1
|
Yusuf AA, Pirk CWW, Buttstedt A. Expression of honey bee (Apis mellifera) sterol homeostasis genes in food jelly producing glands of workers. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:627-641. [PMID: 38567629 DOI: 10.1002/jez.2813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Adult workers of Western honey bees (Apis mellifera L.) acquire sterols from their pollen diet. These food sterols are transported by the hemolymph to peripheral tissues such as the mandibular and the hypopharyngeal glands in the worker bees' heads that secrete food jelly which is fed to developing larvae. As sterols are obligatory components of biological membranes and essential precursors for molting hormone synthesis in insects, they are indispensable to normal larval development. Thus, the study of sterol delivery to larvae is important for a full understanding of honey bee larval nutrition and development. Whereas hypopharyngeal glands only require sterols for their membrane integrity, mandibular glands add sterols, primarily 24-methylenecholesterol, to its secretion. For this, sterols must be transported through the glandular epithelial cells. We have analyzed for the first time in A. mellifera the expression of genes which are involved in intracellular movement of sterols. Mandibular and hypopharyngeal glands were dissected from newly emerged bees, 6-day-old nurse bees that feed larvae and 26-day-old forager bees. The expression of seven genes involved in intracellular sterol metabolism was measured with quantitative real-time PCR. Relative transcript abundance of sterol metabolism genes was significantly influenced by the age of workers and specific genes but not by gland type. Newly emerged bees had significantly more transcripts for six out of seven genes than older bees indicating that the bulk of the proteins needed for sterol metabolism are produced directly after emergence.
Collapse
Affiliation(s)
- Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Anja Buttstedt
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Kausar N, Shier WT, Ahmed M, Maryam, Albekairi NA, Alshammari A, Saleem M, Imran M, Muddassar M. Investigation of the insecticidal potential of curcumin derivatives that target the Helicoverpa armigera sterol carrier protein-2. Heliyon 2024; 10:e29695. [PMID: 38660259 PMCID: PMC11040122 DOI: 10.1016/j.heliyon.2024.e29695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Cotton bollworm (Helicoverpa armigera) is a highly polyphagous, widely prevalent, and persistent Old World insect pest that affects numerous important crops that are directly consumed by people, including tomato, cotton, pigeon pea, chickpea, rice, sorghum, and cowpea. Insects do not synthesize steroids but obtain them from their diet. Inhibition of dietary uptake of steroids by insects is a potentially effective insecticidal mechanism that should not be toxic to humans and other mammals, who synthesize their steroids. Ten curcumin derivatives were tested against H. armigera sterol carrier protein-2 (HaSCP-2) for their potential as insecticidal agents. Curcumin derivatives were initially docked at the binding site of HaSCP-2 to determine their binding affinities and plausible binding modes. The binding modes predominantly show hydrophobic interactions of derivatives with Phe53, Phe110, and Phe89 as core interacting residues in the active site. Validation of in silico results was carried out by performing a fluorescence binding and displacement assay to determine the binding affinities of curcumin derivatives. Among a collection of curcumin derivatives tested, Cur10 showed the lowest IC50 value of 9.64 μM, while Cur07 was 19.86 μM, and Cur06 was 20.79 μM. There was a significant negative correlation between the ability of the curcumin derivatives tested to displace the fluorescent probe from the sterol binding site of HaSCP-2 and to inhibit Sf9 insect cell growth in culture, which is consistent with the curcumin derivatives acting by the novel mechanism of blocking sterol uptake. Then molecular dynamics simulation studies validated the predicted binding modes and the interactions of curcumin derivatives with HaSCP-2 protein. In conclusion, these studies support the potential use of curcumin derivatives as insecticidal agents.
Collapse
Affiliation(s)
- Naeema Kausar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Wayne Thomas Shier
- College of Pharmacy, Department of Medicinal Chemistry, University of Minnesota, 55455, USA
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Maryam
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- KAM-School of Life Sciences, FC College (A Chartered University), Lahore, 54000, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550, Pakistan
| |
Collapse
|
3
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
4
|
Geng K, Zhang Y, Zhao X, Zhang W, Guo X, He L, Liu K, Yang H, Hong H, Peng J, Peng R. Fluorescent Nanoparticle-RNAi-Mediated Silencing of Sterol Carrier Protein-2 Gene Expression Suppresses the Growth, Development, and Reproduction of Helicoverpa armigera. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020245. [PMID: 36677998 PMCID: PMC9866532 DOI: 10.3390/nano13020245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 05/23/2023]
Abstract
Helicoverpa armigera is a polyphagous destructive lepidopteran pest with strong Bacillus thuringiensis (Bt) resistance. Cholesterol, a vital component for insect growth, can only be obtained from food, and its transfer and metabolism are regulated by sterol carrier protein-2 (SCP-2). This study examined whether H. armigera SCP-2 (HaSCP-2) gene expression, involved in cholesterol absorption, can be silenced by nanocarrier fluorescent nanoparticle-RNA interference (FNP-RNAi) by larval feeding and whether the silencing affected H. armigera development. Fluorescence microscopy showed that nanoparticle-siRNA was distributed in Ha cells and the larval midgut. FNP-HaSCP-2 siRNA suppressed HaSCP-2 expression by 52.5% in H.armigera Ha cells. FNP can effectively help deliver siRNA into cells, protect siRNA, and is not affected by serum. FNP-siRNA in vivo biological assays showed that HaSCP-2 transcript levels were inhibited by 70.19%, 68.16%, and 67.66% in 3rd, 4th, and 5th instar larvae, leading to a decrease in the cholesterol level in the larval and prepupal fatbodies. The pupation rate and adult emergence were reduced to 26.0% and 56.52%, respectively. This study demonstrated that FNP could deliver siRNA to cells and improve siRNA knockdown efficiency. HaSCP-2 knockdown by FNP-siRNA in vivo hindered H. armigera growth and development. FNP could enhance RNAi efficiency to achieve pest control by SCP-2-targeted FNP-RNAi.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rong Peng
- Correspondence: ; Tel.: +86-27-67867221
| |
Collapse
|
5
|
Aygün S, Düzlü Ö, Yıldırım A. Molecular Characterization and Expression Analysis of the Sterol-carrier Protein-2 Fragment in Anopheles sacharovi Generations. TURKIYE PARAZITOLOJII DERGISI 2022; 46:312-321. [PMID: 36444407 DOI: 10.4274/tpd.galenos.2022.68553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objective It was aimed to characterize the sterol carrier protein-2 (SCP-2) gene in Anopheles sacharovi using molecular methods for the first time, and to reveal the expression levels of An. sacharovi in the developmental stages and female generation in different tissues such as salivary gland, midgut and adipose tissue. Methods The adult female An. sacharovi collected from the Sultan Sazlığı region and the development stages in the insectarium constituted the study material. cDNA isolation was performed following total RNA extraction from An. sacharovi strains. The 216 bp fragment of the SCP-2 gene was amplified with optimized primers in cDNA templates and was sequenced. Genetic characterization of the sequences was provided in silico analysis. Results Twelve of the SCP-2 nucleotide sequences of 14 isolates included in the sequence analysis were 100% identical and the SCP-2 sequences of the other two isolates that were homologous to each other showed a single nucleotide change at base 183. The 216 bp fragment of the SCP-2 gene region was found encoding the 72 amino acid chain. SCP-2 gene sequences clustered the isolates monophyletically on the basis of mosquito species and strains, and that Anopheles sacharovi isolates formed a subcluster together with Anopheles stephensi and Anopheles funestus within the Anopheles cluster in phylogenetic analysis. Because of q-polymerase chain reaction-mediated expression analysis, SCP-2 gene was expressed highest in adult males, followed by an adult female, ss L4, L3, L2, L1, and pupal stages, respectively. In adult female tissues, the SCP-2 gene was expressed the highest in the fat body, followed by the midgut and salivary glands, respectively. Conclusion SCP2, which is an important vaccine candidate or target drug site for Anopheles sacharovi with high vector potential, was firstly characterized in this study and the developmental stages and expression differences in the tissues of the mosquito were revealed.
Collapse
Affiliation(s)
- Sümeyye Aygün
- Erciyes Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Kayseri, Türkiye
| | - Önder Düzlü
- Erciyes Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Kayseri, Türkiye
| | - Alparslan Yıldırım
- Erciyes Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Kayseri, Türkiye
| |
Collapse
|
6
|
Meenambigai K, Kokila R, Chandhirasekar K, Thendralmanikandan A, Kaliannan D, Ibrahim KS, Kumar S, Liu W, Balasubramanian B, Nareshkumar A. Green Synthesis of Selenium Nanoparticles Mediated by Nilgirianthus ciliates Leaf Extracts for Antimicrobial Activity on Foodborne Pathogenic Microbes and Pesticidal Activity Against Aedes aegypti with Molecular Docking. Biol Trace Elem Res 2022; 200:2948-2962. [PMID: 34431069 DOI: 10.1007/s12011-021-02868-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
The present study deals with the synthesis of selenium nanoparticles (SeNPs) using Nilgirianthus ciliatus leaf extracts, characterized by UV-Vis spectrophotometer, XRD, FTIR, FE-SEM, HR-TEM, DLS, and zeta potential analysis. The antimicrobial activity against Staphylococcus aureus (MTCC96), Escherichia coli (MTCC443), and Salmonella typhi (MTCC98) showed the remarkable inhibitory effect at 25 µl/mL concentration level. Furthermore, the characterized SeNPs showed a great insecticidal activity against Aedes aegypti in the early larval stages with the median Lethal Concentration (LC50) of 0.92 mg/L. Histopathological observations of the SeNPs treated midgut and caeca regions of Ae. aegypti 4th instar larvae showed damaged epithelial layer and fragmented peritrophic membrane. In order to provide a mechanistic approach for further studies, molecular docking studies using Auto Dock Vina were performed with compounds of N. ciliatus within the active site of AeSCP2. Overall, the N. ciliates leaf-mediated biogenic SeNPs was promisingly evidenced to have potential larvicidal and food pathogenic bactericidal activity in an eco-friendly approach.
Collapse
Affiliation(s)
- Krishnan Meenambigai
- Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India
| | - Ranganathan Kokila
- Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India
| | | | | | - Durairaj Kaliannan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem, 636 011, India
| | - Kalibulla Syed Ibrahim
- PG and Research Department of Botany, PSG College of Arts & Science, Coimbatore, 641 014, Tamil Nadu, India
| | - Shobana Kumar
- Department of Zoology, Sri GVG Visalakshi College for Women, Udumalpet, Tamil Nadu, India
| | - Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | | | - Arjunan Nareshkumar
- Department of Zoology, School of Life Sciences, Periyar University, Salem, 636011, India.
| |
Collapse
|
7
|
Alcalá AC, Contreras MA, Cuevas-Juárez E, Ramírez OT, Palomares LA. Effect of sericin, a silk derived protein, on the amplification of Zika virus in insect and mammalian cell cultures. J Biotechnol 2022; 353:28-35. [PMID: 35623476 DOI: 10.1016/j.jbiotec.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
Sericin, a silk-derived non-immunogenic protein, has been used to improve cell culture performance by increasing viability, cell concentration, and promoting adherence of several cell lines. Here, we hypothesized that the properties of sericin can enhance the amplification of flaviviruses in cell cultures. The propagation of flavivirus is inefficient and limits scientific research. Zika virus (ZIKV) is an important human pathogen that has been widely studied because of its high impact on public health. There is a need to amplify Zika virus both for research and vaccine development. In this work, we show that sericin improves ZIKV amplification in insect (C6/36) and mammalian (Vero) cell cultures, and that it has a cryoprotectant capacity. Supplementation of cell culture media with sericin at 80 µg/mL resulted in a significant increase of 1 log in the concentration of ZIKV infectious particles produced from both cell lines. Furthermore, final virus yields increased between 5 and 10-fold in Vero cells and between 7 and 23-fold in C6/36 cells when sericin was supplemented, compared to control conditions. These results show that sericin is an effective supplement to increase ZIKV production by Vero and C6/36 cells. Additionally, sericin was a suitable cryoprotective agent, and hence an alternative to FBS and DMSO, for the cryopreservation of C6/36 cells but not for Vero cells.
Collapse
Affiliation(s)
- Ana C Alcalá
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha A Contreras
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Esmeralda Cuevas-Juárez
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Octavio T Ramírez
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
8
|
Novel Symbiotic Genome-Scale Model Reveals Wolbachia's Arboviral Pathogen Blocking Mechanism in Aedes aegypti. mBio 2021; 12:e0156321. [PMID: 34634928 PMCID: PMC8515829 DOI: 10.1128/mbio.01563-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wolbachia are endosymbiont bacteria known to infect arthropods causing different effects, such as cytoplasmic incompatibility and pathogen blocking in Aedes aegypti. Although several Wolbachia strains have been studied, there is little knowledge regarding the relationship between this bacterium and their hosts, particularly on their obligate endosymbiont nature and its pathogen blocking ability. Motivated by the potential applications on disease control, we developed a genome-scale model of two Wolbachia strains: wMel and the strongest Dengue blocking strain known to date: wMelPop. The obtained metabolic reconstructions exhibit an energy metabolism relying mainly on amino acids and lipid transport to support cell growth that is consistent with altered lipid and cholesterol metabolism in Wolbachia-infected mosquitoes. The obtained metabolic reconstruction was then coupled with a reconstructed mosquito model to retrieve a symbiotic genome-scale model accounting for 1,636 genes and 6,408 reactions of the Aedes aegypti-Wolbachia interaction system. Simulation of an arboviral infection in the obtained novel symbiotic model represents a metabolic scenario characterized by pathogen blocking in higher titer Wolbachia strains, showing that pathogen blocking by Wolbachia infection is consistent with competition for lipid and amino acid resources between arbovirus and this endosymbiotic bacteria.
Collapse
|
9
|
Valli M, Atanázio LCV, Monteiro GC, Coelho RR, Demarque DP, Andricopulo AD, Espindola LS, Bolzani VDS. The Potential of Biologically Active Brazilian Plant Species as a Strategy to Search for Molecular Models for Mosquito Control. PLANTA MEDICA 2021; 87:6-23. [PMID: 33348409 DOI: 10.1055/a-1320-4610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products are a valuable source of biologically active compounds and continue to play an important role in modern drug discovery due to their great structural diversity and unique biological properties. Brazilian biodiversity is one of the most extensive in the world and could be an effective source of new chemical entities for drug discovery. Mosquitoes are vectors for the transmission of dengue, Zika, chikungunya, yellow fever, and many other diseases of public health importance. These diseases have a major impact on tropical and subtropical countries, and their incidence has increased dramatically in recent decades, reaching billions of people at risk worldwide. The prevention of these diseases is mainly through vector control, which is becoming more difficult because of the emergence of resistant mosquito populations to the chemical insecticides. Strategies to provide efficient and safe vector control are needed, and secondary metabolites from plant species from the Brazilian biodiversity, especially Cerrado, that are biologically active for mosquito control are herein highlighted. Also, this is a literature revision of targets as insights to promote advances in the task of developing active compounds for vector control. In view of the expansion and occurrence of arboviruses diseases worldwide, scientific reviews on bioactive natural products are important to provide molecular models for vector control and contribute with effective measures to reduce their incidence.
Collapse
Affiliation(s)
- Marilia Valli
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), Institute of Physics of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | - Letícia Cristina Vieira Atanázio
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gustavo Claro Monteiro
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Roberta Ramos Coelho
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Daniel Pecoraro Demarque
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), Institute of Physics of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | - Laila Salmen Espindola
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Vanderlan da Silva Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
10
|
Gaviraghi A, Aveiro Y, Carvalho SS, Rosa RS, Oliveira MP, Oliveira MF. Mechanical Permeabilization as a New Method for Assessment of Mitochondrial Function in Insect Tissues. Methods Mol Biol 2021; 2276:67-85. [PMID: 34060033 DOI: 10.1007/978-1-0716-1266-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Respirometry analysis is an effective technique to assess mitochondrial physiology. Insects are valuable biochemical models to understand metabolism and human diseases. Insect flight muscle and brain have been extensively used to explore mitochondrial function due to dissection feasibility and the low sample effort to allow oxygen consumption measurements. However, adequate plasma membrane permeabilization is required for substrates/modulators to reach mitochondria. Here, we describe a new method for study of mitochondrial physiology in insect tissues based on mechanical permeabilization as a fast and reliable method that do not require the use of detergents for chemical permeabilization of plasma membrane, while preserves mitochondrial integrity.
Collapse
Affiliation(s)
- Alessandro Gaviraghi
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
| | - Yan Aveiro
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
| | - Stephanie S Carvalho
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
| | - Rodiesley S Rosa
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
| | - Matheus P Oliveira
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
| | - Marcus F Oliveira
- Federal University of Rio de Janeiro, Institute of Medical Biochemistry Leopoldo de Meis, Rio De Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Enhancement of infectivity of insect cell-derived La Crosse Virus by human serum. Virus Res 2020; 292:198228. [PMID: 33188797 DOI: 10.1016/j.virusres.2020.198228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022]
Abstract
Given the dual life cycle of arboviruses in insect and animal hosts and the importance of serum factors as a first line antiviral defense, we have examined the outcome of interactions between the arbovirus La Crosse Virus (LACV) and human serum. To mimic the life cycle between species, we used LACV derived from insect (I-LACV) and human keratinocyte (HaCaT) cells. Incubation of I-LACV with normal human serum did not result in neutralization, but instead stabilized I-LACV virions and enhanced the amount of infectious virus. Enhanced infectivity was also seen with heat-inactivated serum devoid of complement activity and with serum from a range of animals including mouse, ferret, and non-human primates. Depletion of antibodies from serum resulted in loss of enhancement of infectivity and sucrose gradient sedimentation assays showed IgG co-sedimenting with I-LACV particles. In agreement with our results with I-LACV, HaCaT-derived LACV was not neutralized by complement or antibodies in normal human serum. However, in contrast to I-LACV, HaCaT-derived LACV infectivity was stable when incubated alone and treatment with serum did not enhance infectivity. Our results indicate that LACV derived from insect cells differs substantially from virus derived from human cells, with I-LACV being dependent on serum factors to enhance infectivity. These findings suggest that understanding differential composition of insect versus animal cell-derived LACV may form the foundation for potential new antiviral approaches.
Collapse
|
12
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Zheng JC, Yue XR, Kuang WQ, Li SL, Tang R, Zhang ZF, Kurban A, Zhao C, Liu TX, Jing X. NPC1b as a novel target in controlling the cotton bollworm, Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2020; 76:2233-2242. [PMID: 31976620 DOI: 10.1002/ps.5761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Insects cannot synthesize sterols and must acquire them from food. The mechanisms underlying how insects uptake dietary sterols are largely unknown except that NPC1b, an integral membrane protein, has been shown to be responsible for dietary cholesterol uptake in Drosophila melanogaster. However, whether NPC1b orthologs in other insect species, particularly the economically important pests, function similarly remains to be determined. RESULTS In this study, we characterized the function of NPC1b in Helicoverpa armigera, a global pest that causes severe yield losses to many important crops. Limiting dietary cholesterol uptake to insects significantly inhibited food ingestion and weight gain. Compared to the wild-type H. armigera, the CRISPR/Cas9-edited NPC1b mutant larvae were incapable of getting adequate cholesterol and died in their early life stage. Gene expression profile and in situ hybridization analyses indicated that NPC1b was mainly expressed in the midgut where dietary cholesterol was absorbed. Expression of NPC1b was also correlated with the feeding life stages and was especially upregulated during early larval instars. Protein-ligand docking and sequence similarity analyses further demonstrated that NPC1b proteins of lepidopteran insects shared a relatively conserved cholesterol binding region, NPC1b_NTD, which, however, was highly divergent from bees-derived sequences. CONCLUSION NPC1b was crucial for dietary cholesterol uptake and growth of H. armigera, and therefore could serve as an insecticide target for the development of a novel pest-management approach to control this economically significant insect pest with little off-target effect on bees and sterol-autotrophic animals. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Cheng Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xiao-Rong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen-Qing Kuang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Sa-Li Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Anwar Kurban
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chaoyang Zhao
- College of Natural and Agricultural Sciences, University of California, Riverside, CA, USA
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Holtof M, Lenaerts C, Cullen D, Vanden Broeck J. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res 2019; 377:397-414. [DOI: 10.1007/s00441-019-03031-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
|
15
|
Osuna-Ramos JF, Reyes-Ruiz JM, Del Ángel RM. The Role of Host Cholesterol During Flavivirus Infection. Front Cell Infect Microbiol 2018; 8:388. [PMID: 30450339 PMCID: PMC6224431 DOI: 10.3389/fcimb.2018.00388] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years the emergence and resurgence of arboviruses have generated a global health alert. Among arboviruses, Dengue (DENV), Zika (ZIKV), Yellow Fever (YFV), and West Nile (WNV) virus, belong to the genus Flavivirus, cause high viremia and occasionally fatal clinical disease in humans. Given the genetic austerity of the virus, they depend on cellular factors and organelles to complete its replication. One of the cellular components required for flavivirus infection is cholesterol. Cholesterol is an abundant lipid in biomembranes of eukaryotes cells and is necessary to maintain the cellular homeostasis. Recently, it has been reported, that cholesterol is fundamental during flavivirus infection in both mammal and insect vector models. During infection with DENV, ZIKV, YFV, and WNV the modulation of levels of host-cholesterol facilitates viral entry, replicative complexes formation, assembly, egress, and control of the interferon type I response. This modulation involves changes in cholesterol uptake with the concomitant regulation of cholesterol receptors as well as changes in cholesterol synthesis related to important modifications in cellular metabolism pathways. In view of the flavivirus dependence of cholesterol and the lack of an effective anti-flaviviral treatment, this cellular lipid has been proposed as a therapeutic target to treat infection using FDA-approved cholesterol-lowering drugs. This review aims to address the dependence of cholesterol by flaviviruses as well as the basis for anti flaviviral therapy using drugs which target is cholesterol synthesis or uptake.
Collapse
Affiliation(s)
- Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Rosa Maria Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| |
Collapse
|
16
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson G Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
17
|
Chotiwan N, Andre BG, Sanchez-Vargas I, Islam MN, Grabowski JM, Hopf-Jannasch A, Gough E, Nakayasu E, Blair CD, Belisle JT, Hill CA, Kuhn RJ, Perera R. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes. PLoS Pathog 2018; 14:e1006853. [PMID: 29447265 PMCID: PMC5814098 DOI: 10.1371/journal.ppat.1006853] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/04/2018] [Indexed: 01/01/2023] Open
Abstract
We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted by this vector, our results highlight biochemical choke points that could be targeted to disrupt transmission of multiple pathogens by these mosquitoes.
Collapse
Affiliation(s)
- Nunya Chotiwan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barbara G. Andre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Irma Sanchez-Vargas
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - M. Nurul Islam
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey M. Grabowski
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Entomology Department Purdue University, West Lafayette, Indiana, United States of America
| | - Amber Hopf-Jannasch
- Metabolite Profiling Facility (MPF), Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, United States of America
| | - Erik Gough
- Computational Life Sciences Core, Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, United States of America
| | - Ernesto Nakayasu
- Metabolite Profiling Facility (MPF), Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, United States of America
| | - Carol D. Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Catherine A. Hill
- Entomology Department Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
| | - Richard J. Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
18
|
Kim IH, Aryal SK, Aghai DT, Casanova-Torres ÁM, Hillman K, Kozuch MP, Mans EJ, Mauer TJ, Ogier JC, Ensign JC, Gaudriault S, Goodman WG, Goodrich-Blair H, Dillman AR. The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin. BMC Genomics 2017; 18:927. [PMID: 29191166 PMCID: PMC5709968 DOI: 10.1186/s12864-017-4311-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Xenorhabdus innexi is a bacterial symbiont of Steinernema scapterisci nematodes, which is a cricket-specialist parasite and together the nematode and bacteria infect and kill crickets. Curiously, X. innexi expresses a potent extracellular mosquitocidal toxin activity in culture supernatants. We sequenced a draft genome of X. innexi and compared it to the genomes of related pathogens to elucidate the nature of specialization. RESULTS Using green fluorescent protein-expressing X. innexi we confirm previous reports using culture-dependent techniques that X. innexi colonizes its nematode host at low levels (~3-8 cells per nematode), relative to other Xenorhabdus-Steinernema associations. We found that compared to the well-characterized entomopathogenic nematode symbiont X. nematophila, X. innexi fails to suppress the insect phenoloxidase immune pathway and is attenuated for virulence and reproduction in the Lepidoptera Galleria mellonella and Manduca sexta, as well as the dipteran Drosophila melanogaster. To assess if, compared to other Xenorhabdus spp., X. innexi has a reduced capacity to synthesize virulence determinants, we obtained and analyzed a draft genome sequence. We found no evidence for several hallmarks of Xenorhabdus spp. toxicity, including Tc and Mcf toxins. Similar to other Xenorhabdus genomes, we found numerous loci predicted to encode non-ribosomal peptide/polyketide synthetases. Anti-SMASH predictions of these loci revealed one, related to the fcl locus that encodes fabclavines and zmn locus that encodes zeamines, as a likely candidate to encode the X. innexi mosquitocidal toxin biosynthetic machinery, which we designated Xlt. In support of this hypothesis, two mutants each with an insertion in an Xlt biosynthesis gene cluster lacked the mosquitocidal compound based on HPLC/MS analysis and neither produced toxin to the levels of the wild type parent. CONCLUSIONS The X. innexi genome will be a valuable resource in identifying loci encoding new metabolites of interest, but also in future comparative studies of nematode-bacterial symbiosis and niche partitioning among bacterial pathogens.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Department of Entomology, University of Wisconsin-Madison, Madison, WI USA
- Present address: Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD USA
| | | | - Dariush T. Aghai
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | | | - Kai Hillman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Michael P. Kozuch
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Erin J. Mans
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | - Terra J. Mauer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | | | - Jerald C. Ensign
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | | | - Walter G. Goodman
- Department of Entomology, University of Wisconsin-Madison, Madison, WI USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, CA USA
| |
Collapse
|
19
|
A structural appraisal of sterol carrier protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:565-577. [DOI: 10.1016/j.bbapap.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
|
20
|
NMR structure and function of Helicoverpa armigera sterol carrier protein-2, an important insecticidal target from the cotton bollworm. Sci Rep 2015; 5:18186. [PMID: 26655641 PMCID: PMC4674756 DOI: 10.1038/srep18186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022] Open
Abstract
The cotton bollworm, Helicoverpa armigera, has developed strong resistance to many insecticides. Sterol Carrier Protein-2 (SCP-2) is an important non-specific lipid transfer protein in insects and appears to be a potential new target. In order to elucidate the structure and function of Helicoverpa armigera SCP-2 (HaSCP-2), NMR spectroscopy, docking simulations, mutagenesis and bioassays were performed. HaSCP-2 composed of five α-helices and four stranded β-sheets. The folds of α-helices and β-sheets interacted together to form a hydrophobic cavity with putative entrance and exit openings, which served as a tunnel for accommodating and transporting of lipids. Several sterols and fatty acids could interact with HaSCP-2 via important hydrophobic sites, which could be potential targets for insecticides. Mutagenesis experiments indicated Y51, F53, F89, F110, I117 and Q131 may be the key functional sites. HaSCP-2 showed high cholesterol binding activity and SCP-2 inhibitors (SCPIs) could inhibit the biological activity of HaSCP-2. SCPI-treated larvae at young stage showed a significant decrease of cholesterol uptake in vivo. Our study describes for the first time a NMR structure of SCP-2 in lepidopteran H. armigera and reveals its important function in cholesterol uptake, which facilitates the screening of effective insecticides targeting the insect cholesterol metabolism.
Collapse
|
21
|
Liang LN, Zhang LL, Zeng BJ, Zheng SC, Feng QL. Transcription factor CAAT/enhancer-binding protein is involved in regulation of expression of sterol carrier protein x in Spodoptera litura. INSECT MOLECULAR BIOLOGY 2015; 24:551-560. [PMID: 26174044 DOI: 10.1111/imb.12182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Spodoptera litura sterol carrier protein x (SlSCPx) gene is expressed in various tissues throughout the life cycle and plays important role in sterol absorption and transport. In this study, the effects of insect hormones (20-hydroexcdysone and juvenile hormone) and lipids (arachidonic acid, cholesterol) on the expression of SlSCPx was analysed by reverse-transcriptase PCR. The results showed that none of these substances significantly induced the expression of SlSCPx in Spodoptera litura-221 (Spli-221) cells. To identify the transcription factors responsible for regulation of SlSCPx expression, a 3311-bp promoter sequence of the gene was cloned. Transcriptional activity of the promoter was studied using an in vivo promoter/reporter system and a 29-bp sequence between -1000 and -1029 nucleotides (nt) upstream of this gene was found to be responsible for the up-regulation of the gene. Over-expression of CAAT/enhancer-binding protein (C/EBP) in Spli-221 cells increased the promoter activity 5.57-fold. An electrophoretic mobility shift assay showed that two nuclear proteins bound to this sequence. Recombinant C/EBP specifically bound with a putative cis-regulatory element (CRE). Mutation of the C/EBP CRE abolished the binding of the C/EBP with the CRE. These results suggest that the transcription factor C/EBP may regulate the expression of SlSCPx by binding to the CRE in the promoter of this gene.
Collapse
Affiliation(s)
- L-N Liang
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - L-L Zhang
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - B-J Zeng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - S-C Zheng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Q-L Feng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
22
|
Fu Q, Inankur B, Yin J, Striker R, Lan Q. Sterol Carrier Protein 2, a Critical Host Factor for Dengue Virus Infection, Alters the Cholesterol Distribution in Mosquito Aag2 Cells. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:1124-1134. [PMID: 26336241 DOI: 10.1093/jme/tjv101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/24/2015] [Indexed: 06/05/2023]
Abstract
Host factors that enable dengue virus (DENV) to propagate in the mosquito host cells are unclear. It is known that cellular cholesterol plays an important role in the life cycle of DENV in human host cells but unknown if the lipid requirements differ for mosquito versus mammalian. In mosquito Aedes aegypti, sterol carrier protein 2 (SCP-2) is critical for cellular cholesterol homeostasis. In this study, we identified SCP-2 as a critical host factor for DENV production in mosquito Aag2 cells. Treatment with a small molecule commonly referred to as SCPI-1, (N-(4-{[4-(3,4-dichlorophenyl)-1,3-thiazol-2-yl]amino}phenyl)acetamide hydrobromide, a known inhibitor of SCP-2, or knockdown of SCP-2 dramatically repressed the virus production in mosquito but not mammalian cells. We showed that the intracellular cholesterol distribution in mosquito cells was altered by SCP-2 inhibitor treatment, suggesting that SCP-2-mediated cholesterol trafficking pathway is important for DENV viral production. A comparison of the effect of SCP-2 on mosquito and human cells suggests that SCPI-1 treatment decreases cholesterol in both cell lines, but this decrease in cholesterol only leads to a decline in viral titer in mosquito host cells, perhaps, owing to a more drastic effect on perinuclear cholesterol storages in mosquito cells that was absent in human cells. SCP-2 had no inhibitory effect on another enveloped RNA virus grown in mosquito cells, suggesting that SCP-2 does not have a generalized anti-cellular or antiviral effect. Our cell culture results imply that SCP-2 may play a limiting role in mosquito-dengue vector competence.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Entomology, University of Wisconsin-Madison, WI.
| | - Bahar Inankur
- Chemical and Biological Engineering Department, University of Wisconsin-Madison, WI
| | - John Yin
- Chemical and Biological Engineering Department, University of Wisconsin-Madison, WI
| | - Rob Striker
- Department of Medicine, University of Wisconsin-Madison, WI
| | - Que Lan
- Department of Entomology, University of Wisconsin-Madison, WI. Deceased
| |
Collapse
|
23
|
da Silva JBP, Navarro DMDAF, da Silva AG, Santos GKN, Dutra KA, Moreira DR, Ramos MN, Espíndola JWP, de Oliveira ADT, Brondani DJ, Leite ACL, Hernandes MZ, Pereira VRA, da Rocha LF, de Castro MCAB, de Oliveira BC, Lan Q, Merz KM. Thiosemicarbazones as Aedes aegypti larvicidal. Eur J Med Chem 2015; 100:162-75. [PMID: 26087027 DOI: 10.1016/j.ejmech.2015.04.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/21/2023]
Abstract
A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic.
Collapse
Affiliation(s)
- João Bosco P da Silva
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| | - Daniela Maria do A F Navarro
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| | - Aluizio G da Silva
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Geanne K N Santos
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Kamilla A Dutra
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Diogo Rodrigo Moreira
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Mozart N Ramos
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - José Wanderlan P Espíndola
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Ana Daura T de Oliveira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Dalci José Brondani
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Ana Cristina L Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Valéria R A Pereira
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | - Lucas F da Rocha
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | - Maria Carolina A B de Castro
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | - Beatriz C de Oliveira
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | - Que Lan
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - Kenneth M Merz
- Quantum Theory Project, University of Florida, 2234 New Physics Building, Gainesville, PO Box 118435, Florida, USA
| |
Collapse
|
24
|
Zhang L, Li D, Xu R, Zheng S, He H, Wan J, Feng Q. Structural and functional analyses of a sterol carrier protein in Spodoptera litura. PLoS One 2014; 9:e81542. [PMID: 24454688 PMCID: PMC3893073 DOI: 10.1371/journal.pone.0081542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
Backgrounds In insects, cholesterol is one of the membrane components in cells and a precursor of ecdysteroid biosynthesis. Because insects lack two key enzymes, squalene synthase and lanosterol synthase, in the cholesterol biosynthesis pathway, they cannot autonomously synthesize cholesterol de novo from simple compounds and therefore have to obtain sterols from their diet. Sterol carrier protein (SCP) is a cholesterol-binding protein responsible for cholesterol absorption and transport. Results In this study, a model of the three-dimensional structure of SlSCPx-2 in Spodoptera litura, a destructive polyphagous agricultural pest insect in tropical and subtropical areas, was constructed. Docking of sterol and fatty acid ligands to SlSCPx-2 and ANS fluorescent replacement assay showed that SlSCPx-2 was able to bind with relatively high affinities to cholesterol, stearic acid, linoleic acid, stigmasterol, oleic acid, palmitic acid and arachidonate, implying that SlSCPx may play an important role in absorption and transport of these cholesterol and fatty acids from host plants. Site-directed mutation assay of SlSCPx-2 suggests that amino acid residues F53, W66, F89, F110, I115, T128 and Q131 are critical for the ligand-binding activity of the SlSCPx-2 protein. Virtual ligand screening resulted in identification of several lead compounds which are potential inhibitors of SlSCPx-2. Bioassay for inhibitory effect of five selected compounds showed that AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 inhibited the growth of S. litura larvae. Conclusions Compounds AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 selected based on structural modeling showed binding affinity to SlSCPx-2 protein and inhibitory effect on the growth of S. litura larvae.
Collapse
Affiliation(s)
- Lili Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ding Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jian Wan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
- * E-mail: (QF); (JW)
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- * E-mail: (QF); (JW)
| |
Collapse
|
25
|
Requirement of cholesterol in the viral envelope for dengue virus infection. Virus Res 2013; 174:78-87. [PMID: 23517753 DOI: 10.1016/j.virusres.2013.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 12/27/2022]
Abstract
The role of cholesterol in the virus envelope or in the cellular membranes for dengue virus (DENV) infection was examined by depletion with methyl-beta-cyclodextrin (MCD) or nystatin. Pretreatment of virions with MCD or nystatin significantly reduced virus infectivity in a dose-dependent manner. By contrast, pre-treatment of diverse human cell lines with MCD or nystatin did not affect DENV infection. The four DENV serotypes were similarly inactivated by cholesterol-extracting drugs and infectivity was partially rescued when virion suspensions were treated with MCD in the presence of bovine serum. The addition of serum or exogenous water-soluble cholesterol after MCD treatment did not produce a reversion of MCD inactivating effect. Furthermore, virion treatment with extra cholesterol exerted also a virucidal effect. Binding and uptake of cholesterol-deficient DENV into the host cell were not impaired, whereas the next step of fusion between virion envelope and endosome membrane leading to virion uncoating and release of nucleocapsids to the cytoplasm appeared to be prevented, as determined by the retention of capsid protein in cells infected with MCD inactivated-DENV virions. Thereafter, the infection was almost completely inhibited, given the failure of viral RNA synthesis and viral protein expression in cells infected with MCD-treated virions. These data suggest that envelope cholesterol is a critical factor in the fusion process for DENV entry.
Collapse
|
26
|
Du X, Ma H, Zhang X, Liu K, Peng J, Lan Q, Hong H. Characterization of the sterol carrier protein-x/sterol carrier protein-2 gene in the cotton bollworm, Helicoverpa armigera. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1413-1423. [PMID: 22922458 DOI: 10.1016/j.jinsphys.2012.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Cholesterol is a membrane component and the precursor of ecdysteroids in insects, but insects cannot synthesize cholesterol de novo. Therefore, cholesterol uptake and transportation during the feeding larval stages are critical processes in insects. The sterol carrier protein-2 domain (SCP-2) in sterol carrier proteins-x (SCP-x) has been speculated to be involved in intracellular cholesterol transfer and metabolism in vertebrates. However, a direct association between SCP-x gene expression, cholesterol absorption and development in lepidopteran insects is poorly understood. We identified the Helicoverpa armigera sterol carrier protein-x/2 (HaSCP-x/2) gene from the larval midgut cDNAs. The HaSCP-x/2 gene is well conserved during evolution and relatively divergent in heterogenetic species. Transcripts of HaSCP-x/2 were detected by qRT-PCR at the highest level in the midgut of H. armigera during the larval stages. Expression knockdown of HaSCP-x/2 transcripts via dsRNA interference resulted in delayed larval development and decreased adult fecundity. Sterol carrier protein-2 inhibitors were lethal to young larvae and decreased fertility in adults emerged from treated elder larvae in H. armigera. The results taken together suggest that HaSCPx/2 gene is important for normal development and fertility in H. armigera.
Collapse
Affiliation(s)
- Xin Du
- College of Life Sciences, Central China Normal University, 100 Luoyu Road, Wuhan, Hubei 430079, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Peng R, Fu Q, Hong H, Schwaegler T, Lan Q. THAP and ATF-2 regulated sterol carrier protein-2 promoter activities in the larval midgut of the yellow fever mosquito, Aedes aegypti. PLoS One 2012; 7:e46948. [PMID: 23056538 PMCID: PMC3464256 DOI: 10.1371/journal.pone.0046948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022] Open
Abstract
Expression of sterol carrier protein-2 (SCP-2) in Aedes aegypti shows a distinct temporal/spatial pattern throughout the life cycle. In order to identify the transcription factors responsible for the larval temporal/spatial regulation of AeSCP-2 transcription, AeSCP-2 promoter activities were studied in vivo via transient transfection of promoter/reporter gene assays. Regulatory sequences upstream −1.3 kb of the transcription start site of AeSCP-2 were found to be critical for the in vivo temporal/spatial promoter activity. Interestingly, the −1.6 kb promoter sequence efficiently drove the larval midgut-specific siRNA expression, indicating that the −1.6 kb upstream sequence is sufficient for temporal/spatial AeSCP-2 transcriptional activity. Four transcription factors were identified in the midgut nuclear extract from feeding larvae via labeled −1.6/−1.3 kb DNA probe pull-down and proteomic analysis. Co-transfection of the promoter/reporter gene with inducible siRNA expression of each transcription factor was performed to confirm the regulatory function of individual transcription factor on AeSCP-2 transcriptional activities in the larval midgut. The results indicate that two of the identified transcription factors, Thanatos-associated protein (THAP) and activating transcription factor-2 (ATF-2), antagonistically control AeSCP-2 transcriptional activity in the midgut of feeding larvae via the regulatory sequences between −1.6 to −1.3 kb 5′ upstream of the transcription start site. In vivo expression knockdown of THAP and ATF-2 resulted in significant changes in developmental progression, which may be partially due to their effects on AeSCP-2 expression.
Collapse
Affiliation(s)
- Rong Peng
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- * E-mail: (RP); (QL)
| | - Qiang Fu
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Huazhu Hong
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Tyler Schwaegler
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (RP); (QL)
| |
Collapse
|
28
|
pH-dependent entry of chikungunya virus into Aedes albopictus cells. INFECTION GENETICS AND EVOLUTION 2012; 12:1275-81. [DOI: 10.1016/j.meegid.2012.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 02/04/2023]
|
29
|
Devaux CA. Emerging and re-emerging viruses: A global challenge illustrated by Chikungunya virus outbreaks. World J Virol 2012; 1:11-22. [PMID: 24175207 PMCID: PMC3782263 DOI: 10.5501/wjv.v1.i1.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/07/2011] [Accepted: 09/15/2011] [Indexed: 02/05/2023] Open
Abstract
In recent decades, the issue of emerging and re-emerging infectious diseases, especially those related to viruses, has become an increasingly important area of concern in public health. It is of significance to anticipate future epidemics by accumulating knowledge through appropriate research and by monitoring their emergence using indicators from different sources. The objective is to alert and respond effectively in order to reduce the adverse impact on the general populations. Most of the emerging pathogens in humans originate from known zoonosis. These pathogens have been engaged in long-standing and highly successful interactions with their hosts since their origins are exquisitely adapted to host parasitism. They developed strategies aimed at: (1) maximizing invasion rate; (2) selecting host traits that can reduce their impact on host life span and fertility; (3) ensuring timely replication and survival both within host and between hosts; and (4) facilitating reliable transmission to progeny. In this context, Arboviruses (or ARthropod-BOrne viruses), will represent with certainty a threat for the coming century. The unprecedented epidemic of Chikungunya virus which occurred between 2005 and 2006 in the French Reunion Island in the Indian Ocean, followed by several outbreaks in other parts of the world, such as India and Southern Europe, has attracted the attention of medical and state authorities about the risks linked to this re-emerging mosquito-borne virus. This is an excellent model to illustrate the issues we are facing today and to improve how to respond tomorrow.
Collapse
Affiliation(s)
- Christian A Devaux
- Christian A Devaux, Center for the study of Pathogens and health Biotechnology-CPBS, UMR5236 CNRS-UM1-UM2, F-34293 Montpellier cedex 5, France
| |
Collapse
|
30
|
Parish LA, Colquhoun DR, Ubaida Mohien C, Lyashkov AE, Graham DR, Dinglasan RR. Ookinete-interacting proteins on the microvillar surface are partitioned into detergent resistant membranes of Anopheles gambiae midguts. J Proteome Res 2011; 10:5150-62. [PMID: 21905706 PMCID: PMC3208356 DOI: 10.1021/pr2006268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid raft microdomains, a component of detergent resistant membranes (DRMs), are routinely exploited by pathogens during host-cell entry. Multiple membrane-surface proteins mediate Plasmodium ookinete invasion of the Anopheles midgut, a critical step in the parasite life cycle that is successfully targeted by transmission-blocking vaccines (TBV). Given that lipid rafts are a common feature of host-pathogen interactions, we hypothesized that they promote the partitioning of midgut surface proteins and thus facilitate ookinete invasion. In support of this hypothesis, we found that five of the characterized Anopheles TBV candidates, including the leading Anopheles TBV candidate, AgAPN1, are present in Anopheles gambiae DRMs. Therefore, to extend the repertoire of putative midgut ligands that can be targeted by TBVs, we analyzed midgut DRMs by tandem mass spectrometry. We identified 1452 proteins including several markers of DRMs. Since glycosylphosphotidyl inositol (GPI)-anchored proteins partition to DRMs, we characterized the GPI subproteome of An. gambiae midgut brush-border microvilli and found that 96.9% of the proteins identified in the GPI-anchored fractions were also present in DRMs. Our study vastly expands the number of candidate malarial TBV targets for subsequent analysis by the broader community and provides an inferred role for midgut plasmalemma microdomains in ookinete cell invasion.
Collapse
Affiliation(s)
- Lindsay A Parish
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
31
|
Fu Q, Lynn-Miller A, Lan Q. Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2011; 20:541-52. [PMID: 21699592 PMCID: PMC3139008 DOI: 10.1111/j.1365-2583.2011.01087.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expression was induced by a bloodmeal. Furthermore, over-expression of AeORPs facilitated [(3)H]-cholesterol uptake in Ae. aegypti cultured Aag -2 cells.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53705
| | - Ace Lynn-Miller
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701
| | - Que Lan
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
32
|
Peng R, Maklokova VI, Chandrashekhar JH, Lan Q. In vivo functional genomic studies of sterol carrier protein-2 gene in the yellow fever mosquito. PLoS One 2011; 6:e18030. [PMID: 21437205 PMCID: PMC3060925 DOI: 10.1371/journal.pone.0018030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022] Open
Abstract
A simple and efficient DNA delivery method to introduce extrachromosomal DNA into mosquito embryos would significantly aid functional genomic studies. The conventional method for delivery of DNA into insects is to inject the DNA directly into the embryos. Taking advantage of the unique aspects of mosquito reproductive physiology during vitellogenesis and an in vivo transfection reagent that mediates DNA uptake in cells via endocytosis, we have developed a new method to introduce DNA into mosquito embryos vertically via microinjection of DNA vectors in vitellogenic females without directly manipulating the embryos. Our method was able to introduce inducible gene expression vectors transiently into F0 mosquitoes to perform functional studies in vivo without transgenic lines. The high efficiency of expression knockdown was reproducible with more than 70% of the F0 individuals showed sufficient gene expression suppression (<30% of the controls' levels). At the cohort level, AeSCP-2 expression knockdown in early instar larvae resulted in detectable phenotypes of the expression deficiency such as high mortality, lowered fertility, and distorted sex ratio after induction of AeSCP-2 siRNA expression in vivo. The results further confirmed the important role of AeSCP-2 in the development and reproduction of A. aegypti. In this study, we proved that extrachromosomal transient expression of an inducible gene from a DNA vector vertically delivered via vitellogenic females can be used to manipulate gene expression in F0 generation. This new method will be a simple and efficient tool for in vivo functional genomic studies in mosquitoes.
Collapse
Affiliation(s)
- Rong Peng
- College of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Vilena I. Maklokova
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
33
|
Radek JT, Dyer DH, Lan Q. Effects of mutations in Aedes aegypti sterol carrier protein-2 on the biological function of the protein. Biochemistry 2010; 49:7532-41. [PMID: 20681612 DOI: 10.1021/bi902026v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sterol carrier protein-2 (SCP-2) is a nonspecific intracellular lipid carrier protein. However, the molecular mechanism of ligand selectivity and the in vivo function of SCP-2 remain unclear. In this study, we used site-directed mutagenesis to investigate the ligand selectivity and in vivo function of the yellow fever mosquito sterol carrier protein-2 protein (AeSCP-2). Mutations to amino acids in AeSCP-2 known to interact with bound ligand also weakened NBD-cholesterol binding. Substitution of amino acids in the ligand cavity changed the ligand specificity of mutant AeSCP-2. Overexpressing wild-type AeSCP-2 in the Aedes aegypti cultured Aag-2 cells resulted in an increase in the level of incorporation of [(3)H]cholesterol. However, overexpressing mutants that were deleterious to the binding of NBD-cholesterol in AeSCP-2 showed a loss of ability to enhance uptake of [(3)H]cholesterol in cultured cells. Interestingly, when [(3)H]palmitic acid was used as the substrate for incorporation in vivo, there was no change in the levels of incorporation with overexpression of wild-type protein or mutated AeSCP-2s. The in vivo data suggest that AeSCP-2 is involved in sterol uptake, but not fatty acid uptake. This is the first report that the cholesterol binding ability may directly correlate with AeSCP-2's in vivo function in aiding the uptake of cholesterol.
Collapse
Affiliation(s)
- James T Radek
- Department of Entomology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
34
|
Kumar RB, Shanmugapriya B, Thiyagesan K, Kumar SR, Xavier SM. A search for mosquito larvicidal compounds by blocking the sterol carrying protein, AeSCP-2, through computational screening and docking strategies. Pharmacognosy Res 2010; 2:247-53. [PMID: 21808576 PMCID: PMC3141136 DOI: 10.4103/0974-8490.69126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 05/22/2010] [Accepted: 09/07/2010] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Sterol is a very vital compound for most of the insects and mosquitoes to complete their life cycle. Unfortunately mosquitoes cannot synthesize the sterol, it depends on mammals for the same. Mosquitoes take the sterol from the plant decays during their larval stage in the form of phytosterol, which is then converted to cholesterol for further growth and reproduction. This conversion occurs with the help of the sterol carrier protein 2(SCP2). METHODS Mosquito populations are controlled by plant-based inhibitors, which inhibit sterol carrier protein (SCPI-Sterol carrier protein inhibitor) activity. In this article, we explain the methods of inhibiting Aedes aegypti SCP2 by insilico methods including natural inhibitor selection and filtrations by virtual screening and interaction studies. RESULTS In this study protein-ligand interactions were carried out with various phytochemicals, as a result of virtual screening Alpha-mangostin and Panthenol were found to be good analogs, and were allowed to dock with the mosquito cholesterol carrier protein AeSCP-2. CONCLUSION Computational selections of SCPIs are highly reliable and novel methods for discovering new and more effective compounds to control mosquitoes.
Collapse
Affiliation(s)
- R. Barani Kumar
- Department of Bioinformatics, Sathyabama University, Chennai-600 119, India.
| | | | - K. Thiyagesan
- Department of Zoology and Division of Wildlife Biology, A.V.C. College, Mayiladuthurai -609305, India.
| | - S. Raj Kumar
- Department of Zoology and Division of Wildlife Biology, A.V.C. College, Mayiladuthurai -609305, India.
| | - Suresh M. Xavier
- Department of Bioinformatics, Sathyabama University, Chennai-600 119, India.
| |
Collapse
|
35
|
Kim MS, Lan Q. Sterol carrier protein-x gene and effects of sterol carrier protein-2 inhibitors on lipid uptake in Manduca sexta. BMC PHYSIOLOGY 2010; 10:9. [PMID: 20534138 PMCID: PMC2903571 DOI: 10.1186/1472-6793-10-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/09/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cholesterol uptake and transportation during the feeding larval stages are critical processes in insects because they are auxotrophic for exogenous (dietary) cholesterol. The midgut is the main site for cholesterol uptake in many insects. However, the molecular mechanism by which dietary cholesterol is digested and absorbed within the midgut and then released into the hemolymph for transportation to utilization or storage sites is poorly understood. Sterol carrier proteins (SCP), non-specific lipid transfer proteins, have been speculated to be involved in intracellular cholesterol transfer and metabolism in vertebrates. Based on the high degree of homology in the conserved sterol transfer domain to rat and human SCP-2, it is supposed that insect SCP-2 has a parallel function to vertebrate SCP-2. RESULTS We identified the Manduca sexta sterol carrier protein-x and the sterol carrier protein-2 (MsSCP-x/SCP-2) gene from the larval fat body and the midgut cDNAs. The MsSCP-x/SCP-2 protein has a high degree of homology in the SCP-2 domain to other insects' SCP-2. Transcripts of MsSCP-2 were detected at high levels in the midgut and the fat body of M. sexta during the larval stages. Recombinant MsSCP-2 bound to NBD-cholesterol with high affinity, which was suppressed by sterol carrier protein-2 inhibitors. CONCLUSIONS The results suggest that MsSCP-2 may function as a lipid carrier protein in vivo, and targeting insect SCP-2 may be a viable approach for the development of new insecticides.
Collapse
Affiliation(s)
- Min-Sik Kim
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Que Lan
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
36
|
Hernandez R, Brown DT. Growth and maintenance of mosquito cell lines. CURRENT PROTOCOLS IN MICROBIOLOGY 2010; Appendix 4:4J. [PMID: 20440680 DOI: 10.1002/9780471729259.mca04js17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mosquito cells (Aedes albopictus) are among the most common insect cells emerging as new sources of cell cultures to use in basic research and in the pharmaceutical industry. They adapt well to growth in suspension; can be used in bioreactors for the production of expressed proteins, virus, and virus-like particles; can be used in studies requiring lower growth temperatures than mammalian cells (28 degrees C or below); and (because they are cholesterol auxotrophs) can be adapted to grow in dilipidated or serum-free medium for experiments requiring these conditions. Procedures applicable to the laboratory maintenance of mosquito cell lines are described.
Collapse
|
37
|
Vyazunova I, Lan Q. Yellow fever mosquito sterol carrier protein-2 gene structure and transcriptional regulation. INSECT MOLECULAR BIOLOGY 2010; 19:205-215. [PMID: 20002221 PMCID: PMC2862845 DOI: 10.1111/j.1365-2583.2009.00959.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
AeSCP-2, a sterol carrier protein, is involved in sterol trafficking in mosquitoes. The activity of the AeSCP-2 gene is important for mosquito development. An earlier study demonstrated that the transcription of this gene was upregulated by 20-hydroxyecdysone (20E) in cultured gut tissues. To investigate 20E-regulated transcription of the AeSCP-2 gene we truncated the upstream flanking region of AeSCP-2 gene and linked it to a reporter gene. The mosquito Aag-2 cell line was transfected with these promoter/reporter constructs and treated with 20E at various concentrations. Expression vectors of different transcription factors such as HR3 and beta FTZ-F1 were also co-transfected with the AeSCP-2 promoter/reporter constructs. The observed results demonstrated that varied combinations of transcription factors produce different promoter activities of the AeSCP-2 gene. This observation leads us to the conclusion that the partnership of transcription factors is crucial in regulating the transcriptional activity of the AeSCP-2 gene.
Collapse
Affiliation(s)
| | - Que Lan
- Correspondent author Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, Telephone: (608) 263-7924, Fax: (608) 262-3322,
| |
Collapse
|
38
|
Singarapu KK, Radek JT, Tonelli M, Markley JL, Lan Q. Differences in the structure and dynamics of the apo- and palmitate-ligated forms of Aedes aegypti sterol carrier protein 2 (AeSCP-2). J Biol Chem 2010; 285:17046-53. [PMID: 20356842 DOI: 10.1074/jbc.m110.101154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterol carrier protein-2 (SCP-2) is a nonspecific lipid-binding protein expressed ubiquitously in most organisms. Knockdown of SCP-2 expression in mosquitoes has been shown to result in high mortality in developing adults and significantly lowered fertility. Thus, it is of interest to determine the structure of mosquito SCP-2 and to identify its mechanism of lipid binding. We report here high quality three-dimensional solution structures of SCP-2 from Aedes aegypti determined by NMR spectroscopy in its ligand-free state (AeSCP-2) and in complex with palmitate. Both structures have a similar mixed alpha/beta fold consisting of a five-stranded beta-sheet and four alpha-helices arranged on one side of the beta-sheet. Ligand-free AeSCP-2 exhibited regions of structural heterogeneity, as evidenced by multiple two-dimensional (15)N heteronuclear single-quantum coherence peaks for certain amino acids; this heterogeneity disappeared upon complex formation with palmitate. The binding of palmitate to AeSCP-2 was found to decrease the backbone mobility of the protein but not to alter its secondary structure. Complex formation is accompanied by chemical shift differences and a loss of mobility for residues in the loop between helix alphaI and strand betaA. The structural differences between the alphaI and betaA of the mosquito and the vertebrate SCP-2s may explain the differential specificity (insect versus vertebrate) of chemical inhibitors of the mosquito SCP-2.
Collapse
Affiliation(s)
- Kiran K Singarapu
- Department of Biochemistry, National Magnetic Resonance Facility at Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
39
|
LARSON RYANT, LORCH JEFFREYM, PRIDGEON JULIAW, BECNEL JAMESJ, CLARK GARYG, LAN QUE. The biological activity of alpha-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. JOURNAL OF MEDICAL ENTOMOLOGY 2010; 47:249-57. [PMID: 20380307 PMCID: PMC2855149 DOI: 10.1603/me09160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
alpha-Mangostin derived from mangosteen was identified as a mosquito sterol carrier protein-2 inhibitor via high throughput insecticide screening, alpha-Mangostin was tested for its larvicidal activity against third instar larvae of six mosquito species, and the median lethal concentration values range from 0.84 to 2.90 ppm. The residual larvicidal activity of alpha-mangostin was examined under semifield conditions. The results indicated that alpha-mangostin was photolytic with a half-life of 53 min in water under full sunlight exposure. The effect of alpha-mangostin on activities of major detoxification enzymes such as P450, glutathione S-transferase, and esterase was investigated. The results showed that alpha-mangostin significantly elevated activities of P450 and glutathione S-transferase in larvae, whereas it suppressed esterase activity. Toxicity of alpha-mangostin against young rats was studied, and there was no detectable adverse effect at dosages as high as 80 mg/kg. This is the first multifaceted study of the biological activity of alpha-mangostin in mosquitoes. The results suggest that alpha-mangostin may be a lead compound for the development of a new organically based mosquito larvicide.
Collapse
Affiliation(s)
- RYAN T. LARSON
- Department of Entomology, University of Wisconsin, Madison, WI 53706
| | - JEFFREY M. LORCH
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706
| | - JULIA W. PRIDGEON
- U.S. Department of Agriculture-Agricultural Research Service, Center for Medical and Veterinary Entomology, 1600 S.W. 23rd Drive, Gainesville, FL 32608
| | - JAMES J. BECNEL
- U.S. Department of Agriculture-Agricultural Research Service, Center for Medical and Veterinary Entomology, 1600 S.W. 23rd Drive, Gainesville, FL 32608
| | - GARY G. CLARK
- U.S. Department of Agriculture-Agricultural Research Service, Center for Medical and Veterinary Entomology, 1600 S.W. 23rd Drive, Gainesville, FL 32608
| | - QUE LAN
- Department of Entomology, University of Wisconsin, Madison, WI 53706
- Corresponding author: Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706 ()
| |
Collapse
|
40
|
Guo XR, Zheng SC, Liu L, Feng QL. The sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCPx) is involved in cholesterol uptake in the midgut of Spodoptera litura: gene cloning, expression, localization and functional analyses. BMC Mol Biol 2009; 10:102. [PMID: 19912624 PMCID: PMC2779813 DOI: 10.1186/1471-2199-10-102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 11/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sterol carrier protein-2/3-oxoacyl-CoA thiolase (SCPx) gene has been suggested to be involved in absorption and transport of cholesterol. Cholesterol is a membrane component and is a precursor of ecdysteroids, but cannot be synthesized de novo in insects. However, a direct association between SCPx gene expression, cholesterol absorption and development in lepidopteran insects remains to be experimentally demonstrated. RESULTS An SCPx cDNA (SlSCPx) cloned from the common cutworm, Spodoptera litura, was characterized. The SlSCPx cDNA encoded a 535-amino acid protein consisting of a 3-oxoacyl-CoA thiolase (SCPx-t) domain and a SCP-2 (SCPx-2) domain. SlSCPx mRNA was expressed predominately in the midgut, while SlSCPx-2 mRNA was detected in the midgut, fat body and epidermis and no SlSCPx-t mRNA was detected. A 58-kDa full-length SCPx protein and a 44-kDa SCPx-t protein were detected in the midgut of sixth instar larvae when the anti-SlSCPx-t antibody was used in western blotting analysis; a 16-kDa SCP-2 protein was detected when anti-SlSCPx-2 antibody was used. SlSCPx protein was post-translationally cleaved into two smaller proteins, SCPx-t and SCPx-2. The gene appeared to be expressed into two forms of mRNA transcripts, which were translated into the two proteins, respectively. SlSCPx-t and SlSCPx-2 proteins have distinct and different locations in the midgut of sixth instar larvae. SlSCPx and SlSCPx-t proteins were detected predominately in the cytoplasm, whereas SlSCPx-2 protein was detected in the cytoplasm and nuclei in the Spli-221 cells. Over-expression of SlSCPx and SlSCPx-2 proteins enhanced cholesterol uptake into the Spli-221 cells. Knocking-down SlSCPx transcripts by dsRNA interference resulted in a decrease in cholesterol level in the hemolymph and delayed the larval to pupal transition. CONCLUSION Spatial and temporal expression pattern of this SlSCPx gene during the larval developmental stages of S. litura showed its specific association with the midgut at the feeding stage. Over-expression of this gene increased cholesterol uptake and interference of its transcript decreased cholesterol uptake and delayed the larval to pupal metamorphosis. All of these results taken together suggest that this midgut-specific SlSCPx gene is important for cholesterol uptake and normal development in S. litura.
Collapse
Affiliation(s)
- Xing-Rong Guo
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
- The Faculty of Pharmacy and Laboratory Medicine, Yunyang Medical College, Hubei, 442000, PR China
| | - Si-Chun Zheng
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Lin Liu
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Qi-Li Feng
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| |
Collapse
|
41
|
Hafer A, Whittlesey R, Brown DT, Hernandez R. Differential incorporation of cholesterol by Sindbis virus grown in mammalian or insect cells. J Virol 2009; 83:9113-21. [PMID: 19587056 PMCID: PMC2738221 DOI: 10.1128/jvi.00755-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 06/26/2009] [Indexed: 01/09/2023] Open
Abstract
Cholesterol has been shown to be essential for the fusion of alphaviruses with artificial membranes (liposomes). Cholesterol has also been implicated as playing an essential and critical role in the processes of entry and egress of alphaviruses in living cells. Paradoxically, insects, the alternate host for alphaviruses, are cholesterol auxotrophs and contain very low levels of this sterol. To further evaluate the role of cholesterol in the life cycle of alphaviruses, the cholesterol levels of the alphavirus Sindbis produced from three different mosquito (Aedes albopictus) cell lines; one other insect cell line, Sf21 from Spodoptera frugiperda; and BHK (mammalian) cells were measured. Sindbis virus was grown in insect cells under normal culture conditions and in cells depleted of cholesterol by growth in serum delipidated by using Cab-O-sil, medium treated with methyl-beta-cyclodextrin, or serum-free medium. The levels of cholesterol incorporated into the membranes of the cells and into the virus produced from these cells were determined. Virus produced from these treated and untreated cells was compared to virus grown in BHK cells under standard conditions. The ability of insect cells to produce Sindbis virus after delipidation was found to be highly cell specific and not dependent on the level of cholesterol in the cell membrane. A very low level of cholesterol was required for the generation of wild-type levels of infectious Sindbis virus from delipidated cells. The data show that one role of the virus membrane is structural, providing the stability required for infectivity that may not be provided by the delipidated membranes in some cells. These data show that the amount of cholesterol in the host cell membrane in and of itself has no effect on the process of virus assembly or on the ability of virus to infect cells. Rather, these data suggest that the cholesterol dependence reported for infectivity and assembly of Sindbis virus is a reflection of differences in the insect cell lines used and the methods of delipidation.
Collapse
Affiliation(s)
- Amanda Hafer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608
| | - Rebecca Whittlesey
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608
| | - Dennis T. Brown
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608
| | - Raquel Hernandez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608
| |
Collapse
|
42
|
Gong J, Hou Y, Zha XF, Lu C, Zhu Y, Xia QY. Molecular cloning and characterization ofBombyx moristerol carrier protein x/sterol carrier protein 2 (SCPx/SCP2) gene. ACTA ACUST UNITED AC 2009; 17:326-33. [PMID: 17343205 DOI: 10.1080/10425170600886706] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cholesterol transport is a very important process in insect. We have isolated the Bombyx mori sterol carrier protein x (BmSCPx) cDNA and sterol carrier protein 2 (BmSCP2) cDNA: a 1.7 kb clone encoding SCPx, a 3-ketoacyl CoA thiolase, and 0.6 kb clone presumably encoding SCP2, which is thought to be an intracellular lipid transfer protein. Interestingly, the identical gene SCPx/SCP2 encodes the two types of transcripts by alternative splicing mechanism in Bombyx mori. The SCPx mRNA spans two exons in genome, and conceptual translation of the SCPx cDNA encodes a protein of 536 amino acids, which contains a thiolase domain and a SCP2 domain. Whereas the SCP2 mRNA partly lakes the first exon, and the SCP2 is a 146 amino acids containing a SCP2 domain only. Both BmSCPx and BmSCP2 have a putative peroxisomal targeting signal in the C-terminal region. BmSCPx shares 94 and 72% similarity to Spodoptera littoralis SCPx and human SCPx, respectively. RT-PCR analysis reveals that transcripts of BmSCP2 were detected in all tissues analyzed. BmSCPx transcription expressed only in midgut and malpighian tubules. However, the BmSCPx and BmSCP2 express strong in midgut during the last instar larvae. The tissue-specific expression pattern of BmSCPx and BmSCP2 is consistent with a role for these proteins in cholesterol metabolism. The results suggest that SCPx/SCP2 may play a key role in sterol absorption and intracellular carrier in silkworm.
Collapse
Affiliation(s)
- Jing Gong
- Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Dyer DH, Vyazunova I, Lorch JM, Forest KT, Lan Q. Characterization of the yellow fever mosquito sterol carrier protein-2 like 3 gene and ligand-bound protein structure. Mol Cell Biochem 2009; 326:67-77. [PMID: 19130179 DOI: 10.1007/s11010-008-0007-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 09/06/2008] [Indexed: 11/25/2022]
Abstract
The sterol carrier protein-2 like 3 gene (AeSCP-2L3), a new member of the SCP-2 protein family, is identified from the yellow fever mosquito, Aedes aegypti. The predicted molecular weight of AeSCP-2L3 is 13.4 kDa with a calculated pI of 4.98. AeSCP-2L3 transcription occurs in the larval feeding stages and the mRNA levels decrease in pupae and adults. The highest levels of AeSCP-2L3 gene expression are found in the body wall, and possibly originated in the fat body. This is the first report of a mosquito SCP-2-like protein with prominent expression in tissue other than the midgut. The X-ray protein crystal structure of AeSCP-2L3 reveals a bound C16 fatty acid whose acyl tail penetrates deeply into a hydrophobic cavity. Interestingly, the ligand-binding cavity is slightly larger than previously described for AeSCP-2 (Dyer et al. J Biol Chem 278:39085-39091, 2003) and AeSCP-2L2 (Dyer et al. J Lipid Res M700460-JLR200, 2007). There are also an additional 10 amino acids in SCP-2L3 that are not present in other characterized mosquito SCP-2s forming an extended loop between beta 3 and beta 4. Otherwise, the protein backbone is exceedingly similar to other SCP-2 and SCP-2-like proteins. In contrast to this observed high structural homology of members in the mosquito SCP2 family, the amino acid sequence identity between the members is less than 30%. The results from structural analysis imply that there have been evolutionary constraints that favor the SCP-2 C(alpha) backbone fold while the specificity of ligand binding can be altered.
Collapse
Affiliation(s)
- David H Dyer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
44
|
Brown MR, Sieglaff DH, Rees HH. Gonadal ecdysteroidogenesis in arthropoda: occurrence and regulation. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:105-25. [PMID: 18680437 PMCID: PMC7205109 DOI: 10.1146/annurev.ento.53.103106.093334] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ecdysteroids are multifunctional hormones in male and female arthropods and are stored in oocytes for use during embryogenesis. Ecdysteroid biosynthesis and its hormonal regulation are demonstrated for insect gonads, but not for the gonads of other arthropods. The Y-organ in the cephalothorax of crustaceans and the integument of ticks are sources of secreted ecdysteroids in adults, as in earlier stages, but the tissue source is not known for adults in many arthropod groups. Ecdysteroid metabolism occurs in several tissues of adult arthropods. This review summarizes the evidence for ecdysteroid biosynthesis by gonads and its metabolism in adult arthropods and considers the apparent uniqueness of ecdysteroid hormones in arthropods, given the predominance of vertebrate-type steroids in sister invertebrate groups and vertebrates.
Collapse
Affiliation(s)
- Mark R Brown
- Department of Entomology, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
45
|
Larson RT, Wessely V, Jiang Z, Lan Q. Larvicidal activity of sterol carrier protein-2 inhibitor in four species of mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:439-444. [PMID: 18533437 PMCID: PMC2670991 DOI: 10.1603/0022-2585(2008)45[439:laoscp]2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A previous report has shown that mosquito sterol carrier protein-2 inhibitors (SCPIs) are larvicidal to larvae of the yellowfever mosquito, Aedes aegypti (L.) (J. Lipid Res. 46: 650-657, 2005). In the current study, we tested SCPI-1 in an additional four mosquito species for larvicidal activities: Culex pipiens pipiens, Anopheles gambiae, Culex restuans, and Aedes vexans. Cholesterol accumulation in SCPI-treated Ae. aegypti fourth instars was examined. SCPI-1 is lethal to all tested mosquito species, with the LC50 value ranging from 5.2 to 15 microM when treatments started at the first to third instar. However, LC50 values increase to from 5.2 to 38.7 microM in treatments started at first and fourth instar, respectively. The results indicate that the lethal effect of SCPI-1 decreases with the growth of larvae, which suggests that SCPI-1 is more effective before the larvae reach final growth period (the last instar). SCPI-1 suppressed cholesterol uptake in Ae. aegypti fourth instars, suggesting that one of the modes of action of SCPI-1 is via reduction in cholesterol absorption.
Collapse
Affiliation(s)
| | | | | | - Que Lan
- Corresponding author, e-mail:
| |
Collapse
|
46
|
Dyer DH, Wessely V, Forest KT, Lan Q. Three-dimensional structure/function analysis of SCP-2-like2 reveals differences among SCP-2 family members. J Lipid Res 2008; 49:644-53. [DOI: 10.1194/jlr.m700460-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
47
|
Lopez D, Niesen M, Bedi M, Hale D, McLean MP. Activation of the SCPx promoter in mouse adrenocortical Y1 cells. Biochem Biophys Res Commun 2007; 357:549-53. [PMID: 17434450 DOI: 10.1016/j.bbrc.2007.03.194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 03/31/2007] [Indexed: 10/23/2022]
Abstract
Sterol carrier protein X (SCPx) is a peroxisomal protein with both lipid transfer and thiolase activity. Treatment of mouse adrenal Y1 cells with cAMP for 24h caused a significant induction of SCPx mRNA levels. Reporter gene studies demonstrated that treatment with cAMP and SF-1 was able to activate the SCPx promoter. Sequence analysis revealed the presence of three putative steroidogenic factor-1 (SF-1) binding motifs (designated SFB1, SFB2, and SFB3) and one CRE. Only SFB1 and SFB3 were able to bind recombinant SF-1 protein in electrophoretic mobility shift assays. The CRE was able to form a DNA/protein complex in the presence of Y1 nuclear extracts. Mutational analysis studies demonstrated that SFB3 is required for full activation of the SCPx promoter by cAMP treatment. Regulation of the SCPx gene by SF-1 and cAMP is similar to the regulatory mechanisms observed for other steroidogenic genes.
Collapse
Affiliation(s)
- Dayami Lopez
- Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
48
|
Vyazunova I, Wessley V, Kim M, Lan Q. Identification of two sterol carrier protein-2 like genes in the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2007; 16:305-14. [PMID: 17433070 DOI: 10.1111/j.1365-2583.2007.00729.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Two genes encoding sterol carrier protein-2 like proteins are identified from fourth instar cDNAs of the yellow fever mosquito, Aedes aegypti. The predicted AeSCP-2like1 (AeSCP-2L1) and AeSCP-2like2 (AeSCP-2L2) proteins are small, acidic and lacking the peroxisomal targeting sequence at the C-termini. Purified recombinant AeSCP-2L1 and -2L2 bind to cholesterol with a Kd of 5.4 x 10(-6) M and 2.6 x 10(-6) M, respectively. The Kd values of AeSCP-2L1 and -2L2 to palmitic acid are 3.7 x 10(-7) M and 2.6 x 10(-7) M, respectively. Both genes are expressed predominantly in gut tissues. The transcripts of the AeSCP-2L1 gene are only detected in larval stages, whereas AeSCP-2L2 is expressed in larval and adult stages. AeSCP-2L2 transcription increases within 5 h after a bloodmeal and stays at high levels during vitellogenesis. In in vitro larval gut tissue cultures, AeSCP-2L1 transcripts were increased in the presence of juvenile hormone III, whereas AeSCP-2L2 mRNA levels increased in the presence 20-hydroxylecdysone. The results suggest that transcription of AeSCP-2L1 and -2L2 genes are regulated differently through the mosquito life cycle.
Collapse
Affiliation(s)
- I Vyazunova
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
49
|
Viitanen L, Nylund M, Eklund DM, Alm C, Eriksson AK, Tuuf J, Salminen TA, Mattjus P, Edqvist J. Characterization of SCP-2 from Euphorbia lagascae reveals that a single Leu/Met exchange enhances sterol transfer activity. FEBS J 2006; 273:5641-55. [PMID: 17212780 DOI: 10.1111/j.1742-4658.2006.05553.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sterol carrier protein-2 (SCP-2) is a small intracellular basic protein domain implicated in peroxisomal beta-oxidation. We extend our knowledge of plant SCP-2 by characterizing SCP-2 from Euphorbia lagascae. This protein consists of 122 amino acids including a PTS1 peroxisomal targeting signal. It has a molecular mass of 13.6 kDa and a pI of 9.5. It shares 67% identity and 84% similarity with SCP-2 from Arabidopsis thaliana. Proteomic analysis revealed that E. lagascae SCP-2 accumulates in the endosperm during seed germination. It showed in vitro transfer activity of BODIPY-phosphatidylcholine (BODIPY-PC). The transfer of BODIPY-PC was almost completely inhibited after addition of phosphatidylinositol, palmitic acid, stearoyl-CoA and vernolic acid, whereas sterols only had a very marginal inhibitory effect. We used protein modelling and site-directed mutagenesis to investigate why the BODIPY-PC transfer mediated by E. lagascae SCP-2 is not sensitive to sterols, whereas the transfer mediated by A. thaliana SCP-2 shows sterol sensitivity. Protein modelling suggested that the ligand-binding cavity of A. thaliana SCP-2 has four methionines (Met12, 14, 15 and 100), which are replaced by leucines (Leu11, 13, 14 and 99) in E. lagascae SCP-2. Changing Leu99 to Met99 was sufficient to convert E. lagascae SCP-2 into a sterol-sensitive BODIPY-PC-transfer protein, and correspondingly, changing Met100 to Leu100 abolished the sterol sensitivity of A. thaliana SCP-2.
Collapse
Affiliation(s)
- Lenita Viitanen
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Edqvist J, Blomqvist K. Fusion and fission, the evolution of sterol carrier protein-2. J Mol Evol 2006; 62:292-306. [PMID: 16501878 DOI: 10.1007/s00239-005-0086-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 10/21/2005] [Indexed: 11/28/2022]
Abstract
Sterol carrier protein-2 (SCP-2) is an intracellular, small, basic protein domain that in vitro enhances the transfer of lipids between membranes. It is expressed in bacteria, archaea, and eukaryotes. There are five human genes, HSD17B4, SCPX, HSDL2 STOML1, and C20orf79, which encode SCP-2. HSD17B4, SCPX, HSDL2, and STOML1 encode fusion proteins with SCP-2 downstream of another protein domain, whereas C20orf79 encodes an unfused SCP-2. We have extracted SCP-2 domains from databases and analyzed the evolution of the eukaryotic SCP-2. We show that SCPX and HSDL2 are present in most animals from Cnidaria to Chordata. STOML1 are present in nematodes and more advanced animals. HSD17B4 which encodes a D-bifunctional protein (DBP) with domains for D-3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and SCP-2 are found in animals from insects to mammals and also in fungi. Nematodes, amoebas, ciliates, apicomplexans, and oomycetes express an alternative DBP with the SCP-2 domain directly connected to the D-3-hydroxyacyl-CoA dehydrogenase. This fusion has not been retained in plant genomes, which solely express unfused SCP-2 domains. Proteins carrying unfused SCP-2 domains are also encoded in bacteria, archaea, ciliates, fungi, insects, nematodes, and vertebrates. Our results indicate that the fusion between D-3-hydroxyacyl-CoA dehydrogenase and SCP-2 was formed early during eukaryotic evolution. There have since been several gene fission events where genes encoding unfused SCP-2 domains have been formed, as well as gene fusion events placing the SCP-2 domain in novel protein domain contexts.
Collapse
Affiliation(s)
- Johan Edqvist
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala.
| | | |
Collapse
|