1
|
Khodanovich M, Svetlik M, Naumova A, Kamaeva D, Usova A, Kudabaeva M, Anan’ina T, Wasserlauf I, Pashkevich V, Moshkina M, Obukhovskaya V, Kataeva N, Levina A, Tumentceva Y, Yarnykh V. Age-Related Decline in Brain Myelination: Quantitative Macromolecular Proton Fraction Mapping, T2-FLAIR Hyperintensity Volume, and Anti-Myelin Antibodies Seven Years Apart. Biomedicines 2023; 12:61. [PMID: 38255168 PMCID: PMC10812983 DOI: 10.3390/biomedicines12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Age-related myelination decrease is considered one of the likely mechanisms of cognitive decline. The present preliminary study is based on the longitudinal assessment of global and regional myelination of the normal adult human brain using fast macromolecular fraction (MPF) mapping. Additional markers were age-related changes in white matter (WM) hyperintensities on FLAIR-MRI and the levels of anti-myelin autoantibodies in serum. Eleven healthy subjects (33-60 years in the first study) were scanned twice, seven years apart. An age-related decrease in MPF was found in global WM, grey matter (GM), and mixed WM-GM, as well as in 48 out of 82 examined WM and GM regions. The greatest decrease in MPF was observed for the frontal WM (2-5%), genu of the corpus callosum (CC) (4.0%), and caudate nucleus (5.9%). The age-related decrease in MPF significantly correlated with an increase in the level of antibodies against myelin basic protein (MBP) in serum (r = 0.69 and r = 0.63 for global WM and mixed WM-GM, correspondingly). The volume of FLAIR hyperintensities increased with age but did not correlate with MPF changes and the levels of anti-myelin antibodies. MPF mapping showed high sensitivity to age-related changes in brain myelination, providing the feasibility of this method in clinics.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Anna Naumova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Radiology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Daria Kamaeva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia;
| | - Anna Usova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 12/1 Savinykh St., Tomsk 634009, Russia;
| | - Marina Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Tatyana Anan’ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Irina Wasserlauf
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Valentina Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Marina Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Victoria Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Nadezhda Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Anastasia Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Medica Diagnostic and Treatment Center, 86 Sovetskaya st., Tomsk 634510, Russia
| | - Yana Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
2
|
Lerner A, Benzvi C. "Let Food Be Thy Medicine": Gluten and Potential Role in Neurodegeneration. Cells 2021; 10:756. [PMID: 33808124 PMCID: PMC8065505 DOI: 10.3390/cells10040756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Wheat is a most favored staple food worldwide and its major protein is gluten. It is involved in several gluten dependent diseases and lately was suggested to play a role in non-celiac autoimmune diseases. Its involvement in neurodegenerative conditions was recently suggested but no cause-and-effect relationship were established. The present narrative review expands on various aspects of the gluten-gut-brain axes events, mechanisms and pathways that connect wheat and gluten consumption to neurodegenerative disease. Gluten induced dysbiosis, increased intestinal permeabillity, enteric and systemic side effects, cross-reactive antibodies, and the sequence of homologies between brain antigens and gluten are highlighted. This combination may suggest molecular mimicry, alluding to some autoimmune aspects between gluten and neurodegenerative disease. The proverb of Hippocrates coined in 400 BC, "let food be thy medicine," is critically discussed in the frame of gluten and potential neurodegeneration evolvement.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel;
| | | |
Collapse
|
3
|
Vojdani A, Vojdani E, Kharrazian D. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Front Immunol 2021; 11:617089. [PMID: 33584709 PMCID: PMC7873987 DOI: 10.3389/fimmu.2020.617089] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
We sought to determine whether immune reactivity occurs between anti-SARS-CoV-2 protein antibodies and human tissue antigens, and whether molecular mimicry between COVID-19 viral proteins and human tissues could be the cause. We applied both human monoclonal anti-SARS-Cov-2 antibodies (spike protein, nucleoprotein) and rabbit polyclonal anti-SARS-Cov-2 antibodies (envelope protein, membrane protein) to 55 different tissue antigens. We found that SARS-CoV-2 antibodies had reactions with 28 out of 55 tissue antigens, representing a diversity of tissue groups that included barrier proteins, gastrointestinal, thyroid and neural tissues, and more. We also did selective epitope mapping using BLAST and showed similarities and homology between spike, nucleoprotein, and many other SARS-CoV-2 proteins with the human tissue antigens mitochondria M2, F-actin and TPO. This extensive immune cross-reactivity between SARS-CoV-2 antibodies and different antigen groups may play a role in the multi-system disease process of COVID-19, influence the severity of the disease, precipitate the onset of autoimmunity in susceptible subgroups, and potentially exacerbate autoimmunity in subjects that have pre-existing autoimmune diseases. Very recently, human monoclonal antibodies were approved for use on patients with COVID-19. The human monoclonal antibodies used in this study are almost identical with these approved antibodies. Thus, our results can establish the potential risk for autoimmunity and multi-system disorders with COVID-19 that may come from cross-reactivity between our own human tissues and this dreaded virus, and thus ensure that the badly-needed vaccines and treatments being developed for it are truly safe to use against this disease.
Collapse
Affiliation(s)
- Aristo Vojdani
- Department of Immunology, Immunosciences Laboratory, Inc., Los Angeles, CA, United States.,Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | | | - Datis Kharrazian
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
4
|
Bozhenko M, Boichuk M, Bila G, Nehrych T, Bilyy R. Freezing influences, the exposure of IgG glycans in sera from multiple sclerosis patients. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Vojdani A, Vojdani E, Kharrazian D. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Front Immunol 2020; 11:617089. [PMID: 33584709 DOI: 10.3389/fimmu.2020.617089/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023] Open
Abstract
We sought to determine whether immune reactivity occurs between anti-SARS-CoV-2 protein antibodies and human tissue antigens, and whether molecular mimicry between COVID-19 viral proteins and human tissues could be the cause. We applied both human monoclonal anti-SARS-Cov-2 antibodies (spike protein, nucleoprotein) and rabbit polyclonal anti-SARS-Cov-2 antibodies (envelope protein, membrane protein) to 55 different tissue antigens. We found that SARS-CoV-2 antibodies had reactions with 28 out of 55 tissue antigens, representing a diversity of tissue groups that included barrier proteins, gastrointestinal, thyroid and neural tissues, and more. We also did selective epitope mapping using BLAST and showed similarities and homology between spike, nucleoprotein, and many other SARS-CoV-2 proteins with the human tissue antigens mitochondria M2, F-actin and TPO. This extensive immune cross-reactivity between SARS-CoV-2 antibodies and different antigen groups may play a role in the multi-system disease process of COVID-19, influence the severity of the disease, precipitate the onset of autoimmunity in susceptible subgroups, and potentially exacerbate autoimmunity in subjects that have pre-existing autoimmune diseases. Very recently, human monoclonal antibodies were approved for use on patients with COVID-19. The human monoclonal antibodies used in this study are almost identical with these approved antibodies. Thus, our results can establish the potential risk for autoimmunity and multi-system disorders with COVID-19 that may come from cross-reactivity between our own human tissues and this dreaded virus, and thus ensure that the badly-needed vaccines and treatments being developed for it are truly safe to use against this disease.
Collapse
Affiliation(s)
- Aristo Vojdani
- Department of Immunology, Immunosciences Laboratory, Inc., Los Angeles, CA, United States
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | | | - Datis Kharrazian
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
6
|
Lambert J, Mejia S, Vojdani A. Plant and human aquaporins: pathogenesis from gut to brain. Immunol Res 2018; 67:12-20. [DOI: 10.1007/s12026-018-9046-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Paryzhak S, Dumych T, Mahorivska I, Boichuk M, Bila G, Peshkova S, Nehrych T, Bilyy R. Neutrophil-released enzymes can influence composition of circulating immune complexes in multiple sclerosis. Autoimmunity 2018; 51:297-303. [PMID: 30369266 DOI: 10.1080/08916934.2018.1514390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
During NET formation, the content of neutrophils granules is released into the intercellular milieu. Consisting of many proteases and ROS species, formed NETs were shown to degrade cytokines (Schauer, Nat Med, 2014); while the content of neutrophil's azurophilic granules proved to contain glycosidases, secreted upon activation (Thaysen-Andersen, JBC, 2015), and formation of autoantibodies to neutrophil beta-glucoronidase was connected with the level of anti-MPO antibodies (Ab) (Martensson, Autoimmunity, 1992). Taking into account these facts, we aimed to investigate the possibility of NET-related changes in glycan composition on circulating IgG molecules and IgG-IgM immune complexes in multiple sclerosis (MS). This autoimmune disorder still has no reliable detection markers or established ways of treatment, besides widely accepted interferon therapy, making it a particularly interesting clinical condition. By applying capture lectin-ELISA, we analysed binding of α2,6 sialyl-specific lectins SNA, PSqL, and core α1,6-fucose specific lectin AAL to circulating IgG and related complexes in five groups of MS patients: untreated (17 persons); undergoing therapy with interferon (IFN) β-1 b (15 persons), corticosteroids (methylprednisolone) (12 persons) and anti-B-cell monoclonal Ab (12 persons: Ocrelizumab, 6 persons and alemtuzumab, 6 persons). A group of 23 healthy donors served as control. Significant increase in neutrophil elastase activity, observed in the group of patients under corticosteroid treatment was also accompanied by sialyl-specific PSqL and SNA lectin binding to captured IgG molecules. Subsequent analysis demonstrated that sialic acid residues were exposed on free IgG and on circulating IgG-IgM immune complexes. Increased lectin binding was not observed for anti-myelin basic protein (one of the major autoAb in MS) Ab compared to total serum Ab. IFN therapy was accompanied by low neutrophil elastase activity and low amount of circulating immune complexes. Incubation of in vitro generated NETs with human serum revealed the digestion of high-molecular weight immune complexes with subsequent exposure of hidden glycoepitops. Obtained data indicate the potential of neutrophil-derived proteases to modify (partially degrade) circulating immune complexes leading to exposure of internal glycoepitops.
Collapse
Affiliation(s)
- S Paryzhak
- a Dept. of Histology and Cytology, Danylo Halytsky Lviv National Medical University , Pekarska str. 69,79010, Lviv , Ukraine
| | - T Dumych
- a Dept. of Histology and Cytology, Danylo Halytsky Lviv National Medical University , Pekarska str. 69,79010, Lviv , Ukraine
| | - I Mahorivska
- b Department of Internal Medicine 3 - Rheumatology and Immunology , Friedrich-Alexander University at Erlangen-Nurnberg (FAU) and Universitätsklinikum Erlangen , Erlangen , Germany
| | - M Boichuk
- a Dept. of Histology and Cytology, Danylo Halytsky Lviv National Medical University , Pekarska str. 69,79010, Lviv , Ukraine
| | - G Bila
- a Dept. of Histology and Cytology, Danylo Halytsky Lviv National Medical University , Pekarska str. 69,79010, Lviv , Ukraine
| | - S Peshkova
- a Dept. of Histology and Cytology, Danylo Halytsky Lviv National Medical University , Pekarska str. 69,79010, Lviv , Ukraine
| | - T Nehrych
- a Dept. of Histology and Cytology, Danylo Halytsky Lviv National Medical University , Pekarska str. 69,79010, Lviv , Ukraine
| | - R Bilyy
- a Dept. of Histology and Cytology, Danylo Halytsky Lviv National Medical University , Pekarska str. 69,79010, Lviv , Ukraine
| |
Collapse
|
8
|
Tolpeeva OA, Zakharova MN. The diagnostic significance of antibodies to myelin proteins in demyelinating diseases of the central nervous system. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Cellina M, Fetoni V, Ciocca M, Pirovano M, Oliva G. Anti-myelin oligodendrocyte glycoprotein antibodies: Magnetic resonance imaging findings in a case series and a literature review. Neuroradiol J 2017; 31:69-82. [PMID: 28379073 DOI: 10.1177/1971400917698856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Myelin oligodendrocyte glycoprotein is a protein exclusively expressed on the surface of oligodendrocytes and myelin in the central nervous system. Antibodies against myelin oligodendrocyte glycoprotein were initially detected in children with demyelinating syndromes, and more recently reported in a broad spectrum of central nervous system demyelinating diseases in adults, including neuromyelitis optica spectrum disorders and bilateral optic neuritis. Patients with myelin oligodendrocyte glycoprotein antibody-associated demyelination appear to have unique clinical and radiological features. To the best of our knowledge a series of Italian patients with optic neuritis and positivity to myelin oligodendrocyte glycoprotein antibodies has not yet been reported and the paper on myelin oligodendrocyte glycoprotein antibodies are more focused on clinical features, diagnosis and outcome than on the radiological appearance, so we want to retrospectively report magnetic resonance imaging features of a group of eight patients, who came to our Ophthalmologic Emergency Department for optic neuritis and were found seropositive for myelin oligodendrocyte glycoprotein antibodies, comparing our data with the findings described in the literature.
Collapse
Affiliation(s)
| | | | - Matteo Ciocca
- 2 Neurology Department, ASST Fatebenefratelli Sacco, Italy
| | - Marta Pirovano
- 2 Neurology Department, ASST Fatebenefratelli Sacco, Italy
| | | |
Collapse
|
10
|
Fan X, Jin T, Zhao S, Liu C, Han J, Jiang X, Jiang Y. Circulating CCR7+ICOS+ Memory T Follicular Helper Cells in Patients with Multiple Sclerosis. PLoS One 2015; 10:e0134523. [PMID: 26231034 PMCID: PMC4521720 DOI: 10.1371/journal.pone.0134523] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/09/2015] [Indexed: 11/24/2022] Open
Abstract
Objective This study is aimed at examining the potential roles of circulating memory T follicular helper (Tfh) cells in patients with multiple sclerosis (MS). Methods The numbers of different subsets of circulating memory Tfh cells in 25 patients with relapsed MS before and after treatment as well as 14 healthy controls (HC) were examined by flow cytometry. The levels of plasma IL-21 in all patients and cerebrospinal fluid (CSF) IL-21 in some MS patients and controls with non-inflammatory neuronal diseases (NND) were measured by ELISA. Results In comparison with that in the HC, the numbers of circulating CD3+CD4+CXCR5+CD45RA-, ICOS+, CCR7+ and CCR7+ICOS+ memory Tfh cells and the levels of plasma IL-21 significantly increased in MS patients, but significantly decreased in the patients with complete remission (CR). The levels of CSF IL-21 were significantly higher in the MS patients than that in the NND patients. The numbers of CCR7+ICOS+ memory Tfh cells were positively correlated with the EDSS scores, the levels of plasma and CSF IL-21, IgG, MBP-Ab or MOG-Ab. Conclusions Our findings indicated that circulating memory Tfh cells, especially CCR7+ICOS+ memory Tfh cells, may be associated with the relapse of MS and may serve as a new therapeutic target.
Collapse
Affiliation(s)
- Xueli Fan
- Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Tao Jin
- Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Songchen Zhao
- Genetic Diagnosis Center, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Caiyun Liu
- Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinming Han
- Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xinmei Jiang
- Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
- * E-mail: (YJ); (XJ)
| | - Yanfang Jiang
- Genetic Diagnosis Center, the First Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory for Zoonosis Research, Ministry of Education, the First Hospital of Jilin University, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
- * E-mail: (YJ); (XJ)
| |
Collapse
|
11
|
Detection of Antibodies against Human and Plant Aquaporins in Patients with Multiple Sclerosis. Autoimmune Dis 2015; 2015:905208. [PMID: 26290755 PMCID: PMC4529886 DOI: 10.1155/2015/905208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the body's central nervous system. Around 90% of MS sufferers are diagnosed with relapsing-remitting MS (RRMS). We used ELISA to measure IgG, IgA, and IgM antibodies against linear epitopes of human and plant aquaporins (AQP4) as well as neural antigens in RRMS patients and controls to determine whether patients suffering from RRMS have simultaneous elevations in antibodies against these peptides and antigens. In comparison to controls, significant elevations in isotype-specific antibodies against human and plant AQP4 and neural antigens such as MBP, MOG, and S100B were detected in RRMS patients, indicating a high correlation in antibody reaction between plant aquaporins and brain antigens. This correlation between the reactivities of RRMS patients with various tested antigens was the most significant for the IgM isotype. We conclude that a subclass of patients with RRMS reacts to both plant and human AQP4 peptides. This immune reaction against different plant aquaporins may help in the development of dietary modifications for patients with MS and other neuroimmune disorders.
Collapse
|
12
|
Raphael I, Webb J, Stuve O, Haskins W, Forsthuber T. Body fluid biomarkers in multiple sclerosis: how far we have come and how they could affect the clinic now and in the future. Expert Rev Clin Immunol 2014; 11:69-91. [PMID: 25523168 DOI: 10.1586/1744666x.2015.991315] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system, which affects over 2.5 million people worldwide. Although MS has been extensively studied, many challenges still remain in regards to treatment, diagnosis and prognosis. Typically, prognosis and individual responses to treatment are evaluated by clinical tests such as the expanded disability status scale, MRI and presence of oligoclonal bands in the cerebrospinal fluid. However, none of these measures correlates strongly with treatment efficacy or disease progression across heterogeneous patient populations and subtypes of MS. Numerous studies over the past decades have attempted to identify sensitive and specific biomarkers for diagnosis, prognosis and treatment efficacy of MS. The objective of this article is to review and discuss the current literature on body fluid biomarkers in MS, including research on potential biomarker candidates in the areas of miRNA, mRNA, lipids and proteins.
Collapse
Affiliation(s)
- Itay Raphael
- University of Texas San Antonio - Biology, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
13
|
Mameli G, Cossu D, Cocco E, Masala S, Frau J, Marrosu MG, Sechi LA. Epstein-Barr virus and Mycobacterium avium subsp. paratuberculosis peptides are cross recognized by anti-myelin basic protein antibodies in multiple sclerosis patients. J Neuroimmunol 2014; 270:51-5. [PMID: 24642384 DOI: 10.1016/j.jneuroim.2014.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
Epstein-Barr virus and Mycobacterium avium subsp. paratuberculosis (MAP) have been associated to multiple sclerosis (MS). We searched for antibodies against the homologous peptides Epstein-Barr virus nuclear antigen 1 (EBNA1)400-413, MAP_0106c protein (MAP)121-132, and myelin basic protein (MBP)85-98 on a MS Sardinian cohort, showing that these antibodies are highly prevalent among MS patients compared to healthy controls. Competitive assay demonstrated that antibodies recognizing EBNA1400-413 and MAP121-132 cross-react with MBP85-98, possibly through a molecular mimicry mechanism. Indeed, the fact that peptides from different pathogens can be cross-recognized by antibodies targeting self-epitopes supports the hypothesis that EBV and MAP might trigger autoimmunity through a common target.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Italy
| | - Davide Cossu
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Italy
| | - Eleonora Cocco
- Centro Sclerosi Multipla, Dipartimento di Scienze Cardiovascolari e Neurologiche, Università di Cagliari, Italy
| | - Speranza Masala
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Italy
| | - Jessica Frau
- Centro Sclerosi Multipla, Dipartimento di Scienze Cardiovascolari e Neurologiche, Università di Cagliari, Italy
| | - Maria Giovanna Marrosu
- Centro Sclerosi Multipla, Dipartimento di Scienze Cardiovascolari e Neurologiche, Università di Cagliari, Italy
| | - Leonardo A Sechi
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia e Virologia, Università di Sassari, Italy.
| |
Collapse
|
14
|
Chauhan VS, Nelson DA, Marriott I, Bost KL. Alpha beta-crystallin expression and presentation following infection with murine gammaherpesvirus 68. Autoimmunity 2013; 46:399-408. [PMID: 23586607 DOI: 10.3109/08916934.2013.785535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alpha beta-crystallin (CRYAB) is a small heat shock protein that can function as a molecular chaperone and has protective effects for cells undergoing a variety of stressors. Surprisingly, CRYAB has been identified as one of the dominant autoantigens in multiple sclerosis. It has been suggested that autoimmune mediated destruction of this small heat shock protein may limit its protective effects, thereby exacerbating inflammation and cellular damage during multiple sclerosis. It is not altogether clear how autoimmunity against CRYAB might develop, or whether there are environmental factors which might facilitate the presentation of this autoantigen to CD4+ T lymphocytes. In the present study, we utilized an animal model of an Epstein Barr Virus (EBV)-like infection, murine gammaherpesvirus 68 (HV-68), to question whether such a virus could modulate the expression of CRYAB by antigen presenting cells. Following exposure to HV-68 and several other stimuli, in vitro secretion of CRYAB and subsequent intracellular accumulation were observed in cultured macrophages and dendritic cells. Following infection of mice with this virus, it was possible to track CRYAB expression in the spleen and in antigen presenting cell subpopulations, as well as its secretion into the blood. Mice immunized with human CRYAB mounted a significant immune response against this heat shock protein. Further, dendritic cells that were exposed to HV-68 could stimulate CD4+ T cells from CRYAB immunized mice to secrete interferon gamma. Taken together these studies are consistent with the notion of a gammaherpesvirus-induced CRYAB response in professional antigen presenting cells in this mouse model.
Collapse
Affiliation(s)
- Vinita S Chauhan
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
15
|
Abstract
BACKGROUND Autoantibodies targeted against a variety of self-antigens are detected in autoimmune diseases and cancer. Emerging evidence has suggested the involvement of environmental factors such as infections and xenobiotics, and some dietary proteins and their antibodies in the pathogenesis of many autoimmune diseases. These antibodies appear in the blood years before presentation of symptoms in various disorders. Therefore, these antibodies may be used as biomarkers for early detection of various diseases. OBJECTIVE To provide an overview of antibody arrays that are measured against different human tissue antigens, crossreactive epitopes of infectious agents, dietary proteins, and haptenic chemicals in autoimmune diseases and cancer. METHOD Microarray analysis of antigen-antibody reaction. CONCLUSION The application of these antibody arrays to human autoimmune disease is expanding and is allowing for the identification of patterns or antibody signatures, thus establishing the premises for increased sensitivity and specificity of prediction, as well as positive predictive values. The presence of these antibodies would not necessarily mean that a patient would definitely become sick but may give a percentage of risk for different conditions that may develop over future months or years. Using this high-throughput microarray method, it is possible to screen rapidly for dozens of autoantibodies at low cost. This is an important factor in the implementation of autoantibody testing as a routine part of medical examinations.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., 8693 Wilshire Blvd, Ste. 200, Beverly Hills, CA 90211, USA +1 310 657 1077 ; +1 310 657 1053 ;
| |
Collapse
|
16
|
Gramlich OW, Beck S, von Thun und Hohenstein-Blaul N, Boehm N, Ziegler A, Vetter JM, Pfeiffer N, Grus FH. Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 2013; 8:e57557. [PMID: 23451242 PMCID: PMC3581473 DOI: 10.1371/journal.pone.0057557] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/23/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND There is accumulating evidence that autoimmune components, such as autoantibodies and autoantibody depositions, play a role in the pathogenesis of neurodegenerative diseases like Alzheimeŕs disease or Multiple Sclerosis. Due to alterations of autoantibody patterns in sera and aqueous humor, an autoimmune component is also assumed in the pathogenesis of glaucoma, a common reason for irreversible blindness worldwide. So far there has been no convincing evidence that autoantibodies are accumulated in the retina of glaucoma patients and that the local immune homeostasis might be affected. METHODS AND RESULTS Six human glaucomatous donor eyes and nine samples from donors with no recorded ocular disease were included. Antibody microarrays were used to examine the patterns of pro-inflammatory proteins and complement proteins. Analysis of TNF-α and interleukin levels revealed a slight up-regulation exclusively in the glaucomatous group, while complement protein levels were not altered. IgG autoantibody accumulations and/or cellular components were determined by immunohistology (n = 4 per group). A significantly reduced number of retinal ganglion cells was found in the glaucomatous group (healthy: 104±7 nuclei/mm, glaucoma: 67±9 nuclei/mm; p = 0.0007). Cell loss was accompanied by strong retinal IgG autoantibody accumulations, which were at least twice as high as in healthy subjects (healthy: 5.0±0.5 IgG deposits/100 cells, glaucoma: 9.4±1.9 IgG deposits/100 cells; p = 0.004). CD27(+) cells and CD27(+)/IgG(+) plasma cells were observed in all glaucomatous subjects, but not in controls. CONCLUSION This work provides serious evidence for the occurrence of IgG antibody deposition and plasma cells in human glaucomatous retina. Moreover, the results suggest that these IgG deposits occurred in a pro-inflammatory environment which seems to be maintained locally by immune-competent cells like microglia. Thereby, glaucoma features an immunological involvement comparable to other neurodegenerative diseases, but also shows a multifactorial pathomechanism, which diverges and might be linked to the specific nature of both eye and retina.
Collapse
Affiliation(s)
- Oliver W. Gramlich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| | - Sabine Beck
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| | | | - Nils Boehm
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| | - Anika Ziegler
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| | - Jan M. Vetter
- Cornea Bank of Rhineland-Palatine, Department of Ophthalmology, University Medical Center Mainz, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| | - Franz H. Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center Mainz, Germany
| |
Collapse
|
17
|
Belogurov A, Smirnov I, Ponomarenko N, Gabibov A. Antibody-antigen pair probed by combinatorial approach and rational design: bringing together structural insights, directed evolution, and novel functionality. FEBS Lett 2012; 586:2966-73. [PMID: 22841717 DOI: 10.1016/j.febslet.2012.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
The unique hypervariability of the immunoglobulin (Ig) superfamily provides a means to create both binding and catalytic antibodies with almost any desired specificity and activity. The diversity of antigens and concept of adaptive response suggest that it is possible to find an antigen pair to any raised Ig. In the current review we discuss combinatorial approaches, which makes it possible to obtain an antibody with predefined properties, followed by 3D structure-based rational design to enhance or dramatically change its characteristics. A similar strategy, but applied to the second partner of the antibody-antigen pair, may result in selection of complementary substrates to the chosen Ig. Finally, 2D screening may be performed solving the "Chicken and Egg" problem when neither antibody nor antigen is known.
Collapse
Affiliation(s)
- Alexey Belogurov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | | | | |
Collapse
|
18
|
Computational analysis of high-density peptide microarray data with application from systemic sclerosis to multiple sclerosis. Autoimmun Rev 2012; 11:180-90. [DOI: 10.1016/j.autrev.2011.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Vural B, Uğurel E, Tüzün E, Kürtüncü M, Zuliani L, Cavuş F, Içöz S, Erdağ E, Gül A, Güre AO, Vincent A, Ozbek U, Eraksoy M, Akman-Demir G. Anti-neuronal and stress-induced-phosphoprotein 1 antibodies in neuro-Behçet's disease. J Neuroimmunol 2011; 239:91-7. [PMID: 21875754 DOI: 10.1016/j.jneuroim.2011.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/12/2011] [Accepted: 08/10/2011] [Indexed: 01/17/2023]
Abstract
No disease-specific neuronal antibodies have so far been defined in neuro-Behçet's disease (NBD). Immunohistochemistry and immunocytochemistry studies showed antibodies to hippocampal and cerebellar molecular layers and the surface antigens of cultured hippocampal neurons in sera and/or cerebrospinal fluids (CSF) of 13 of 20 NBD and 6 of 20 BD patients but not in multiple sclerosis or headache controls. Screening with a protein macroarray led to identification of stress-induced-phosphoprotein-1 (STIP-1) as an antigenic target. High-titer STIP-1-antibodies were detected in 6 NBD patients' sera but not in controls. These results suggest that neuronal antibodies could be useful as diagnostic biomarkers in NBD.
Collapse
Affiliation(s)
- Burçak Vural
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rothbard JB, Zhao X, Sharpe O, Strohman MJ, Kurnellas M, Mellins ED, Robinson WH, Steinman L. Chaperone activity of α B-crystallin is responsible for its incorrect assignment as an autoantigen in multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2011; 186:4263-8. [PMID: 21357544 DOI: 10.4049/jimmunol.1003934] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
For 15 y, α B-crystallin (heat shock protein [Hsp] B5) has been labeled an autoantigen in multiple sclerosis (MS) based on humoral and cellular responses found in humans and animal models. However, there have been several scientific inconsistencies with this assignment, ranging from studies demonstrating small differences in anticrystallin responses between patients and healthy individuals to the inability of crystallin-specific T cells to induce symptoms of experimental allergic encephalomyelitis in animal models. Experiments in this article demonstrate that the putative anti-HspB5 Abs from 23 MS patients cross-react with 7 other members of the human small Hsp family and were equally present in normal plasma. Biolayer interferometry demonstrates that the binding was temperature dependent, and that the calculated K(a) increased as the concentration of the sHsp decreased. These two patterns are characteristic of multiple binding sites with varying affinities, the composition of which changes with temperature, supporting the hypothesis that HspB5 bound the Ab and not the reverse. HspB5 also precipitated Ig heavy and L chains from sera from patients with MS. These results establish that small Hsps bind Igs with high affinity and refute much of the serological data used to assign α B-crystallin as an autoantigen.
Collapse
Affiliation(s)
- Jonathan B Rothbard
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
The experimental autoimmune encephalomyelitis model for proteomic biomarker studies: from rat to human. Clin Chim Acta 2011; 412:812-22. [PMID: 21333641 DOI: 10.1016/j.cca.2011.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/13/2023]
Abstract
Multiple sclerosis (MScl) is defined by central nervous system (CNS) inflammation, demyelination and axonal damage. Some of the disease mechanisms are known but the cause of this complex disorder stays an enigma. Experimental autoimmune encephalomyelitis (EAE) is an animal model mimicking many aspects of MScl. This review aims to provide an overview over proteomic biomarker studies in the EAE model emphasizing the translational aspects with respect to MScl in humans.
Collapse
|
22
|
O'Connor KC, Lopez-Amaya C, Gagne D, Lovato L, Moore-Odom NH, Kennedy J, Krupp L, Tenembaum S, Ness J, Belman A, Boyko A, Bykova O, Mah JK, Stoian CA, Waubant E, Kremenchutzky M, Ruggieri M, Bardini MR, Rensel M, Hahn J, Weinstock-Guttman B, Yeh EA, Farrell K, Freedman MS, Iivanainen M, Bhan V, Dilenge M, Hancock MA, Gano D, Fattahie R, Kopel L, Fournier AE, Moscarello M, Banwell B, Bar-Or A. Anti-myelin antibodies modulate clinical expression of childhood multiple sclerosis. J Neuroimmunol 2010; 223:92-9. [PMID: 20381173 DOI: 10.1016/j.jneuroim.2010.02.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/02/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
Anti-myelin basic protein (MBP) antibodies in pediatric-onset MS and controls were characterized. Serum samples were obtained from 94 children with MS and 106 controls. Paired CSF and serum were obtained from 25 children with MS at time of their initial episode of acute demyelinating syndrome (ADS). Complementary assays were applied across samples to evaluate the presence, and the physical binding properties, of anti-MBP antibodies. While the prevalence and titers of serum anti-MBP antibodies against both immature and mature forms of MBP were similar in children with MS and in controls, binding characteristics and formal Surface Plasmon Resonance (SPR) studies indicated surprisingly high binding affinities of all pediatric anti-MBP antibodies. Serum levels of anti-MBP antibodies correlated significantly with their CSF levels, and their presence in children with MS was associated with significantly increased risk of an acute disseminated encephalomyelitis-like initial clinical presentation. While antibodies to both immature and mature forms of MBP can be present as part of the normal pediatric humoral repertoire, these anti-myelin antibodies are of surprisingly high affinity, can access the CNS during inflammation, and have the capacity to modulate disease expression. Our findings identify an immune mechanism that could contribute to the observed heterogeneity in spectrum of clinical presentations in early-onset MS.
Collapse
Affiliation(s)
- K C O'Connor
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Harris VK, Sadiq SA. Disease biomarkers in multiple sclerosis: potential for use in therapeutic decision making. Mol Diagn Ther 2010; 13:225-44. [PMID: 19712003 DOI: 10.1007/bf03256329] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the brain and spinal cord that predominantly affects white matter. MS has a variable clinical presentation and has no 'diagnostic' laboratory test; this often results in delays to definite diagnosis. In confronting the disease, early diagnosis and appropriate, timely therapeutic intervention are critical factors in ensuring favorable long-term outcomes. The availability of reliable biomarkers could radically alter our management of MS at critical phases of the disease spectrum. Identification of markers that could predict the development of MS in high-risk populations would allow for intervention strategies that may prevent evolution to definite disease. Work with anti-myelin antibodies and the ongoing analysis of microarray gene expression have thus far not yielded biomarkers that predict future disease development. Similarly, extensive studies with serum and cerebrospinal fluid (CSF) have not yielded a disease-specific and sensitive diagnostic biomarker for MS. Establishment of disease diagnosis always leads to questions about long-term prognosis because in an individual patient the natural history of the disease is clinically unpredictable. Biomarkers that correlate with myelin loss, spinal cord disease, grey matter and subcortical demyelination need to be developed in order to accurately predict the disease course. The bulk of effort in biomarker development in MS has been concentrated in the area of monitoring disease activity. At present, a disease 'activation' panel of CSF biomarkers would include the following: interleukin-6 or its soluble receptor, nitric oxide and nitric oxide synthase, osteopontin, and fetuin-A. Although disease activity in MS is predominantly inflammatory, disease progression is likely to be the result of neurodegeneration. Therefore, the roles of proteins indicative of neuronal, axonal, and glial loss such as neurofilaments, tau, 14-3-3 proteins, and N-acetylaspartate are all under investigation, as are proteins affecting remyelination and regeneration, such as Nogo-A. With the increasing awareness of cognition dysfunction in MS, molecules such as apolipoprotein and proteins in the amyloid precursor protein pathway implicated in dementia are also being examined. Serum biomarkers that help monitor therapeutic efficacy such as the titer of antibody to beta-interferon, a first-line medication in MS, are established in clinical practice. Ongoing work with biomarkers that reflect drug bioavailability and factors that distinguish between medication responders and nonresponders are also under investigation. The discovery of new biomarkers relies on applying advances in proteomics along with microarray gene and antigen analysis and will hopefully result in the establishment of specific biomarkers for MS.
Collapse
Affiliation(s)
- Violaine K Harris
- Multiple Sclerosis Research Center of New York, New York, New York 10019, USA
| | | |
Collapse
|
24
|
Vojdani A, Hebroni F, Raphael Y, Erde J, Raxlen B. Novel Diagnosis of Lyme Disease: Potential for CAM Intervention. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2009; 6:283-95. [PMID: 18955246 PMCID: PMC2722197 DOI: 10.1093/ecam/nem138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 08/15/2007] [Indexed: 01/29/2023]
Abstract
Lyme disease (LD) is the most common tick-borne disease in the northern hemisphere, producing a wide range of disabling effects on multiple human targets, including the skin, the nervous system, the joints and the heart. Insufficient clinical diagnostic methods, the necessity for prompt antibiotic treatment along with the pervasive nature of infection impel the development and establishment of new clinical diagnostic tools with increased accuracy, sensitivity and specificity. The goal of this article is 4-fold: (i) to detail LD infection and pathology, (ii) to review prevalent diagnostic methods, emphasizing inherent problems, (iii) to introduce the usage of in vivo induced antigen technology (IVIAT) in clinical diagnostics and (iv) to underscore the relevance of a novel comprehensive LD diagnostic approach to practitioners of Complementary and Alternative Medicine (CAM). Utilization of this analytical method will increase the accuracy of the diagnostic process and abridge the time to treatment, with antibiotics, herbal medicines and nutritional supplements, resulting in improved quality of care and disease prognosis.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., 8693 Wilshire Blvd., Suite 200, Beverly Hills, CA 90211, USA.
| | | | | | | | | |
Collapse
|
25
|
Vojdani A. Detection of IgE, IgG, IgA and IgM antibodies against raw and processed food antigens. Nutr Metab (Lond) 2009; 6:22. [PMID: 19435515 PMCID: PMC2685801 DOI: 10.1186/1743-7075-6-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/12/2009] [Indexed: 11/22/2022] Open
Abstract
Background Despite the first documented case of food allergy to cooked food in 1921 by Prausnitz and Kustner, all commercial food antigens are prepared from raw food. Furthermore, all IgE and IgG antibodies against dietary proteins offered by many clinical laboratories are measured against raw food antigens. Methods We developed an enzyme-linked immunosorbent assay for the measurement of IgE, IgG, IgA and IgM antibodies against raw and processed food antigens. Sera with low or high reactivity to modified food antigens were subjected to myelin basic protein, oxidized low density lipoprotein, and advanced glycation end products (AGE) such as AGE-human serum albumin and AGE-hemoglobin. Results Compared to raw food antigens, IgE antibodies showed a 3–8-fold increase against processed food antigens in 31% of the patients. Similarly, IgG, IgA and IgM antibodies against modified food antigens overall were found at much higher levels than antibody reactions against raw food antigens. Almost every tested serum with high levels of antibodies against modified food antigens showed very high levels of antibodies against myelin basic protein, oxidized low density lipoprotein, AGE-human serum albumin and AGE-hemoglobin. Conclusion We conclude that the determination of food allergy, intolerance and sensitivity would be improved by testing IgE, IgG, IgA and IgM antibodies against both raw and processed food antigens. Antibodies against modified food antigens, by reacting with AGEs and tissue proteins, may cause perturbation in degenerative and autoimmune diseases such as diabetes, atherosclerosis, inflammation, autoimmunity, neurodegeneration and neuroautoimmunity.
Collapse
Affiliation(s)
- Aristo Vojdani
- 822 S, Robertson Blvd, Ste, 812, Los Angeles, CA 90035, USA.
| |
Collapse
|
26
|
Vojdani A. Antibodies as predictors of complex autoimmune diseases and cancer. Int J Immunopathol Pharmacol 2008; 21:553-66. [PMID: 18831922 DOI: 10.1177/039463200802100308] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The pathologic role of autoantibodies in many autoimmune diseases is widely accepted. An enzyme immunoassay was used for measurement of antibodies against disease-specific antigens and etiologic agents for cross-reactive antigens associated with them. This antibody assay was applied to a panel of antigens for the detection of different neuroautoimmune diseases that included multiple sclerosis, motor peripheral neuropathies, multifocal motor neuropathy, amyotrophic lateral sclerosis, pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection. We studied women with pregnancies complicated by neural tube defect, neuroborreliosis, autism and patients with possible somatic hypermutation. Antibodies were also measured against antigens and etiologic agents associated with primary biliary cirrhosis and chronic obstructive pulmonary disease. And, finally, antibodies were measured against several tumor antigens or peptides which are expressed in prostatic, breast and colon tissues. This panel of different autoantibodies was applied to 290 patients with neuroautoimmune disorders, cancer, and possible somatic hypermutation. The levels of these antibodies against different tissue-specific antigens and etiologic agents associated with them were significantly elevated in patients versus controls. We hope that this novel 96 antigen-specific ELISA will be used in additional studies that will prove its clinical efficacy, not only for the early diagnosis of many neuroautoimmune, liver and lung autoimmune disorders, but also for prognosis and the implementation of preventive steps for many complex diseases.
Collapse
Affiliation(s)
- A Vojdani
- Immunosciences Lab., Inc., Beverly Hills, CA, USA.
| |
Collapse
|
27
|
Breithaupt C, Schäfer B, Pellkofer H, Huber R, Linington C, Jacob U. Demyelinating Myelin Oligodendrocyte Glycoprotein-Specific Autoantibody Response Is Focused on One Dominant Conformational Epitope Region in Rodents. THE JOURNAL OF IMMUNOLOGY 2008; 181:1255-63. [DOI: 10.4049/jimmunol.181.2.1255] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Vojdani A. Antibodies as Predictors of Complex Autoimmune Diseases. Int J Immunopathol Pharmacol 2008; 21:267-78. [DOI: 10.1177/039463200802100203] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Emerging evidence has suggested environmental factors such as infections and xenobiotics and some dietary proteins and peptides in the pathogenesis of many autoimmune diseases. Considering the fact that autoantibodies can often be detected prior to the onset of a disease, in this study an enzyme immunoassay was used for measurement of antibodies against different highly purified antigens or synthetic peptides originating not only from human tissue, but also from cross-reactive epitopes of infectious agents, dietary proteins and xenobiotics. The measurement of antibodies against a panel of antigens allows for identification of patterns or antibody signatures, rather than just one or two markers of autoimmunity, thus establishing the premise for increased sensitivity and specificity of prediction, as well as positive predictive values. This panel of different autoantibodies was applied to 420 patients with different autoimmune diseases, including pernicious anemia, celiac disease, thyroiditis, lupus, rheumatoid arthritis, osteoarthritis, Addison's disease, type 1 diabetes, cardiovascular disease and autoimmunity, which are presented in this article. In all cases, the levels of these antibodies were significantly elevated in patients versus controls. Antibody patterns related to neuroautoimmune disorders, cancer, and patients with somatic hypermutation will be shown in a subsequent article. We believe that this novel 96 antigen-specific autoantibody or predictive antibody screen should be studied for its incorporation into routine medical examinations. Clinicians should be aware that the detection of antibodies should not automatically mean that a patient will definitely become ill, but would rather give a percentage of risk for autoimmune disease over subsequent months or years.
Collapse
Affiliation(s)
- A. Vojdani
- Immunosciences Lab., Inc., Beverly Hills, CA, USA
| |
Collapse
|
29
|
Somers V, Govarts C, Somers K, Hupperts R, Medaer R, Stinissen P. Autoantibody Profiling in Multiple Sclerosis Reveals Novel Antigenic Candidates. THE JOURNAL OF IMMUNOLOGY 2008; 180:3957-63. [DOI: 10.4049/jimmunol.180.6.3957] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Joachim SC, Reichelt J, Berneiser S, Pfeiffer N, Grus FH. Sera of glaucoma patients show autoantibodies against myelin basic protein and complex autoantibody profiles against human optic nerve antigens. Graefes Arch Clin Exp Ophthalmol 2008; 246:573-80. [PMID: 18193265 DOI: 10.1007/s00417-007-0737-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/17/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND The aim of this study was to gain more information about the possible immunological mechanisms in glaucoma. We analyzed the complex autoantibody patterns against human optic nerve antigens in sera of patients with glaucoma and tried to identify important antigens. METHODS Sera of 133 patients were included: healthy control subjects (n = 44), primary open-angle glaucoma (n = 44), and normal tension glaucoma patients (n = 45). The sera were tested against Western blots of human optic nerve, and antibody bands were visualized with chloronaphthol. IgG antibody patterns were analyzed by multivariate statistical techniques, and the most significant antigens were identified by mass spectrometry (Maldi-TOFTOF). RESULTS All subjects, even healthy ones, showed different and complex antibody patterns. Glaucoma groups showed specific up- and down-regulations of antibody reactivities compared to the control group. The multivariate analysis of discriminance found significant differences (P < 0.05) in IgG antibody profiles against human optic nerve antigens between both glaucoma groups and healthy subjects. The identified antigens include: myelin basic protein (up-regulated in the POAG group), glial fibrillary acidic protein (down-regulated in the glaucoma groups), and vimentin (down-regulated in the glaucoma groups in comparison to controls). CONCLUSIONS Using human optic nerve antigen, we were able to demonstrate that complex IgG autoantibody patterns exist in sera of patients with glaucoma. Large correlations between the given and our previous studies using bovine optic nerve antigens could be seen. Furthermore, anti-myelin basic protein antibodies, which can also be detected in patients with multiple sclerosis, were found in sera of glaucoma patients.
Collapse
Affiliation(s)
- Stephanie C Joachim
- Experimental Ophthalmology, Department of Ophthalmology, Johannes Gutenberg University, Langenbeckstrabe 1, 55101 Mainz, Germany
| | | | | | | | | |
Collapse
|
31
|
Reindl M, Khalil M, Berger T. Antibodies as biological markers for pathophysiological processes in MS. J Neuroimmunol 2006; 180:50-62. [PMID: 16934337 DOI: 10.1016/j.jneuroim.2006.06.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/20/2006] [Accepted: 06/23/2006] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS), the most important human inflammatory demyelinating disease of the central nervous system, is characterized by various clinical disease courses, inhomogeneous and unpredictable therapeutic effects, heterogenous genetic backgrounds and immunopathogenetic subtypes as demonstrated by neuropathology. Because of this heterogeneity of MS, a subtyping of our patients by genetical, clinical, neuroradiological, and neuroimmunological parameters will be necessary in the future. Therefore the importance of identifying biological markers for MS has evolved over the past years. Evidence for a possible role of antibodies as biological markers for MS comes from several studies indicating that intrathecal antibody production and the dominance of B cells are associated with a more progressive disease course. In this review we will give an overview on the current status and potential applicability of antibodies as biological markers for the diagnosis, classification, disease activity and prediction of clinical courses in MS. We will therefore summarize the findings on autoantibodies to myelin and nonmyelin antigens and on viral antigens in MS. We believe that antibodies serving as biomarkers will help to establish a differential therapeutic concept in MS, which will allow to treat individuals selectively according to their pathogenetic subtype and disease status.
Collapse
Affiliation(s)
- Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
32
|
van Noort JM, Verbeek R, Meilof JF, Polman CH, Amor S. Autoantibodies against alpha B-crystallin, a candidate autoantigen in multiple sclerosis, are part of a normal human immune repertoire. Mult Scler 2006; 12:287-93. [PMID: 16764341 DOI: 10.1191/135248506ms1271oa] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human T-cell responses to the stress protein alpha B-crystallin in multiple sclerosis (MS)-affected brain samples are dominant when compared to other myelin antigens. The establishment of the apparent autoimmune repertoire against this antigen has been suggested to involve cross-priming during viral infection. Yet, another possibility would be that determinant spreading during ocular inflammation could generate a response to alpha B-crystallin, since it is also a major component of the eye. In this study, we compared serum IgG, IgA and IgM repertoires against a range of eye lens-derived ocular antigens using sera from healthy control subjects and MS patients with or without uveitis. This comparison revealed that among ocular antigens, alpha B-crystallin is the dominant target antigen for serum autoantibodies in both MS patients and healthy controls. Uveitis generally did not affect the antibody reactivity profile. These data provide further support for the notion that a normal adult human immune system is selectively reactive to alpha B-crystallin and they indicate that this responsiveness is unlikely to result from determinant spreading following ocular inflammation.
Collapse
Affiliation(s)
- J M van Noort
- Division of Biomedical Research, TNO Quality of Life, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Breij ECW, Heijnen P, van der Goes A, Teunissen CE, Polman CH, Dijkstra CD. Myelin flow cytometry assay detects enhanced levels of antibodies to human whole myelin in a subpopulation of multiple sclerosis patients. J Neuroimmunol 2006; 176:106-14. [PMID: 16712958 DOI: 10.1016/j.jneuroim.2006.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/08/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
Antibodies directed against myelin components have been described in multiple sclerosis (MS). Accumulating evidence suggests that pathogenically relevant anti-myelin antibodies bind conformational and post-translationally modified epitopes. However, the current methods to detect anti-myelin antibodies often do not allow recognition of such epitopes. We developed a flow cytometry-based assay to detect antibodies to whole human myelin (including conformational and post-translationally modified epitopes). MS patients (n=152) showed enhanced serum levels of anti-myelin antibodies (total Ig, IgG and IgM) when compared to healthy donors (HD, n=40). Strikingly, approximately 50% of MS patients showed enhanced anti-myelin IgG levels. Anti-myelin IgG levels were not correlated with clinical parameters of disease. In the same population, serum antibody responses to recombinant myelin oligodendrocyte glycoprotein were comparable in MS patients and HD.
Collapse
Affiliation(s)
- Esther C W Breij
- Department of Molecular Cell Biology and Immunology, VU Medical center Amsterdam, FdG, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Khalil M, Reindl M, Lutterotti A, Kuenz B, Ehling R, Gneiss C, Lackner P, Deisenhammer F, Berger T. Epitope specificity of serum antibodies directed against the extracellular domain of myelin oligodendrocyte glycoprotein: Influence of relapses and immunomodulatory treatments. J Neuroimmunol 2006; 174:147-56. [PMID: 16516980 DOI: 10.1016/j.jneuroim.2006.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/18/2006] [Accepted: 01/20/2006] [Indexed: 11/21/2022]
Abstract
Only few reports are available on the epitope specificity of anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in multiple sclerosis (MS). In the present study we provide a precise characterization of the epitope specificity of serum antibodies directed against the extracellular domain of MOG, including IgG, IgM and IgA immunoglobulin isotypes in 28 relapsing remitting MS patients and report that linear epitopes amino-acid (aa) 37-48 and aa42-53 are immunodominant. Recently experienced relapses intensified the anti-MOG peptide antibody response. Immunomodulatory treatment with interferon-beta or glatiramer-acetate had no major impact on the anti-MOG peptide immunoreactivity after 1 year of therapy.
Collapse
Affiliation(s)
- Michael Khalil
- Clinical Department of Neurology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ponomarenko NA, Durova OM, Vorobiev II, Belogurov AA, Telegin GB, Suchkov SV, Misikov VK, Morse HC, Gabibov AG. Catalytic activity of autoantibodies toward myelin basic protein correlates with the scores on the multiple sclerosis expanded disability status scale. Immunol Lett 2005; 103:45-50. [PMID: 16297986 DOI: 10.1016/j.imlet.2005.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 10/12/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Autoantibodies toward myelin basic protein (MBP) evidently emerge in sera and cerebrospinal fluid of the patients with multiple sclerosis (MS), as well as in a MS rodent model, i.e., experimental autoimmune encephalomyelitis (EAE). The studies of the last two decades have unveiled somewhat controversial data on the diagnostic applicability of anti-MBP autoantibodies as a disease' marker. Here, we present the results of new functional analysis of the anti-MBP autoantibodies isolated from MS (in patients) and EAE (in mice) sera, based on their proteolytic activity against the targeted autoantigen. The activity was shown to be the intrinsic property of the IgG molecule. No activity was found in the sera-derived antibody fraction of healthy donors and control mice. Sera of 24 patients with clinically proven MS at different stages of the disease, and 20 healthy controls were screened for the anti-MBP antibody-mediated proteolytic activity. The activity correlated with the scores on the MS expanded disability status scale (EDSS) (r(2)=0.85, P<0.001). Thus, the anti-MBP autoantibody-mediated proteolysis may be regarded as an additional marker of the disease progression.
Collapse
Affiliation(s)
- Natalia A Ponomarenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10, Miklukho-Maklaya str., Moscow 117997, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Small heat shock proteins (sHSPs) function as molecular chaperones, preventing stress induced aggregation of partially denatured proteins and promoting their return to native conformations when favorable conditions pertain. Sequence similarity between sHSPs resides predominately in an internal stretch of residues termed the alpha-crystallin domain, a region usually flanked by two extensions. The poorly conserved N-terminal extension influences oligomer construction and chaperone activity, whereas the flexible C-terminal extension stabilizes quaternary structure and enhances protein/substrate complex solubility. sHSP polypeptides assemble into dynamic oligomers which undergo subunit exchange and they bind a wide range of cellular substrates. As molecular chaperones, the sHSPs protect protein structure and activity, thereby preventing disease, but they may contribute to cell malfunction when perturbed. For example, sHSPs prevent cataract in the mammalian lens and guard against ischemic and reperfusion injury due to heart attack and stroke. On the other hand, mutated sHSPs are implicated in diseases such as desmin-related myopathy and they have an uncertain relationship to neurological disorders including Parkinson's and Alzheimer's disease. This review explores the involvement of sHSPs in disease and their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Sun
- Department of Biology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
37
|
Sinclair C, Mirakhur M, Kirk J, Farrell M, McQuaid S. Up-regulation of osteopontin and alphaBeta-crystallin in the normal-appearing white matter of multiple sclerosis: an immunohistochemical study utilizing tissue microarrays. Neuropathol Appl Neurobiol 2005; 31:292-303. [PMID: 15885066 DOI: 10.1111/j.1365-2990.2004.00638.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissue microarrays assembled from control and multiple sclerosis (MS) brain tissue have been used to assess the expression patterns and cellular distribution of two antigens, the proinflammatory cytokine osteopontin and the inducible heat shock protein alphaBeta-crystallin, which have previously been implicated in MS pathogenesis. Tissue cores were taken from paraffin-embedded donor blocks containing chronic active or chronic inactive plaques and normal-appearing white matter (NAWM) in seven MS cases, and white matter (WM) in five control cases. Expression patterns of both proteins were assessed against myelin density and microglial activation in the different tissue categories. Both proteins showed increased expression in all categories of MS tissue compared with control WM. The results indicate progressive up-regulation of expression of osteopontin with increased plaque activity, while elevation of alphaBeta-crystallin expression in MS tissue was independent of demyelination. In MS NAWM a significant correlation was observed between high levels of expression of osteopontin and alphaBeta-crystallin. Osteopontin expression was predominantly confined to astrocytes throughout MS tissues. alphaBeta-crystallin was expressed on astrocytes, oligodendrocytes and occasionally on demyelinated axons. Taken together, these data indicate a wider distribution of osteopontin and alphaBeta-crystallin in MS tissues than previously described and support their proposed role in MS pathogenesis.
Collapse
Affiliation(s)
- C Sinclair
- Neuropathology Laboratory, Institute of Pathology, Royal Group of Hospitals Trust, Belfast BT12 6BL, UK
| | | | | | | | | |
Collapse
|
38
|
Campbell AW, Thrasher JD, Madison RA, Vojdani A, Gray MR, Johnson A. Neural autoantibodies and neurophysiologic abnormalities in patients exposed to molds in water-damaged buildings. ACTA ACUST UNITED AC 2004; 58:464-74. [PMID: 15259425 DOI: 10.3200/aeoh.58.8.464-474] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Adverse health effects of fungal bioaerosols on occupants of water-damaged homes and other buildings have been reported. Recently, it has been suggested that mold exposure causes neurological injury. The authors investigated neurological antibodies and neurophysiological abnormalities in patients exposed to molds at home who developed symptoms of peripheral neuropathy (i.e., numbness, tingling, tremors, and muscle weakness in the extremities). Serum samples were collected and analyzed with the enzyme-linked immunosorbent assay (ELISA) technique for antibodies to myelin basic protein, myelin-associated glycoprotein, ganglioside GM1, sulfatide, myelin oligodendrocyte glycoprotein, alpha-B-crystallin, chondroitin sulfate, tubulin, and neurofilament. Antibodies to molds and mycotoxins were also determined with ELISA, as reported previously. Neurophysiologic evaluations for latency, amplitude, and velocity were performed on 4 motor nerves (median, ulnar, peroneal, and tibial), and for latency and amplitude on 3 sensory nerves (median, ulnar, and sural). Patients with documented, measured exposure to molds had elevated titers of antibodies (immunoglobulin [Ig]A, IgM, and IgG) to neural-specific antigens. Nerve conduction studies revealed 4 patient groupings: (1) mixed sensory-motor polyneuropathy (n = 55, abnormal), (2) motor neuropathy (n = 17, abnormal), (3) sensory neuropathy (n = 27, abnormal), and (4) those with symptoms but no neurophysiological abnormalities (n = 20, normal controls). All groups showed significantly increased autoantibody titers for all isotypes (IgA, IgM, and IgG) of antibodies to neural antigens when compared with 500 healthy controls. Groups 1 through 3 also exhibited abnormal neurophysiologic findings. The authors concluded that exposure to molds in water-damaged buildings increased the risk for development of neural autoantibodies, peripheral neuropathy, and neurophysiologic abnormalities in exposed individuals.
Collapse
Affiliation(s)
- Andrew W Campbell
- Medical Center for Immune and Toxic Disorders, Spring, Texas 77386, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Vojdani A, Cooper EL. Identification of Diseases that may be Targets for Complementary and Alternative Medicine (CAM). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 546:75-104. [PMID: 15584369 DOI: 10.1007/978-1-4757-4820-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aristo Vojdani
- Laboratory of Comparative Neuroimmunology, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|