug conjugates is shown including the design of backbone degradable HPMA copolymer carriers. In the second part, the modern design of hybrid hydrogels focuses on the self-assembly of hybrid copolymers composed from the synthetic part (backbone) and biorecognizable grafts (coiled-coil forming peptides or morpholino oligonucleotides) is shown. The research of self-assembling hydrogels inspired the invention and design of drug-free macromolecular therapeutics - a new paradigm in drug delivery where crosslinking of non-internalizating CD20 receptors results in apoptosis in vitro and in vivo. The latter is mediated by biorecognition of complementary motifs; no low molecular weight drug is needed.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA ; Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
50
|
Erker C, Harker-Murray P, Burke MJ. Emerging immunotherapy in pediatric lymphoma. Future Oncol 2015; 12:257-70. [PMID: 26616565 DOI: 10.2217/fon.15.282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hodgkin and non-Hodgkin lymphoma collectively are the third most common cancer diagnosed in children each year. For children who relapse or have refractory disease, outcomes remain poor. Immunotherapy has recently emerged as a novel approach to treat hematologic malignancies. The field has been rapidly expanding over the past few years broadening its armamentarium which now includes monoclonal antibodies, antibody-drug conjugates and cellular therapies including bispecific T-cell engagers and chimeric antigen receptor-engineered T cells. Many of these agents are in their infancy stages and only beginning to make their mark on lymphoma treatment while others have begun to show promising efficacy in relapsed disease. In this review, the authors provide an overview of current and emerging immunotherapies in the field of pediatric lymphoma.
Collapse
Affiliation(s)
- Craig Erker
- Division of Pediatric Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paul Harker-Murray
- Division of Pediatric Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael J Burke
- Division of Pediatric Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|