1
|
Selective targeting of metastatic ovarian cancer using an engineered anthrax prodrug activated by membrane-anchored serine proteases. Proc Natl Acad Sci U S A 2022; 119:e2201423119. [PMID: 35867758 PMCID: PMC9282395 DOI: 10.1073/pnas.2201423119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.
Collapse
|
2
|
Dong S, Zheng W, Pinkerton N, Hansen J, Tikunova SB, Davis JP, Heissler SM, Kudryashova E, Egelman EH, Kudryashov DS. Photorhabdus luminescens TccC3 Toxin Targets the Dynamic Population of F-Actin and Impairs Cell Cortex Integrity. Int J Mol Sci 2022; 23:7026. [PMID: 35806028 PMCID: PMC9266650 DOI: 10.3390/ijms23137026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022] Open
Abstract
Due to its essential role in cellular processes, actin is a common target for bacterial toxins. One such toxin, TccC3, is an effector domain of the ABC-toxin produced by entomopathogenic bacteria of Photorhabdus spp. Unlike other actin-targeting toxins, TccC3 uniquely ADP-ribosylates actin at Thr-148, resulting in the formation of actin aggregates and inhibition of phagocytosis. It has been shown that the fully modified F-actin is resistant to depolymerization by cofilin and gelsolin, but their effects on partially modified actin were not explored. We found that only F-actin unprotected by tropomyosin is the physiological TccC3 substrate. Yet, ADP-ribosylated G-actin can be produced upon cofilin-accelerated F-actin depolymerization, which was only mildly inhibited in partially modified actin. The affinity of TccC3-ADP-ribosylated G-actin for profilin and thymosin-β4 was weakened moderately but sufficiently to potentiate spontaneous polymerization in their presence. Interestingly, the Arp2/3-mediated nucleation was also potentiated by T148-ADP-ribosylation. Notably, even partially modified actin showed reduced bundling by plastins and α-actinin. In agreement with the role of these and other tandem calponin-homology domain actin organizers in the assembly of the cortical actin network, TccC3 induced intense membrane blebbing in cultured cells. Overall, our data suggest that TccC3 imposes a complex action on the cytoskeleton by affecting F-actin nucleation, recycling, and interaction with actin-binding proteins involved in the integration of actin filaments with each other and cellular elements.
Collapse
Affiliation(s)
- Songyu Dong
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (S.D.); (N.P.); (J.H.); (E.K.)
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA; (W.Z.); (E.H.E.)
| | - Nicholas Pinkerton
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (S.D.); (N.P.); (J.H.); (E.K.)
| | - Jacob Hansen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (S.D.); (N.P.); (J.H.); (E.K.)
| | - Svetlana B. Tikunova
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.B.T.); (J.P.D.); (S.M.H.)
| | - Jonathan P. Davis
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.B.T.); (J.P.D.); (S.M.H.)
| | - Sarah M. Heissler
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.B.T.); (J.P.D.); (S.M.H.)
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (S.D.); (N.P.); (J.H.); (E.K.)
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA; (W.Z.); (E.H.E.)
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (S.D.); (N.P.); (J.H.); (E.K.)
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Imaging of anthrax intoxication in mice reveals shared and individual functions of surface receptors CMG-2 and TEM-8 in cellular toxin entry. J Biol Chem 2021; 298:101467. [PMID: 34871548 PMCID: PMC8716333 DOI: 10.1016/j.jbc.2021.101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Bacillus anthracis lethal toxin and edema toxin are binary toxins that consist of a common cell-binding moiety, protective antigen (PA), and the enzymatic moieties, lethal factor (LF) and edema factor (EF). PA binds to either of two receptors, capillary morphogenesis protein-2 (CMG-2) or tumor endothelial marker-8 (TEM-8), which triggers the binding and cytoplasmic translocation of LF and EF. However, the distribution of functional TEM-8 and CMG-2 receptors during anthrax toxin intoxication in animals has not been fully elucidated. Herein, we describe an assay to image anthrax toxin intoxication in animals, and we use it to visualize TEM-8- and CMG-2-dependent intoxication in mice. Specifically, we generated a chimeric protein consisting of the N-terminal domain of LF fused to a nuclear localization signal-tagged Cre recombinase (LFn-NLS-Cre). When PA and LFn-NLS-Cre were coadministered to transgenic mice expressing a red fluorescent protein in the absence of Cre and a green fluorescent protein in the presence of Cre, intoxication could be visualized at single-cell resolution by confocal microscopy or flow cytometry. Using this assay, we found that: (a) CMG-2 is critical for intoxication in the liver and heart, (b) TEM-8 is required for intoxication in the kidney and spleen, (c) CMG-2 and TEM-8 are redundant for intoxication of some organs, (d) combined loss of CMG-2 and TEM-8 completely abolishes intoxication, and (e) CMG-2 is the dominant receptor on leukocytes. The novel assay will be useful for basic and clinical/translational studies of Bacillus anthracis infection and for clinical development of reengineered toxin variants for cancer treatment.
Collapse
|
4
|
Transcriptional Regulators in Bacillus anthracis: A Potent Biothreat Agent. RECENT DEVELOPMENTS IN MICROBIAL TECHNOLOGIES 2021. [DOI: 10.1007/978-981-15-4439-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Bacillus anthracis' PA 63 Delivers the Tumor Metastasis Suppressor Protein NDPK-A/NME1 into Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21093295. [PMID: 32384736 PMCID: PMC7246847 DOI: 10.3390/ijms21093295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023] Open
Abstract
Some highly metastatic types of breast cancer show decreased intracellular levels of the tumor suppressor protein NME1, also known as nm23-H1 or nucleoside diphosphate kinase A (NDPK-A), which decreases cancer cell motility and metastasis. Since its activity is directly correlated with the overall outcome in patients, increasing the cytosolic levels of NDPK-A/NME1 in such cancer cells should represent an attractive starting point for novel therapeutic approaches to reduce tumor cell motility and decrease metastasis. Here, we established the Bacillus anthracis protein toxins’ transport component PA63 as transporter for the delivery of His-tagged human NDPK-A into the cytosol of cultured cells including human MDA-MB-231 breast cancer cells. The specifically delivered His6-tagged NDPK-A was detected in MDA-MB-231 cells via Western blotting and immunofluorescence microscopy. The PA63-mediated delivery of His6-NDPK-A resulted in reduced migration of MDA-MB-231 cells, as determined by a wound-healing assay. In conclusion, PA63 serves for the transport of the tumor metastasis suppressor NDPK-A/NME1 into the cytosol of human breast cancer cells In Vitro, which reduced the migratory activity of these cells. This approach might lead to development of novel therapeutic options.
Collapse
|
6
|
Park M, Xu X, Min W, Sugiman-Marangos SN, Beilhartz GL, Adams JJ, Sidhu SS, Grunebaum E, Melnyk RA. Intracellular Delivery of Human Purine Nucleoside Phosphorylase by Engineered Diphtheria Toxin Rescues Function in Target Cells. Mol Pharm 2018; 15:5217-5226. [DOI: 10.1021/acs.molpharmaceut.8b00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | | | | | - Jarret J. Adams
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Sachdev S. Sidhu
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | |
Collapse
|
7
|
Shali A, Hasannia S, Gashtasbi F, Abdous M, Shahangian SS, Jalili S. Generation and screening of efficient neutralizing single domain antibodies (VHHs) against the critical functional domain of anthrax protective antigen (PA). Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Rahman MT, Karim MM. Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol Trace Elem Res 2018; 182:1-13. [PMID: 28585004 DOI: 10.1007/s12011-017-1061-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a "delicate" balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)-a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.
Collapse
|
9
|
Toxin Transport by A-B Type of Toxins in Eukaryotic Target Cells and Its Inhibition by Positively Charged Heterocyclic Molecules. Curr Top Microbiol Immunol 2017; 406:229-256. [DOI: 10.1007/82_2017_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Martin EW, Buzza MS, Driesbaugh KH, Liu S, Fortenberry YM, Leppla SH, Antalis TM. Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden. Oncotarget 2016; 6:33534-53. [PMID: 26392335 PMCID: PMC4741784 DOI: 10.18632/oncotarget.5214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/03/2015] [Indexed: 02/04/2023] Open
Abstract
The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent.
Collapse
Affiliation(s)
- Erik W Martin
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kathryn H Driesbaugh
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shihui Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yolanda M Fortenberry
- Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen H Leppla
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Auger A, Park M, Nitschke F, Minassian LM, Beilhartz GL, Minassian BA, Melnyk RA. Efficient Delivery of Structurally Diverse Protein Cargo into Mammalian Cells by a Bacterial Toxin. Mol Pharm 2015; 12:2962-71. [DOI: 10.1021/acs.molpharmaceut.5b00233] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anick Auger
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada
| | - Minyoung Park
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada
- Department
of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Felix Nitschke
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lori M. Minassian
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada
| | - Greg L. Beilhartz
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada
| | - Berge A. Minassian
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department
of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Roman A. Melnyk
- Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada
- Department
of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
13
|
Affiliation(s)
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
14
|
Beitzinger C, Stefani C, Kronhardt A, Rolando M, Flatau G, Lemichez E, Benz R. Role of N-terminal His6-Tags in binding and efficient translocation of polypeptides into cells using anthrax protective antigen (PA). PLoS One 2012; 7:e46964. [PMID: 23056543 PMCID: PMC3466187 DOI: 10.1371/journal.pone.0046964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022] Open
Abstract
It is of interest to define bacterial toxin biochemical properties to use them as molecular-syringe devices in order to deliver enzymatic activities into host cells. Binary toxins of the AB7/8-type are among the most potent and specialized bacterial protein toxins. The B subunits oligomerize to form a pore that binds with high affinity host cell receptors and the enzymatic A subunit. This allows the endocytosis of the complex and subsequent injection of the A subunit into the cytosol of the host cells. Here we report that the addition of an N-terminal His6-tag to different proteins increased their binding affinity to the protective antigen (PA) PA63-channels, irrespective if they are related (C2I) or unrelated (gpJ, EDIN) to the AB7/8-family of toxins. His6-EDIN exhibited voltage-dependent increase of the stability constant for binding by a factor of about 25 when the trans-side corresponding to the cell interior was set to −70 mV. Surprisingly, the C. botulinum toxin C2II-channel did not share this feature of PA63. Cell-based experiments demonstrated that addition of an N-terminal His6-tag promoted also intoxication of endothelial cells by C2I or EDIN via PA63. Our results revealed that addition of His6-tags to several factors increase their binding properties to PA63 and enhance the property to intoxicate cells.
Collapse
Affiliation(s)
- Christoph Beitzinger
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Caroline Stefani
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
| | - Angelika Kronhardt
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Monica Rolando
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
| | - Gilles Flatau
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
| | - Emmanuel Lemichez
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
- * E-mail: (EL); (RB)
| | - Roland Benz
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail: (EL); (RB)
| |
Collapse
|
15
|
Antibodies against anthrax: mechanisms of action and clinical applications. Toxins (Basel) 2011; 3:1433-52. [PMID: 22174979 PMCID: PMC3237005 DOI: 10.3390/toxins3111433] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/23/2022] Open
Abstract
B. anthracis is a bioweapon of primary importance and its pathogenicity depends on its lethal and edema toxins, which belong to the A-B model of bacterial toxins, and on its capsule. These toxins are secreted early in the course of the anthrax disease and for this reason antibiotics must be administered early, in addition to other limitations. Antibodies (Abs) may however neutralize those toxins and target this capsule to improve anthrax treatment, and many Abs have been developed in that perspective. These Abs act at various steps of the cell intoxication and their mechanisms of action are detailed in the present review, presented in correlation with structural and functional data. The potential for clinical application is discussed for Abs targeting each step of entry, with four of these molecules already advancing to clinical trials. Paradoxically, certain Abs may also enhance the lethal toxin activity and this aspect will also be presented. The unique paradigm of Abs neutralizing anthrax toxins thus exemplifies how they may act to neutralize A-B toxins and, more generally, be active against infectious diseases.
Collapse
|
16
|
EphrinA1 inhibits malignant mesothelioma tumor growth via let-7 microRNA-mediated repression of the RAS oncogene. Cancer Gene Ther 2011; 18:806-16. [PMID: 21869823 DOI: 10.1038/cgt.2011.50] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
EphrinA1 binding with receptor EphA2 suppresses malignant mesothelioma (MM) growth. The mechanisms whereby EphrinA1 attenuates the MM cell (MMC) growth are not clear. In this study, we report that the activation of MMCs with EphrinA1 leads to an induction of let-7 microRNA (miRNA) expression, repression of RAS proto-oncogene and the attenuation of MM tumor growth. The expression of miRNAs was determined by reverse transcription-quantitative polymerase chain reaction and in situ hybridization. RAS expression was determined by q-PCR, western blotting and immunofluorescence. MMC proliferation and tumor growth were determined by WST-1 and Matrigel assay, respectively. EphrinA1 activation induced several fold increases in let-7a1, let-7a3, let-7f1 and let-7f2 miRNA expression in MMCs. In contrast, EphrinA1 activation significantly downregulated H-RAS, K-RAS and N-RAS expression and inhibited MMC proliferation and tumor growth. In MMCs transfected with 2'-O-methyl antisense oligonucleotides to let-7 miRNA, EphrinA1 activation failed to inhibit the proliferative response and tumor growth. In mismatch antisense oligonucleotide-treated MMCs, the proliferation and tumor growth were comparable to untreated proliferating cells. Furthermore, the transfection of MMCs with let-7a miRNA precursor inhibited RAS expression and attenuated MMC tumor growth. Our data revealed that EphrinA1 signaling induces let-7 miRNA expression and attenuates MM tumor growth by targeting RAS proto-oncogene in MMCs.
Collapse
|
17
|
Kronhardt A, Rolando M, Beitzinger C, Stefani C, Leuber M, Flatau G, Popoff MR, Benz R, Lemichez E. Cross-reactivity of anthrax and C2 toxin: protective antigen promotes the uptake of botulinum C2I toxin into human endothelial cells. PLoS One 2011; 6:e23133. [PMID: 21850257 PMCID: PMC3151279 DOI: 10.1371/journal.pone.0023133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 07/13/2011] [Indexed: 01/03/2023] Open
Abstract
Binary toxins are among the most potent bacterial protein toxins performing a cooperative mode of translocation and exhibit fatal enzymatic activities in eukaryotic cells. Anthrax and C2 toxin are the most prominent examples for the AB7/8 type of toxins. The B subunits bind both host cell receptors and the enzymatic A polypeptides to trigger their internalization and translocation into the host cell cytosol. C2 toxin is composed of an actin ADP-ribosyltransferase (C2I) and C2II binding subunits. Anthrax toxin is composed of adenylate cyclase (EF) and MAPKK protease (LF) enzymatic components associated to protective antigen (PA) binding subunit. The binding and translocation components anthrax protective antigen (PA63) and C2II of C2 toxin share a sequence homology of about 35%, suggesting that they might substitute for each other. Here we show by conducting in vitro measurements that PA63 binds C2I and that C2II can bind both EF and LF. Anthrax edema factor (EF) and lethal factor (LF) have higher affinities to bind to channels formed by C2II than C2 toxin's C2I binds to anthrax protective antigen (PA63). Furthermore, we could demonstrate that PA in high concentration has the ability to transport the enzymatic moiety C2I into target cells, causing actin modification and cell rounding. In contrast, C2II does not show significant capacity to promote cell intoxication by EF and LF. Together, our data unveiled the remarkable flexibility of PA in promoting C2I heterologous polypeptide translocation into cells.
Collapse
Affiliation(s)
| | - Monica Rolando
- Inserm, U895, Toxines Microbiennes dans la Relation Hôte-Pathogènes, Batiment Archimed, Nice, France
- Faculté de Médecine, Institut Fédératif de Recherche 50, Université de Nice-Sophia Antipolis, Nice, France
| | | | - Caroline Stefani
- Inserm, U895, Toxines Microbiennes dans la Relation Hôte-Pathogènes, Batiment Archimed, Nice, France
| | - Michael Leuber
- Rudolf-Virchow-Center, University of Würzburg, Würzburg, Germany
| | - Gilles Flatau
- Inserm, U895, Toxines Microbiennes dans la Relation Hôte-Pathogènes, Batiment Archimed, Nice, France
| | - Michel R. Popoff
- Unité des Bactéries Anaerobies et Toxines, Institut Pasteur, Paris, France
| | - Roland Benz
- Rudolf-Virchow-Center, University of Würzburg, Würzburg, Germany
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail: (EL); (RB)
| | - Emmanuel Lemichez
- Inserm, U895, Toxines Microbiennes dans la Relation Hôte-Pathogènes, Batiment Archimed, Nice, France
- Faculté de Médecine, Institut Fédératif de Recherche 50, Université de Nice-Sophia Antipolis, Nice, France
- Laboratoire central de bactériologie, Centre Hospitalier Universitaire de Nice, Nice, France
- * E-mail: (EL); (RB)
| |
Collapse
|
18
|
Residue histidine 669 is essential for the catalytic activity of Bacillus anthracis lethal factor. J Bacteriol 2010; 192:5799-805. [PMID: 20833809 DOI: 10.1128/jb.00485-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The lethal factor (LF) of Bacillus anthracis is a Zn(2+)-dependent metalloprotease which plays an important role in anthrax virulence. This study was aimed at identifying the histidine residues that are essential to the catalytic activities of LF. The site-directed mutagenesis was employed to replace the 10 histidine residues in domains II, III, and IV of LF with alanine residues, respectively. The cytotoxicity of these mutants was tested, and the results revealed that the alanine substitution for His-669 completely abolished toxicity to the lethal toxin (LT)-sensitive RAW264.7 cells. The reason for the toxicity loss was further explored. The zinc content of this LF mutant was the same as that of the wild type. Also this LF mutant retained its protective antigan (PA)-binding activity. Finally, the catalytic cleavage activity of this mutant was demonstrated to be drastically reduced. Thus, we conclude that residue His-669 is crucial to the proteolytic activity of LF.
Collapse
|
19
|
Affiliation(s)
- Mohamed Lamkanfi
- Department of Physiological Chemistry, Genentech, South San Francisco, California, United States of America
- VIB Department of Medical Protein Research, and Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
The innate immune system is critical in recognizing bacterial and viral infections to evoke a proper immune response. Certain members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family detect microbial components in the cytosol and trigger the assembly of large caspase-1-activating complexes termed inflammasomes. Autoproteolytic maturation of caspase-1 zymogens within these inflammasomes leads to maturation and secretion of the pro-inflammatory cytokines interleukin-1 beta (IL-1 beta) and IL-18. The NLR proteins ICE protease-activating factor (IPAF), NALP1b (NACHT domain-, leucine-rich repeat-, and PYD-containing protein 1b), and cryopyrin/NALP3 assemble caspase-1-activating inflammasomes in a stimulus-dependent manner. Bacterial flagellin is sensed by IPAF, whereas mouse NALP1b detects anthrax lethal toxin. Cryopyrin/NALP3 mediates caspase-1 activation in response to a wide variety of microbial components and in response to crystalline substances such as the endogenous danger signal uric acid. Genetic variations in Nalp1 and cryopyrin/Nalp3 are associated with autoinflammatory disorders and increased susceptibility to microbial infection. Further understanding of inflammasomes and their role in innate immunity should provide new insights into the mechanisms of host defense and the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Mohamed Lamkanfi
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | | |
Collapse
|
21
|
Franchi L, Warner N, Viani K, Nuñez G. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 2009; 227:106-28. [PMID: 19120480 DOI: 10.1111/j.1600-065x.2008.00734.x] [Citation(s) in RCA: 619] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleotide oligomerization domain (NOD)-like receptors (NLRs) are a specialized group of intracellular proteins that play a critical role in the regulation of the host innate immune response. NLRs act as scaffolding proteins that assemble signaling platforms that trigger nuclear factor-kappaB and mitogen-activated protein kinase signaling pathways and control the activation of inflammatory caspases. Importantly, mutations in several members of the NLR family have been linked to a variety of inflammatory diseases consistent with these molecules playing an important role in host-pathogen interactions and the inflammatory response. In this review, we focus on the role of Nod1 and Nod2 in host defense and in particular discuss recent finding regarding the role of Nlrc4, Nlpr1, and Nlrp3 inflammasomes in caspase-1 activation and subsequent release of proinflammatory cytokines such as interleukin-1 beta.
Collapse
Affiliation(s)
- Luigi Franchi
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
22
|
Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009; 10:241-7. [PMID: 19221555 DOI: 10.1038/ni.1703] [Citation(s) in RCA: 1368] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inflammasome is a multiprotein complex that mediates the activation of caspase-1, which promotes secretion of the proinflammatory cytokines interleukin 1beta (IL-1beta) and IL-18, as well as 'pyroptosis', a form of cell death induced by bacterial pathogens. Members of the Nod-like receptor family, including NLRP1, NLRP3 and NLRC4, and the adaptor ASC are critical components of the inflammasome that link microbial and endogenous 'danger' signals to caspase-1 activation. Several diseases are associated with dysregulated activation of caspase-1 and secretion of IL-1beta. Thus, understanding inflammasome pathways may provide insight into disease pathogenesis that might identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Luigi Franchi
- Department of Pathology, Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
23
|
Hobson JP, Liu S, Leppla SH, Bugge TH. Imaging specific cell surface protease activity in living cells using reengineered bacterial cytotoxins. Methods Mol Biol 2009; 539:115-29. [PMID: 19377967 PMCID: PMC2753202 DOI: 10.1007/978-1-60327-003-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The scarcity of methods to visualize the activity of individual cell surface proteases in situ has hampered basic research and drug development efforts. In this chapter, we describe a simple, sensitive, and noninvasive assay that uses nontoxic reengineered bacterial cytotoxins with altered protease cleavage specificity to visualize specific cell surface proteolytic activity in single living cells. The assay takes advantage of the absolute requirement for site-specific endoproteolytic cleavage of cell surface-bound anthrax toxin protective antigen for its capacity to translocate an anthrax toxin lethal factor-beta-lactamase fusion protein to the cytoplasm. A fluorogenic beta-lactamase substrate is then used to visualize the cytoplasmically translocated anthrax toxin lethal factor-beta-lactamase fusion protein. By using anthrax toxin protective antigen variants that are reengineered to be cleaved by furin, urokinase plasminogen activator, or metalloproteinases, the cell surface activities of each of these proteases can be specifically and quantitatively determined with single cell resolution. The imaging assay is excellently suited for fluorescence microscope, fluorescence plate reader, and flow cytometry formats, and it can be used for a variety of purposes.
Collapse
|
24
|
Zhang Y, Qiu J, Zhou Y, Farhangfar F, Hester J, Lin AY, Decker WK. Plasmid-based vaccination with candidate anthrax vaccine antigens induces durable type 1 and type 2 T-helper immune responses. Vaccine 2008; 26:614-22. [DOI: 10.1016/j.vaccine.2007.11.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/21/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
25
|
Kanneganti TD, Lamkanfi M, Núñez G. Intracellular NOD-like receptors in host defense and disease. Immunity 2007; 27:549-59. [PMID: 17967410 DOI: 10.1016/j.immuni.2007.10.002] [Citation(s) in RCA: 766] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The innate immune system comprises several classes of pattern recognition receptors, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-1-like receptors (RLRs). TLRs recognize microbes on the cell surface and in endosomes, whereas NLRs and RLRs detect microbial components in the cytosol. Here we discuss the recent understanding in NLRs. Two NLRs, NOD1 and NOD2, sense the cytosolic presence of the peptidoglycan fragments meso-DAP and muramyl dipeptide, respectively, and drive the activation of mitogen-activated protein kinase (MAPK) and the transcription factor NF-kappaB. A different set of NLRs induces caspase-1 activation through the assembly of large protein complexes named inflammasomes. Genetic variations in several NLR members are associated with the development of inflammatory disorders. Further understanding of NLRs should provide new insights into the mechanisms of host defense and the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Thirumala-Devi Kanneganti
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
26
|
Lamkanfi M, Kanneganti TD, Franchi L, Núñez G. Caspase-1 inflammasomes in infection and inflammation. J Leukoc Biol 2007; 82:220-5. [PMID: 17442855 DOI: 10.1189/jlb.1206756] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nucleotide-binding and oligomerization domain-like receptors (NLRs) constitute a family of germline-encoded pattern-recognition receptors, which allow the host to respond rapidly to a wide variety of pathogenic microorganisms. Here, we discuss recent advances in the study of a subset of NLRs, which control the activation of caspase-1 through the assembly of large protein complexes, inflammasomes. The NALP1b inflammasome recognizes anthrax lethal toxin, and flagellin from Salmonella and Legionella induces assembly of the Ipaf inflammasome. Cryopyrin/NALP3 mediates caspase-1 activation in response to a wide variety of bacterial ligands, imidazoquinolines, dsRNA, and the endogenous danger signal uric acid. The importance of these cytosolic receptors in immune regulation is underscored by the identification of mutations in cryopyrin/NALP3, which are genetically linked to human autoinflammatory disorders.
Collapse
Affiliation(s)
- Mohamed Lamkanfi
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
27
|
Hobson JP, Liu S, Rønø B, Leppla SH, Bugge TH. Imaging specific cell-surface proteolytic activity in single living cells. Nat Methods 2006; 3:259-61. [PMID: 16554829 DOI: 10.1038/nmeth862] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 02/07/2006] [Indexed: 11/09/2022]
Abstract
We describe a simple, sensitive and noninvasive assay that uses nontoxic, reengineered anthrax toxin-beta-lactamase fusion proteins with altered protease cleavage specificity to visualize specific cell-surface proteolytic activity in single living cells. The assay could be used to specifically image endogenous cell-surface furin, urokinase plasminogen activator and metalloprotease activity. We have adapted the assay for fluorescence microscopy, flow cytometry and fluorescent plate reader formats, and it is amenable for automation and high-throughput analysis.
Collapse
Affiliation(s)
- John P Hobson
- Proteases and Tissue Remodeling Unit, National Institute of Dental and Craniofacial Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 30 Convent Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
28
|
Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 2004; 68:373-402, table of contents. [PMID: 15353562 PMCID: PMC515256 DOI: 10.1128/mmbr.68.3.373-402.2004] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Certain pathogenic species of Bacillus and Clostridium have developed unique methods for intoxicating cells that employ the classic enzymatic "A-B" paradigm for protein toxins. The binary toxins produced by B. anthracis, B. cereus, C. botulinum, C. difficile, C. perfringens, and C. spiroforme consist of components not physically associated in solution that are linked to various diseases in humans, animals, or insects. The "B" components are synthesized as precursors that are subsequently activated by serine-type proteases on the targeted cell surface and/or in solution. Following release of a 20-kDa N-terminal peptide, the activated "B" components form homoheptameric rings that subsequently dock with an "A" component(s) on the cell surface. By following an acidified endosomal route and translocation into the cytosol, "A" molecules disable a cell (and host organism) via disruption of the actin cytoskeleton, increasing intracellular levels of cyclic AMP, or inactivation of signaling pathways linked to mitogen-activated protein kinase kinases. Recently, B. anthracis has gleaned much notoriety as a biowarfare/bioterrorism agent, and of primary interest has been the edema and lethal toxins, their role in anthrax, as well as the development of efficacious vaccines and therapeutics targeting these virulence factors and ultimately B. anthracis. This review comprehensively surveys the literature and discusses the similarities, as well as distinct differences, between each Clostridium and Bacillus binary toxin in terms of their biochemistry, biology, genetics, structure, and applications in science and medicine. The information may foster future studies that aid novel vaccine and drug development, as well as a better understanding of a conserved intoxication process utilized by various gram-positive, spore-forming bacteria.
Collapse
Affiliation(s)
- Holger Barth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Otto-Krayer-Haus, Albertstrasse 25, D-79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
29
|
Sarac MS, Peinado JR, Leppla SH, Lindberg I. Protection against anthrax toxemia by hexa-D-arginine in vitro and in vivo. Infect Immun 2004; 72:602-5. [PMID: 14688144 PMCID: PMC343991 DOI: 10.1128/iai.72.1.602-605.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anthrax toxin protective antigen precursor is activated by proteolytic cleavage by furin or a furin-like protease. We present here data demonstrating that the small stable furin inhibitor hexa-D-arginine amide delays anthrax toxin-induced toxemia both in cells and in live animals, suggesting that furin inhibition may represent a reasonable avenue for therapeutic intervention in anthrax.
Collapse
Affiliation(s)
- Miroslav S Sarac
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
30
|
Tonello F, Naletto L, Romanello V, Dal Molin F, Montecucco C. Tyrosine-728 and glutamic acid-735 are essential for the metalloproteolytic activity of the lethal factor of Bacillus anthracis. Biochem Biophys Res Commun 2004; 313:496-502. [PMID: 14697216 DOI: 10.1016/j.bbrc.2003.11.134] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lethal factor (LF) of Bacillus anthracis is a Zn2+-endopeptidase specific for the MAPK-kinase family of proteins. The catalytic zinc atom is coordinated by a first shell of residues including the two histidines and the glutamate of the zinc-binding motif HExxH and by Glu-735. A characteristic feature of LF is the presence, within the second shell of residues, of a tyrosine (Tyr-728) in close proximity (3.3 A) to the zinc atom. To investigate the role of Tyr-728 and Glu-735, LF mutants with one or both of these two residues replaced by Ala were cloned, expressed, and purified from Escherichia coli. A fourth mutant was obtained by replacing Tyr-728 with Phe. Spectroscopic analysis of these mutants indicates that they fold in the same way as the parental molecule and that zinc stabilizes the structure of LF. These mutants have neither proteolytic activity nor in vivo toxicity. The possible role of Tyr-728 in catalysis is discussed.
Collapse
Affiliation(s)
- Fiorella Tonello
- Istituto di Neuroscienze del CNR, Università di Padova, Via G Colombo 3, 35121 Padua, Italy.
| | | | | | | | | |
Collapse
|
31
|
Tonello F, Ascenzi P, Montecucco C. The metalloproteolytic activity of the anthrax lethal factor is substrate-inhibited. J Biol Chem 2003; 278:40075-8. [PMID: 12888555 DOI: 10.1074/jbc.m306466200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anthrax lethal factor (LF) is a Zn2+ endopeptidase specific for mitogen-activated protein kinase kinases (MAPKKs), which are cleaved within their N termini. Here, the proteolytic activity of LF has been investigated using novel chromogenic MAPKK-derived peptide substrates, which allowed us to determine the kinetic parameters of the reaction. LF displayed maximal proteolytic activity at the pH and temperature values of the cell cytosol, which is its site of action. LF undergoes substrate inhibition, in keeping with the non-productive binding geometry of the MAPPK-2 N terminus to LF.
Collapse
Affiliation(s)
- Fiorella Tonello
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Via G. Colombo 3, 35121 Padova, Italy.
| | | | | |
Collapse
|
32
|
Abstract
Use of novel drug delivery methods could enhance the efficacy and reduce the toxicity of antiepileptic drugs (AEDs). Slow-release oral forms of medication or depot drugs such as skin patches might improve compliance and therefore seizure control. In emergency situations, administration via rectal, nasal or buccal mucosa can deliver the drug more quickly than can oral administration. Slow-release oral forms and rectal forms of AEDs are already approved for use, nasal and buccal administration is currently off-label and skin patches for AEDs are an attractive but currently hypothetical option. Therapies under development may result in the delivery of AEDs directly to the regions of the brain involved in seizures. Experimental protocols are underway to allow continuous infusion of potent excitatory amino acid antagonists into the CSF. In experiments with animal models of epilepsy, AEDs have been delivered successfully to seizure foci in the brain by programmed infusion pumps, acting in response to computerised EEG seizure detection. Inactive prodrugs can be given systemically and activated at the site of the seizure focus by locally released compounds. One such drug under development is DP-VPA (or DP16), which is cleaved to valproic acid (sodium valproate) by phospholipases at the seizure focus. Liposomes and nanoparticles are engineered micro-reservoirs of a drug, with attached antibodies or receptor-specific binding agents designed to target the particles to a specific region of the body. Liposomes in theory could deliver a high concentration of an AED to a seizure focus. Penetration of the blood-brain barrier can be accomplished by linking large particles to iron transferrin or biological toxins that can cross the barrier. In the near future, it is likely that cell transplants that generate neurotransmitters and neuromodulators will accomplish renewable endogenous drug delivery. However, the survival and viability of transplanted cells have yet to be demonstrated in the clinical setting. Gene therapy also may play a role in local drug delivery with the use of adenovirus, adeno-associated virus, herpesvirus or other delivery vectors to induce brain cells to produce local modulatory substances. New delivery systems should significantly improve the therapeutic/toxic ratio of AEDs.
Collapse
Affiliation(s)
- Robert S Fisher
- Stanford Comprehensive Epilepsy Center, Stanford University Medical Center, Stanford, California 94305-5235, USA.
| | | |
Collapse
|
33
|
Almeida-Campos FR, Noronha FSM, Horta MF. The multitalented pore-forming proteins of intracellular pathogens. Microbes Infect 2002; 4:741-50. [PMID: 12067834 DOI: 10.1016/s1286-4579(02)01593-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Being an intracellular pathogen demands being able to invade a host cell, to circumvent the host immune response and to survive in the intracellular environment. Pore-forming proteins are among the innumerable tools used by intracellular microorganisms to achieve these goals. Remarkably, this seems to be a multipurpose group of proteins that can act in several ways. Making channels may signify entering into host cells, inhibiting phagocytosis, escaping phagosomes or promoting pathogen dissemination. In certain cases, pore-forming proteins are double-edged tools and may benefit the host by eliminating infected cells and/or inducing inflammation.
Collapse
Affiliation(s)
- Flávia R Almeida-Campos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | | |
Collapse
|
34
|
Chauhan V, Singh A, Waheed SM, Singh S, Bhatnagar R. Constitutive expression of protective antigen gene of Bacillus anthracis in Escherichia coli. Biochem Biophys Res Commun 2001; 283:308-15. [PMID: 11327699 DOI: 10.1006/bbrc.2001.4777] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fatal bacterial infection caused by inhalation of the Bacillus anthracis spores results from the synthesis of protein toxins-protective antigen (PA), lethal factor (LF), and edema factor (EF)--by the bacterium. PA is the target-cell binding protein and is common to the two effector molecules, LF and EF, which exert their toxic effects once they are translocated to the cytosol by PA. PA is the major component of vaccines against anthrax since it confers protective immunity. The large-scale production of recombinant protein-based anthrax vaccines requires overexpression of the PA protein. We have constitutively expressed the protective antigen protein in E. coli DH5alpha strain. We have found no increase in degradation of PA when the protein is constitutively expressed and no plasmid instability was observed inside the expressing cells. We have also scaled up the expression by bioprocess optimization using batch culture technique in a fermentor. The protein was purified using metal-chelate affinity chromatography. Approximately 125 mg of recombinant protective antigen (rPA) protein was obtained per liter of batch culture. It was found to be biologically and functionally fully active in comparison to PA protein from Bacillus anthracis. This is the first report of constitutive overexpression of protective antigen gene in E. coli.
Collapse
Affiliation(s)
- V Chauhan
- Centre For Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
35
|
Turnbull PC. Current status of immunization against anthrax: old vaccines may be here to stay for a while. Curr Opin Infect Dis 2000; 13:113-120. [PMID: 11964777 DOI: 10.1097/00001432-200004000-00004] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anthrax vaccination has become a 'hot' topic. On the one hand, fears that Iraq holds secret caches of anthrax-based weaponry, that other countries may be developing or may have developed similar devices, or that hard-line groups may make their own anthrax-based devices for bioterrorist attacks have focused official attention on the need for means of protection, principally, though, for the military. On the other hand, the unsolved issues of the Gulf War illnesses have left elements of doubt in the minds of some as to the possible role of anthrax (among other) vaccines in this syndrome, and have drawn attention to the shortage of pre-clinical, clinical, pharmacological and safety data on the existing UK and US anthrax vaccines. In the middle are those hotly debating the US and Canadian policies of mandatory anthrax immunization for military personnel or, in the case of the UK policy of voluntary immunization, simply voting with their feet. Compounding matters have been the publicized failures of the US vaccine production facility and the less publicized UK problems of supply. Meanwhile, those in genuine at-risk occupations are left unsure whether, if they can get the vaccine at all, they really want it. Despite two decades of elegant science aimed at formulating alternative vaccines to overcome all the problems of efficacy, safety and supply, such an alternative is at least five years away, and the current status is that we must live with the old vaccines or not vaccinate.
Collapse
|