1
|
Jovanović M, Stevanović B, Pajović V, Tasić T, Lozić M, Đukić L, Kosić M, Murphy D, Japundžić-Žigon N. Vasopressin and cardiovascular autonomic adjustment in chronic hypertensive pregnancy. Hypertens Res 2024; 47:2393-2404. [PMID: 39039283 PMCID: PMC11374678 DOI: 10.1038/s41440-024-01769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Chronic hypertensive pregnancy (CHP) is a growing health issue with unknown etiology. Vasopressin (VP), a nonapeptide synthesized in paraventricular (PVN) and supraoptic nucleus (SON), is a well-known neuroendocrine and autonomic modulator of the cardiovascular system, related to hypertension development. We quantified gene expression of VP and its receptors, V1aR and V1bR, within the PVN and SON in CHP and normal pregnancy, and assessed levels of secreted plasma VP. Also, we evaluated autonomic cardiovascular adaptations to CHP using spectral indices of blood pressure (BPV) and heart rate (HRV) short-term variability, and spontaneous baroreflex sensitivity (BRS). Experiments were performed in female spontaneously hypertensive rats (SHRs) and in normotensive Wistar rats (WRs). Animals were equipped with a radiotelemetry probe for continuous hemodynamic recordings before and during pregnancy. BPV, HRV and BRS were assessed using spectral analysis and the sequence method, respectively. Plasma VP was determined by ELISA whilst VP, V1aR, and V1bR gene expression was analyzed by real-time-quantitative PCR (RT-qPCR). The results show that non-pregnant SHRs exhibit greater VP, V1aR, and V1bR gene expression in both PVN and SON respectively, compared to Wistar dams. Pregnancy decreased VP gene expression in the SON of SHRs but increased it in the PVN and SON of WRs. Pregnant SHRs exhibited a marked drop in plasma VP concentration associated with BP normalization. This triggered marked tachycardia, heart rate variability increase, and BRS increase in pregnant SHRs. It follows that regardless of BP normalization in late pregnancy, SHRs exhibit cardiovascular vulnerability and compensate by recruiting vagal mechanisms. Pregnant SHR dams have reduced expression of VP in SON associated with increased V1bR expression, lower plasma VP, normal BP during late pregnancy and marked signs of enhanced sympathetic cardiac stimulation (increased HR and LFHR variability) and recruitment of vagal mechanisms (enhancement of BRS and HFHR variability).
Collapse
Affiliation(s)
- Mirjana Jovanović
- Department of Pathophysiology, University of Belgrade Faculty of Medicine, Belgrade, RS, Serbia
| | | | - Vladislav Pajović
- Department of Pharmacology, University of Belgrade Faculty of Medicine, Belgrade, RS, Serbia
| | - Tatjana Tasić
- University of Belgrade Faculty of Dentistry, Belgrade, RS, Serbia
| | - Maja Lozić
- Department of Pharmacology, University of Belgrade Faculty of Medicine, Belgrade, RS, Serbia
| | - Ljiljana Đukić
- University of Belgrade Faculty of Dentistry, Belgrade, RS, Serbia
| | - Marija Kosić
- Department of Pharmacology, University of Belgrade Faculty of Medicine, Belgrade, RS, Serbia
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Nina Japundžić-Žigon
- Department of Pharmacology, University of Belgrade Faculty of Medicine, Belgrade, RS, Serbia.
| |
Collapse
|
2
|
Tsuji T, Furuhara K, Guo E, Wu Y, Zhong J, Higashida H, Yamamoto Y, Tsuji C. Oral Supplementation of L-Carnosine Attenuates Acute-Stress-Induced Corticosterone Release and Mitigates Anxiety in CD157 Knockout Mice. Nutrients 2024; 16:2821. [PMID: 39275136 PMCID: PMC11396873 DOI: 10.3390/nu16172821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
Corticosterone, an end product of the hypothalamic-pituitary-adrenal (HPA) axis, is a crucial stress hormone. A dysregulated HPA axis and corticosterone release play pivotal roles in the onset and persistence of symptoms of stress-related psychiatric disorders, such as anxiety. The intake of nutrients, probiotics, and prebiotic supplements decreases blood corticosterone levels. The dipeptide L-carnosine is composed of beta-alanine and L-histidine and is commercially available as a nutritional supplement for recovery from fatigue. L-carnosine is involved in stress-induced corticosterone responses and anxiety behaviors in rodents. Here, we assessed the effect of L-carnosine in CD157 knockout (KO) mice, a murine model of autism spectrum disorder (ASD). The uptake of L-carnosine suppressed the increase in plasma corticosterone levels in response to acute stress and attenuated anxiety-like behaviors in CD157 KO mice. These results suggest that L-carnosine supplementation may relieve anxiety by suppressing excessive stress responses in individuals with ASD.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| | - Kazumi Furuhara
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Erchu Guo
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Departments of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yijing Wu
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Jing Zhong
- Physiological Department, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Departments of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa Campus, Kanazawa 920-8640, Japan
| |
Collapse
|
3
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
4
|
Pati D, Krause EG, Frazier CJ. Intrahypothalamic effects of oxytocin on PVN CRH neurons in response to acute stress. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100382. [PMID: 36618014 PMCID: PMC9815561 DOI: 10.1016/j.coemr.2022.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Much of the centrally available oxytocin (OT) is synthesized in magnocellular neurons located in the paraventricular nucleus of the hypothalamus. This same area is home to parvocellular corticotropin-releasing hormone (CRH) synthesizing neurons that regulate activation of the hypothalamic-pituitary-adrenal (HPA) axis. A large body of data indicates that complex interactions between these systems inextricably link central OT signaling with the neuroendocrine response to stress. This review focuses on a small but diverse set of cellular and synaptic mechanisms that have been proposed to underlie intrahypothalamic OT/CRF interactions during the response to acute stress.
Collapse
Affiliation(s)
- Dipa Pati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida
| | - Eric G. Krause
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Pharmacodynamics, College of Pharmacy, University of Florida
| | - Charles J. Frazier
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| |
Collapse
|
5
|
Infant Stimulation Induced a Rapid Increase in Maternal Salivary Oxytocin. Brain Sci 2022; 12:brainsci12091246. [PMID: 36138982 PMCID: PMC9497188 DOI: 10.3390/brainsci12091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Oxytocin (OT) is a neuropeptide involved in human social behaviors and reproduction. Non-invasive OT levels in saliva have recently roused interest as it does not require a specialized medical setting. Here, we observed one woman’s basal serum and saliva OT from pregnancy to 1 year postpartum to track OT concentration changes over this period. We examined the changes in salivary OT levels over time in response to maternal physiological and behavioral responses. The fluctuation of saliva OT levels is well correlated with serum OT during pregnancy and breastfeeding. However, while salivary OT increased rapidly during direct interaction (social interaction tests) with the infant and/or when the mother was watching her own infant’s video (video tests), no increase was observed in serum. We used social interaction and video tests on a group of mothers (nine mothers for social interaction and six for the video test) to clarify these single-subject results. In both tests, the mothers had increased OT in their saliva but not serum. Our study may suggest that salivary samples reflect not only the physical but also the emotional state and that saliva samples may be useful for monitoring women’s OT levels during pre- and postpartum periods. Further studies with larger sample numbers are necessary to confirm the rapid changes in salivary OT levels in response to maternal physiological and behavioral responses.
Collapse
|
6
|
Moscovice LR, Gimsa U, Otten W, Eggert A. Salivary Cortisol, but Not Oxytocin, Varies With Social Challenges in Domestic Pigs: Implications for Measuring Emotions. Front Behav Neurosci 2022; 16:899397. [PMID: 35677575 PMCID: PMC9169876 DOI: 10.3389/fnbeh.2022.899397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/20/2022] [Indexed: 01/01/2023] Open
Abstract
Animals respond to inherently rewarding or punishing stimuli with changes in core affective states, which can be investigated with the aid of appropriate biomarkers. In this study we evaluate salivary cortisol (sCORT) and salivary oxytocin (sOXT) concentrations under baseline conditions and in response to two negatively- and two positively-valenced social challenges in 75 young pigs (Sus scrofa domesticus), housed and tested in eight social groups. We predicted that: (1) Relative to baseline, weaning and brief social isolation would be associated with increases in sCORT, due to psychosocial stress, and reductions in sOXT, due to a lack of opportunities for social support; and (2) Opportunities for social play, and reunions with group members after a separation would be associated with weaker sCORT responses, and increases in sOXT concentrations compared to baseline and to negative social challenges. Testing and sample collection occurred between 28 and 65 days of age and involved a within-subject design, in which every subject was sampled multiple times in neutral (baseline), negative and positive social contexts. We also recorded behavioral data and measured rates of agonism, play and affiliative interactions in the different contexts, prior to saliva sampling. As expected, negative social challenges were associated with robust cortisol responses. Relative to baseline, pigs also had higher sCORT responses to positive social challenges, although these differences were only significant during reunions. Salivary oxytocin concentrations did not differ between the different social conditions, although sOXT was lowest during the brief social isolation. Behavioral analyses confirmed predictions about the expected changes in social interactions in different social contexts, with increases in agonism following weaning, increases in coordinated locomotor play in the play context and high rates of affiliative interactions during reunions. Relative sCORT reactivity to different contexts may reflect the intensity of emotional responses, with greater increases occurring in response to challenges that involve more psychosocial stress. Our results suggest that sOXT is not a reliable indicator of emotional valence in pigs, although more research is needed to characterize sOXT responses to various challenges with and without access to social support.
Collapse
Affiliation(s)
- Liza R. Moscovice
- Psychophysiology Unit, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- *Correspondence: Liza R. Moscovice
| | - Ulrike Gimsa
- Psychophysiology Unit, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Winfried Otten
- Psychophysiology Unit, Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Anja Eggert
- Service Group Statistical Consulting, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
7
|
Savić B, Murphy D, Japundžić-Žigon N. The Paraventricular Nucleus of the Hypothalamus in Control of Blood Pressure and Blood Pressure Variability. Front Physiol 2022; 13:858941. [PMID: 35370790 PMCID: PMC8966844 DOI: 10.3389/fphys.2022.858941] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
The paraventricular nucleus (PVN) is a highly organized structure of the hypothalamus that has a key role in regulating cardiovascular and osmotic homeostasis. Functionally, the PVN is divided into autonomic and neuroendocrine (neurosecretory) compartments, both equally important for maintaining blood pressure (BP) and body fluids in the physiological range. Neurosecretory magnocellular neurons (MCNs) of the PVN are the main source of the hormones vasopressin (VP), responsible for water conservation and hydromineral balance, and oxytocin (OT), involved in parturition and milk ejection during lactation. Further, neurosecretory parvocellular neurons (PCNs) take part in modulation of the hypothalamic–pituitary–adrenal axis and stress responses. Additionally, the PVN takes central place in autonomic adjustment of BP to environmental challenges and contributes to its variability (BPV), underpinning the PVN as an autonomic master controller of cardiovascular function. Autonomic PCNs of the PVN modulate sympathetic outflow toward heart, blood vessels and kidneys. These pre-autonomic neurons send projections to the vasomotor nucleus of rostral ventrolateral medulla and to intermediolateral column of the spinal cord, where postganglionic fibers toward target organs arise. Also, PVN PCNs synapse with NTS neurons which are the end-point of baroreceptor primary afferents, thus, enabling the PVN to modify the function of baroreflex. Neuroendocrine and autonomic parts of the PVN are segregated morphologically but they work in concert when the organism is exposed to environmental challenges via somatodendritically released VP and OT by MCNs. The purpose of this overview is to address both neuroendocrine and autonomic PVN roles in BP and BPV regulation.
Collapse
Affiliation(s)
- Bojana Savić
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Nina Japundžić-Žigon
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Nina Japundžić-Žigon,
| |
Collapse
|
8
|
Almeida D, Fiori LM, Chen GG, Aouabed Z, Lutz PE, Zhang TY, Mechawar N, Meaney MJ, Turecki G. Oxytocin receptor expression and epigenetic regulation in the anterior cingulate cortex of individuals with a history of severe childhood abuse. Psychoneuroendocrinology 2022; 136:105600. [PMID: 34839083 DOI: 10.1016/j.psyneuen.2021.105600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Childhood abuse significantly increases the lifetime risk of negative mental health outcomes. The oxytocinergic system, which plays a role in complex social and emotional behaviors, has been shown to be sensitive to early-life experiences. While previous studies have investigated the relationship between early-life adversity and oxytocin, they did so with peripheral samples. We, therefore, aimed to characterize the relationship between early-life adversity and oxytocin receptor (OXTR) expression in the brain, using post-mortem human samples, as well as a rodent model of naturally occurring variation in early-life environment. Focusing on the dorsal anterior cingulate cortex, we compared OXTR expression and epigenetic regulation between MDD suicides with (N = 26) and without history of childhood abuse (N = 24), as well as psychiatrically healthy controls (N = 23). We also compared Oxtr expression in the cingulate cortex of adult rats raised by dams displaying high (N = 13) and low levels (N = 12) of licking and grooming (LG) behavior. Overall, our results indicate that childhood abuse associates with an upregulation of OXTR expression, and that similarly, this relationship is also observed in the cingulate cortex of adult rats raised by low-LG dams. Additionally, we found an effect of rs53576 genotype on expression, showing that carriers of the A variant also show upregulated OXTR expression. The effects of early-life adversity and rs53576 genotype on OXTR expression are, however, not explained by differences in DNA methylation within and around the MT region of the OXTR gene.
Collapse
Affiliation(s)
- Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada
| | - Gary G Chen
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada
| | - Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada; Centre National de la Recherche Scientifique, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, 67000 Strasbourg, France
| | - Tie-Yuan Zhang
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, QC H4H 1R3, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2T5, Canada; Singapore Institute for Clinical Sciences, Singapore City, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada.
| |
Collapse
|
9
|
Burmester V, Butler GK, Terry P. Intranasal oxytocin reduces attentional bias to food stimuli. Appetite 2022; 168:105684. [PMID: 34496275 DOI: 10.1016/j.appet.2021.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 11/28/2022]
Abstract
Attentional biases to food-related stimuli have been demonstrated in response to hunger as well as during restrained eating. Such biases are often associated with obesity, but healthy-weight individuals who do not self-report hunger have also demonstrated attentional biases to stimuli signalling food using laboratory-based cognitive tasks. Levels of the anorectic neuropeptide oxytocin are elevated by food intake and, when administered intranasally, oxytocin inhibits food intake in the laboratory. To investigate whether oxytocin can affect appetite via an action on attentional processes, 40 adults (29 women; mean age 24.0 years old) self-administered 24 IU of oxytocin or placebo intranasally. Forty minutes after administration, participants ate a small snack to maintain alertness and ameliorate deprivation-induced hunger before starting a computerized dot-probe attentional bias task that presented 180 trials of paired visual stimuli comprising neutral, food, social and/or romantic images (500 ms presentation time). Reaction times to probe stimuli that appeared after the offset of the visual images indicated a significant attentional bias to food pictures after placebo; this effect was significantly attenuated by oxytocin, p < .001. The effect of oxytocin on attentional bias to the food pictures was not altered by the type of stimulus paired with the food image, and was independent of BMI, age, sex, self-rated eating behaviour, and self-reported parental bonding; however, the effect was modulated by self-reported food cravings and trait stress. The findings support and extend previous work which has suggested that oxytocin can counteract attentional biases to food-related stimuli in a sample with anorexia by demonstrating the same effect for the first time in a cohort who do not have an eating disorder.
Collapse
Affiliation(s)
- V Burmester
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, 7N11c Commonwealth Building Hammersmith Hospital, 72 Du Road, London W12 0NN, UK.
| | - G K Butler
- Department of Psychology, School of Law, Social and Behavioural Sciences, Kingston University, Penrhyn Road, Kingston Upon Thames, Surrey KT1 2EE, UK
| | - P Terry
- Department of Psychology, School of Law, Social and Behavioural Sciences, Kingston University, Penrhyn Road, Kingston Upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
10
|
Takayanagi Y, Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 2021; 23:ijms23010150. [PMID: 35008574 PMCID: PMC8745417 DOI: 10.3390/ijms23010150] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin has been revealed to work for anxiety suppression and anti-stress as well as for psychosocial behavior and reproductive functions. Oxytocin neurons are activated by various stressful stimuli. The oxytocin receptor is widely distributed within the brain, and oxytocin that is released or diffused affects behavioral and neuroendocrine stress responses. On the other hand, there has been an increasing number of reports on the role of oxytocin in allostasis and resilience. It has been shown that oxytocin maintains homeostasis, shifts the set point for adaptation to a changing environment (allostasis) and contributes to recovery from the shifted set point by inducing active coping responses to stressful stimuli (resilience). Recent studies have suggested that oxytocin is also involved in stress-related disorders, and it has been shown in clinical trials that oxytocin provides therapeutic benefits for patients diagnosed with stress-related disorders. This review includes the latest information on the role of oxytocin in stress responses and adaptation.
Collapse
|
11
|
Rivera DS, Lindsay CB, Oliva CA, Bozinovic F, Inestrosa NC. "Live together, die alone": The effect of re-socialization on behavioural performance and social-affective brain-related proteins after a long-term chronic social isolation stress. Neurobiol Stress 2021; 14:100289. [PMID: 33426200 PMCID: PMC7785960 DOI: 10.1016/j.ynstr.2020.100289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023] Open
Abstract
Loneliness affects group-living mammals triggering a cascade of stress-dependent physiological disorders. Indeed, social isolation stress is a major risk factor for several neuropsychiatric disorders including anxiety and depression. Furthermore, social isolation has a negative impact on health and fitness. However, the neurobiological consequences of long-term chronic social isolation stress (LTCSIS) manifested during the adulthood of affected individuals are not fully understood. Our study assessed the impact of LTCSIS and social buffering (re-socialization) on the behavioural performance and social-affective brain-related proteins in diurnal, social, and long-lived Octodon degus (degus). Thereby, anxiety-like and social behaviour, and social recognition memory were assessed in male and female animals subjected to a variety of stress-inducing treatments applied from post-natal and post-weaning until their adulthood. Additionally, we evaluated the relationship among LTCSIS, Oxytocin levels (OXT), and OXT-Ca2+-signalling proteins in the hypothalamus, the hippocampus, and the prefrontal cortex. Our findings suggest that LTCSIS induces anxiety like-behaviour and impairs social novelty preference whereas sociability is unaffected. On the other hand, re-socialization can revert both isolation-induced anxiety and social memory impairment. However, OXT and its signalling remained reduced in the abovementioned brain areas, suggesting that the observed changes in OXT-Ca2+ pathway proteins were permanent in male and female degus. Based on these findings, we conclude degus experience social stress differently, suggesting the existence of sex-related mechanisms to cope with specific adaptive challenges.
Collapse
Affiliation(s)
- Daniela S. Rivera
- GEMA Center for Genomics, Ecology & Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Carolina B. Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A. Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
12
|
Peen NF, Duque-Wilckens N, Trainor BC. Convergent neuroendocrine mechanisms of social buffering and stress contagion. Horm Behav 2021; 129:104933. [PMID: 33465346 PMCID: PMC7965339 DOI: 10.1016/j.yhbeh.2021.104933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/07/2023]
Abstract
Social interactions play a key role in modulating the impact of stressful experiences. In some cases, social interactions can result in social buffering, the process in which the presence of one individual reduces the physiological and behavioral impact of stress in another individual. On the other hand, there is growing evidence that a key initiating factor of social buffering behaviors is the initiation of an anxiogenic state in the individual that was not directly exposed to the stress. This is referred to as stress contagion (a form of emotion contagion). Both processes involve the transmission of social information, suggesting that contagion and buffering could share similar neural mechanisms. In general, mechanistic studies of contagion and buffering are considered separately, even though behavioral studies show that a degree of contagion is usually necessary for social buffering behaviors to occur. Here we consider the extent to which the neuropeptides corticotropin releasing hormone and oxytocin are involved in contagion and stress buffering. We also assess the importance that frontal cortical areas such as the anterior cingulate cortex and infralimbic cortex play in these behavioral processes. We suggest that further work that directly compares neural mechanisms during stress contagion and stress buffering will be important for identifying what appear to be distinct but overlapping circuits mediating these processes.
Collapse
Affiliation(s)
- Natanja F Peen
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychology, University of California, Davis, CA. USA
| | - Natalia Duque-Wilckens
- Department of Psychology, University of California, Davis, CA. USA; Departments of Physiology and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI. USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA. USA.
| |
Collapse
|
13
|
Mancini AD, Westphal M, Griffin P. Outside the Eye of the Storm: Can Moderate Hurricane Exposure Improve Social, Psychological, and Attachment Functioning? PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2021; 47:1722-1734. [PMID: 33550936 DOI: 10.1177/0146167221990488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-intensity disaster can harm psychological functioning. Could moderate-intensity disaster improve psychological and attachment functioning through its effects on social functioning? We used a prospective quasi-experimental cohort design to investigate this possibility among college students. Hurricane cohort participants (N = 209) completed assessments before, 2 weeks, and 6 weeks after Hurricane Sandy. Two matched comparison cohorts (Ns > 140) were assessed 4 months and 1 year later. The hurricane cohort, in contrast to matched comparison cohorts, reported increased social support, reduced global distress, reduced negative emotion, and reduced attachment avoidance at the end of the semester. Increased social support mediated the relationship between hurricane cohort and reduced global distress, negative emotion, attachment avoidance, and attachment anxiety, and increased positive emotion and self-esteem at 6 weeks poststorm. The results suggest moderate disaster exposure can benefit short-term social, psychological, and attachment functioning, underscoring the critical role of the social context in stress adaptation.
Collapse
|
14
|
Althammer F, Eliava M, Grinevich V. Central and peripheral release of oxytocin: Relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:25-44. [PMID: 34225933 DOI: 10.1016/b978-0-12-820107-7.00003-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hypothalamic neuropeptide oxytocin (OT) is critically involved in the modulation of socio-emotional behavior, sexual competence, and pain perception and anticipation. While intracellular signaling of OT and its receptor (OTR), as well as the functional connectivity of hypothalamic and extra-hypothalamic OT projections, have been recently explored, it remains elusive how one single molecule has pleotropic effects from cell proliferation all the way to modulation of complex cognitive processes. Moreover, there are astonishing species-dependent differences in the way OT regulates various sensory modalities such as touch, olfaction, and vision, which can be explained by differences in OTR expression in brain regions processing sensory information. Recent research highlights a small subpopulation of OT-synthesizing cells, namely, parvocellular cells, which merely constitute 1% of the total number of OT cells but act as "master cells' that regulate the activity of the entire OT system. In this chapter, we summarize the latest advances in the field of OT research with a particular focus on differences between rodents, monkeys and humans and highlight the main differences between OT and its "sister" peptide arginine-vasopressin, which often exerts opposite effects on physiology and behavior.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Neuroscience Department, Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| | - Marina Eliava
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
15
|
Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry 2021; 26:265-279. [PMID: 32514104 PMCID: PMC7278240 DOI: 10.1038/s41380-020-0802-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
The neuropeptide oxytocin has attracted great attention of the general public, basic neuroscience researchers, psychologists, and psychiatrists due to its profound pro-social, anxiolytic, and "anti-stress" behavioral and physiological effects, and its potential application for treatment of mental diseases associated with altered socio-emotional competence. During the last decade, substantial progress has been achieved in understanding the complex neurobiology of the oxytocin system, including oxytocinergic pathways, local release patterns, and oxytocin receptor distribution in the brain, as well as intraneuronal oxytocin receptor signaling. However, the picture of oxytocin actions remains far from being complete, and the central question remains: "How does a single neuropeptide exert such pleotropic actions?" Although this phenomenon, typical for many of about 100 identified neuropeptides, may emerge from the anatomical divergence of oxytocin neurons, their multiple central projections, distinct oxytocin-sensitive cell types in different brain regions, and multiple intraneuronal signaling pathways determining the specific cellular response, further basic studies are required. In conjunction, numerous reports on positive effects of intranasal application of oxytocin on human brain networks controlling socio-emotional behavior in health and disease require harmonic tandems of basic researchers and clinicians. During the COVID-19 crisis in 2020, oxytocin research seems central as question of social isolation-induced inactivation of the oxytocin system, and buffering effects of either activation of the endogenous system or intranasal application of synthetic oxytocin need to be thoroughly investigated.
Collapse
|
16
|
Pati D, Harden SW, Sheng W, Kelly KB, de Kloet AD, Krause EG, Frazier CJ. Endogenous oxytocin inhibits hypothalamic corticotrophin-releasing hormone neurones following acute hypernatraemia. J Neuroendocrinol 2020; 32:e12839. [PMID: 32133707 PMCID: PMC7384450 DOI: 10.1111/jne.12839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Significant prior evidence indicates that centrally acting oxytocin robustly modulates stress responsiveness and anxiety-like behaviour, although the neural mechanisms behind these effects are not entirely understood. A plausible neural basis for oxytocin-mediated stress reduction is via inhibition of corticotrophin-releasing hormone (CRH) neurones in the paraventricular nucleus of the hypothalamus (PVN) that regulate activation of the hypothalamic-pituitary-adrenal axis. Previously, we have shown that, following s.c. injection of 2.0 mol L-1 NaCl, oxytocin synthesising neurones are activated in the rat PVN, an oxytocin receptor (Oxtr)-dependent inhibitory tone develops on a subset of parvocellular neurones and stress-mediated increases in plasma corticosterone levels are blunted. In the present study, we utilised transgenic male CRH-reporter mice to selectively target PVN CRH neurones for whole-cell recordings. These experiments reveal that acute salt loading produces tonic inhibition of PVN CRH neurones through a mechanism that is largely independent of synaptic activity. Further studies reveal that a subset of CRH neurones within the PVN synthesise mRNA for Oxtr(s). Salt induced Oxtr-dependent inhibitory tone was eliminated in individual PVN CRH neurones filled with GDP-β-S. Additional electrophysiological studies suggest that reduced excitability of PVN CRH neurones in salt-loaded animals is associated with increased activation of inwardly rectifying potassium channels. Nevertheless, substantial effort to recapitulate the core effects of salt loading by activating Oxtr(s) with an exogenous agonist produced mixed results. Collectively, these results enhance our understanding of how oxytocin receptor-mediated signalling modulates the function of CRH neurones in the PVN.
Collapse
Affiliation(s)
- Dipanwita Pati
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | - Scott W. Harden
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | | | - Kyle B. Kelly
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | - Annette D. de Kloet
- Department of Physiology and Functional Genomics, College
of Medicine, University of Florida
| | - Eric G. Krause
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | - Charles J. Frazier
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
- Department of Neuroscience, College of Medicine, University
of Florida
- Corresponding author: Charles J.
Frazier, Ph.D., Associate Professor and University of Florida Term Professor,
Department of Pharmacodynamics, College of Pharmacy, University of Florida,
JHMHC Box 100487, Room P1-20, 1345 Center Drive, Gainesville, FL 32610, USA,
| |
Collapse
|
17
|
Wsol A, Wojno O, Puchalska L, Wrzesien R, Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A. Impaired hypotensive effects of centrally acting oxytocin in SHR and WKY rats exposed to chronic mild stress. Am J Physiol Regul Integr Comp Physiol 2020; 318:R160-R172. [DOI: 10.1152/ajpregu.00050.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was designed to determine the role of centrally acting oxytocin (OT) in the regulation of blood pressure during chronic mild stress (CMS) in spontaneously hypertensive (SHR; n = 36) and normotensive Wistar-Kyoto (WKY; n = 38) rats. The rats were implanted with osmotic minipumps for intracerebroventricular infusions of 0.9% NaCl, OT, and oxytocin receptor antagonist (OTANT) and divided into two groups: SHR and WKY 1) exposed to 4-wk CMS and 2) not exposed to stress (controls). After 4 wk, hemodynamic parameters were recorded at rest and after an application of acute stressor [air-jet stress (AJS)]. Resting mean arterial blood pressure (MAP) was significantly lower in CMS-exposed SHR and WKY infused with OT than in the corresponding groups receiving saline. Exposure to CMS exaggerated the AJS-dependent pressor response in WKY receiving saline but not in the corresponding group of SHR. OT infusion reduced the AJS-dependent pressor response in both CMS-exposed and not exposed SHR and in CMS-exposed WKY. Intracerebroventricular infusion of OTANT potentiated the AJS-dependent pressor response in both stressed and not stressed WKY rats but not in SHR. The results show that centrally delivered OT decreases resting MAP during CMS in both SHR and WKY rats and that in SHR it reduces pressor responses to AJS under control and CMS conditions, whereas in WKY this effect is significant only after CMS exposure. The study indicates that endogenous centrally acting OT may play an essential role in buffering pressor responses to AJS in CMS-exposed and not exposed WKY rats and that this function is significantly impaired in SHR.
Collapse
Affiliation(s)
- A. Wsol
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - O. Wojno
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - L. Puchalska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - R. Wrzesien
- Department of Animal Breeding, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - E. Szczepanska-Sadowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - A. Cudnoch-Jedrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Burmester V, Gibson EL, Butler G, Bailey A, Terry P. Oxytocin reduces post-stress sweet snack intake in women without attenuating salivary cortisol. Physiol Behav 2019; 212:112704. [PMID: 31628930 DOI: 10.1016/j.physbeh.2019.112704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Intranasal oxytocin produces anorectic effects on snack intake in men when tested in the absence of deprivation-induced hunger, but its effects on food intake in women without eating disorders have not been reported. Oxytocin may reduce food intake by reducing stress eating, since it inhibits ACTH release. The present study adopted a double-blind, repeated measures and fully concealed crossover protocol in which 38 women self-administered 24 IU of oxytocin or placebo intranasally, ate lunch, and underwent two consecutive stress tests. Snack intake was assessed 15-20 min after lunch, via a sham taste test. Salivary cortisol was measured throughout the test period every 15 min. Oxytocin significantly reduced sweet fatty snack intake independently of any effect on salivary cortisol, which declined over time at a similar rate after either drug or placebo. Ratings of sweet taste were slightly reduced by oxytocin, but only in self-reported stress eaters. These results differ from previous studies with men that found an effect of oxytocin on postprandial cortisol levels. However, previous research assayed the less active form of plasma cortisol and did not control for protein intake, which can drive elevated cortisol. The finding that oxytocin reduces snack intake in females after acute stress has important implications for appetite regulation and its treatment in obese people and in those with eating disorders.
Collapse
Affiliation(s)
- V Burmester
- Department of Psychology, School of Law, Social and Behavioural Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - E L Gibson
- Department of Psychology, Whitelands College, University of Roehampton, London SW15 4JD, UK
| | - G Butler
- Department of Psychology, School of Law, Social and Behavioural Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - A Bailey
- Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - P Terry
- Department of Psychology, School of Law, Social and Behavioural Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
| |
Collapse
|
19
|
Oliva JL, Mengoli M, Mendonça T, Cozzi A, Pageat P, Chabaud C, Teruel E, Lafont-Lecuelle C, Bienboire-Frosini C. Working Smarter Not Harder: Oxytocin Increases Domestic Dogs' ( Canis familiaris) Accuracy, but Not Attempts, on an Object Choice Task. Front Psychol 2019; 10:2141. [PMID: 31632314 PMCID: PMC6781933 DOI: 10.3389/fpsyg.2019.02141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
The neuropeptide oxytocin (OT) has been shown to enhance dogs' ability to perform an object choice task (OCT) involving the use of human pointing cues, when delivered intranasally. This study aimed at further investigating whether OT enhances task performance by increasing choices made, or by increasing correctness of choices made, and to compare these treatment effects to dog appeasing pheromone (DAP), known to balance emotional activation in dogs. Hence, we compared OCT performance between three groups of dogs: (i) dogs administered OT and a sham collar, (ii) dogs administered a saline placebo and a DAP collar, and (iii) control dogs administered a saline placebo and a sham collar. All three groups consisted of a combination of male and female pet dogs and assistance-dogs-in-training currently living with a volunteer carer. The study also evaluated the effect of intranasal OT and/or DAP on plasma levels of OT, and prolactin; which has previously been linked with anxiety in dogs. The dogs' emotional state was measured using the Emotional Disorders Evaluation in Dogs (EDED) scale. The owners'/carers' degree of anxious- and avoidant-style attachment to their dogs was accessed using the Pet Attachment Questionnaire (PAQ). Interesting descriptive data appeared for both treatment groups. Particularly, in OT group, we obtained significant results demonstrating that intranasal OT enhances OCT performance in dogs compared to control, by increasing the percentage of correct choices, but not the number of choices, made. Results also support that the mode of action of intranasal OT is via direct access to the brain and not via the blood, since no elevation of plasma OT (or prolactin) levels were observed after intranasal administration in this study. Similarly, DAP application did not significantly alter OT or prolactin peripheral concentrations. Several differences were observed between fostered and pet dogs, namely: fostered dogs demonstrated higher levels of serum prolactin, made more choices on the OCT compared to pet dogs but were not more likely to be correct, and were fostered by carers with higher avoidant attachment scores than pet dog owners. These findings implicate consideration of potential carer and training consequences for assistance dogs.
Collapse
Affiliation(s)
- Jessica Lee Oliva
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), Apt, France
| | - Manuel Mengoli
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), Apt, France
- Clinical Ethology and Animal Welfare Centre (CECBA), Apt, France
| | - Tiago Mendonça
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), Apt, France
- Clinical Ethology and Animal Welfare Centre (CECBA), Apt, France
| | - Alessandro Cozzi
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), Apt, France
| | - Patrick Pageat
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), Apt, France
- Clinical Ethology and Animal Welfare Centre (CECBA), Apt, France
| | - Camille Chabaud
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), Apt, France
| | - Eva Teruel
- Research Institute in Semiochemistry and Applied Ethology (IRSEA), Apt, France
| | | | | |
Collapse
|
20
|
Steinman MQ, Duque-Wilckens N, Trainor BC. Complementary Neural Circuits for Divergent Effects of Oxytocin: Social Approach Versus Social Anxiety. Biol Psychiatry 2019; 85:792-801. [PMID: 30503164 PMCID: PMC6709863 DOI: 10.1016/j.biopsych.2018.10.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 01/04/2023]
Abstract
Oxytocin (OT) is widely known for promoting social interactions, but there is growing appreciation that it can sometimes induce avoidance of social contexts. The social salience hypothesis posed an innovative solution to these apparently opposing actions by proposing that OT enhances the salience of both positive and negative social interactions. The mesolimbic dopamine system was put forth as a likely system to evaluate social salience owing to its well-described role in motivation. Evidence from several sources supports the premise that OT acting within the nucleus accumbens and ventral tegmental area facilitates social reward and approach behavior. However, in aversive social contexts, additional pathways play critical roles in mediating the effects of OT. Recent data indicate that OT acts in the bed nucleus of the stria terminalis to induce avoidance of potentially dangerous social contexts. Here, we review evidence for neural circuits mediating the effects of OT in appetitive and aversive social contexts. Specifically, we propose that distinct but potentially overlapping circuits mediate OT-dependent social approach or social avoidance. We conclude that a broader and more inclusive consideration of neural circuits of social approach and avoidance is needed as the field continues to evaluate the potential of OT-based therapeutics.
Collapse
Affiliation(s)
- Michael Q Steinman
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Natalia Duque-Wilckens
- Department of Large Animal Clinical Sciences and Department of Physiology/Neuroscience, Michigan State University, East Lansing, Michigan
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, Davis, California.
| |
Collapse
|
21
|
Onaka T, Takayanagi Y. Role of oxytocin in the control of stress and food intake. J Neuroendocrinol 2019; 31:e12700. [PMID: 30786104 PMCID: PMC7217012 DOI: 10.1111/jne.12700] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Oxytocin neurones in the hypothalamus are activated by stressful stimuli and food intake. The oxytocin receptor is located in various brain regions, including the sensory information-processing cerebral cortex; the cognitive information-processing prefrontal cortex; reward-related regions such as the ventral tegmental areas, nucleus accumbens and raphe nucleus; stress-related areas such as the amygdala, hippocampus, ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray; homeostasis-controlling hypothalamus; and the dorsal motor complex controlling intestinal functions. Oxytocin affects behavioural and neuroendocrine stress responses and terminates food intake by acting on the metabolic or nutritional homeostasis system, modulating emotional processing, reducing reward values of food intake, and facilitating sensory and cognitive processing via multiple brain regions. Oxytocin also plays a role in interactive actions between stress and food intake and contributes to adaptive active coping behaviours.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiJapan
| |
Collapse
|
22
|
Oxytocin for learning calm and safety. Int J Psychophysiol 2019; 136:5-14. [DOI: 10.1016/j.ijpsycho.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022]
|
23
|
Kriengwatana BP. Learning strategies and the social brain: Missing elements in the link between developmental stress, song and cognition? Integr Zool 2019; 14:158-171. [PMID: 30688022 DOI: 10.1111/1749-4877.12379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bird songs may advertise aspects of cognition because song learning and learning speed in cognitive tasks are both affected by early-life environments. However, such relationships remain ambiguous in the literature. Here, I discuss 2 lines of research that may help to demystify links between song learning and cognition. First, learning strategies should be considered when assessing performance to ensure that individual differences in learning ability are not masked by individual differences in learning strategies. Second, song characteristics should be associated with social behavior because songs have a social purpose and, consequently, should be strongly related at functional and neural levels. Finally, if song learning and cognitive abilities are correlated because they develop concurrently and/or share or compete for the same resources, I discuss ways glucocorticoids may link early-life stress, song learning and cognitive ability, focusing particularly on oxidative stress as a potential mechanism.
Collapse
|
24
|
Ferrer-Pérez C, Castro-Zavala A, Luján MÁ, Filarowska J, Ballestín R, Miñarro J, Valverde O, Rodríguez-Arias M. Oxytocin prevents the increase of cocaine-related responses produced by social defeat. Neuropharmacology 2018; 146:50-64. [PMID: 30448423 DOI: 10.1016/j.neuropharm.2018.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
The neuropeptide oxytocin (OXT) plays a critical role in the regulation of social and emotional behaviors. OXT plays a role in stress response and in drug reward, but to date no studies have evaluated its implication in the long-lasting increase of the motivational effects of cocaine induced by repeated social defeat (RSD). During the social defeat procedure, 1 mg/kg of OXT was administered 30 min before each episode of RSD. Three weeks after the last defeat, the effects of cocaine on the conditioned place preference (CPP), locomotor sensitization and the self-administration (SA) paradigms were evaluated. The influence of OXT on the levels of BDNF in the prefrontal cortex (PFC), striatum and hippocampus was also measured. Our results confirm that raising the levels of OXT during social defeat stress can block the long-lasting effects of this type of stress. OXT counteracts the anxiety induced by social defeat and modifies BDNF levels in all the structures we have studied. Moreover, OXT prevents RSD-induced increases in the motivational effects of cocaine. Administration of OXT before each social defeat blocked the social defeat-induced increment in the conditioned rewarding effects of cocaine in the CPP, favored the extinction of cocaine-associated memories in both the CPP and SA, and decreased reinstatement of cocaine-seeking behavior in the SA. In conclusion, the long-lasting effects of RSD are counteracted by administering OXT prior to stress, and changes in BDNF expression may underlie these protective effects.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, University Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Miguel Ángel Luján
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, University Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joanna Filarowska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Raúl Ballestín
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, University Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marta Rodríguez-Arias
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain.
| |
Collapse
|
25
|
|
26
|
Preis A, Samuni L, Mielke A, Deschner T, Crockford C, Wittig RM. Urinary oxytocin levels in relation to post-conflict affiliations in wild male chimpanzees (Pan troglodytes verus). Horm Behav 2018; 105:28-40. [PMID: 30031684 DOI: 10.1016/j.yhbeh.2018.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023]
Abstract
Many animals living in social groups have evolved behaviors to resolve conflicts between group members, behaviors thought crucial for maintaining stable group life. Several hypotheses, based mainly on observational data, aim to explain how post-conflict (PC) affiliations, such as reconciliation and consolation, resolve conflicts by restoring relationships and/or alleviating anxiety. To examine a potential endocrinological mechanism of PC affiliations, we used an experimental-like procedure to investigate whether the oxytocinergic system is activated during naturally observed reconciliations, receiving bystander PC affiliations and aggressions not followed by PC affiliations in wild male chimpanzees. We compared urinary oxytocin (uOT) levels after reconciliations, receiving bystander PC affiliations or aggressions without affiliations with two control conditions: affiliations without previous aggression and after time periods without social interactions. We furthermore tested the 'valuable relationship' hypothesis of reconciliation, as well as the influence of relationship quality between individuals engaged in each of the three behavioral conditions involving aggression on uOT levels. We found that the probability to reconcile a conflict increased with increasing relationship quality between opponents, thus our results support the 'valuable relationship' hypothesis. However, relationship quality did not influence uOT levels, while behavioral condition had a significant effect on uOT levels. uOT levels after reconciliations, receiving bystander PC affiliations and affiliations not related to conflicts were higher than after aggressions alone and time periods without social interactions. Overall, our results indicate that the oxytocinergic system is activated during affiliative interactions, whether occurring as reconciliation, bystander PC affiliation or affiliation alone. We conclude that the oxytocinergic system, in addition to building and maintaining social relationships, also takes part in repairing them.
Collapse
Affiliation(s)
- Anna Preis
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire.
| | - L Samuni
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - A Mielke
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - T Deschner
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany
| | - C Crockford
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - R M Wittig
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire.
| |
Collapse
|
27
|
Masis-Calvo M, Schmidtner AK, de Moura Oliveira VE, Grossmann CP, de Jong TR, Neumann ID. Animal models of social stress: the dark side of social interactions. Stress 2018; 21:417-432. [PMID: 29745275 DOI: 10.1080/10253890.2018.1462327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Social stress occurs in all social species, including humans, and shape both mental health and future interactions with conspecifics. Animal models of social stress are used to unravel the precise role of the main stress system - the HPA axis - on the one hand, and the social behavior network on the other, as these are intricately interwoven. The present review aims to summarize the insights gained from three highly useful and clinically relevant animal models of psychosocial stress: the resident-intruder (RI) test, the chronic subordinate colony housing (CSC), and the social fear conditioning (SFC). Each model brings its own focus: the role of the HPA axis in shaping acute social confrontations (RI test), the physiological and behavioral impairments resulting from chronic exposure to negative social experiences (CSC), and the neurobiology underlying social fear and its effects on future social interactions (SFC). Moreover, these models are discussed with special attention to the HPA axis and the neuropeptides vasopressin and oxytocin, which are important messengers in the stress system, in emotion regulation, as well as in the social behavior network. It appears that both nonapeptides balance the relative strength of the stress response, and simultaneously predispose the animal to positive or negative social interactions.
Collapse
Affiliation(s)
- Marianela Masis-Calvo
- a Department of Behavioral and Molecular Neurobiology , University of Regensburg , Regensburg , Germany
| | - Anna K Schmidtner
- a Department of Behavioral and Molecular Neurobiology , University of Regensburg , Regensburg , Germany
| | | | - Cindy P Grossmann
- a Department of Behavioral and Molecular Neurobiology , University of Regensburg , Regensburg , Germany
| | - Trynke R de Jong
- a Department of Behavioral and Molecular Neurobiology , University of Regensburg , Regensburg , Germany
- b Medische Biobank Noord-Nederland B.V , Groningen , Netherlands
| | - Inga D Neumann
- a Department of Behavioral and Molecular Neurobiology , University of Regensburg , Regensburg , Germany
| |
Collapse
|
28
|
Burmester V, Higgs S, Terry P. Rapid-onset anorectic effects of intranasal oxytocin in young men. Appetite 2018; 130:104-109. [PMID: 30081055 DOI: 10.1016/j.appet.2018.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022]
Abstract
Although the neuropeptide oxytocin exhibits many of the characteristics that would support its use as an anorectic agent for overeaters, studies of oxytocin's effectiveness at reducing eating in humans remain limited. In a double-blind, placebo-controlled crossover study, under the pretext of examining oxytocin's effects on various aspects of sensory perception, 20 men were given 24 IU of oxytocin and took a taste test of sweet, salty, and neutral snacks 45 min later. Participants self-rated appetite, anxiety, and other mood parameters, and then were left alone for 10 min with the pre-weighed snack food and invited to help themselves. To minimize the influence of hunger-driven eating, lunch had been provided immediately after oxytocin administration. In line with Ott et al. (2013), oxytocin significantly reduced the consumption of sweet foods; however, it also reduced consumption of salty snacks. Self-reported anxiety did not differ across drug conditions. The study is the first to demonstrate an effect of oxytocin on snack eating at 45 min post administration and on salty snacks. The anorectic efficacy of oxytocin after 45 min cannot easily be explained by the same mechanism as the one presumed to underpin its effects in previous studies that adopted much longer intervals between drug administration and testing.
Collapse
Affiliation(s)
- Victoria Burmester
- Department of Psychology, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, United Kingdom
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Philip Terry
- Department of Psychology, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, United Kingdom.
| |
Collapse
|
29
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
30
|
Martin J, Kagerbauer SM, Gempt J, Podtschaske A, Hapfelmeier A, Schneider G. Oxytocin levels in saliva correlate better than plasma levels with concentrations in the cerebrospinal fluid of patients in neurocritical care. J Neuroendocrinol 2018; 30:e12596. [PMID: 29611254 DOI: 10.1111/jne.12596] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/26/2018] [Indexed: 01/25/2023]
Abstract
In the converging fields of neuroendocrinology and behavioural neuroscience, the interaction between peripheral secretion and central release of oxytocin in humans has not yet been comprehensively assessed. As the human brain is not directly accessible and as the collection of human cerebrospinal fluid (CSF) usually requires invasive procedures, easier accessible compartments such as blood or saliva attract increasing attention. In this study, we prospectively determined oxytocin concentrations in the three compartments plasma, CSF and saliva of fifty critically ill patients with neurological and neurosurgical diseases. All samples per patient were collected concomitantly. Oxytocin was measured by a highly sensitive and specific radioimmunoassay. Strength of correlation was assessed by the Spearman rank correlation coefficient. Correlation analyses revealed modest to strong correlations for oxytocin between the saliva and CSF compartments while predominantly weak correlations were found between the CSF and plasma as well as between the plasma and saliva compartments. In conclusion, we demonstrated modest to strong correlations between the saliva and CSF compartment suggesting that saliva oxytocin may help to assess CSF oxytocin levels. In contrast, plasma oxytocin failed to correspond well with CSF oxytocin levels as predominantly weak correlations were found between the CSF and plasma as well as between the plasma and saliva compartments which are unlikely to have a biological relevance. Further research is needed to clarify to what extent saliva oxytocin may serve as a biomarker reflecting brain oxytocin activity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jan Martin
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Simone M Kagerbauer
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Armin Podtschaske
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Alexander Hapfelmeier
- Institute of Medical Informatics, Statistics und Epidemiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Gerhard Schneider
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| |
Collapse
|
31
|
Wang L, Hou W, He Z, Yuan W, Yang J, Yang Y, Jia R, Zhu Z, Zhou Y, Tai F. Effects of chronic social defeat on social behaviors in adult female mandarin voles (Microtus mandarinus): Involvement of the oxytocin system in the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:278-288. [PMID: 29126982 DOI: 10.1016/j.pnpbp.2017.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023]
Abstract
Chronic social defeat affects many aspects of behavior. Most previous studies have focused on effects on males and defeat during adolescence. The extents to which chronic social defeat can impact female social behavior in adulthood and the neural mechanisms of such effects are poorly understood. Using highly social and aggressive female mandarin voles (Microtus mandarinus), the present study found that chronic social defeat reduced social preference in adult females, and that the defeated voles exhibited a high level of freeze, self-grooming and defensive behavior, as well as reduced exploration, intimacy and aggression during social interactions. Furthermore, chronic social defeat reduced levels of oxytocin (OT) and OT receptors (OTR) in the shell region of the nucleus accumbens (NACC). Intra-NACC shell OT microinjections reversed alterations in social behavior induced by chronic social defeat, whereas injections of an OTR antagonist (OTR-A) blocked the effects of OT. Taken together, our data demonstrate that chronic social defeat suppresses measures of sociability, and that these effects are mediated by the action of OT on the OTR in the NACC. NACC OT may be a promising target to treat socio-emotional disorders induced by chronic social stress.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jinfeng Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenxiang Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yue Zhou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
32
|
Tully J, Gabay AS, Brown D, Murphy DGM, Blackwood N. The effect of intranasal oxytocin on neural response to facial emotions in healthy adults as measured by functional MRI: A systematic review. Psychiatry Res 2018; 272:17-29. [PMID: 29272737 PMCID: PMC6562202 DOI: 10.1016/j.pscychresns.2017.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 12/28/2022]
Abstract
Abnormalities in responses to human facial emotions are associated with a range of psychiatric disorders. Addressing these abnormalities may therefore have significant clinical applications. Previous meta-analyses have demonstrated effects of the neuropeptide oxytocin on behavioural response to facial emotions, and effects on brain, as measured by functional MRI. Evidence suggests that these effects may be mediated by sex and the role of eye gaze. However, the specific effect of oxytocin on brain response to facial emotions in healthy adults has not been systematically analysed. To address this question, this further systematic review was conducted. Twenty-two studies met our inclusion criteria. In men, oxytocin consistently attenuated brain activity in response to negative emotional faces, particularly fear, compared with placebo, while in women, oxytocin enhanced activity. Brain regions consistently involved included the amygdala, fusiform gyrus and anterior cingulate cortex. In some studies, oxytocin increased fixation changes towards the eyes with enhanced amygdala and/or fusiform gyrus activation. By enhancing understanding of emotion processing in healthy subjects, these pharmacoimaging studies provide a theoretical basis for studying deficits in clinical populations. However, progress to date has been limited by low statistical power, methodological heterogeneity, and a lack of multimodal studies.
Collapse
Affiliation(s)
- John Tully
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom.
| | - Anthony S Gabay
- Department of Neuroimaging, Kings College London, London, United Kingdom
| | - Danielle Brown
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Nigel Blackwood
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
33
|
Crockford C, Deschner T, Wittig RM. The Role of Oxytocin in Social Buffering: What Do Primate Studies Add? Curr Top Behav Neurosci 2018; 35:155-173. [PMID: 28864973 DOI: 10.1007/7854_2017_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability to maintain close social bonds impacts on reproductive success, longevity, stress and health in social mammals, including humans (Silk et al., Curr Biol 20(15):1359-1361, 2010; Crockford et al., Horm Behav 53(1):254-265, 2008; Wittig et al., Horm Behav 54(1):170-177, 2008; Archie et al., Proc R Soc B 281(1793):20141261, 2014; Cameron et al., Proc Natl Acad Sci U S A 106:13850-13853, 2009; Schülke et al., Curr Biol 20:2207-2210, 2010; Silk et al., Science 302:1231-1234, 2003; Holt-Lunstad et al., PLoS Med 7(7):e1000316, 2010). Close social bonds provide an important social support system, at least in part by acting as a buffer against the deleterious effects of chronic exposure to stressors (Young et al., Proc Natl Acad Sci U S A 51:18195-18200, 2014; Heinrichs et al., Biol Psychiatry 54:1389-1398, 2003). There is accumulating evidence that individuals that provide predictable affiliation or support to others (bond partners) may moderate the perception of the stressor as well as of the physiological stress response. The neuropeptide, oxytocin, may mediate social buffering by down-regulating HPA activity and thus reducing the stress response. However, much within this process remains unclear, such as whether oxytocin is always released when exposed to a stressor, whether more oxytocin is released if there is social support, what aspect of stress or social support triggers oxytocin release and whether social support in the absence of a stressor also impacts oxytocin release and HPA activity, during everyday life. We review the literature that addresses each of these questions in an attempt to clarify where future research effort will be helpful. A better understanding of these dynamics is likely to have implications for enhancing social and health gains from human social relationships.
Collapse
Affiliation(s)
- Catherine Crockford
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| |
Collapse
|
34
|
Abstract
Biosynthesis and secretion of the hypothalamic nonapeptide oxytocin largely depends on steroid hormones. Estradiol, corticosterone, and vitamin D seem to be the most prominent actors. Due to their lipophilic nature, systemic steroids are thought to be capable of crossing the blood-brain barrier, thus mediating central functions including neuroendocrine and behavioral control. The actual mode of action of steroids in hypothalamic circuitry is still unknown: Most of the oxytocinergic perikarya lack nuclear steroid receptors but express proteins suspected to be membrane receptors for steroids. Oxytocin expressing neurons contain enzymes important for intrinsic steroid metabolism. Furthermore, they produce and probably liberate specific steroid-binding globulins. Rapid responses to steroid hormones may involve these binding proteins and membrane-associated receptors, rather than classic nuclear receptors and genomic pathways. Neuroendocrine regulation, reproductive behaviors, and stress response seem to depend on these mechanisms.
Collapse
Affiliation(s)
| | - Scott D Ochs
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| | - Jack D Caldwell
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| |
Collapse
|
35
|
Sociability trait and regional cerebral oxidative metabolism in rats: Predominantly nonlinear relations. Behav Brain Res 2018; 337:186-192. [DOI: 10.1016/j.bbr.2017.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
|
36
|
|
37
|
You DS, Haney R, Albu S, Meagher MW. Generalized Pain Sensitization and Endogenous Oxytocin in Individuals With Symptoms of Migraine: A Cross-Sectional Study. Headache 2017; 58:62-77. [PMID: 29094347 DOI: 10.1111/head.13213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The current study examined pain and neurogenic inflammation responses to topical capsaicin during the interictal period (between headache) and their relationship with plasma oxytocin in individuals with migraine. BACKGROUND Individuals with migraine can experience generalized (extracephalic) hyperalgesia, which can persist even between headache attacks. Elevated levels of plasma and cerebrospinal fluid oxytocin have been observed during migraine attacks, oxytocin levels being positively associated with the intensity of migraine symptoms. However, whether oxytocin plays a role in the mechanisms of generalized pain sensitization and neurogenic inflammation during the interictal period has not been studied yet. Understanding migraineurs' interictal pain phenotype and endogenous oxytocin might help identify individuals who would benefit from intranasal oxytocin treatment. METHODS Thirty-two subjects with migraine and 26 healthy controls underwent pain testing. The current study compared capsaicin-induced pain, central sensitization (areas of secondary mechanical allodynia and hyperalgesia), and neurogenic inflammation (capsaicin-induced flare) responses on the nondominant volar forearm between migraineurs and healthy controls. Additionally, we studied plasma oxytocin levels and their relationship to migraine symptoms, experimental pain and affect. RESULTS The results indicated a significant group effect (P = .019): Migraineurs reported greater capsaicin-induced pain unpleasantness (M = 1.2, SD = 1.4) on a 0-10 scale and showed larger areas of flare (LnM = 2.8, SD = 0.4) than healthy controls (M = 0.5, SD = 0.8; LnM = 2.6, SD = 0.4; ps < .032). In a subgroup analysis, enhanced capsaicin-induced pain unpleasantness was found in the chronic (P = .007), but not the episodic (Ps > .200), migraineurs. The oxytocin levels were elevated in migraineurs and accounted for 18% of the group difference in capsaicin-induced pain unpleasantness. Within migraineurs, interictal oxytocin levels were negatively associated with psychological distress (Ps < .030). However, during the interictal period, pain sensitivity in extracephalic regions and plasma oxytocin levels were unrelated to migraine symptom parameters (Ps > .074). Lastly, the results found no group difference in areas of secondary mechanical allodynia and hyperalgesia (Ps >.298). CONCLUSION The current study revealed that individuals with migraine exhibit enhanced extracephalic capsaicin-induced pain unpleasantness and flare responses during interictal periods. In addition, migraineurs, especially those with chronic migraine, had slightly elevated interictal oxytocin levels compared to controls, which was associated with their affective component of experimental pain. Therefore, treatment targeting affective pain during the interictal period may help to reduce generalized pain in migraine. Furthermore, endogenous increases in oxytocin may be a compensatory mechanism that may help decrease affective distress in migraineurs. The therapeutic effects of intranasal oxytocin may benefit migraineurs by reducing their affective distress.
Collapse
Affiliation(s)
- Dokyoung S You
- Department of Psychology, Texas A&M University, College Station, TX, USA
| | - Rachel Haney
- Department of Psychology, Texas A&M University, College Station, TX, USA
| | - Sergiu Albu
- Department of Psychology, Texas A&M University, College Station, TX, USA.,Texas A&M Institute of Neuroscience, Texas A&M University, College Station, TX, USA
| | - Mary W Meagher
- Department of Psychology, Texas A&M University, College Station, TX, USA.,Texas A&M Institute of Neuroscience, Texas A&M University, College Station, TX, USA
| |
Collapse
|
38
|
Althammer F, Grinevich V. Diversity of oxytocin neurons: beyond magno- and parvocellular cell types? J Neuroendocrinol 2017; 30. [PMID: 29024187 DOI: 10.1111/jne.12549] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/09/2017] [Indexed: 01/31/2023]
Abstract
The hypothalamic neuropeptide oxytocin (OT), which is evolutionarily conserved among different species throughout the animal kingdom, is a key modulator of a variety of socio-emotional behaviors such as fear, trust and empathy. OT cells in the mammalian hypothalamus have been traditionally divided into two distinct types - magnocellular (magnOT) and parvocellular (parvOT) or preautonomic neurons. This distinction is based on OT cell sizes and shapes, projections, electrophysiological activity and functions. Indeed, while neuroendocrine magnOT neurons are known to primarily project their axons to the posterior pituitary and to a number of forebrain regions, non-neuroendocrine parvOT neurons have been seen as the main source of OT innervation of the brainstem and spinal cord to control autonomic functions and pain perception. However, very recent findings demonstrated distinct genetic profiles in OT neurons, allowing discrimination of at least four types of cells expressing OT. Furthermore, unexpected axonal projections of parvOT neurons to the forebrain and magnOT neurons to the midbrain have been newly reported. In this review, we focus on the detailed analysis of methods of distinction between OT cell types, in- and output sites, morphology as well as on the direct connectivity between OT neurons and its physiological significance. At the end, we propose a hypothesis that the central OT system is composed of more than just two OT cell types, which should be further verified by the application of available genetic and anatomical techniques. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Schaller Research Group on Neuropeptides at German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides at German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
- CellNetworks Cluster of Excellence at the, University of Heidelberg, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Mannheim, 68159, Germany
| |
Collapse
|
39
|
The Role of the Oxytocin/Arginine Vasopressin System in Animal Models of Autism Spectrum Disorder. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2017; 224:135-158. [DOI: 10.1007/978-3-319-52498-6_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Florez Acevedo S, Cardenas Parra LF. Rol Modulador de la Oxitocina en la Interacción Social y el Estrés Social. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.rmoi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
La Oxitocina es un neuropéptido conocido por facilitar funciones del sistema nervioso periférico, relacionadas específicamente con el sistema reproductivo. Sin embargo, en las últimas décadas se ha reconocido la función moduladora de la Oxitocina en el comportamiento social, a través de su liberación en el sistema nervioso central. Así mismo, estudios han mencionado que la Oxitocina es un potencial ansiolítico cuando un individuo ha sido sometido a estrés social. Por lo tanto, el objetivo de esta revisión es presentar una caracterización de la Oxitocina y su relación con distintas formas de interacción social y el estrés social; a través de los resultados presentados en distintos estudios, tanto en modelos animales como en humanos. Además, se intenta mostrar la importancia de continuar con el estudio de la Oxitocina, dados los posibles vacíos teóricos y experimentales existentes, teniendo en cuenta las potenciales cualidades ansiolíticas de esta hormona.
Collapse
|
41
|
Torner L, Plotsky PM, Neumann ID, de Jong TR. Forced swimming-induced oxytocin release into blood and brain: Effects of adrenalectomy and corticosterone treatment. Psychoneuroendocrinology 2017; 77:165-174. [PMID: 28064086 DOI: 10.1016/j.psyneuen.2016.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 01/26/2023]
Abstract
The oxytocin (OXT) system is functionally linked to the HPA axis in a reciprocal and complex manner. Certain stressors are known to cause the simultaneous release of OXT and adrenocorticotrophic hormone (ACTH) followed by corticosterone (CORT). Furthermore, brain OXT attenuates ACTH and CORT responses. Although there are some indications of CORT influencing OXT neurotransmission, specific effects of CORT on neurohypophyseal or intra-hypothalamic release of OXT have not been studied in detail. In the present set of experiments, adult male rats were adrenalectomized (ADX) or sham-operated and fitted with a jugular vein catheter and/or microdialysis probe targeting the hypothalamic paraventricular nucleus (PVN). Blood samples and dialysates were collected before and after forced swimming (FS) and analyzed for CORT, ACTH and AVP concentrations (in plasma) and OXT concentrations (in plasma and dialysates). Experimental treatments included acute infusion of CORT (70 or 175μg/kg i.v.) 5min prior to FS, or subcutaneous placement of 40% CORT pellets resulting in stable CORT levels in the normal basal range. Although ADX did not alter basal OXT concentrations either in plasma or in microdialysates from the PVN, it did cause an exaggerated peripheral secretion of OXT and a blunted intra-PVN release of OXT in response to FS. CORT pellets did not influence either of these ADX-induced effects, while acute infusion of 175μg/kg CORT rescued the stress-induced rise in OXT release within the PVN and modestly increased peripheral OXT secretion. In conclusion, these results indicate that CORT regulates both peripheral and intracerebral OXT release, but in an independent manner. Whereas the peripheral secretion of OXT occurs simultaneously to HPA axis activation in response to FS and is modestly influenced by CORT, HPA axis activation and circulating CORT strongly contribute to the stress-induced stimulation of OXT release within the PVN.
Collapse
Affiliation(s)
- Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico; Max Planck Institute of Psychiatry, Munich, Germany
| | - Paul M Plotsky
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Inga D Neumann
- Max Planck Institute of Psychiatry, Munich, Germany; Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Trynke R de Jong
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
42
|
Li J, Li HX, Shou XJ, Xu XJ, Song TJ, Han SP, Zhang R, Han JS. Effects of chronic restraint stress on social behaviors and the number of hypothalamic oxytocin neurons in male rats. Neuropeptides 2016; 60:21-28. [PMID: 27743608 DOI: 10.1016/j.npep.2016.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Oxytocin (OXT) and vasopressin (AVP) are considered to be related to mammalian social behavior and the regulation of stress responses. The present study investigated the effects of chronic homotypic restraint stress (CHRS) on social behaviors and anxiety, as well as its repercussions on OXT- and AVP-positive neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) nuclei in rat. Male Sprague-Dawley rats receiving CHRS were exposed to repeated restraint stress of 30min per day for 10days. Changes in social approach behaviors were evaluated with the three-chambered social approach task. Changes in anxiety-like behaviors were evaluated in the light-dark box test. The number of neurons expressing oxytocin and/or vasopressin in PVN and SON were examined by immunohistochemistry techniques. The results demonstrated that social approach was increased and anxiety was decreased following 10-day exposure to CHRS. Furthermore, the number of OXT-immunoreactive cells in PVN was increased significantly, whereas no change in SON was seen. The number of AVP immunoreactive cells either in PVN or SON was unaffected. The results of this study suggest that certain types of stress could be effective in the treatment of social dysfunction in persons with mental disorders such as autism, social anxiety disorder. The therapeutic effects may be mediated by changes in the function of OXT neurons in PVN.
Collapse
Affiliation(s)
- Jin Li
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Han-Xia Li
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Xiao-Jing Shou
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Xin-Jie Xu
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Tian-Jia Song
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Song-Ping Han
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China.
| | - Ji-Sheng Han
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Key Lab for Neuroscience, The Ministry of Education/The Ministry of Health, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
43
|
Minhas S, Liu C, Galdamez J, So VM, Romeo RD. Stress-induced oxytocin release and oxytocin cell number and size in prepubertal and adult male and female rats. Gen Comp Endocrinol 2016; 234:103-9. [PMID: 26972154 DOI: 10.1016/j.ygcen.2016.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022]
Abstract
Studies indicate that adolescent exposure to stress is a potent environmental factor that contributes to psychological and physiological disorders, though the mechanisms that mediate these dysfunctions are not well understood. Periadolescent animals display greater stress-induced hypothalamic-pituitary-adrenal (HPA) axis responses than adults, which may contribute to these vulnerabilities. In addition to the HPA axis, the hypothalamo-neurohypophyseal tract (HNT) is also activated in response to stress. In adults, stress activates this system resulting in secretion of oxytocin from neurons in the supraoptic (SON) and paraventricular (PVN) nuclei. However, it is currently unknown whether a similar or different response occurs in prepubertal animals. Given the influence of these hormones on a variety of emotional behaviors and physiological systems known to change as an animal transitions into adulthood, we investigated stress-induced HPA and HNT hormonal responses before and after stress, as well as the number and size of oxytocin-containing cells in the SON and PVN of prepubertal (30d) and adult (70d) male and female rats. Though we found the well-established protracted adrenocorticotropic hormone and corticosterone response in prepubertal males and females, only adult males and prepubertal females showed a significant stress-induced increase in plasma oxytocin levels. Moreover, though we found no pubertal changes in the number of oxytocin cells, we did find a pubertal-related increase in oxytocin somal size in both the SON and PVN of males and females. Taken together, these data indicate that neuroendocrine systems can show different patterns of stress reactivity before and after adolescent development and that these responses can be further modified by sex. Given the impact of these hormones on a variety of systems, it will be imperative to further explore these changes in hormonal stress reactivity and their role in adolescent health.
Collapse
Affiliation(s)
- Sumeet Minhas
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States
| | - Clarissa Liu
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States
| | - Josselyn Galdamez
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States
| | - Veronica M So
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States
| | - Russell D Romeo
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States.
| |
Collapse
|
44
|
Csikota P, Fodor A, Balázsfi D, Pintér O, Mizukami H, Weger S, Heilbronn R, Engelmann M, Zelena D. Vasopressinergic control of stress-related behavior: studies in Brattleboro rats. Stress 2016; 19:349-61. [PMID: 27187740 DOI: 10.1080/10253890.2016.1183117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Vasopressin, a nonapeptide, signaling both as hormone in the blood and neuromodulator/neurotransmitter in the brain is considered to be causally involved in the pathological changes underlying anxiety and depression. In the present review we summarize experimental data obtained with Brattleboro rats as a model of congenital vasopressin-deficiency to test the hypothesis that central vasopressin signaling contributes to anxiety- and depression-like behavior. Male, female and lactating rats were studied. We focused on the paraventricular nucleus of the hypothalamus (PVN) and the septum, two brain areas in which vasopressin is proposed to control the endocrine and behavioral stress response, respectively. The presented data support the hypothesis that the behavioral changes seen in these rats are brought about by an altered vasopressin signaling at the brain level. Whereas vasopressin synthesized and released within the hypothalamus is primarily involved in endocrine regulation, vasopressin signaling in other brain areas may contribute to anxiety- and depression-like behavioral parameters. Further studies in this context might focus particularly on the interplay between extra-hypothalamic brain areas such as the septum and the medial amygdala.
Collapse
Affiliation(s)
- Péter Csikota
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Anna Fodor
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences , Semmelweis University , Budapest , Hungary
| | - Diána Balázsfi
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences , Semmelweis University , Budapest , Hungary
| | - Ottó Pintér
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Hiroaki Mizukami
- c Center for Molecular Medicine , Jichi Medical University , Yakushiji , Japan
| | - Stefan Weger
- d Institut für Virologie, Charité - Universitätsmedizin , Berlin , Germany
| | - Regine Heilbronn
- d Institut für Virologie, Charité - Universitätsmedizin , Berlin , Germany
| | - Mario Engelmann
- e Institut für Biochemie & Zellbiol, Otto-von-Guericke-Universität , Magdeburg , Germany
- f Center for Behavioural Brain Sciences , Magdeburg , Germany
| | - Dóra Zelena
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| |
Collapse
|
45
|
Abstract
The neuropeptide oxytocin (OXT) has been revealed as a profound anxiolytic and antistress factor of the brain, besides its many prosocial and reproductive effects. Therefore, there is substantial scientific and medical interest in its potential therapeutic use for the treatment of psychopathologies associated with anxiety, fear, and social dysfunctions, such as generalized anxiety disorder, posttraumatic stress disorder, and social anxiety disorder, as well as autism and schizophrenia, among others. Focusing on preclinical studies, we review the existing evidence for the regulatory capacity of OXT to fine-tune general and social anxiety-related behaviors, as well as cued and social fear conditioning from a translational perspective. The available evidence from animal and human studies substantiates the hypothesis of an imbalance of the endogenous brain OXT system in the etiology of anxiety disorders, particularly those with a social component such as social anxiety disorder. In addition, such an imbalance of the OXT system is also likely to be the consequence of chronic OXT treatment resulting in a dose-dependent reduction in OXT receptor availability and increased anxiety.
Collapse
|
46
|
Dumais KM, Alonso AG, Immormino MA, Bredewold R, Veenema AH. Involvement of the oxytocin system in the bed nucleus of the stria terminalis in the sex-specific regulation of social recognition. Psychoneuroendocrinology 2016; 64:79-88. [PMID: 26630388 PMCID: PMC4698213 DOI: 10.1016/j.psyneuen.2015.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/08/2015] [Accepted: 11/08/2015] [Indexed: 01/03/2023]
Abstract
Sex differences in the oxytocin (OT) system in the brain may explain why OT often regulates social behaviors in sex-specific ways. However, a link between sex differences in the OT system and sex-specific regulation of social behavior has not been tested. Here, we determined whether sex differences in the OT receptor (OTR) or in OT release in the posterior bed nucleus of the stria terminalis (pBNST) mediates sex-specific regulation of social recognition in rats. We recently showed that, compared to female rats, male rats have a three-fold higher OTR binding density in the pBNST, a sexually dimorphic area implicated in the regulation of social behaviors. We now demonstrate that OTR antagonist (5 ng/0.5 μl/side) administration into the pBNST impairs social recognition in both sexes, while OT (100 pg/0.5 μl/side) administration into the pBNST prolongs the duration of social recognition in males only. These effects seem specific to social recognition, as neither treatment altered total social investigation time in either sex. Moreover, baseline OT release in the pBNST, as measured with in vivo microdialysis, did not differ between the sexes. However, males showed higher OT release in the pBNST during social recognition compared to females. These findings suggest a sex-specific role of the OT system in the pBNST in the regulation of social recognition.
Collapse
Affiliation(s)
- Kelly M. Dumais
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA,Corresponding author: Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, McGuinn 300, Chestnut Hill, MA, 02467, USA, , 617-552-6149
| | - Andrea G. Alonso
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Marisa A. Immormino
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Remco Bredewold
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Alexa H. Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
47
|
Dumais KM, Veenema AH. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol 2016; 40:1-23. [PMID: 25951955 PMCID: PMC4633405 DOI: 10.1016/j.yfrne.2015.04.003] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022]
Abstract
The neuropeptides vasopressin (VP) and oxytocin (OT) and their receptors in the brain are involved in the regulation of various social behaviors and have emerged as drug targets for the treatment of social dysfunction in several sex-biased neuropsychiatric disorders. Sex differences in the VP and OT systems may therefore be implicated in sex-specific regulation of healthy as well as impaired social behaviors. We begin this review by highlighting the sex differences, or lack of sex differences, in VP and OT synthesis in the brain. We then discuss the evidence showing the presence or absence of sex differences in VP and OT receptors in rodents and humans, as well as showing new data of sexually dimorphic V1a receptor binding in the rat brain. Importantly, we find that there is lack of comprehensive analysis of sex differences in these systems in common laboratory species, and we find that, when sex differences are present, they are highly brain region- and species-specific. Interestingly, VP system parameters (VP and V1aR) are typically higher in males, while sex differences in the OT system are not always in the same direction, often showing higher OT expression in females, but higher OT receptor expression in males. Furthermore, VP and OT receptor systems show distinct and largely non-overlapping expression in the rodent brain, which may cause these receptors to have either complementary or opposing functional roles in the sex-specific regulation of social behavior. Though still in need of further research, we close by discussing how manipulations of the VP and OT systems have given important insights into the involvement of these neuropeptide systems in the sex-specific regulation of social behavior in rodents and humans.
Collapse
Affiliation(s)
- Kelly M Dumais
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA.
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
48
|
Defeat stress in rodents: From behavior to molecules. Neurosci Biobehav Rev 2015; 59:111-40. [DOI: 10.1016/j.neubiorev.2015.10.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
|
49
|
Jong TRD, Menon R, Bludau A, Grund T, Biermeier V, Klampfl SM, Jurek B, Bosch OJ, Hellhammer J, Neumann ID. Salivary oxytocin concentrations in response to running, sexual self-stimulation, breastfeeding and the TSST: The Regensburg Oxytocin Challenge (ROC) study. Psychoneuroendocrinology 2015; 62:381-8. [PMID: 26385109 DOI: 10.1016/j.psyneuen.2015.08.027] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/26/2015] [Indexed: 01/10/2023]
Abstract
Intranasal oxytocin (OXT) application is emerging as a potential treatment for socio-emotional disorders associated with abnormalities in OXT system (re-) activity. The crucial identification of patients with such abnormalities could be streamlined by the assessment of basal and stimulus-induced OXT concentrations in saliva, using a simple, stress-free sampling procedure (i.e. an OXT challenge test). We therefore established the Regensburg Oxytocin Challenge (ROC) test to further validate salivary OXT concentrations as a practical, reliable and sensitive biomarker. OXT concentrations were quantified by radioimmunoassay in samples collected at home by healthy adult male and female volunteers before and after running ("Run") or sexual self-stimulation ("Sex"). In lactating women, salivary OXT concentrations were quantified before, during and after breastfeeding. Salivary OXT along with salivary cortisol and heart rate were monitored in healthy adult participants undergoing the Trier Social Stress Test (TSST). The home-based "Run" and "Sex" challenges as well as the laboratory-based TSST caused quantifiable, rapid, and consistent increases in salivary OXT (approximately 2.5-fold after 10-15min), which were similar for men and women. Breastfeeding did not result in measurably increased salivary OXT levels, probably because the short pulses of OXT release characteristic for lactation were missed. Taken together, ROC tests reliably assess the responsiveness of the OXT system (i.e., the increase in salivary OXT concentrations as compared to basal levels) to challenges such as "Run" and "Sex" at home or psychosocial stress (TSST) in the laboratory. Further studies with larger sample numbers are essentially needed in order to reveal individual differences in ROC test outcomes depending on, for example, genetic or environmental factors.
Collapse
Affiliation(s)
- Trynke R de Jong
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Anna Bludau
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Thomas Grund
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Verena Biermeier
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Stefanie M Klampfl
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Juliane Hellhammer
- Diagnostic Assessment and Clinical Research Organization (DAACRO) GmbH & Co, KG, Science Park Trier, Trier, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
50
|
Choe HK, Reed MD, Benavidez N, Montgomery D, Soares N, Yim YS, Choi GB. Oxytocin Mediates Entrainment of Sensory Stimuli to Social Cues of Opposing Valence. Neuron 2015; 87:152-63. [PMID: 26139372 DOI: 10.1016/j.neuron.2015.06.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/29/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022]
Abstract
Meaningful social interactions modify behavioral responses to sensory stimuli. The neural mechanisms underlying the entrainment of neutral sensory stimuli to salient social cues to produce social learning remain unknown. We used odor-driven behavioral paradigms to ask if oxytocin, a neuropeptide implicated in various social behaviors, plays a crucial role in the formation of learned associations between odor and socially significant cues. Through genetic, optogenetic, and pharmacological manipulations, we show that oxytocin receptor signaling is crucial for entrainment of odor to social cues but is dispensable for entrainment to nonsocial cues. Furthermore, we demonstrate that oxytocin directly impacts the piriform, the olfactory sensory cortex, to mediate social learning. Lastly, we provide evidence that oxytocin plays a role in both appetitive and aversive social learning. These results suggest that oxytocin conveys saliency of social stimuli to sensory representations in the piriform cortex during odor-driven social learning.
Collapse
Affiliation(s)
- Han Kyoung Choe
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Douglas Reed
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nora Benavidez
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Montgomery
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Natalie Soares
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yeong Shin Yim
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gloria B Choi
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|