1
|
Huseynli Y, Kale İ, Dizdar M, Muhcu M. Investigation of Serum Cardiotrophin-1 Concentrations in Pregnant Women with Gestational Diabetes Mellitus. Z Geburtshilfe Neonatol 2024; 228:355-362. [PMID: 38122806 DOI: 10.1055/a-2210-4215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVE We aimed to investigate cardiotrophin-1 (CT-1) concentrations in the serum of pregnant women with gestational diabetes mellitus (GDM). MATERIALS AND METHODS This prospective non-interventional cohort study was conducted with 160 pregnant women who applied to the Umraniye Training and Research Hospital, Department of Obstetrics and Gynecology between October 2022 and May 2023. The GDM group was formed from 80 pregnant women who were diagnosed with GDM according to the 75-g OGTT. The control group consisted of 80 healthy pregnant women who were matched with the GDM group in terms of age and body mass index and had a normal 75-g OGTT result. Two groups were compared in terms of maternal serum CT-1 concentrations. RESULTS Both groups were similar in terms of demographic features and the gestational week at blood sampling for CT-1 (p>0.05 for each). The mean maternal serum CT-1 concentration was found to be 1420.9 pg/ml in the GDM group, while it was determined as 1455 pg/ml in the control group (p=0.738). When the GDM and control groups were divided into two subgroups, normal weight and overweight according to the participants' BMI, serum CT-1 concentrations were found to be similar in these four groups (p=0.084). When the GDM group was divided into two groups of diet-only and the insulin-using group for blood glucose regulation and compared with the control group, the three groups were also similar in terms of serum CT-1 concentrations (p=0.189). CONCLUSION CT-1 is an adipokine involved in the regulation of glucose metabolism and has been suggested to be associated with the pathophysiology of diabetes mellitus. In this study, serum CT-1 concentrations were found to be similar in the group with GDM and the group with normal glucose tolerance. Whether CT-1 contributes to the development of GDM is currently unclear and requires further investigation.
Collapse
Affiliation(s)
- Yegana Huseynli
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - İbrahim Kale
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Merve Dizdar
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Murat Muhcu
- Obstetrics and Gynecology, Maternal Fetal Unit, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Kale İ, Dizdar M. Investigation of maternal serum cardiotrophin-1 concentrations in pregnant women with preeclampsia; a prospective case-control study. J Matern Fetal Neonatal Med 2023; 36:2229931. [PMID: 37369375 DOI: 10.1080/14767058.2023.2229931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE We aimed to investigate the cardiotrophin-1 (CT-1) concentrations in the serum of pregnant women with preeclampsia. METHODS This cross-sectional study was conducted with 88 pregnant women who applied to the Umraniye Training and Research Hospital Gynecology and Obstetrics Clinic between May 2022 and September 2022. The preeclampsia group consisted of 44 pregnant women diagnosed with preeclampsia, and the control group consisted of 44 healthy pregnant women matched with the preeclampsia group in terms of age and body mass index. Demographic characteristics, ultrasound and laboratory findings, perinatal outcomes, and maternal serum CT-1 concentrations were recorded. RESULTS Both groups were similar in terms of demographic features and the gestational week at blood sampling for CT-1. Preeclampsia and control groups were compared in terms of maternal serum CT-1 concentrations and no significant difference was found between the two groups (2061.4 pg/ml, 2168.5 pg/ml, respectively, p = .516). The preeclampsia group was divided into subgroups as mild and severe preeclampsia according to the severity of the disease and early-onset and late-onset preeclampsia according to the time of onset and compared with the control group in terms of maternal serum CT-1 concentration, no significant difference was found between the groups (p > .005, for all). CONCLUSION The serum CT-1 concentration of women whose pregnancy was complicated with preeclampsia was found to be similar to that of healthy controls. Although it has been shown in the literature that high serum CT-1 concentrations are associated with hypertensive heart diseases, its role in the pathophysiology of preeclampsia remains unclear.
Collapse
Affiliation(s)
- İbrahim Kale
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Ümraniye/İstanbul, Türkiye
| | - Merve Dizdar
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Ümraniye/İstanbul, Türkiye
| |
Collapse
|
3
|
Chandrasekar B, Mummidi S, DeMarco VG, Higashi Y. Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration. Mediators Inflamm 2023; 2023:6112301. [PMID: 37830075 PMCID: PMC10567511 DOI: 10.1155/2023/6112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Persistent oxidative stress and inflammation contribute causally to smooth muscle cell (SMC) proliferation and migration, the characteristic features of vascular proliferative diseases. Oxidatively modified low-density lipoproteins (OxLDL) elevate oxidative stress levels, inflammatory responses, and matrix metallopeptidase (MMP) activation, resulting ultimately in SMC migration, proliferation, and phenotype change. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Empagliflozin is an SGLT2 inhibitor and exerts pleiotropic cardiovascular protective effects, including antioxidant and anti-inflammatory effects. Here, we investigated (i) whether OxLDL regulates RECK expression, (ii) whether ectopic expression of RECK reverses OxLDL-induced SMC migration and proliferation, and (iii) whether pretreatment with empagliflozin reverses OxLDL-induced RECK suppression, MMP activation, and SMC migration, proliferation, and differentiation. Indeed, results show that OxLDL at pathophysiological concentration promotes SMC migration and proliferation via NF-κB/miR-30b-dependent RECK suppression. Moreover, OxLDL changed the SMC phenotype to a more pro-inflammatory type, and this effect is blunted by RECK overexpression. Further, treatment with empagliflozin reversed OxLDL-induced miR-30b induction, RECK suppression, MMP activation, SMC migration, proliferation, and proinflammatory phenotype changes. OxLDL-induced cardiotrophin (CT)-1 expression and CT-1 stimulated SMC proliferation and migration in part via leukemia inhibitory factor receptor (LIFR) and glycoprotein 130 (gp130). Ectopic expression of RECK inhibited these effects by physically associating with LIFR and gp130, as evidenced by immunoprecipitation/immunoblotting and double immunofluorescence. Importantly, empagliflozin inhibited CT-1-induced mitogenic and migratory effects. Together, these results suggest the therapeutic potential of sustaining RECK expression or empagliflozin in vascular diseases characterized by SMC proliferation and migration.
Collapse
Affiliation(s)
- Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Srinivas Mummidi
- Life Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Vincent G. DeMarco
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Yusuke Higashi
- Medicine/Cardiology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
4
|
Nikolaou PE, Mylonas N, Makridakis M, Makrecka-Kuka M, Iliou A, Zerikiotis S, Efentakis P, Kampoukos S, Kostomitsopoulos N, Vilskersts R, Ikonomidis I, Lambadiari V, Zuurbier CJ, Latosinska A, Vlahou A, Dimitriadis G, Iliodromitis EK, Andreadou I. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: a class or a drug effect? Basic Res Cardiol 2022; 117:27. [PMID: 35581445 DOI: 10.1007/s00395-022-00934-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023]
Abstract
Major clinical trials with sodium glucose co-transporter-2 inhibitors (SGLT-2i) exhibit protective effects against heart failure events, whereas inconsistencies regarding the cardiovascular death outcomes are observed. Therefore, we aimed to compare the selective SGLT-2i empagliflozin (EMPA), dapagliflozin (DAPA) and ertugliflozin (ERTU) in terms of infarct size (IS) reduction and to reveal the cardioprotective mechanism in healthy non-diabetic mice. C57BL/6 mice randomly received vehicle, EMPA (10 mg/kg/day) and DAPA or ERTU orally at the stoichiometrically equivalent dose (SED) for 7 days. 24 h-glucose urinary excretion was determined to verify SGLT-2 inhibition. IS of the region at risk was measured after 30 min ischemia (I), and 120 min reperfusion (R). In a second series, the ischemic myocardium was collected (10th min of R) for shotgun proteomics and evaluation of the cardioprotective signaling. In a third series, we evaluated the oxidative phosphorylation capacity (OXPHOS) and the mitochondrial fatty acid oxidation capacity by measuring the respiratory rates. Finally, Stattic, the STAT-3 inhibitor and wortmannin were administered in both EMPA and DAPA groups to establish causal relationships in the mechanism of protection. EMPA, DAPA and ERTU at the SED led to similar SGLT-2 inhibition as inferred by the significant increase in glucose excretion. EMPA and DAPA but not ERTU reduced IS. EMPA preserved mitochondrial functionality in complex I&II linked oxidative phosphorylation. EMPA and DAPA treatment led to NF-kB, RISK, STAT-3 activation and the downstream apoptosis reduction coinciding with IS reduction. Stattic and wortmannin attenuated the cardioprotection afforded by EMPA and DAPA. Among several upstream mediators, fibroblast growth factor-2 (FGF-2) and caveolin-3 were increased by EMPA and DAPA treatment. ERTU reduced IS only when given at the double dose of the SED (20 mg/kg/day). Short-term EMPA and DAPA, but not ERTU administration at the SED reduce IS in healthy non-diabetic mice. Cardioprotection is not correlated to SGLT-2 inhibition, is STAT-3 and PI3K dependent and associated with increased FGF-2 and Cav-3 expression.
Collapse
Affiliation(s)
- Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Nikolaos Mylonas
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Manousos Makridakis
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Aikaterini Iliou
- Faculty of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Stelios Zerikiotis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Stavros Kampoukos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Ignatios Ikonomidis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | - Antonia Vlahou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
5
|
Nisimura LM, Coelho LL, de Melo TG, Vieira PDC, Victorino PH, Garzoni LR, Spray DC, Iacobas DA, Iacobas S, Tanowitz HB, Adesse D. Trypanosoma cruzi Promotes Transcriptomic Remodeling of the JAK/STAT Signaling and Cell Cycle Pathways in Myoblasts. Front Cell Infect Microbiol 2020; 10:255. [PMID: 32626662 PMCID: PMC7313395 DOI: 10.3389/fcimb.2020.00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Chagas disease is responsible for more than 10,000 deaths per year and about 6 to 7 million infected people worldwide. In its chronic stage, patients can develop mega-colon, mega-esophagus, and cardiomyopathy. Differences in clinical outcomes may be determined, in part, by the genetic background of the parasite that causes Chagas disease. Trypanosoma cruzi has a high genetic diversity, and each group of strains may elicit specific pathological responses in the host. Conflicting results have been reported in studies using various combinations of mammalian host-T. cruzi strains. We previously profiled the transcriptomic signatures resulting from infection of L6E9 rat myoblasts with four reference strains of T. cruzi (Brazil, CL, Y, and Tulahuen). The four strains induced similar overall gene expression alterations in the myoblasts, although only 21 genes were equally affected by all strains. Cardiotrophin-like cytokine factor 1 (Clcf1) was one of the genes found to be consistently upregulated by the infection with all four strains of T. cruzi. This cytokine is a member of the interleukin-6 family that binds to glycoprotein 130 receptor and activates the JAK/STAT signaling pathway, which may lead to muscle cell hypertrophy. Another commonly upregulated gene was tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta (Ywhaq, 14-3-3 protein Θ), present in the Cell Cycle Pathway. In the present work, we reanalyzed our previous microarray dataset, aiming at understanding in more details the transcriptomic impact that each strain has on JAK/STAT signaling and Cell Cycle pathways. Using Pearson correlation analysis between the expression levels of gene pairs in biological replicas from each pathway, we determined the coordination between such pairs in each experimental condition and the predicted protein interactions between the significantly altered genes by each strain. We found that although these highlighted genes were similarly affected by all four strains, the downstream genes or their interaction partners were not necessarily equally affected, thus reinforcing the idea of the role of parasite background on host cell transcriptome. These new analyses provide further evidence to the mechanistic understanding of how distinct T. cruzi strains lead to diverse remodeling of host cell transcriptome.
Collapse
Affiliation(s)
- Lindice M. Nisimura
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Laura L. Coelho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tatiana G. de Melo
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paloma de Carvalho Vieira
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Pedro H. Victorino
- Laboratório de Neurogênese, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana R. Garzoni
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Dumitru A. Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Prairie View A&M University, Prairie View, TX, United States
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Frias MA, Montessuit C. JAK-STAT signaling and myocardial glucose metabolism. JAKSTAT 2013; 2:e26458. [PMID: 24416656 PMCID: PMC3876426 DOI: 10.4161/jkst.26458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/19/2022] Open
Abstract
JAK-STAT signaling occurs in virtually every tissue of the body, and so does glucose metabolism. In this review, we summarize the regulation of glucose metabolism in the myocardium and ponder whether JAK-STAT signaling participates in this regulation. Despite a paucity of data directly pertaining to cardiac myocytes, we conclude that JAK-STAT signaling may contribute to the development of insulin resistance in the myocardium in response to various hormones and cytokines.
Collapse
Affiliation(s)
- Miguel A Frias
- Division of Endocrinology, Diabetology and Nutrition; University of Geneva School of Medicine; Geneva, Switzerland
| | - Christophe Montessuit
- Division of Cardiology; Department of Medical Specialties; University of Geneva School of Medicine; Geneva, Switzerland
| |
Collapse
|
7
|
Update on the pathophysiological activities of the cardiac molecule cardiotrophin-1 in obesity. Mediators Inflamm 2013; 2013:370715. [PMID: 23690661 PMCID: PMC3649684 DOI: 10.1155/2013/370715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 02/07/2023] Open
Abstract
Cardiotrophin-1 (CT-1) is a heart-targeting cytokine that has been reported to exert a variety of activities also in other organs such as the liver, adipose tissue, and atherosclerotic arteries. CT-1 has been shown to induce these effects via binding to a transmembrane receptor, comprising the leukaemia inhibitory factor receptor (LIFRβ) subunit and the glycoprotein 130 (gp130, a common signal transducer). Both local and systemic concentrations of CT-1 have been shown to potentially play a critical role in obesity. For instance, CT-1 plasma concentrations have been shown to be increased in metabolic syndrome (a cluster disease including obesity) probably due to adipose tissue overexpression. Interestingly, treatment with exogenous CT-1 has been shown to improve lipid and glucose metabolism in animal models of obesity. These benefits might suggest a potential therapeutic role for CT-1. However, beyond its beneficial properties, CT-1 has been also shown to induce some adverse effects, such as cardiac hypertrophy and adipose tissue inflammation. Although scientific evidence is still needed, CT-1 might be considered as a potential example of damage/danger-associated molecular pattern (DAMP) in obesity-related cardiovascular diseases. In this narrative review, we aimed at discussing and updating evidence from basic research on the pathophysiological and potential therapeutic roles of CT-1 in obesity.
Collapse
|
8
|
Freed DH, Chilton L, Li Y, Dangerfield AL, Raizman JE, Rattan SG, Visen N, Hryshko LV, Dixon IMC. Role of myosin light chain kinase in cardiotrophin-1-induced cardiac myofibroblast cell migration. Am J Physiol Heart Circ Physiol 2011; 301:H514-22. [DOI: 10.1152/ajpheart.01041.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemotactic movement of myofibroblasts is recognized as a common means for their sequestration to the site of tissue injury. Following myocardial infarction (MI), recruitment of cardiac myofibroblasts to the infarct scar is a critical step in wound healing. Contractile myofibroblasts express embryonic smooth muscle myosin, α-smooth muscle actin, as well as collagens I and III. We examined the effects of cardiotrophin-1 (CT-1) in the induction of primary rat ventricular myofibroblast motility. Changes in membrane potential (Em) and Ca2+entry were studied to reveal the mechanisms for induction of myofibroblast migration. CT-1-induced cardiac myofibroblast cell migration, which was attenuated through the inhibition of JAK2 (25 μM AG490), and myosin light chain kinase (20 μM ML-7). Inhibition of K+channels (1 mM tetraethylammonium or 100 μM 4-aminopyridine) and nonselective cation channels by 10 μM gadolinium (Gd3+) significantly reduced migration in the presence of CT-1. CT-1 treatment caused a significant increase in myosin light chain phosphorylation, which could be inhibited by incubation in Ca2+-free conditions or by application of AG490, ML-7, and W7 (100 μM; calmodulin inhibitor). Monitoring myofibroblast membrane potential with potentiometric fluorescent DiBAC4( 3 ) dye revealed a biphasic response to CT-1 consisting of an initial depolarization followed by hyperpolarization. Increased intracellular Ca2+, as assessed by fluo 3, occurred immediately after membrane depolarization and attenuated at the time of maximal hyperpolarization. CT-1 exerts chemotactic effects via multiple parallel signaling modalities in ventricular myofibroblasts, including changes in membrane potential, alterations in intracellular calcium, and activation of a number of intracellular signaling pathways. Further study is warranted to determine the precise role of K+currents in this process.
Collapse
Affiliation(s)
- Darren H. Freed
- Departments of 1Physiology and
- Surgery, Faculty of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Canada; and
| | - Lisa Chilton
- School of Veterinary and Biomedical Services, James Cook University, Cairns, Australia
| | - Yun Li
- Departments of 1Physiology and
| | | | - Joshua E. Raizman
- Surgery, Faculty of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Canada; and
| | | | | | | | | |
Collapse
|
9
|
Snow A, Gozal D, Valdes R, Jortani SA. Urinary proteins for the diagnosis of obstructive sleep apnea syndrome. Methods Mol Biol 2010; 641:223-241. [PMID: 20407950 DOI: 10.1007/978-1-60761-711-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Approximately 2-3% of all children in the United States suffer from obstructive sleep apnea (OSA). This condition is characterized by repeated events of partial or complete obstruction of the upper airways during sleep leading to recurring episodes of hypercapnia, hypoxemia, and arousal throughout the night as well as snoring, which afflicts 7-10% of all children. Since clinical history and physical examination are unreliable in the differentiation between children with OSA and children with primary snoring (PS) who have no apparent alteration in sleep architecture, current diagnostic approaches for OSA require an overnight sleep study (ONP). ONP is onerous, relatively unavailable, labor intensive, and inconvenient, leading to long waiting periods and unnecessary delays in diagnosis and treatment. Development of noninvasive biomarker(s) capable of reliably distinguishing children with PS from those with OSA would greatly facilitate timely screening and diagnosis of OSA in children. Therefore, we hypothesized that proteomic strategies in the urine may permit the identification of biomarker(s) that reliably screen for OSA. In this study, time-of-flight mass spectrometry was used to profile proteins in the first morning void urines from children. We discovered that urocortins are increased in OSA and provide a noninvasive approach for quick and convenient diagnosis otf OSA in snoring children.
Collapse
Affiliation(s)
- Ayelet Snow
- University of Louisville, Louisville, KY, USA
| | | | | | | |
Collapse
|
10
|
Novel insights into the role of cardiotrophin-1 in cardiovascular diseases. J Mol Cell Cardiol 2009; 46:142-8. [DOI: 10.1016/j.yjmcc.2008.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 01/19/2023]
|
11
|
Stejskal D, Ruzicka V. Cardiotrophin-1. Review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152:9-19. [PMID: 18795069 DOI: 10.5507/bp.2008.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cardiotrophin-1 is newly discovered chemokin with a lot of functions. Aim of our work was to describe most important of them. METHODS systematically scan of available scientific resources. RESULTS Cardiotrophin-1 stimulates the proliferation of cardiomyocytes. Cardiotrophin-1 expression and plasma values are elevated in individuals with heart failure and have high diagnostic efficacy for the heart failure. Plasma values are also an independent prognostic factor. Preliminary findings suggest that the determination of plasma cardiotrophin-1 may be useful for the follow-up of hypertensive heart disease in routine clinical practice. Cardiotrophin-1 also plays an important cardioprotective effect on myocardial damage, is a potent regulator of signaling in adipocytes in vitro and in vivo and potentiates the elevation the acute-phase proteins. Cardiotrophin-1 may play also an important protective role in other organ systems (such as hematopoietic, neuronal, developmental). CONCLUSION Cardiotrophin is a newly discovered chemokin with a lot of system effects and is stable in system circulation hence permitting its development in the routine clinical investigation.
Collapse
Affiliation(s)
- David Stejskal
- Department of Laboratory Medicine, Sternberk Hospital, Czech Republic.
| | | |
Collapse
|
12
|
Fritzenwanger M, Meusel K, Foerster M, Kuethe F, Krack A, Figulla HR. Cardiotrophin-1 induces interleukin-6 synthesis in human umbilical vein endothelial cells. Cytokine 2006; 36:101-6. [PMID: 17197193 DOI: 10.1016/j.cyto.2006.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/21/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
In patients with chronic heart failure (CHF) increased plasma concentrations of proinflammatory cytokines are found. For example, the plasma interleukin-6 (IL-6) concentration correlates with disease severity. Beside IL-6 cardiotrophin-1 (CT-1), a member of the IL-6 superfamily, is also increased in CHF. We examined whether CT-1 is able to induce IL-6 in human umbilical vein endothelial cells (HUVEC) and characterised the underlying pathway. IL-6 mRNA was determined by real-time PCR and by RT-PCR in HUVEC which were stimulated with different CT-1 concentrations and for different time periods. IL-6 concentration in the supernatant was determined by ELISA. For the pathway determination following inhibitors were used: piceatannol (signal transducer and activation of transcription (STAT)3 phosphorylation), wortmannin (phosphatiylinositol 3-kinase (PI3K)), SB203580 (p38 mitogen-activated protein kinase (MAPK)), AG490 (Janus kinase (JAK)2), PD98059 (mitogen-activated protein kinase kinase (MEK) 1/2), parthenolide (nuclear factor kappaB) and cycloheximide (protein biosynthesis). CT-1 caused a concentration- and time-dependent increase in IL-6 mRNA in HUVEC with a maximal induction seen after 6 h (2-fold compared to control) with 100 ng/ml CT-1. In the supernatant of HUVEC a concentration- and time-dependent increase of IL-6 protein was found. A maximum effect with 100 ng/ml CT-1 was found after 24 h (11-fold compared to control). AG490, SB203580, piceatannol, parthenolide and cycloheximide inhibit CT-1 induced IL-6 mRNA and protein expression whereas wortmannin and PD98059 did not inhibit IL-6 expression. CT-1 induced both IL-6 mRNA and protein in a concentration- and time-dependent manner in HUVEC. The underlying pathway includes activation of JAK2, STAT3, p38 and NFkappaB. CT-1 induced IL-6 expression and requires protein synthesis and IL-6 is not stored intracellularly. We speculate that in CHF CT-1 might be in part responsible for increased IL-6 plasma concentrations. Modulation of the CT-1 pathway may be a further strategy in CHF treatment.
Collapse
Affiliation(s)
- Michael Fritzenwanger
- Department of Internal Medicine I, Division of Cardiology, Friedrich-Schiller-University Jena, Erlanger Allee 101, 07740 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Jiang ZS, Jeyaraman M, Wen GB, Fandrich RR, Dixon IMC, Cattini PA, Kardami E. High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. J Mol Cell Cardiol 2006; 42:222-33. [PMID: 17045289 DOI: 10.1016/j.yjmcc.2006.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 08/21/2006] [Accepted: 09/01/2006] [Indexed: 12/22/2022]
Abstract
The heart expresses high and low molecular weight (hmw, lmw) fibroblast growth factor 2 (FGF-2) isoforms. While the injury-repair-related activities of lmw-FGF-2 have been studied extensively, those of hmw-FGF-2 have not. Thus, we investigated the effects of hmw-FGF-2 on acute as well as chronic responses to myocardial infarction (MI) induced by irreversible coronary occlusion in the rat. Hmw- or lmw-FGF-2 was injected into the ischemic zone during acute evolving MI. Both isoforms were equally effective in reducing infarct size (at 24 h post-MI) and improving heart function up to 6 weeks post-MI, compared to a vehicle-treated infarcted group. Lmw-FGF-2 alone upregulated vascularization in the infarct. Hmw-FGF-2 elicited significant hypertrophy, compared to the vehicle-treated group, at 4-8 weeks post-MI, assessed by ultrasound, heart morphometry and cardiomyocyte cross-sectional area. In addition, hmw- (but not lmw-) FGF-2-treated hearts displayed increased accumulation of the cytokine cardiotrophin-1 and its signal transducer gp130. In culture, hmw- (but not lmw-) FGF-2 increased cardiomyocyte protein synthesis and cell size as well as upregulated cardiotrophin-1 released by cardiac fibroblasts, pointing to similar activities in vivo. Thus, hmw- and lmw-FGF-2 exert isoform-specific effects in the heart and only hmw-FGF-2 triggers cardiomyocyte hypertrophic growth. Direct effects of hmw-FGF-2 on cardiomyocytes, becoming reinforced and sustained by upregulation of cardiotrophin-1 and acting in concert with other factors, are likely to contribute to post-MI hypertrophy.
Collapse
Affiliation(s)
- Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Nanhua University, Hengyang City, Hunan, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Saini HK, Xu YJ, Zhang M, Liu PP, Kirshenbaum LA, Dhalla NS. Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Exp Clin Cardiol 2005; 10:213-222. [PMID: 19641672 PMCID: PMC2716235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Several investigations have implicated cytokines such as tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1, IL-6, IL-8 and transforming growth factor-beta in the pathophysiology of cellular dysfunction in ischemia-reperfusion (I/R). Although an increase in the production of these cytokines has been detected after myocardial infarction and cardiopulmonary bypass surgery, their exact role and mechanisms for inducing cardiac dysfunction are poorly understood. OBSERVATIONS TNF-alpha, transforming growth factor-beta, IL-1, IL-6 and IL-8 have frequently been studied in different cardiovascular diseases, including I/R injury in the heart. Low concentrations of TNF-alpha appear to exert cardioprotective effects, whereas high concentrations have been shown to produce deleterious actions in the heart. Some efforts have been made to explore the molecular mechanisms of cytokine actions; however, such information is insufficient to develop therapeutic strategies to combat their deleterious effects during the development of I/R injury in the heart. CONCLUSIONS In addition to a time-dependent response, the conflicting effects of cytokines seem to depend on their concentrations used in different experimental studies. It is also likely that both the beneficial and pathophysiological actions of cytokines occur concomitantly. On the basis of the existing literature, it is suggested that different ways need to be found to modify the synthesis as well as the cardiodepressant actions of cytokines to improve the therapy of ischemic heart disease.
Collapse
Affiliation(s)
- Harjot K Saini
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Yan-Jun Xu
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Ming Zhang
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Peter P Liu
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| |
Collapse
|
15
|
Freed DH, Moon MC, Borowiec AM, Jones SC, Zahradka P, Dixon IMC. Cardiotrophin-1: expression in experimental myocardial infarction and potential role in post-MI wound healing. Mol Cell Biochem 2004; 254:247-56. [PMID: 14674704 DOI: 10.1023/a:1027332504861] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cardiotrophin-1 (CT-1), a member of the IL-6 family of cytokines, has been shown to be elevated in the serum of patients with ischemic heart disease and valvular heart disease, and induces cardiomyocyte hypertrophy in vitro. We investigated expression of CT-1 in post-MI rat heart and the effect of CT-1 on cultured primary adult rat cardiac fibroblasts. Elevated CT-1 expression was observed in the infarct zone at 24 h and continued through 2, 4 and 8 weeks post-MI, compared to sham-operated animals. CT-1 induced rapid phosphorylation of Jak, Jak2, STAT1, STAT3, p42/44 MAPK and Akt in cultured adult cardiac fibroblasts. CT-1 induced cardiac fibroblast protein synthesis and proliferation. Protein and DNA synthesis were dependent on activation of Jak/STAT, MEK1/2, PI3K and Src pathways as evidenced by decreased 3H-leucine and 3H-thymidine incorporation after pretreatment with AG490, PD98059, LY294002 and genistein respectively. Furthermore, CT-1 treatment increased procollagen-1-carboxypropeptide (PICP) synthesis, a marker of mature collagen synthesis. CT-1 induced cell migration of rat cardiac fibroblasts. Our results suggest that CT-1, as expressed in post-MI heart, may play an important role in infarct scar formation and ongoing remodeling of the scar. CT-1 was able to initiate each of the processes considered important in the formation of infarct scar including cardiac fibroblast migration as well as fibroblast proliferation and collagen synthesis. Further work is required to determine factors that induce CT-1 expression and interplay with other mediators of cardiac infarct wound healing in the setting of acute cardiac ischemia and chronic post-MI heart failure.
Collapse
Affiliation(s)
- Darren H Freed
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Vredevoe DL, Widawski M, Fonarow GC, Hamilton M, Martínez-Maza O, Gage JR. Interleukin-6 (IL-6) expression and natural killer (NK) cell dysfunction and anergy in heart failure. Am J Cardiol 2004; 93:1007-11. [PMID: 15081444 DOI: 10.1016/j.amjcard.2003.12.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 12/18/2003] [Accepted: 12/18/2003] [Indexed: 11/30/2022]
Abstract
Immune dysfunction has been postulated to play a role in the pathophysiology of chronic heart failure. We examined the relation between interleukin-6 (IL-6) production and natural killer (NK) cell dysfunction in patients with chronic heart failure. Sera and peripheral blood mononuclear cells (PBMCs) were collected from 82 patients with advanced heart failure. Levels of circulating NK cells and T cells were determined by flow cytometry. NK cell function was measured by standard cytotoxicity assays. IL-6 in supernatants of PBMC cultured in vitro was quantitated by an enzyme-linked immunosorbent assay. The levels of circulating NK cells were lower in patients with heart failure than in normal controls (p = 0.0037). NK cells from patients with heart failure also exhibited impaired cytolytic functions in the absence of stimuli and in response to IL-2 and IL-12 (p <0.0001 for all conditions). PBMCs from patients with heart failure produced higher levels of IL-6 in response to a T-cell stimulus than did PBMCs from healthy controls (p = 0.0012). The level of IL-6 produced by unstimulated PBMCs in patients with heart failure correlated with NK cell cytolytic impairment (p = 0.0012). These results demonstrated that PBMCs are a source of IL-6 in patients with heart failure. Production of IL-6 by PBMCs correlated with NK cell anergy to other cytokines that use signal transduction pathways that may be regulated by IL-6. These results support a model of cytokine-induced anergy in conditions that result in high systemic levels of IL-6.
Collapse
Affiliation(s)
- Donna L Vredevoe
- UCLA School of Nursing, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
17
|
Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Tsutsui T, Ohnishi M, Fujii M, Matsumoto T, Yamamoto T, Wang X, Asai S, Tsuji T, Tanaka H, Saito Y, Kuwahara K, Nakao K, Kinoshita M. Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy. J Am Coll Cardiol 2001; 38:1485-90. [PMID: 11691527 DOI: 10.1016/s0735-1097(01)01576-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The study evaluated the relationship between plasma cardiotrophin-1 (CT-1) concentration and left ventricular (LV) mass in dilated cardiomyopathy (DCM) patients with congestive heart failure (CHF). BACKGROUND Cardiotrophin-1 is a newly identified member of the interleukin-6 (IL-6) family of cytokines and one of the endogenous ligands for gp130 signaling pathways in the heart, and it has potent hypertrophic and survival effects on cardiac myocytes. However, the clinical significance of CT-1 is poorly understood. METHODS We measured the plasma CT-1 level in 51 consecutive patients with DCM. Patients were classified into two groups: small LV mass index group and large LV mass index group, based on the median level of LV mass index. RESULTS The plasma CT-1 level was increased in DCM patients with the severity of CHF and was significantly higher in the large LV mass group than in the small LV mass group, despite the absence of a difference in LV ejection fraction between the two groups. In addition, there was a significant positive correlation between the plasma CT-1 level and the LV mass index (r = 0.627, p < 0.0001). According to stepwise multivariate analyses among hemodynamic and neurohumoral factors, a high plasma CT-1 level showed an independent and significant positive relationship with a large LV mass index in patients with DCM. CONCLUSIONS These results indicate that the plasma CT-1 level is increased in patients with DCM and is significantly correlated with the LV mass index, suggesting that CT-1 plays an important role in structural LV remodeling in patients with DCM.
Collapse
Affiliation(s)
- T Tsutamoto
- First Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Urocortin (UCN), is a peptide related to hypothalamic corticotrophin releasing hormone (CRF) and binds with high affinity to the CRF-R2 beta receptor which is expressed in the heart. UCN prevents cell death when administered to primary cardiac myocyte cultures both prior to simulated hypoxia/ischemia and at the point of reoxygenation after simulated hypoxia/ischemia as assayed by trypan blue exclusion. 3'-OH end labeling of DNA (TUNEL), annexin-V and fluorescence activated cell sorting. The protective effect of UCN is dependent on the p42/p44 mitogen-activated protein kinase (MAPK)-pathway. UCN also reduces damage in isolated rat hearts ex vivo, subjected to regional ischemia/reperfusion with the protective effect being observed when UCN is given either prior to ischemia or at the time of reperfusion after ischemia. Hence, UCN is a cardioprotective agent, which acts when given prior to ischemia or after ischemia at reperfusion.
Collapse
Affiliation(s)
- D S Latchman
- Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
19
|
Railson JE, Lawrence K, Buddle JC, Pennica D, Latchman DS. Heat shock protein-56 is induced by cardiotrophin-1 and mediates its hypertrophic effect. J Mol Cell Cardiol 2001; 33:1209-21. [PMID: 11444924 DOI: 10.1006/jmcc.2001.1384] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiotrophin-1 (CT-1) is an interleukin-6 family cytokine with known protective and hypertrophic effects in the heart. Previous studies have shown that CT-1 treatment increases heat shock protein 70 (hsp70) and heat shock protein 90 (hsp90) levels in cardiac cells. Due to the known protective effects of hsp90 and hsp70, induction of these proteins may be involved in the protective effects of CT-1. We show here that heat shock protein 56 (hsp56), also known as FK506 binding protein 59 (FKBP59), is induced by CT-1 treatment at both the mRNA and protein levels. It has been demonstrated previously that, unlike hsp70 and hsp90, hsp56 overexpression does not protect cardiac myocytes against stressful stimuli. The other known effect of CT-1 is hypertrophy, an increase in cell size without cell division, which occurs in many cardiac pathologies. We investigated the role of hsp56 in the hypertrophic response of primary neonatal rat cardiac myocytes, using overexpression with transiently transfected plasmid vectors and Herpes viral vectors. Overexpression of hsp56 caused a significant increase in cardiac cell size and protein:DNA ratio. Hsp27, hsp70 and hsp90 overexpression had no effect on cell size. An antisense construct to hsp56 reduced hsp56 levels when transiently transfected and blocked the hypertrophic effect of CT-1. This is the first time that a hypertrophic effect has been demonstrated for a heat shock protein and demonstrates that CT-1-induced hypertrophy involves a specific hsp, which is not involved in its protective effect.
Collapse
Affiliation(s)
- J E Railson
- Medical Molecular Biology Unit, The Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | | | | | | | | |
Collapse
|