1
|
Singh SK, Ali MM, Mok JH, Korza G, Setlow P, Sastry SK. Mechanistic insight into roles of α/β-type small acid-soluble proteins, RecA, and inner membrane proteins during bacterial spore inactivation by ohmic heating. J Appl Microbiol 2024; 135:lxae151. [PMID: 38906847 DOI: 10.1093/jambio/lxae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
AIM Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/β-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.
Collapse
Affiliation(s)
- Shyam K Singh
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Mohamed Medhat Ali
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Jin Hong Mok
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| | - George Korza
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Sudhir K Sastry
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
2
|
Westerway SC, Basseal JM, Abramowicz J, Moran C. Recommendations for the Cleaning of Endocavity Ultrasound Transducers Between Patients. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:775-778. [PMID: 38485533 DOI: 10.1016/j.ultrasmedbio.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 05/01/2024]
Abstract
The COVID-19 pandemic highlighted the importance of infection prevention and control measures for all medical procedures, including ultrasound examinations. As the use of ultrasound increases across more medical modalities, including point-of-care ultrasound, so does the risk of possible transmission from equipment to patients and patients to patients. This is particularly relevant for endocavity transducers, such as trans-vaginal, trans-rectal and trans-oesophageal, which could be contaminated with organisms from blood, mucosal, genital or rectal secretions. This article proports to update the WFUMB 2017 guidelines which focussed on the cleaning and disinfection of trans-vaginal ultrasound transducers between patients.
Collapse
Affiliation(s)
| | - Jocelyne M Basseal
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Jacques Abramowicz
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois, USA
| | - Carmel Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Ahmed H, Joshi LT. Response to comments on the tolerance to Clostridioides difficile spores to sodium hypochlorite disinfection. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001463. [PMID: 38771019 PMCID: PMC11165626 DOI: 10.1099/mic.0.001463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Humaira Ahmed
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, PL4 8AA, UK
| | - Lovleen Tina Joshi
- Peninsula Dental School, Faculty of Health, University of Plymouth, Devon, PL4 8AA, UK
| |
Collapse
|
4
|
Sohn HJ, Park AY, Lee JH, Yun KH, Song KJ, Kim JH, Shin HJ. Amoebicidal effect of chlorine dioxide gas against pathogenic Naegleria fowleri and Acanthamoeba polyphaga. Parasitol Res 2024; 123:192. [PMID: 38652173 DOI: 10.1007/s00436-024-08215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba polyphaga, are found in freshwater, soil, and unchlorinated or minimally chlorinated swimming pools. N. fowleri and A. polyphaga are becoming problematic as water leisure activities and drinking water are sources of infection. Chlorine dioxide (ClO2) gas is a potent disinfectant that is relatively harmless to humans at the concentration used for disinfection. In this study, we examined the amoebicidal effects of ClO2 gas on N. fowleri and A. polyphaga. These amoebae were exposed to ClO2 gas from a ready-to-use product (0.36 ppmv/h) for 12, 24, 36, and 48 h. Microscopic examination showed that the viability of N. fowleri and A. polyphaga was effectively inhibited by treatment with ClO2 gas in a time-dependent manner. The growth of N. fowleri and A. polyphaga exposed to ClO2 gas for 36 h was completely inhibited. In both cases, the mRNA levels of their respective actin genes were significantly reduced following treatment with ClO2 gas. ClO2 gas has an amoebicidal effect on N. fowleri and A. polyphaga. Therefore, ClO2 gas has been proposed as an effective agent for the prevention and control of pathogenic free-living amoeba contamination.
Collapse
Affiliation(s)
- Hae-Jin Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - A-Young Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jeong-Heon Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Kyu-Hwa Yun
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Kyoung-Ju Song
- Chunsu Mountain Medicinal Herb Research Association, Bundanggu, 13637, Republic of Korea
| | - Jong-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
5
|
Tlak Gajger I, Tomljanović Z, Mutinelli F, Granato A, Vlainić J. Effects of Disinfectants on Bacterium Paenibacillus larvae in Laboratory Conditions. INSECTS 2024; 15:268. [PMID: 38667398 PMCID: PMC11050086 DOI: 10.3390/insects15040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
American foulbrood is an infectious disease of the honeybee brood that causes multiple types of damage to beekeeping. The causative agent of the disease is the bacterium Paenibacillus larvae, which forms resistant infective spores and is viable for decades. After the eradication measures have been implemented, in cases of clinically visible disease, it is necessary to conduct effective final disinfections of equipment and tools. This study aimed to determine the effect of ten commercially available and commonly used disinfectants on certified strains of P. larvae under laboratory conditions, as well as to compare the obtained results among individual genotypes of P. larvae. Selected products were tested by determining the zone of inhibition using an agar diffusion test, a suspension test for viable bacteria, a surface disinfectant test, and a sporicidal effect in the suspension test. Incidin OxyFoam S and Sekusept Aktiv are both effective against all examined genotypes of P. larvae. Despadac and Despadac Secure have a bactericidal effect, but their sporocidal effect is not as satisfactory as that of Genox. Genoll does not exhibit a sporicidal effect, and Ecocide S at 1%, Bee protect H forte, and Bee protect F did not exhibit a satisfactory sporocidal effect. Additionally, EM® PROBIOTIC FOR BEES did not exhibit any bactericidal effect. The effective application of control measures and proper application of final disinfection can reduce the reoccurrence of visible clinical signs of disease, whereas methods of early diagnosis can significantly reduce the incidence of the disease.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Zlatko Tomljanović
- Ministry of Agriculture, Ulica Grada Vukovara 78, 10000 Zagreb, Croatia;
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, 35020 Legnaro, Italy; (F.M.); (A.G.)
| | - Anna Granato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, 10, 35020 Legnaro, Italy; (F.M.); (A.G.)
| | - Josipa Vlainić
- Institute Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Muratov E, Rosenbaum FP, Fuchs FM, Ulrich NJ, Awakowicz P, Setlow P, Moeller R. Multifactorial resistance of Bacillus subtilis spores to low-pressure plasma sterilization. Appl Environ Microbiol 2024; 90:e0132923. [PMID: 38112445 PMCID: PMC10807416 DOI: 10.1128/aem.01329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023] Open
Abstract
Common sterilization techniques for labile and sensitive materials have far-reaching applications in medical, pharmaceutical, and industrial fields. Heat inactivation, chemical treatment, and radiation are established methods to inactivate microorganisms, but pose a threat to humans and the environment and can damage susceptible materials or products. Recent studies have demonstrated that cold low-pressure plasma (LPP) treatment is an efficient alternative to common sterilization methods, as LPP's levels of radicals, ions, (V)UV-radiation, and exposure to an electromagnetic field can be modulated using different process gases, such as oxygen, nitrogen, argon, or synthetic (ambient) air. To further investigate the effects of LPP, spores of the Gram-positive model organism Bacillus subtilis were tested for their LPP susceptibility including wild-type spores and isogenic spores lacking DNA-repair mechanisms such as non-homologous end-joining (NHEJ) or abasic endonucleases, and protective proteins like α/β-type small acid-soluble spore proteins (SASP), coat proteins, and catalase. These studies aimed to learn how spores resist LPP damage by examining the roles of key spore proteins and DNA-repair mechanisms. As expected, LPP treatment decreased spore survival, and survival after potential DNA damage generated by LPP involved efficient DNA repair following spore germination, spore DNA protection by α/β-type SASP, and catalase breakdown of hydrogen peroxide that can generate oxygen radicals. Depending on the LPP composition and treatment time, LPP treatment offers another method to efficiently inactivate spore-forming bacteria.IMPORTANCESurface-associated contamination by endospore-forming bacteria poses a major challenge in sterilization, since the omnipresence of these highly resistant spores throughout nature makes contamination unavoidable, especially in unprocessed foods. Common bactericidal agents such as heat, UV and γ radiation, and toxic chemicals such as strong oxidizers: (i) are often not sufficient to completely inactivate spores; (ii) can pose risks to the applicant; or (iii) can cause unintended damage to the materials to be sterilized. Cold low-pressure plasma (LPP) has been proposed as an additional method for spore eradication. However, efficient use of LPP in decontamination requires understanding of spores' mechanisms of resistance to and protection against LPP.
Collapse
Affiliation(s)
- Erika Muratov
- Radiation Biology Department, Aerospace Microbiology, Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Florian P. Rosenbaum
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Felix M. Fuchs
- Applied Electrodynamics and Plasma Technology, Biomedical Applications of Plasma Technology, Ruhr University Bochum, Bochum, Germany
| | - Nikea J. Ulrich
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Peter Awakowicz
- Applied Electrodynamics and Plasma Technology, Biomedical Applications of Plasma Technology, Ruhr University Bochum, Bochum, Germany
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ralf Moeller
- Radiation Biology Department, Aerospace Microbiology, Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| |
Collapse
|
7
|
Helou M, Mahdi A, Abou Fayad A, Sleiman A, Matar GM, Zoghbi S, Madani T, Husni R. Antimicrobial effects of chlorine dioxide in a hospital setting. Sci Rep 2023; 13:22866. [PMID: 38129523 PMCID: PMC10739700 DOI: 10.1038/s41598-023-49997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Chlorine dioxide is a powerful disinfectant with strong antibacterial properties. We conducted a study at different sites of the Lebanese American University Medical Center-Rizk Hospital to determine the efficacy of the ECOM air mask in decreasing the particle load. Air cultures were obtained from three different locations, namely the patients' elevator, visitors' elevator and mobile clinic and the number of colonies grown on each type of agar was determined. We also measured particle counts at the three sites both at baseline and after placement of the ECOM air mask. After 7 days of ECOM air mask use, the numbers of colonies grown on all types of media was decreased by 20-100% versus the baseline values. The counts of particles of different diameters (0.3, 0.5 and 5 µm) were decreased at all three sampled sites. This study highlighted the efficacy of the ECOM air mask. The utility of the gaseous form of ClO2 as an antiseptic in the hospital setting appears promising.
Collapse
Affiliation(s)
- Mariana Helou
- Division of Emergency, Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Ahmad Mahdi
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Antoine Abou Fayad
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ahmad Sleiman
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ghassan M Matar
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Sanaa Zoghbi
- Infection Control Program, Lebanese American University Medical Center, Beirut, Lebanon
| | - Tarek Madani
- Infection Control Program, Lebanese American University Medical Center, Beirut, Lebanon
| | - Rola Husni
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut, Lebanon.
- Lebanese American University-Rizk Hospital, Beirut, Lebanon.
| |
Collapse
|
8
|
Freire V, Del Río J, Gómara P, Salvador M, Condón S, Gayán E. Comparative study on the impact of equally stressful environmental sporulation conditions on thermal inactivation kinetics of B. subtilis spores. Int J Food Microbiol 2023; 405:110349. [PMID: 37591013 DOI: 10.1016/j.ijfoodmicro.2023.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/30/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
Control of bacterial spores continues to be one of the main challenges for the food industry due to their wide dissemination and extremely high resistance to processing methods. Furthermore, the large variability in heat resistance in spores that contaminate foods makes it difficult to establish general processing conditions. Such heterogeneity not only derives from inherent differences among species and strains, but also from differences in sporulation environments that are generally ignored in spores encountered in foods. We evaluated heat inactivation kinetics and the thermodependency of resistance parameters in B. subtilis 168 spores sporulated at adverse temperatures, water activity (aw), and pH, applying an experimental approach that allowed us to quantitatively compare the impact of each condition. Reduction of incubation temperature from the optimal temperature dramatically reduced thermal resistance, and it was the most influential factor, especially at the highest treatment temperatures. These spores were also more sensitive to chemicals presumably acting in the inner membrane. Reducing sporulation aw increased heat resistance, although the magnitude of that effect depended on the solute and the treatment temperature. Thus, changes in sporulation environments varied 3D100°C values up to 10.4-fold and z values up to 1.7-fold, highlighting the relevance of taking such a source of variability into account when setting heat processing conditions. UV-C treatment and sodium hypochlorite efficiently inactivated all spore populations, including heat-resistant ones produced at low aw.
Collapse
Affiliation(s)
- Víctor Freire
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Javier Del Río
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Paula Gómara
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Maika Salvador
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Santiago Condón
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
9
|
Chen X, Chen Z, Ngo HH, Mao Y, Cao K, Shi Q, Lu Y, Hu HY. Comparison of inactivation characteristics between Gram-positive and Gram-negative bacteria in water by synergistic UV and chlorine disinfection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122007. [PMID: 37302789 DOI: 10.1016/j.envpol.2023.122007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Disinfection is essential in water and wastewater treatment process as a guarantee for microbial safety. This study systematically investigated: (i) the inactivation characteristics of bacteria widely existed in water, including Gram-negative bacteria (Escherichiacoli) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis spores), by sequential UV and chlorine disinfection processes (UV-Cl and Cl-UV), simultaneous UV and chlorine disinfection process (UV/Cl); and (ii) the disinfection mechanisms on different bacteria. The combination of UV and chlorine disinfection could inactive bacteria at lower doses, but showed no synergistic effect on E. coli. Contrarily, disinfection results indicated that UV/Cl performed an obvious synergistic effect on highly disinfectant-resistant bacteria (e.g. S. aureus and B. subtilis spores). Specifically, UV/Cl at the UV dose of 9 mJ/cm2 and chlorine dose of 2 mg-Cl/L could inactivate S. aureus completely. Moreover, the effectiveness of UV/Cl on the removal of indigenous bacteria in actual water conditions was also confirmed. In short, the study provides significant theoretical and practical implications for ensuring microbial safety during water treatment and use.
Collapse
Affiliation(s)
- Xiaowen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Kefan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou, 215163, PR China
| |
Collapse
|
10
|
Verguet N, Mondange L, Nolent F, Depeille A, Garnier A, Neulat-Ripoll F, Gorgé O, Tournier JN. Assessment of calcium hypochlorite for Bacillus anthracis spore surface's decontamination. Res Microbiol 2023; 174:104053. [PMID: 36925026 DOI: 10.1016/j.resmic.2023.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Contamination with microorganisms occurs in laboratories but is also of high concern in the context of bioterrorism. Decontamination is a cornerstone that promotes good laboratory practices and occupational health and safety. Among the most resistant structures formed by microorganisms are spores, produced notably by Clostridium and Bacillus species. Here, we compared six products containing four different molecules (hydrogen peroxide, peracetic acid, sodium and calcium hypochlorite) on B. anthracis Sterne spores. We first selected the most efficient product based on its activity against spore suspensions using French and European standards. Four products showed sporicidal activity, of which only two did so in a time frame consistent with good laboratory practices. Then, we tested one of these two products under laboratory conditions on fully virulent B. anthracis spores, during common use and after contamination through a spill of a highly concentrated spore suspension. We, thus, robustly validated a decontaminant based on calcium hypochlorite not only on its ability to kill spores but also on its effectiveness under laboratory conditions. At the end, we were able to assure a complete disinfection in 1 min after spillover and in 2 min for common use.
Collapse
Affiliation(s)
- Noémie Verguet
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Lou Mondange
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; Yersinia Unit, Institut Pasteur, 75015 Paris, France.
| | - Flora Nolent
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Anne Depeille
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Annabelle Garnier
- Immunopathology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Fabienne Neulat-Ripoll
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Olivier Gorgé
- Bacteriology Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Jean-Nicolas Tournier
- CNR-LE Charbon, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; École du Val-de-Grâce, 75015 Paris, France.
| |
Collapse
|
11
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Malyshev D, Jones IA, McKracken M, Öberg R, Harper GM, Joshi LT, Andersson M. Hypervirulent R20291 Clostridioides difficile spores show disinfection resilience to sodium hypochlorite despite structural changes. BMC Microbiol 2023; 23:59. [PMID: 36879193 PMCID: PMC9986864 DOI: 10.1186/s12866-023-02787-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Clostridioides difficile is a spore forming bacterial species and the major causative agent of nosocomial gastrointestinal infections. C. difficile spores are highly resilient to disinfection methods and to prevent infection, common cleaning protocols use sodium hypochlorite solutions to decontaminate hospital surfaces and equipment. However, there is a balance between minimising the use of harmful chemicals to the environment and patients as well as the need to eliminate spores, which can have varying resistance properties between strains. In this work, we employ TEM imaging and Raman spectroscopy to analyse changes in spore physiology in response to sodium hypochlorite. We characterize different C. difficile clinical isolates and assess the chemical's impact on spores' biochemical composition. Changes in the biochemical composition can, in turn, change spores' vibrational spectroscopic fingerprints, which can impact the possibility of detecting spores in a hospital using Raman based methods. RESULTS We found that the isolates show significantly different susceptibility to hypochlorite, with the R20291 strain, in particular, showing less than 1 log reduction in viability for a 0.5% hypochlorite treatment, far below typically reported values for C. difficile. While TEM and Raman spectra analysis of hypochlorite-treated spores revealed that some hypochlorite-exposed spores remained intact and not distinguishable from controls, most spores showed structural changes. These changes were prominent in B. thuringiensis spores than C. difficile spores. CONCLUSION This study highlights the ability of certain C. difficile spores to survive practical disinfection exposure and the related changes in spore Raman spectra that can be seen after exposure. These findings are important to consider when designing practical disinfection protocols and vibrational-based detection methods to avoid a false-positive response when screening decontaminated areas.
Collapse
Affiliation(s)
| | | | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | | | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden. .,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
13
|
Alvarado-Ávila M, Toledo-Carrillo E, Dutta J. Cerium Oxide on a Fluorinated Carbon-Based Electrode as a Promising Catalyst for Hypochlorite Production. ACS OMEGA 2022; 7:37465-37475. [PMID: 36312353 PMCID: PMC9608405 DOI: 10.1021/acsomega.2c04248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Sodium hypochlorite (NaOCl) is widely used as a disinfectant agent for water treatment and surface cleaning. A straightforward way to produce NaOCl is by the electrolysis of an aqueous sodium chloride (NaCl) solution. This process presents several side reactions decreasing its efficiency with hypochlorite reduction on the cathode surface being one of the main detrimental reactions. In this work, we have studied carbon-based electrodes modified with cerium oxide (CeO2), fluorine, and platinum nanoparticles as cathodes for hypochlorite production. Fluorination was carried out electrochemically; the polyol method was used to synthesize platinum nanoparticles; and the hydrothermal process was applied to form a CeO2 layer. Scanning electron microscopy, FTIR, and inductively coupled plasma (ICP) indicated the presence of cerium oxide as a film, fluorine groups on the substrate, and a load of 3.2 mg/cm2 of platinum nanoparticles and 2.7 mg/cm2 of CeO2. From electrochemical impedance spectroscopy, it was possible to demonstrate that incorporating platinum and fluorine decreases the charge transfer resistance by 16% and 28%, respectively. Linear sweep voltammetry showed a significant decrease in hypochlorite reduction when the substrate was doped with fluorine from -16.6 mA/cm2 at -0.6 V to -9.64 mA/cm2 that further reduced to -8.78 mA/cm2 with cerium oxide covered fluorinated electrodes. The performance of the cathode materials during hypochlorite production improved by 80% compared with pristine activated carbon cloth (ACC) electrodes. The improvement toward hindering NaOCl reduction is probably caused by the incorporation of a partial negative charge upon doping with fluorine.
Collapse
|
14
|
Wang W, Rahman A, Huang Q, Vikesland PJ. Surface-enhanced Raman spectroscopy enabled evaluation of bacterial inactivation. WATER RESEARCH 2022; 220:118668. [PMID: 35689895 DOI: 10.1016/j.watres.2022.118668] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
An improved understanding of bacterial inactivation mechanisms will provide useful insights for infectious disease control and prevention. We evaluated bacterial response to several inactivation methods using surface-enhanced Raman spectroscopy (SERS). The results indicate that changes in the SERS signal are highly related to cellular disruption and that cellular changes arising after cell inactivation cannot be ignored. The membrane integrity of heat and the combination of UV254 and free chlorine (UV254/chlorine) treated Pseudomonas syringae (P. syringae) cells were severely disrupted, leading to significantly increased peak intensities. Conversely, ethanol treated bacteria exhibited intact cell morphologies and the SERS spectra remained virtually unchanged. On the basis of time dependent SERS signals, we extracted dominant SERS patterns. Peaks related to nucleic acids accounted for the main changes observed during heat, UV254, and UV254/chlorine treatment, likely due to their outward diffusion from the cell cytoplasm. For free chlorine treated P. syringae, carbohydrates and proteins on the cell membrane were denatured or lost, resulting in a decrease in related peak intensities. The nucleobases were likely oxidized when treated with UV254 and chlorine, thus leading to shifts in the related peaks. The generality of the method was verified using two additional bacterial strains: Escherichia coli and Bacillus subtilis as well as in different water matrices. The results suggest that SERS spectral analysis is a promising means to examine bacterial stress response at the molecular level and has applicability in diverse environmental implementations.
Collapse
Affiliation(s)
- Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA
| | - Asifur Rahman
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA
| | - Qishen Huang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA; Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, USA.
| |
Collapse
|
15
|
Application of chlorine dioxide-based hurdle technology to improve microbial food safety–A review. Int J Food Microbiol 2022; 379:109848. [DOI: 10.1016/j.ijfoodmicro.2022.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
|
16
|
Nwabor OF, Onyeaka H, Miri T, Obileke K, Anumudu C, Hart A. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. FOOD ENGINEERING REVIEWS 2022. [PMCID: PMC9226271 DOI: 10.1007/s12393-022-09316-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractChanging consumers’ taste for chemical and thermally processed food and preference for perceived healthier minimally processed alternatives is a challenge to food industry. At present, several technologies have found usefulness as choice methods for ensuring that processed food remains unaltered while guaranteeing maximum safety and protection of consumers. However, the effectiveness of most green technology is limited due to the formation of resistant spores by certain foodborne microorganisms and the production of toxins. Cold plasma, a recent technology, has shown commendable superiority at both spore inactivation and enzymes and toxin deactivation. However, the exact mechanism behind the efficiency of cold plasma has remained unclear. In order to further optimize and apply cold plasma treatment in food processing, it is crucial to understand these mechanisms and possible factors that might limit or enhance their effectiveness and outcomes. As a novel non-thermal technology, cold plasma has emerged as a means to ensure the microbiological safety of food. Furthermore, this review presents the different design configurations for cold plasma applications, analysis the mechanisms of microbial spore and biofilm inactivation, and examines the impact of cold plasma on food compositional, organoleptic, and nutritional quality.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Kechrist Obileke
- Renewable and Sustainable Energy, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Abarasi Hart
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD UK
| |
Collapse
|
17
|
Urakawa R, Shibata T, Sogou M, Takamori K, Inoue T, Konishi K, Sakai T. The Bactericidal Effect of MA-T for Factitiously Contaminated and Used Masks. Biol Pharm Bull 2022; 45:757-762. [PMID: 35650103 DOI: 10.1248/bpb.b22-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matching transformation system (MA-T), an on-demand aqueous chlorine dioxide solution, is an excellent safety disinfectant, because chlorine dioxide is not detected during storage or before use. The production of chlorine dioxide in MA-T is induced by a catalytic reaction in the presence of target microorganisms. In this study, we investigated MA-T disinfection of masks as a reuse method to eliminate mask shortages. After spraying Escherichia coli on sterilized surgical mask, samples (factitiously contaminated masks) were treated with MA-T spraying or immersion, and the bactericidal efficacy was assessed by culturing. Used surgical masks were also sprayed with MA-T or were immersed in MA-T, and then were cultured to verify the bactericidal effect. The performance of N95 masks was assessed before and after application of MA-T. After spraying with MA-T, the numbers of bacteria of factitiously contaminated masks and used masks were drastically reduced compared with control samples (not applicable and p = 0.002, respectively). After MA-T immersion, the bacterial counts of both masks (factitiously contaminated masks and used masks) were significantly reduced (both p = 0.002). Taken together, the disinfection test on factitiously contaminated with E. coli and used surgical masks showed that masks can be disinfected by MA-T spray and sterilized by immersion, respectively. The N95 mask performance test after 30 min of immersion in MA-T showed that MA-T disinfected the mask without degrading the performance of the mask. In conclusion, MA-T is useful for the reuse of masks because of its decontamination effect and safety while maintaining the function of the mask.
Collapse
Affiliation(s)
- Ryuta Urakawa
- Department of Pharmacy, Osaka University Dental Hospital.,Department of Clinical Pharmacy Research and Education, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Takekatsu Shibata
- Acenet Inc.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University.,Division of Advance Pharmaco-Science, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Motofumi Sogou
- Office of Strategic Innovative Dentistry Professor, Graduate School of Dentistry, Osaka University
| | | | - Tsuyoshi Inoue
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University.,Division of Advance Pharmaco-Science, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kiyoshi Konishi
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University.,Division of Advance Pharmaco-Science, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Takayoshi Sakai
- Department of Oral-Facial Disorders, Graduate School of Dentistry, Osaka University
| |
Collapse
|
18
|
Li L, Jin J, Hu H, Deveau IF, Foley SL, Chen H. Optimization of Sporulation and Purification Methods for Sporicidal Efficacy Assessment on Bacillus Spores. J Ind Microbiol Biotechnol 2022; 49:6590047. [PMID: 35595506 DOI: 10.1093/jimb/kuac014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022]
Abstract
Validating the efficacy of sporicidal agents is a critical step in current good manufacturing practices for disinfection requirements. A limitation is that the poor quality of spores can lead to false positive sporicidal results. The aim of this study was to explore optimal sporulation and purification methods in Bacillus spores. Spores of seven Bacillus strains were produced in five different sporulation media. After density centrifugation, spore yields were measured by phase-contrast microscopy and enumeration assays. Effects of purification methods including heat, sonication and lysozyme, and maturation on spore qualities were determined by sodium hypochlorite sporicidal assay. Difco Sporulation Media was identified as the preferred sporulation medium for four out of seven tested Bacillus strains. Sporulation rates in B. cereus, B. sphaericus, and B. thuringiensis were higher at 30°C than the rates at 37°C at a difference of 5%, 65%, and 20%, respectively. B. licheniformis favored Mn2+-amended 10% Columbia Broth at 37°C for sporulation with 40-72% higher sporulation rates than other media. The maximum sporulation rates of B. cereus and B. thuringiensis were observed on double-strength Schaeffer's-glucose broth. All studied purification methods improved the spore purity with strain variations. However, intense heat (80°C for 20 min) and lysozyme (100 μg/mL) treatment impaired the spore quality of specific Bacillus strains by sensitizing them against sodium hypochlorite. The length of maturation period had impact on the spore resistance, and the most optimal maturation periods ranged from 7 to 21 days in Bacillus strains. The results of this study will pave the way for further evaluation of sporicidal activity of disinfectants.
Collapse
Affiliation(s)
- Liang Li
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR, USA
| | - Jinshan Jin
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR, USA
| | - Haijing Hu
- Office of Dietary Supplement Programs, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD, USA
| | - Ian F Deveau
- Office of Compounding Quality and Compliance, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR, USA
| | - Huizhong Chen
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR, USA
| |
Collapse
|
19
|
Inactivation mechanism of slightly acidic electrolyzed water on Bacillus cereus spores. Food Microbiol 2022; 103:103951. [DOI: 10.1016/j.fm.2021.103951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/11/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023]
|
20
|
Dong L, Wall M, Li Y. Aqueous chlorine dioxide generated with organic acids have higher antimicrobial efficacy than those generated with inorganic acids. Int J Food Microbiol 2022; 369:109632. [PMID: 35299047 DOI: 10.1016/j.ijfoodmicro.2022.109632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Chlorine dioxide (ClO2) is commonly generated by mixing sodium chlorite and acid. This study aimed to evaluate how acid affects the release kinetics and antimicrobial property of ClO2. Solutions made with weak acids released ClO2 more slowly and had higher stability than those made with hydrochloric acid. Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes were treated with 1, 2.5, and 5 ppm ClO2 for 3 or 5 min. Lettuce inoculated with the pathogenic bacteria were treated with 2.5 and 5 ppm ClO2 for 5 min. The effects of peptone load at 0.01% and 0.02% on the antimicrobial efficacy of ClO2 were investigated in S. Typhimurium cell suspensions. The contribution of acids alone at the pH of the ClO2 solutions to bacterial reduction was also evaluated. The 2.5 ppm ClO2 solutions made with citric acid, lactic acid, and malic acid showed higher reductions in all three bacteria than ClO2 made with hydrochloric acid and sodium bisulfate. The 5 ppm ClO2 solutions produced with organic acids reduced populations of all bacterial strains from 7 log CFU/mL to undetectable level in 3 min, except S. Typhimurium treated by ClO2 produced with lactic acid. On inoculated Romaine lettuce model, 5 ppm ClO2 produced with lactic acid and malic acid resulted in the highest reduction of E. coli O157:H7, S. Typhimurium, and L. monocytogenes of approximately 1.4, 1.7, and 2.4 log CFU/g, respectively. The antimicrobial efficacy of ClO2 made with HCl and NaHSO4 were affected by 0.01% and 0.02% peptone load, respectively. Food-grade organic acids produced aqueous ClO2 solutions with stronger antimicrobial properties than inorganic acids. The acids alone at the pH of ClO2 did not show significant bacterial reductions.
Collapse
Affiliation(s)
- Lianger Dong
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Marisa Wall
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, 64 Nowelo Street, Hilo, HI, USA
| | - Yong Li
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
21
|
Augustyn W, Chruściel A, Hreczuch W, Kalka J, Tarka P, Kierat W. Inactivation of Spores and Vegetative Forms of Clostridioides difficile by Chemical Biocides: Mechanisms of Biocidal Activity, Methods of Evaluation, and Environmental Aspects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020750. [PMID: 35055571 PMCID: PMC8775970 DOI: 10.3390/ijerph19020750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile infections (CDIs) are the most common cause of acquired diseases in hospitalized patients. Effective surface disinfection, focused on the inactivation of the spores of this pathogen, is a decisive factor in reducing the number of nosocomial cases of CDI infections. An efficient disinfection procedure is the result of both the properties of the biocidal agent used and the technology of its implementation as well as a reliable, experimental methodology for assessing the activity of the biocidal active substance based on laboratory models that adequately represent real clinical conditions. This study reviews the state of knowledge regarding the properties and biochemical basis of the action mechanisms of sporicidal substances, with emphasis on chlorine dioxide (ClO2). Among the analyzed biocides, in addition to ClO2, active chlorine, hydrogen peroxide, peracetic acid, and glutaraldehyde were characterized. Due to the relatively high sporicidal effectiveness and effective control of bacterial biofilm, as well as safety in a health and environmental context, the use of ClO2 is an attractive alternative in the control of nosocomial infections of CD etiology. In terms of the methods of assessing the biocidal effectiveness, suspension and carrier standards are discussed.
Collapse
Affiliation(s)
- Weronika Augustyn
- MEXEO-Wiesław Hreczuch, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (W.A.); (W.H.)
- Environmental Biotechnology Department, Silesian University of Technology, Faculty of Power and Environmental Engineering, 44-100 Gliwice, Poland;
| | - Arkadiusz Chruściel
- MEXEO-Wiesław Hreczuch, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (W.A.); (W.H.)
- Correspondence:
| | - Wiesław Hreczuch
- MEXEO-Wiesław Hreczuch, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (W.A.); (W.H.)
| | - Joanna Kalka
- Environmental Biotechnology Department, Silesian University of Technology, Faculty of Power and Environmental Engineering, 44-100 Gliwice, Poland;
| | - Patryk Tarka
- Department of Social Medicine and Public Health, Medical University of Warsaw, 02-007 Warszawa, Poland;
| | - Wojciech Kierat
- Department of Digital Systems, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
22
|
Lepeytre C, Frances F, Charvolin MS, Ludwig A, Le Toquin E, Comoy E, Grandjean A, Gossard A. Colloidal gel as an efficient process to treat Chemical, Biological, Radiological (CBR) and prion contaminated solid surfaces. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Kanaan J, Murray J, Higgins R, Nana M, DeMarco AM, Korza G, Setlow P. Resistance properties and the role of the inner membrane and coat of Bacillus subtilis spores with extreme wet heat resistance. J Appl Microbiol 2021; 132:2157-2166. [PMID: 34724311 DOI: 10.1111/jam.15345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
AIMS A protein termed 2Duf greatly increases wet heat resistance of Bacillus subtilis spores. The current work examines the effects of 2Duf on spore resistance to other sporicides, including chemicals that act on or must cross spores' inner membrane (IM), where 2Duf is likely present. The overall aim was to gain a deeper understanding of how 2Duf affects spore resistance, and of spore resistance itself. METHODS AND RESULTS 2Duf's presence increased spore resistance to chemicals that damage or must cross the IM to kill spores. Spore coat removal decreased 2Duf-spore resistance to chemicals and wet heat, and 2Duf-spores made at higher temperatures were more resistant to wet heat and chemicals. 2Duf-less spores lacking coats and Ca-dipicolinic acid were also extremely sensitive to wet heat and chemicals that transit the IM to kill spores. CONCLUSIONS The new work plus previous results lead to a number of important conclusions as follows. (1) 2Duf may influence spore resistance by decreasing the permeability of and lipid mobility in spores' IM. (2) Since wet heat-killed spores that germinate do not accumulate ATP, wet heat may inactivate some spore IM protein essential in ATP production which is stabilized in a more rigid IM. (3) Both Ca-dipicolinic acid and the spore coat play an important role in the permeability of the spore IM, and thus in many spore resistance properties. SIGNIFICANCE AND IMPACT OF THE STUDY The work in this manuscript gives a new insight into mechanisms of spore resistance to chemicals and wet heat, to the understanding of spore wet heat killing, and the role of Ca-dipicolinic acid and the coat in spore resistance.
Collapse
Affiliation(s)
- Julia Kanaan
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Jillian Murray
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Ryan Higgins
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Mishil Nana
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Angela M DeMarco
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
24
|
Abstract
Spores of many species of the orders Bacillales and Clostridiales can be vectors for food spoilage, human diseases and intoxications, and biological warfare. Many agents are used for spore killing, including moist heat in an autoclave, dry heat at elevated temperatures, UV radiation at 254 and more recently 222 and 400 nm, ionizing radiation of various types, high hydrostatic pressures and a host of chemical decontaminants. An alternative strategy is to trigger spore germination, as germinated spores are much easier to kill than the highly resistant dormant spores—the so called “germinate to eradicate” strategy. Factors important to consider in choosing methods for spore killing include the: (1) cost; (2) killing efficacy and kinetics; (3) ability to decontaminate large areas in buildings or outside; and (4) compatibility of killing regimens with the: (i) presence of people; (ii) food quality; (iii) presence of significant amounts of organic matter; and (iv) minimal damage to equipment in the decontamination zone. This review will summarize research on spore killing and point out some common flaws which can make results from spore killing research questionable.
Collapse
|
25
|
Lee SY, Chan EL, Chan HH, Li CCK, Ooi ZH, Koh RY, Liew YK. ANTIMICROBIAL AGENTS AND ANTI-ADHESION MATERIALS FOR MEDICAL AND SURGICAL GLOVES. RUBBER CHEMISTRY AND TECHNOLOGY 2021. [DOI: 10.5254/rct.21.79901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Healthcare-associated infections (HAIs) can be common in healthcare settings, such as the intensive care unit and surgical sites, if proper precautions are not followed. Although traditional techniques are encouraged, such as educating the public and healthcare workers to practice proper handwashing or to double glove, they have not been fully effective in combating HAIs. The use of surface-modified antimicrobial gloves may be an alternative approach to prevent the transmission of pathogens between healthcare workers and patients. This paper gives a comprehensive review of strategies to produce antimicrobial gloves. The chemistry of some potential chemically synthesized antimicrobial agents and nature-inspired superhydrophobic surfaces are discussed. The principles of killing microbes must be understood to effectively select these materials and to design and fabricate surfaces for the reduction of bacterial adhesion. Also, current company trends and technologies are presented for gloves proven to effectively kill bacteria. Such glove use, when coupled with in-depth research on diverse surgical procedures and medical examinations, could ease the burden of HAIs.
Collapse
Affiliation(s)
- Siang Yin Lee
- Latex Science and Technology Unit (USTL), Technology and Engineering Division (BTK), RRIM Sungai Buloh Research Station, Malaysian Rubber Board (MRB), 47000 Sungai Buloh, Selangor, Malaysia
| | - E-Lyn Chan
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Hong Hao Chan
- School of Postgraduate Studies and Research, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Claire Chong Khai Li
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Zhe Hooi Ooi
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yun Khoon Liew
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Sharma AK, Shukla SK, Kalonia A, Shaw P, Khanna K, Gupta R, Yashavarddhan MH, Bhatnagar A. Evaluation of decontamination efficacy of electrolytically generated hypochlorous acid for vesicating agent: A multimodel Study. Curr Pharm Biotechnol 2021; 23:287-299. [PMID: 33719970 DOI: 10.2174/1389201022666210311140922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/06/2020] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sulfur Mustard is a strong vesicant and chemical warfare agent that imposes toxicity to the lungs, eyes, and skin after accidental or intended exposure. OBJECTIVES The current study was intended to explore in vitro and in vivo decontamination properties of electrolytically generated HOCl (hypochlorous acid) against CEES (2-chloroethyle ethyle sulphide), a known sulfur mustard simulant & vesicating agent. METHODS In vitro studies were carried out using UV spectroscopy and GC-MS methods. In vivo studies were perfomred in Strain A and immune compromised mice by subcutaneous as well as prophylactic topical administrion of HOCl pretreated CEES. The blister formation and mortality were considered as end-point. Histopathological study was conducted on skin samples by H & E method. DNA damage studies measuring γ-H2AX and ATM has been carried out in human blood using flow cytometry. Anti-bacterial action was tested by employing broth micro dilution methods. Comparative study was also carried out with known oxidizing agents. RESULTS The topical application of pre-treated CEES at 5, 30 min and 1 h time points showed significant (p<0.001) inhibition of blister formation. DNA damage study showed reduced mean flourences intensity of DSBs nearly 17-20 times, suggesting that HOCl plays a protective role against DNA damage. Histopathology showed no sign of necrosis in the epidermis upto 5 min although moderate changes were observed at 30 min. Pretreated samples were analyzed for detection of reaction products with m/z value of 75.04, 69.08, 83.93, 85.95, 123.99, 126.00, and 108.97. HOCl showed strong bactericidal effect at 40 ppm. The absorbance spectra of HOCl treated CEES showed lowered peaks in comparison to CEES alone and other oxidizing agents Conclusion: In a nutshell, our results signify the decontamination role of HOCl for biological surface application.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Sandeep Kumar Shukla
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Aman Kalonia
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Priyanka Shaw
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Kushagra Khanna
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Richa Gupta
- Graphic Era Deemed to be University, Dehradun. India
| | - M H Yashavarddhan
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| | - Assem Bhatnagar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054. India
| |
Collapse
|
27
|
Malyshev D, Dahlberg T, Wiklund K, Andersson PO, Henriksson S, Andersson M. Mode of Action of Disinfection Chemicals on the Bacterial Spore Structure and Their Raman Spectra. Anal Chem 2021; 93:3146-3153. [PMID: 33523636 PMCID: PMC7893628 DOI: 10.1021/acs.analchem.0c04519] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Contamination of
toxic spore-forming bacteria is problematic since
spores can survive a plethora of disinfection chemicals and it is
hard to rapidly detect if the disinfection chemical has inactivated
the spores. Thus, robust decontamination strategies and reliable detection
methods to identify dead from viable spores are critical. In this
work, we investigate the chemical changes of Bacillus
thuringiensis spores treated with sporicidal agents
such as chlorine dioxide, peracetic acid, and sodium hypochlorite
using laser tweezers Raman spectroscopy. We also image treated spores
using SEM and TEM to verify if we can correlate structural changes
in the spores with changes to their Raman spectra. We found that over
30 min, chlorine dioxide did not change the Raman spectrum or the
spore structure, peracetic acid showed a time-dependent decrease in
the characteristic DNA/DPA peaks and ∼20% of the spores were
degraded and collapsed, and spores treated with sodium hypochlorite
showed an abrupt drop in DNA and DPA peaks within 20 min and some
structural damage to the exosporium. Structural changes appeared in
spores after 10 min, compared to the inactivation time of the spores,
which is less than a minute. We conclude that vibrational spectroscopy
provides powerful means to detect changes in spores but it might be
problematic to identify if spores are live or dead after a decontamination
procedure.
Collapse
Affiliation(s)
| | | | | | - Per Ola Andersson
- Swedish Defence Research Agency (FOI), Umeå, 906 21 Sweden.,Department of Engineering Sciences, Uppsala University, Box 35 751 03, Uppsala, Sweden
| | - Sara Henriksson
- Umeå Core Facility for Electron Microscopy, Umeå University, Umeå, 901 87 Sweden
| | | |
Collapse
|
28
|
Malka SK, Park MH. Fresh Produce Safety and Quality: Chlorine Dioxide's Role. FRONTIERS IN PLANT SCIENCE 2021; 12:775629. [PMID: 35087550 PMCID: PMC8787301 DOI: 10.3389/fpls.2021.775629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 05/03/2023]
Abstract
Maintaining microbial safety and quality of fresh fruits and vegetables are a global concern. Harmful microbes can contaminate fresh produce at any stage from farm to fork. Microbial contamination can affect the quality and shelf-life of fresh produce, and the consumption of contaminated food can cause foodborne illnesses. Additionally, there has been an increased emphasis on the freshness and appearance of fresh produce by modern consumers. Hence, disinfection methods that not only reduce microbial load but also preserve the quality of fresh produce are required. Chlorine dioxide (ClO2) has emerged as a better alternative to chlorine-based disinfectants. In this review, we discuss the efficacy of gaseous and aqueous ClO2 in inhibiting microbial growth immediately after treatment (short-term effect) versus regulating microbial growth during storage of fresh produce (long-term effect). We further elaborate upon the effects of ClO2 application on retaining or enhancing the quality of fresh produce and discuss the current understanding of the mode of action of ClO2 against microbes affecting fresh produce.
Collapse
|
29
|
A Gnotobiotic Model to Examine Plant and Microbiome Contributions to Survival under Arsenic Stress. Microorganisms 2020; 9:microorganisms9010045. [PMID: 33375331 PMCID: PMC7823691 DOI: 10.3390/microorganisms9010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
So far, the relative importance of the plant and its microbiome in the development of early stages of plant seedling growth under arsenic stress has not been studied. To test the role of endophytic bacteria in increasing plant success under arsenic stress, gnotobiotic seeds of J. montana were inoculated with two endophytic bacteria: Pantoea conspicua MC-K1 (PGPB and As resistant bacteria) and Arthrobacter sp. MC-D3A (non-helper and non-As resistant bacteria) and an endobacteria mixture. In holobiotic seedlings (with seed-vectored microbes intact), neither the capacity of germination nor development of roots and lateral hairs was affected at 125 μM As(V). However, in gnotobiotic seedlings, the plants are negatively impacted by absence of a microbiome and presence of arsenic, resulting in reduced growth of roots and root hairs. The inoculation of a single PGPB (P. conspicua-MCK1) shows a tendency to the recovery of the plant, both in arsenic enriched and arsenic-free media, while the inoculation with Arthrobacter sp. does not help in the recovery of the plants. Inoculation with a bacterial mixture allows recovery of plants in arsenic free media; however, plants did not recover under arsenic stress, probably because of a bacterial interaction in the mixture.
Collapse
|
30
|
Kim T, Cho J, Cha D, Kim MS, Park EJ, Lee HJ, Lee C. Cupric ion in combination with hydrogen peroxide and hydroxylamine applied to inactivation of different microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123305. [PMID: 32947709 DOI: 10.1016/j.jhazmat.2020.123305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 05/08/2023]
Abstract
The microbial inactivation by cupric ion (Cu(II)) in combination with hydrogen peroxide (H2O2) and hydroxylamine (HA) was investigated for twelve different microorganisms (five Gram-negative bacteria, three Gram-positive bacteria, and four bacteriophages). The inactivation efficacy, protein oxidation, and RNA (or DNA) damage were monitored during and after treatment by Cu(II), Cu(II)/HA, Cu(II)/H2O2 and Cu(II)/HA/H2O2. The rate of microbial inactivation by the (combined) microbicides generally increased in the order of Cu(II) < Cu(II)/H2O2 < Cu(II)/HA < Cu(II)/HA/H2O2; Cu(II)/HA/H2O2 resulted in 0.18-0.31, 0.10-0.18, and 0.55-3.83 log inactivation/min for Gram-negative bacteria, Gram-positive bacteria, and bacteriophages, respectively. The degrees of protein oxidation and RNA (or DNA) damage increased in the order of Cu(II) < Cu(II)/HA < Cu(II)/H2O2 < Cu(II)/HA/H2O2. In particular, Cu(II)/HA/H2O2 led to exceptionally fast inactivation of the viruses. Gram-positive bacteria tended to show higher resistance to microbicides than other microbial species. The microbicidal effects of the combined microbicides on the target microorganisms were explained by the roles of Cu(I) and Cu(III) generated by the redox reactions of Cu(II) with H2O2, HA, and oxygen. Major findings of this study indicate that Cu(II)-based combined microbicides are promising disinfectants for different waters contaminated by pathogenic microorganisms.
Collapse
Affiliation(s)
- Taewan Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jiyoon Cho
- School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dongwon Cha
- School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Min Sik Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06511, United States
| | - Erwin Jongwoo Park
- School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hye-Jin Lee
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Changha Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
Park HW, Chen G, Hwang CA, Huang L. Effect of water activity on inactivation of Listeria monocytogenes using gaseous chlorine dioxide - A kinetic analysis. Food Microbiol 2020; 95:103707. [PMID: 33397625 DOI: 10.1016/j.fm.2020.103707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the effect of water activity (aw) on inactivation of Listeria monocytogenes using gaseous chlorine dioxide (ClO2 (g)) under room temperature. Surface-inoculated tryptic soy agar (TSA) plates adjusted to 9 different water activity levels ranging from 0.994 to 0.429 were used as samples exposed to ClO2 (g) at 150, 250, and 350 ppm for different durations of treatment time. Results showed that the antimicrobial effect of ClO2 (g) significantly decreases as the aw level and ClO2 (g) concentration decrease. Nonlinear models, such as the modified Chick model and the Weibull model, were used to describe the inactivation kinetics of L. monocytogenes. The results showed that the modified Chick model, which is based on chemical reaction kinetics, was more suitable to describe the inactivation of L. monocytogenes (RMSE < 0.5 log CFU/g) than the Weibull model (RMSE < 1.0 log CFU/g). A multiple regression model was developed for the describing the effect of aw and ClO2 (g) concentration on bacterial inactivation. The results of this study may be used to design ClO2 (g) treatment processes to inactivate L. monocytogenes in low-moisture foods.
Collapse
Affiliation(s)
- Hyeon Woo Park
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Guoying Chen
- Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA, 19038, USA
| | - Cheng-An Hwang
- Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA, 19038, USA
| | - Lihan Huang
- Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA, 19038, USA.
| |
Collapse
|
32
|
Yang G, Shi Y, Zhao Z, Zhong M, Jin T, Shi C, Zhang C, Xia X. Comparison of Inactivation Effect of Slightly Acidic Electrolyzed Water and Sodium Hypochlorite on Bacillus cereus Spores. Foodborne Pathog Dis 2020; 18:192-201. [PMID: 33121277 DOI: 10.1089/fpd.2020.2811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacillus cereus spores are concerns for food spoilage and foodborne disease in food industry due to their high resistance to heat and various disinfectants. The aim of this study was to investigate the inactivation of B. cereus spores by slightly acidic electrolyzed water (SAEW) in comparison to sodium hypochlorite (NaClO) with same available chlorine content (ACC). In this study, the efficacy of SAEW with different concentrations of ACC (40, 60, 80, 100, and 120 mg/L) on the inactivation of B. cereus spores, and the effect of SAEW combined with mild heat treatment (60°C), was examined in pure culture suspensions. Heat resistance and pyridine-2,6-dicarboxylic acid (DPA) release of the spores were also determined. The results showed that the sporicidal effect of the SAEW was significantly higher compared with the NaClO with the same concentration of ACC. Furthermore, the inactivation efficacy was largely dependent on ACC and treatment time. Moreover, the sporicidal activity of the SAEW was significantly improved when combined with a mild heat treatment (60°C). The majority of the DPA was released from spores, and the spores exhibited less resistance to heat after SAEW treatment for 30 min. These findings indicate that SAEW could effectively inactivate B. cereus spores, making it a promising and environmentally friendly decontamination technology for application in the food industry.
Collapse
Affiliation(s)
- Gaoji Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yiqi Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhiyi Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyao Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tong Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.,Technical Center, Jiangsu Ecolovo Food Group Co., Ltd., Suqian, China
| |
Collapse
|
33
|
Wan Q, Wen G, Cao R, Zhao H, Xu X, Xia Y, Wu G, Lin W, Wang J, Huang T. Simultaneously enhance the inactivation and inhibit the photoreactivation of fungal spores by the combination of UV-LEDs and chlorine: Kinetics and mechanisms. WATER RESEARCH 2020; 184:116143. [PMID: 32688151 DOI: 10.1016/j.watres.2020.116143] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Waterborne fungi have been recognized as an emerging environmental contaminant in recent years. This work was to investigate the inactivation efficiency and mechanisms of ultraviolet light-emitting diodes (UV-LEDs)/chlorine (Cl2) (265, 280 and 265/280 nm combination) and LPUV/Cl2 (254 nm) treatments for three fungal species compared with individual disinfection processes. Control of photoreactivation for fungal species inactivated by UV-LEDs/Cl2 and LPUV/Cl2 was also evaluated. The results revealed that the combined UV-LEDs/Cl2 and LPUV/Cl2 processes, especially UV-LEDs/Cl2, exhibited better inactivation performance compared to UV alone and Cl2 alone based on the inactivation rate constants, and an evident synergistic effect was observed. For example, the inactivation rates for Penicillium polonicum in the processes of UV265/Cl2, UV280/Cl2, UV265/280/Cl2 and LPUV/Cl2 was 0.142, 0.168, 0.174 and 0.106 cm2/mJ, respectively, which were all approximately 1.5-fold higher than that of UV alone. The synergistic effect of fungal spores inactivation by UV-LEDs/Cl2 and LPUV/Cl2 was due to the high level production of intracellular reactive oxygen species and the reaction of potential extracellular free radicals. Resistance of the tested fungal spores was as follows: Trichoderma harzianum < Penicillium polonicum < Aspergillus niger. In addition, the joint effect of DNA and other cellular damage resulted in the inhibition of photoreactivation of fungal spores inactivated by UV-LEDs/Cl2 and LPUV/Cl2 compared with that of fungal spore inactivated by UV alone. This study may provide reference for controlling the dissemination of waterborne fungi utilizing combined UV-LEDs and free chlorine processes.
Collapse
Affiliation(s)
- Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Hui Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yuancheng Xia
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Wei Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| |
Collapse
|
34
|
Xu X, Ran Z, Wen G, Liang Z, Wan Q, Chen Z, Lin Y, Li K, Wang J, Huang T. Efficient inactivation of bacteria in ballast water by adding potassium peroxymonosulfate alone: Role of halide ions. CHEMOSPHERE 2020; 253:126656. [PMID: 32278911 DOI: 10.1016/j.chemosphere.2020.126656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In recent years, ballast water disinfection has been paid much more attention due to the untreated discharged ballast water posing threaten of biological invasion and health related consequences. In this study, an effective and simple approach for ballast water disinfection by just adding potassium peroxymonosulfate (PMS) was assessed, and the role of halide ions in seawater on the enhancement of inactivation was revealed. The reactive species responsible for inactivation, the leakage of intracellular materials, and changes of cellular morphology after inactivation were evaluated to explore the inactivation mechanism. The results showed that Escherichia coli and Bacillus subtilis in ballast water could be totally inactivated within 10 min by adding 0.2 mM PMS alone. The inactivation of bacteria in ballast water fitted to the delayed Chick-Watson model. Chloride and bromide ion in seawater were found to play a crucial role in inactivating bacteria, while the effect of iodide ion could be negligible due to its relative lower concentration in seawater. Chlorine and bromine, produced by the reaction of PMS with chloride and bromide ion, were proved to be the main reactive components that were responsible for the inactivation of bacteria. The extracellular ATP and total nitrogen concentration increased after inactivation which indicated that cell membrane was destroyed by reactive oxidants produced by the reaction between PMS and halide ions. The change of cell morphology confirmed that bacteria were seriously damaged after inactivation. The results suggest that PMS is an attractive alternative disinfectant for ballast water disinfection and this application deserved further research.
Collapse
Affiliation(s)
- Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhilin Ran
- Institute of Innovational Education Research, School of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Zhiting Liang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhuhao Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yuzhao Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
35
|
Ge Y, Lei Y, Lei X, Gan W, Shu L, Yang X. Exploration of reaction rates of chlorine dioxide with tryptophan residue in oligopeptides and proteins. J Environ Sci (China) 2020; 93:129-136. [PMID: 32446448 DOI: 10.1016/j.jes.2020.03.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Chlorine dioxide (ClO2), an alternative disinfectant to chlorine, has a superior ability to inactivate microorganisms, in which protein damage has been considered as the main inactivation mechanism. However, the reactivity of ClO2 with amino acid residues in oligopeptides and proteins remains poorly investigated. In this research, we studied the reaction rate constants of ClO2 with tryptophan residues in five heptapeptides and four proteins using stopped-flow or competition kinetic method. Each heptapeptide and protein contain only one tryptophan residue and the reactivity of tryptophan residue with ClO2 was lower than that of free tryptophan (3.88 × 104 (mol/L)-1sec-1 at pH 7.0). The neighboring amino acid residues affected the reaction rates through promoting inter-peptide aggregation, changing electron density, shifting pKa values or inducing electron transfer via redox reactions. A single amino acid residue difference in oligopeptides can make the reaction rate constants differ by over 60% (e.g. 3.01 × 104 (mol/L)-1sec-1 for DDDWNDD and 1.85 × 104 (mol/L)-1sec-1 for DDDWDDD at pH 7.0 (D: aspartic acid, W: tryptophan, N: asparagine)). The reaction rates of tryptophan-containing oligopeptides were also highly pH-dependent with higher reactivity for deprotonated tryptophan than the neutral specie. Tryptophan residues in proteins spanned a 4-fold range reactivity toward ClO2 (i.e. 0.84 × 104 (mol/L)-1sec-1 for ribonuclease T1 and 3.21 × 104 (mol/L)-1sec-1 for melittin at pH 7.0) with accessibility to the oxidant as the determinating factor. The local environment surrounding the tryptophan residue in proteins can also accelerate the reaction rates by increasing the electron density of the indole ring of tryptophan or inhibit the reaction rates by inducing electron transfer reactions. The results are of significance in advancing understanding of ClO2 oxidative reactions with proteins and microbial inactivation mechanisms.
Collapse
Affiliation(s)
- Yuexian Ge
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhui Gan
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
36
|
Zhou S, Jin T, Sheen S, Zhao G, Liu L, Juneja V, Yam K. Development of sodium chlorite and glucono delta-lactone incorporated PLA film for microbial inactivation on fresh tomato. Food Res Int 2020; 132:109067. [PMID: 32331688 DOI: 10.1016/j.foodres.2020.109067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 11/19/2022]
Abstract
Chlorine dioxide (ClO2) is an effective disinfectant used in the sanitization of fresh produce. Glucono delta-lactone (GDL), widely used as an acidifier during food processing, can be partially hydrolyzed to become a weak acid-gluconic acid under chemical equilibrium upon dissolution in water. This study focused on the development of a novel polylactic acid (PLA) film which incorporated with sodium chlorite (NaClO2) and GDL for ClO2(g) generation. The effects of PLA amount, NaClO2 + GDL/PLA ratio, NaClO2/GDL ratio, temperature and relative humidity on the release profiles of ClO2(g) were elucidated. The storage test indicated that film efficacy was well maintained after 4 weeks of storage under ambient conditions. The microbial inactivation results revealed that ClO2(g) generated from the films reduced populations of surface-inoculated Salmonella and Escherichia coli O157:H7 from ca. 5 log CFU/tomato to undetectable level (<1 log CFU/tomato) within 2 and 4 h respectively and the complete elimination in populations of both bacterial species was maintained throughout the 14-day storage period at both 10 and 22 °C. The sensory properties of treated tomatoes were evaluated and exhibited no significant difference (p > 0.05) compared to controls except for appearance on day 14 under 22 °C storage.
Collapse
Affiliation(s)
- Siyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, PR China; U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Tony Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Shiowshuh Sheen
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - LinShu Liu
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Vijay Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Kit Yam
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
37
|
Wang R, Zhou Y, Kalchayanand N, Harhay DM, Wheeler TL. Effectiveness and Functional Mechanism of a Multicomponent Sanitizer against Biofilms Formed by Escherichia coli O157:H7 and Five Salmonella Serotypes Prevalent in the Meat Industry. J Food Prot 2020; 83:568-575. [PMID: 32221560 DOI: 10.4315/0362-028x.jfp-19-393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/20/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Biofilm formation by Escherichia coli O157:H7 and Salmonella enterica at meat processing plants poses a potential risk of meat product contamination. Many common sanitizers are unable to completely eradicate biofilms formed by these foodborne pathogens because of the three-dimensional biofilm structure and the presence of bacterial extracellular polymeric substances (EPSs). A novel multifaceted approach combining multiple chemical reagents with various functional mechanisms was used to enhance the effectiveness of biofilm control. We tested a multicomponent sanitizer consisting of a quaternary ammonium compound (QAC), hydrogen peroxide, and the accelerator diacetin for its effectiveness in inactivating and removing Escherichia coli O157:H7 and Salmonella enterica biofilms under meat processing conditions. E. coli O157:H7 and Salmonella biofilms on common contact surfaces were treated with 10, 20, or 100% concentrations of the multicomponent sanitizer solution for 10 min, 1 h, or 6 h, and log reductions in biofilm mass were measured. Scanning electron microscopy (SEM) was used to directly observe the effect of sanitizer treatment on biofilm removal and bacterial morphology. After treatment with the multicomponent sanitizer, viable E. coli O157:H7 and Salmonella biofilm cells were below the limit of detection, and the prevalence of both pathogens was low. After treatment with a QAC-based control sanitizer, surviving bacterial cells were countable, and pathogen prevalence was higher. SEM analysis of water-treated control samples revealed the three-dimensional biofilm structure with a strong EPS matrix connecting bacteria and the contact surface. Treatment with 20% multicomponent sanitizer for 10 min significantly reduced biofilm mass and weakened the EPS connection. The majority of the bacterial cells had altered morphology and compromised membrane integrity. Treatment with 100% multicomponent sanitizer for 10 min dissolved the EPS matrix, and no intact biofilm structure was observed; instead, scattered clusters of bacterial aggregates were detected, indicating the loss of cell viability and biofilm removal. These results indicate that the multicomponent sanitizer is effective, even after short exposure with dilute concentrations, against E. coli O157:H7 and S. enterica biofilms. HIGHLIGHTS
Collapse
Affiliation(s)
- Rong Wang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Norasak Kalchayanand
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933
| | - Dayna M Harhay
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933.,(ORCID: https://orcid.org/0000-0002-6571-9097 [T.L.W.])
| |
Collapse
|
38
|
Fan L, Ismail BB, Hou F, Muhammad AI, Zou M, Ding T, Liu D. Thermosonication damages the inner membrane of Bacillus subtilis spores and impels their inactivation. Food Res Int 2019; 125:108514. [DOI: 10.1016/j.foodres.2019.108514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/25/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
|
39
|
Zhang Y, Miao Z, Huang X, Wang X, Liu J, Wang G. Laser Tweezers Raman Spectroscopy (LTRS) to Detect Effects of Chlorine Dioxide on Individual Nosema bombycis Spores. APPLIED SPECTROSCOPY 2019; 73:774-780. [PMID: 30444144 DOI: 10.1177/0003702818817522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The microsporidium Nosema bombycis (Nb) causes pebrine, a fatal disease in sericulture. Nb is effectively killed by chlorine dioxide (ClO2); however, the precise killing mechanism remains unclear. We used laser tweezers Raman spectroscopy (LTRS) to monitor the action of ClO2 on individual Nb spores in real time. Raman peaks of ClO2 appeared in Nb spores, corresponding to decreased peaks of trehalose that gradually disappeared. A peak (1658 cm-1) corresponding to the protein α-helix significantly weakened while that (1668 cm-1) corresponding to irregular protein structures was enhanced; their intensities were negatively correlated in a certain time range and dependent on ClO2 concentration. The intensities of peaks at 782 cm-1 (nucleic acids) and 1004 cm-1 (phenylalanine of protein) did not change evidently even under extremely high ClO2 concentrations. Thus, ClO2 rapidly permeates the Nb spore wall, changing the protein secondary structure to lose biological function and destroy permeability, causing trehalose to leak out. These effects are ClO2 concentration-dependent, but no other obvious changes to biomacromolecules were detected. Single-cell analysis using LTRS is an effective method to monitor the action of chemical sporicides on microbes in real time, providing insight into the heterogeneity of cell stress resistance.
Collapse
Affiliation(s)
- Yu Zhang
- 1 School of Physical Science and Technology, Guangxi Normal University, Guangxi, China
- 2 Guangxi Academy of Sciences, Guangxi, China
| | - Zhenbin Miao
- 1 School of Physical Science and Technology, Guangxi Normal University, Guangxi, China
- 2 Guangxi Academy of Sciences, Guangxi, China
| | - Xuhua Huang
- 3 Guangxi Academy of Sericultural Sciences, Guangxi, China
| | | | - Junxian Liu
- 1 School of Physical Science and Technology, Guangxi Normal University, Guangxi, China
| | - Guiwen Wang
- 2 Guangxi Academy of Sciences, Guangxi, China
| |
Collapse
|
40
|
Nakpan W, Yermakov M, Indugula R, Reponen T, Grinshpun SA. Inactivation of bacterial and fungal spores by UV irradiation and gaseous iodine treatment applied to air handling filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:59-65. [PMID: 30927728 DOI: 10.1016/j.scitotenv.2019.03.310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 05/27/2023]
Abstract
Exposure to viable bacterial and fungal spores re-aerosolized from air handling filters may create a major health risk. Assessing and controlling this exposure have been of interest to the bio-defense and indoor air quality communities. Methods are being developed for inactivating stress-resistant viable microorganisms collected on ventilation filters. Here we investigated the inactivation of spores of Bacillus thuringiensis var. kurstaki (Btk), a recognized simulant for B. antracis, and Aspergillus fumigatus, a common opportunistic pathogen used as an indicator for indoor air quality. The viability change was measured on filters treated with ultraviolet (UV) irradiation and gaseous iodine. The spores were collected on high-efficiency particulate air (HEPA) and non-HEPA filters, both flattened for testing purposes to represent "surface" filters. A mixed cellulose ester (MCE) membrane filter was also tested as a reference. Additionally, a commercial HEPA unit with a deep-bed (non-flattened) filter was tested. Combined treatments of Btk spores with UV and iodine on MCE filter produced a synergistic inactivation effect. No similar synergy was observed for A. fumigatus. For spores collected on an MCE filter, the inactivation effect was about an order of magnitude greater for Btk compared to A. fumigatus. The filter type was found to be an important factor affecting the inactivation of Btk spores while it was not as influential for A. fumigatus. Overall, the combined effect of UV irradiation and gaseous iodine on viable bacterial and fungal spores collected on flat filters was found to be potent. The benefit of either simultaneous or sequential treatment was much lower for Btk spores embedded inside the deep-bed (non-flattened) HEPA filter, but for A. fumigatus the inactivation on flattened and non-flattened HEPA filters was comparable. For both species, applying UV first and gaseous iodine second produced significantly higher inactivation than when applying them simultaneously or in an opposite sequence.
Collapse
Affiliation(s)
- Worrawit Nakpan
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Michael Yermakov
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Reshmi Indugula
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Tiina Reponen
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Sergey A Grinshpun
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
41
|
Ghosh S, Joseph G, Korza G, He L, Yuan J, Dong W, Setlow B, Li Y, Savage P, Setlow P. Effects of the microbicide ceragenin CSA‐13 on and properties ofBacillus subtilisspores prepared on two very different media. J Appl Microbiol 2019; 127:109-120. [DOI: 10.1111/jam.14300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/23/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022]
Affiliation(s)
- S. Ghosh
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
- Department of Science and Mathematics Capital Community College Hartford CT USA
| | - G. Joseph
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - G. Korza
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - L. He
- Department of Physics East Carolina University Greenville NC USA
- School of Electronic Engineering Dongguan University of Technology Dongguan People’s Republic of China
| | - J.‐H. Yuan
- Department of Physics East Carolina University Greenville NC USA
| | - W. Dong
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
- School of Resource and Environmental Engineering Jiangxi University of Science and Technology Ganzhou China
| | - B. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - Y.‐Q. Li
- Department of Physics East Carolina University Greenville NC USA
- School of Electronic Engineering Dongguan University of Technology Dongguan People’s Republic of China
| | - P.B. Savage
- Department of Chemistry and Biochemistry Brigham Young University Provo UT USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| |
Collapse
|
42
|
Zhang X, Fu M, Chen Q. Effect of chlorine dioxide (ClO 2 ) on patulin produced by Penicillum expansum and involved mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1961-1968. [PMID: 30270445 DOI: 10.1002/jsfa.9394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Patulin, produced by Penicillium expansum in apple fruit, has side effects affecting human and animal health. The effect of chlorine dioxide (ClO2 ) on patulin production, and the mechanisms involved in this, were investigated. RESULTS Patulin production by P. expansum was reduced by ClO2 treatment, both in apples and in a potato dextrose broth (PDB) medium, which was attributed to the antifungal effect of ClO2 , but not the direct reaction between ClO2 and patulin. Fumigation with ClO2 also significantly reduced disease development in apples infected with P. expansum, and inhibited mycelial growth and spore germination. After ClO2 treatment, P. expansum mycelial morphology was strongly affected, leading to the loss of plasma membrane integrity and causing cellular leakage. CONCLUSION These data provide useful information that enables the inhibitory mechanism of ClO2 on patulin production by P. expansum to be better understood. It can also assist the development of effective methods to control patulin production in apples and other postharvest fruits. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Maorun Fu
- Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qingmin Chen
- Department of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan, China
| |
Collapse
|
43
|
Kim HJ, Tango CN, Chelliah R, Oh DH. Sanitization Efficacy of Slightly Acidic Electrolyzed Water against pure cultures of Escherichia coli, Salmonella enterica, Typhimurium, Staphylococcus aureus and Bacillus cereus spores, in Comparison with Different Water Hardness. Sci Rep 2019; 9:4348. [PMID: 30867518 PMCID: PMC6416306 DOI: 10.1038/s41598-019-40846-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
The Influence of water source on the production of slightly acidic electrolyzed water (SAEW) and its sanitization efficacy were investigated. Two different water sources (tap water (TW) and underground water (UGW)) were applied to produce slightly acidic electrolyzed water (SAEW) at same setting current, with similar electrolyte flow rate (EFR) and concentration. Properties of SAEW were evaluated based on pH, Available chlorine concentration (ACC) and oxidation-reduction potential (ORP). Methods for the optimization of SAEW production process was examined to obtain high ACC value by implanting different types of electrolytes. Effect of ACC and pH of SAEW were evaluated in vitro towards inactivate foodborne pathogens. The results indicated that TW with hardness of 29 ppm produced effectively SAEW than through UGW (12 ppm) using electrolytes. Likewise, low water hardness could be reinforced by combining HCL with a salt (NaCl or KCL). The optimized SAEW production system was determined at 4% HCl + 2.0 M KCL with EFR of 2 mL/min and 4% HCl + 3.0 M KCL with EFR of 2 mL/min resulting in higher ACC value of 56.5 and 65.5 ppm, respectively using TW. Pathogenic vegetative cells were completely inactivated within 1 min of treatment in SAEW with 20 ppm. Viability observations using Confocal and TEM Microscopy, Flow cytometry, and antimicrobial activity were carried out to confirm the sanitizing effect and cell membrane disruption. Based on the experimental results obtained, it provides a foundation for future advancement towards commercial application of SAEW in the food and agricultural industries.
Collapse
Affiliation(s)
- Hyun-Ji Kim
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Charles Nkufi Tango
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
- Division of Cancer Epidemiology and Management, Center for Uterine Cancer, National Cancer Center, Ilsandong-gu, Goyang, Republic of Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, School of Bioconvergence Science and Technology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
44
|
Ersoy ZG, Dinc O, Cinar B, Gedik ST, Dimoglo A. Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on Enterococcus faecalis. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Cortesão M, Fuchs FM, Commichau FM, Eichenberger P, Schuerger AC, Nicholson WL, Setlow P, Moeller R. Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions. Front Microbiol 2019; 10:333. [PMID: 30863384 PMCID: PMC6399134 DOI: 10.3389/fmicb.2019.00333] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
In a Mars exploration scenario, knowing if and how highly resistant Bacillus subtilis spores would survive on the Martian surface is crucial to design planetary protection measures and avoid false positives in life-detection experiments. Therefore, in this study a systematic screening was performed to determine whether B. subtilis spores could survive an average day on Mars. For that, spores from two comprehensive sets of isogenic B. subtilis mutant strains, defective in DNA protection or repair genes, were exposed to 24 h of simulated Martian atmospheric environment with or without 8 h of Martian UV radiation [M(+)UV and M(-)UV, respectively]. When exposed to M(+)UV, spore survival was dependent on: (1) core dehydration maintenance, (2) protection of DNA by α/β-type small acid soluble proteins (SASP), and (3) removal and repair of the major UV photoproduct (SP) in spore DNA. In turn, when exposed to M(-)UV, spore survival was mainly dependent on protection by the multilayered spore coat, and DNA double-strand breaks represent the main lesion accumulated. Bacillus subtilis spores were able to survive for at least a limited time in a simulated Martian environment, both with or without solar UV radiation. Moreover, M(-)UV-treated spores exhibited survival rates significantly higher than the M(+)UV-treated spores. This suggests that on a real Martian surface, radiation shielding of spores (e.g., by dust, rocks, or spacecraft surface irregularities) might significantly extend survival rates. Mutagenesis were strongly dependent on the functionality of all structural components with small acid-soluble spore proteins, coat layers and dipicolinic acid as key protectants and efficiency DNA damage removal by AP endonucleases (ExoA and Nfo), non-homologous end joining (NHEJ), mismatch repair (MMR) and error-prone translesion synthesis (TLS). Thus, future efforts should focus on: (1) determining the DNA damage in wild-type spores exposed to M(+/-)UV and (2) assessing spore survival and viability with shielding of spores via Mars regolith and other relevant materials.
Collapse
Affiliation(s)
- Marta Cortesão
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Felix M Fuchs
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Patrick Eichenberger
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Andrew C Schuerger
- Department of Plant Pathology, Space Life Sciences Laboratory, University of Florida, Merritt Island, FL, United States
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, Space Life Sciences Laboratory, University of Florida, Merritt Island, FL, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, United States
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
46
|
Inhibitory of grey mold on green pepper and winter jujube by chlorine dioxide (ClO2) fumigation and its mechanisms. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Setlow P. Observations on research with spores of Bacillales and Clostridiales species. J Appl Microbiol 2019; 126:348-358. [PMID: 30106202 PMCID: PMC6329651 DOI: 10.1111/jam.14067] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
Abstract
The purpose of this article is to highlight some areas of research with spores of bacteria of Firmicute species in which the methodology too commonly used is not optimal and generates misleading results. As a consequence, conclusions drawn from data obtained are often flawed or not appropriate. Topics covered in the article include the following: (i) the importance of using well-purified bacterial spores in studies on spore resistance, composition, killing, disinfection and germination; (ii) methods for obtaining good purification of spores of various species; (iii) appropriate experimental approaches to determine mechanisms of spore resistance and spore killing by a variety of agents, as well as known mechanisms of spore resistance and killing; (iv) common errors made in drawing conclusions about spore killing by various agents, including failure to neutralize chemical agents before plating for viable spore enumeration, and equating correlations between changes in spore properties accompanying spore killing with causation. It is hoped that a consideration of these topics will improve the quality of spore research going forward.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305 USA
| |
Collapse
|
48
|
Zhang C, Brown PJB, Miles RJ, White TA, Grant DG, Stalla D, Hu Z. Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection. WATER RESEARCH 2019; 149:640-649. [PMID: 30594003 DOI: 10.1016/j.watres.2018.10.062] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 05/22/2023]
Abstract
Peracetic acid (PAA) is a promising alternative to chlorine for disinfection; however, bacterial regrowth after PAA disinfection is poorly understood. This study compared the regrowth of bacteria (Gram-negative Pseudomonas aeruginosa PAO1 and Gram-positive Bacillus sp.) after disinfection with PAA or free chlorine. In the absence of organic matter, PAA and free chlorine prevented the regrowth of planktonic cells of P. aeruginosa PAO1 at C·t (= disinfectant concentration × contact time) doses of (28.5 ± 9.8) mg PAA·min·L-1 and (22.5 ± 10.6) mg Cl2·min·L-1, respectively, suggesting that they had comparable efficiencies in preventing the regrowth of planktonic bacteria. For comparison, the minimum C·t doses of PAA and free chlorine to prevent the regrowth of P. aeruginosa PAO1 biofilm cells in the absence of organic matter were (14,000 ± 1,732) mg PAA·min·L-1 and (6,500 ± 2,291) mg Cl2·min·L-1, respectively. PAA was less effective than free chlorine in killing bacteria within biofilms in the absence of organic matter most likely because PAA reacts with biofilm matrix constituents slower than free chlorine. In the presence of organic matter, although the bactericidal efficiencies of both disinfectants significantly decreased, PAA was less affected due to its slower reaction with organic matter and/or slower self-decomposition. For instance, in a dilute Lysogeny broth-Miller, the minimum concentrations of PAA and free chlorine to prevent the regrowth of planktonic P. aeruginosa PAO1 were 20 mg PAA·L-1 and 300 mg Cl2·L-1, respectively. While both disinfectants are strong oxidants disrupting cell membrane, environmental scanning electron microscopy (ESEM) revealed that PAA made holes in the center of the cells, whereas free chlorine desiccated the cells. Overall, this study shows that PAA is a powerful disinfectant to prevent bacterial regrowth even in the presence of organic matter.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States.
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, United States
| | - Randall J Miles
- College of Agriculture, Food and Natural Resources (CAFNR), University of Missouri, Columbia, MO, 65211, United States
| | - Tommi A White
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, United States
| | - DeAna G Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, United States
| | - David Stalla
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, United States
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
49
|
Rao L, Zhao L, Wang Y, Chen F, Hu X, Setlow P, Liao X. Mechanism of inactivation of Bacillus subtilis spores by high pressure CO 2 at high temperature. Food Microbiol 2019; 82:36-45. [PMID: 31027794 DOI: 10.1016/j.fm.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 11/26/2022]
Abstract
Spores of wild-type Bacillus subtilis and some isogenic mutant strains were treated by high pressure CO2 (HPCD) at high temperature (HT) (HPCD + HT) at 20 MPa and 84-86 °C for 0-60 min, and centrifuged on a high density solution to obtain pelleted spores that retained CaDPA and light spores that lost CaDPA. All treated spores were analyzed for viability, and tested for germination, outgrowth, core protein damage, mutagenesis and inner membrane (IM) properties. The results showed that (i) with HPCD + HT treated spores, most pelleted spores and all light spores were dead; ii) a significant amount of dead HPCD + HT-treated spores that retained CaDPA germinated, but outgrowth was blocked; (iii) minimal mutants were generated in survivors of HPCD + HT treatment; (iv) the GFP fluorescence decrease in HPCD + HT-treated spores with high GFP levels was slower than spore inactivation; (v) the IM of HPCD + HT-treated spores that retained CaDPA lost its ability to retain CaDPA at 85 °C, and almost all of these spores' outgrowth in high salt was blocked; and (vi) HPCD + HT-treated spores that retained CaDPA germinated with l-valine or AGFK were almost all stained with propidium iodide. These results indicated that HPCD + HT inactivated B. subtilis spores by damaging spores' IM, thus blocking spore outgrowth after germination.
Collapse
Affiliation(s)
- Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Yongtao Wang
- Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Fang Chen
- Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Xiaosong Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Beijing Key Laboratory for Food Nonthermal Processing, National Engineering Research Center for Fruit & Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China.
| |
Collapse
|
50
|
Applications of gaseous chlorine dioxide on postharvest handling and storage of fruits and vegetables – A review. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.07.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|