1
|
Li H, Chen X, Dong J, Liu R, Duan J, Huang M, Hu S, Lu J. A direct estrogenic involvement in the expression of human hypocretin. Life Sci 2024; 344:122581. [PMID: 38514004 DOI: 10.1016/j.lfs.2024.122581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Hypocretin is synthesized exclusively in the hypothalamus and distributes inputs to several areas of the brain, which may play an important role in depression. Our previous study showed that hypocretin-1 was increased in the lateral hypothalamus in female patients with depression compared to female controls. Estrogen acts through estrogen receptor (ER)α and ERβ. We studied the possibility of a direct action of estrogen receptors on the expression of human hypocretin. We found that hypocretin-1 plasma levels were significantly higher in female patients with depression than in female controls. Female depression estrogen receptors and hypocretin are colocalized in the human lateral hypothalamus, PC12, and SK-N-SH cells. The estrogen receptor response elements (ERE) that exist in the hypocretin promoter region may directly regulate the gene expression of hypocretin. The synchronicity of change of hypocretin and estradiol both in hypothalamus and plasma was verified in female rats. In the presence of estradiol, specific binding occurs between the recombinant human ER and hypocretin-ERE. Expression of ER combined with estradiol repressed hypocretin promoter activity via the ERE. In conclusion, we found that estradiol may directly affect hypocretin neurons in the human hypothalamus via ER binding to the hypocretin-ERE, which may lead to the sex-specific pathogenesis of depression.
Collapse
Affiliation(s)
- Haimei Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, Zhejiang 310003, China
| | - Xinlu Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Jingyi Dong
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ripeng Liu
- College of First Clinical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Jinfeng Duan
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, Zhejiang 310003, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, Zhejiang 310003, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, Zhejiang 310003, China.
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
2
|
Ouaidat S, Amaral IM, Monteiro DG, Harati H, Hofer A, El Rawas R. Orexins/Hypocretins: Gatekeepers of Social Interaction and Motivation. Int J Mol Sci 2024; 25:2609. [PMID: 38473854 DOI: 10.3390/ijms25052609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Ever since the discovery of the brain's orexin/hypocretin system, most research was directed toward unveiling its contribution to the normal functioning of individuals. The investigation of reward-seeking behaviors then gained a lot of attention once the distribution of orexinergic neurons was revealed. Here, we discuss findings on the involvement of orexins in social interaction, a natural reward type. While some studies have succeeded in defining the relationship between orexin and social interaction, the controversy regarding its nature (direct or inverse relation) raises questions about what aspects have been overlooked until now. Upon examining the literature, we identified a research gap concerning conditions influencing the impact of orexins on social behavior expression. In this review, we introduce a number of factors (e.g., stress, orexin's source) that must be considered while studying the role of orexins in social interaction. Furthermore, we refer to published research to investigate the stage at which orexins affect social interaction and we highlight the nucleus accumbens (NAc) shell's role in social interaction and other rewarding behaviors. Finally, the underlying orexin molecular pathway influencing social motivation in particular illnesses is proposed. We conclude that orexin's impact on social interaction is multifactorial and depends on specific conditions available at a time.
Collapse
Affiliation(s)
- Sara Ouaidat
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Inês M Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Diogo G Monteiro
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut P.O. Box 1533, Lebanon
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Sinen O, Akçalı İ, Akkan SS, Bülbül M. The role of hypothalamic Orexin-A in stress-induced gastric dysmotility: An agonistic interplay with corticotropin releasing factor. Neurogastroenterol Motil 2024; 36:e14719. [PMID: 38105366 DOI: 10.1111/nmo.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Central Orexin-A (OXA) modulates gastrointestinal (GI) functions and stress response. This study aimed to investigate whether OXA and CRF interact at hypothalamic level. METHODS Solid gastric emptying (GE), fecal output (FO), plasma corticosterone (CORT), and postprandial antro-pyloric motility were assessed in rats that underwent acute restraint stress (ARS) and pretreated with central OX1R and/or CRF receptor antagonists SB-334867 and alpha-helical CRF9,41 . Microdialysis was performed to assess ARS-induced release of OXA and CRF in PVN and LHA, respectively. Immunofluorescence labeling was performed to detect the stress-induced changes in OXA and to assess the hypothalamic distribution of OX1R and CRF1/2 receptors. ARS-induced c-Fos immunoreactivity was evaluated in PVN and LHA of rats received OX1R and CRF receptor antagonists. KEY RESULTS ARS delayed GE by disturbing the coordination of antro-pyloric contractions while stimulating FO and CORT secretion. ARS-induced alterations in GE, FO, plasma CORT, and antro-pyloric motility were attenuated by OX1R and/or CRF receptor antagonists, however, these changes were completely restored in rats received both antagonists. ARS stimulated release of OXA and CRF which were significantly attenuated by α-CRF9,41 and SB-334867, respectively. The OX1R was detected in CRF-immunoreactive cells, whereas dense expression of CRF2 receptor but not CRF1 was observed in LHA. ARS remarkably increased OXA immunoreactivity in LHA. ARS-induced c-Fos expression in LHA and PVN was abolished by α-CRF9,41 and SB-334867, respectively. CONCLUSIONS & INFERENCES Our findings suggest a reciprocal contribution of OXA and CRF which seems to be involved in the mediation of stress-induced alterations in neuroendocrine and GI motor functions.
Collapse
Affiliation(s)
- Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - İrem Akçalı
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Simla Su Akkan
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Kumar V, Doshi G. Revolutionizing Infertility Management through Novel Peptide-based Targets. Curr Protein Pept Sci 2024; 25:738-752. [PMID: 38778605 DOI: 10.2174/0113892037304433240430144106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Around 48 million couples and 186 million people worldwide have infertility; of these, approximately 85% have an identifiable cause, the most common being ovulatory dysfunctions, male infertility, polycystic ovary syndrome, and tubule disease. The remaining 15% have infertility for unknown reasons, including lifestyle and environmental factors. The regulation of the hypothalamic- pituitary-adrenal axis (HPA) is crucial for the secretion of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH), which are essential for female reproductive functions. GnRH is the primary reproductive axis regulator. The pattern of GnRH, FSH, and LH release is determined by its pulsatile secretion, which in turn controls endocrine function and gamete maturation in the gonads. Peptides called Kisspeptin (KP), Neurokinin-B (NKB), and Orexin influence both positive and negative feedback modulation of GnRH, FSH, and LH secretion in reproduction. This review article mainly focuses on the historical perspective, isoform, and signaling pathways of KP, NKB, and Orexin novel peptide-based targets including clinical and preclinical studies and having a promising effect in the management of infertility.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| |
Collapse
|
6
|
Ozdemir E, Baser T, Taskiran AS. Blockade of orexin receptor type-1 by SB-334867 and activation of orexin receptor type-2 attenuate morphine tolerance in rats. Physiol Int 2022; 109:457-474. [DOI: 10.1556/2060.2022.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/17/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
AbstractPurposeThe interaction of orexinergic neurons with the opioidergic system and their effects on morphine analgesia and tolerance have not been fully elucidated. The purpose of the study was to evaluate the effects of the orexin-1 and orexin-2 receptor (OX1R and OX2R) agonist and antagonist on morphine analgesia and tolerance in rats.Material and methodsA total of 90 Wistar albino male rats weighing 180–220 g were used in the experiments. To induce morphine tolerance, rats were injected with a single dose of morphine (50 mg kg−1, s.c.) for 3 days. Morphine tolerance was assessed on day 4 in randomly selected rats by analgesia tests. In order to evaluate morphine tolerance situation, orexin-A, SB-334867, orexin-B and TCS OX2 29 were administered together with morphine for 3 days. The analgesic effects of orexin-A (10 μg kg−1), OXR1 antagonist SB-334867 (10 mg kg−1), OXR2 agonist orexin-B (15 μg kg−1), OXR2 antagonist TCS OX2 29 (0.5 mg kg−1) and morphine (5 mg kg−1) were measured at 15 or 30-min intervals by tail-flick and hot-plate antinociceptive tests.ResultsThe results suggested that the combination of orexin-1 receptor antagonist SB-334867 and orexin-B with morphine significantly increased the analgesic effect compared to morphine-tolerant rats. In addition, administration of orexin-A and -B alone showed significant analgesic effects compared to the saline group. However, co-administration of orexin-A and -B with morphine did not increase the analgesic efficacy of morphine.ConclusionsThe results of this study demonstrated that co-administration of SB-334867 and orexin-B with morphine attenuated morphine tolerance. Further studies are needed to elucidate the details of the interaction between orexin receptors and the opioidergic system.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Tayfun Baser
- Department of Physiology, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
| | - Ahmet Sevki Taskiran
- Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
7
|
Abstract
Sleep health is an important factor across several physical and mental health disorders, and a growing scientific consensus has identified sleep as a critical component of opioid use disorder (OUD), both in the active disease state and during OUD recovery. The goal of this narrative review is to collate the literature on sleep, opioid use, and OUD as a means of identifying therapeutic targets to improve OUD treatment outcomes. Sleep disturbance is common and often severe in persons with OUD, especially during opioid withdrawal, but also in persons on opioid maintenance therapies. There is ample evidence that sleep disturbances including reduced total sleep time, disrupted sleep continuity, and poor sleep quality often accompany negative OUD treatment outcomes. Sleep disturbances are bidirectionally associated with several other factors related to negative treatment outcomes, including chronic stress, stress reactivity, low positive affect, high negative affect, chronic pain, and drug craving. This constellation of outcome variables represents a more comprehensive appraisal of the quality of life and quality of recovery than is typically assessed in OUD clinical trials. To date, there are very few clinical trials or experimental studies aimed at improving sleep health in OUD patients, either as a means of improving stress, affect, and craving outcomes, or as a potential mechanistic target to reduce opioid withdrawal and drug use behaviors. As such, the direct impact of sleep improvement in OUD patients is largely unknown, yet mechanistic and clinical research suggests that therapeutic interventions that target sleep are a promising avenue to improve OUD treatment. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
8
|
Kaplan GB, Lakis GA, Zhoba H. Sleep-Wake and Arousal Dysfunctions in Post-Traumatic Stress Disorder:Role of Orexin Systems. Brain Res Bull 2022; 186:106-122. [PMID: 35618150 DOI: 10.1016/j.brainresbull.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related condition that produces distressing fear memory intrusions, avoidance behaviors, hyperarousal/startle, stress responses and insomnia. This review focuses on the importance of the orexin neural system as a novel mechanism related to the pathophysiology of PTSD. Orexinergic neurons originate in the lateral hypothalamus and project widely to key neurotransmitter system neurons, autonomic neurons, the hypothalamic-pituitaryadrenal (HPA) axis, and fear-related neural circuits. After trauma or stress, the basolateral amygdala (BLA) transmits sensory information to the central nucleus of the amygdala (CeA) and in turn to the hypothalamus and other subcortical and brainstem regions to promote fear and threat. Orexin receptors have a prominent role in this circuit as fear conditioned orexin receptor knockout mice show decreased fear expression while dual orexin receptor antagonists (DORAs) inhibit fear acquisition and expression. Orexin activation of an infralimbic-amygdala circuit impedes fear extinction while DORA treatments enhance it. Increased orexin signaling to the amygdalocortical- hippocampal circuit promotes avoidance behaviors. Orexin has an important role in activating sympathetic nervous system (SNS) activity and the HPA axis stress responses. Blockade of orexin receptors reduces fear-conditioned startle responses. In PTSD models, individuals demonstrate sleep disturbances such as increased sleep latency and more transitions to wakefulness. Increased orexin activity impairs sleep by promoting wakefulness and reducing total sleep time while DORA treatments enhance sleep onset and maintenance. The orexinergic neural system provides important mechanisms for understanding multiple PTSD behaviors and provides new medication targets to treat this often persistent and debilitating illness.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118 USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118 USA.
| | - Gabrielle A Lakis
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Undergraduate Program in Neuroscience, Boston University, Boston, MA, 02215 USA
| | - Hryhoriy Zhoba
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA
| |
Collapse
|
9
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
10
|
Hsu CW, Wang S. Changes in the Orexin System in Rats Exhibiting Learned Helplessness Behaviors. Brain Sci 2021; 11:brainsci11121634. [PMID: 34942932 PMCID: PMC8699801 DOI: 10.3390/brainsci11121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Orexin-A (OX-A) and orexin-B (OX-B) are neuropeptides produced in the hypothalamus. Preclinical and clinical studies suggest that depression and anxiety are associated with the orexin system. In the current study, we used the learned helplessness (LH) animal model of depression to identify rats displaying LH behaviors (LH rats) and those that did not (No-LH rats). We compared the number of orexin-containing neurons in the hypothalamus of LH, No-LH, and control rats. Orexin peptides, orexin receptor 1 (OXR1) and 2 (OXR2) in brain areas involved in major depression and serum OX-A and corticosterone (CORT) concentrations were quantified and compared between rat groups. We found that LH and No-LH rats displayed higher serum OX-A concentrations compared with control rats. Comparison between LH and No-LH rats revealed that No-LH rats had significantly higher OX-A levels in the brain, more OX-A neurons, and more OX-A neuron activation. LH rats had more OX-B neurons and more OX-B neuron activation. Orexin peptides and receptors in the brain areas involved in major depression exhibited different patterns in LH and NoLH rats. Our findings revealed that activation of OX-A neurons could promote resilient behaviors under stressful situations and OX-A and OX-B neuropeptides exhibit dissimilar functions in LH behaviors.
Collapse
|
11
|
Akça ÖF, Sağlam E, Kılınç I, Bilgiç A. Orexin a levels of adolescents with major depressive disorder. Int J Psychiatry Clin Pract 2021; 25:403-406. [PMID: 34032542 DOI: 10.1080/13651501.2021.1927106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study examines orexin A levels in adolescents with major depressive disorder (MDD). METHODS Serum orexin A levels of adolescents with MDD (n = 40) were compared to healthy controls (n = 38) using ANCOVA test. In addition, the relationship between orexin A levels and MDD symptom severity (i.e., child depression inventory) was investigated in the MDD group using correlation and linear regression analyses. RESULTS Orexin A levels of the subjects with MDD were similar to controls while controlling for age, gender, body mass index, and anxiety levels of the subjects. In addition, correlation and regression analyses did not reveal any relationship between orexin A and MDD symptoms. DISCUSSION Adolescent MDD is not associated with orexin A according to the findings of this study. Future studies considering the effect of stress on this relationship would improve our understanding of this issue.Key PointsAdult studies exploring the relationship between orexin A and major depressive disorder reported contradictory findings.This study showed no relationship between serum orexin A levels and depressive symptom severity among adolescents with major depressive disorder.Orexin A levels of the subjects with major depressive disorder are not significantly different from healthy adolescents.
Collapse
Affiliation(s)
- Ö F Akça
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - E Sağlam
- Department of Child and Adolescent Psychiatry, Ankara City Hospital, Ankara, Turkey
| | - I Kılınç
- Department of Biochemistry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - A Bilgiç
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
12
|
The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021; 14:ph14040293. [PMID: 33810221 PMCID: PMC8065993 DOI: 10.3390/ph14040293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Neuropeptide S (NPS), a 20 amino acids peptide, is recognized as the endogenous ligand of a previously orphan G protein-coupled receptor, now termed NPS receptor (NPSR). The limited distribution of the NPS-expressing neurons in few regions of the brainstem is in contrast with the extensive expression of NPSR in the rodent central nervous system, suggesting the involvement of this receptor in several brain functions. In particular, NPS promotes locomotor activity, behavioral arousal, wakefulness, and unexpectedly, at the same time, it exerts anxiolytic-like properties. Intriguingly, the NPS system is implicated in the rewarding properties of drugs of abuse and in the regulation of food intake. Here, we focus on the anorexigenic effect of NPS, centrally injected in different brain areas, in both sated and fasted animals, fed with standard or palatable food, and, in addition, on its influence in the gastrointestinal tract. Further investigations, regarding the role of the NPS/NPSR system and its potential interaction with other neurotransmitters could be useful to understand the mechanisms underlying its action and to develop novel pharmacological tools for the treatment of aberrant feeding patterns and obesity.
Collapse
|
13
|
Khairuddin S, Aquili L, Heng BC, Hoo TLC, Wong KH, Lim LW. Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neurosci Biobehav Rev 2020; 118:384-396. [DOI: 10.1016/j.neubiorev.2020.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
|
14
|
Rahdar P, Khazali H. Rfamide-related peptide-3 suppresses the substance P-induced promotion of the reproductive performance in female rats modulating hypothalamic Kisspeptin expression. Exp Brain Res 2020; 238:2457-2467. [PMID: 32783107 DOI: 10.1007/s00221-020-05860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
RFamide-related peptide-3 (RFRP-3) has been postulated as the suppressor of the reproductive axis at hypothalamic, pituitary and gonadal levels. Considering the hypothalamic level, RFRP-3 can suppress the activity of gonadotropin-releasing hormone (GnRH) neurons and their upstream neuronal stimulator, namely; the kisspeptin neurons. The effects of the RFRP-3 on the other regulators of GnRH neurons, however, are not completely investigated. Furthermore, substance P (SP) has been known as one of the coordinators of GnRH/ luteinizing hormone (LH) and the kisspeptin/G protein-coupled receptor 54 (GPR54) systems. The present study was aimed at investigating the impacts of RFRP-3 on the effects of SP on the reproductive performance in ovariectomized female rats. After intracerebroventricular (ICV) cannulation, the rats were subjected to the ICV injection of either SP or RFRP-3 and simultaneous injection of them and their selective antagonists. Blood and hypothalamic samplings and also sexual behavioral test were carried out on two main groups of rats. The analyses of the results of LH radioimmunoassay, gene expression assay for hypothalamic Gnrh1, Kisspeptin and Gpr54 accompanied by sexual behavioral examination revealed that the SP administration promotes reproductive behavior and GnRH/LH system and upregulates Kisspeptin expression. The RFRP-3 administration suppressed reproductive behavior, GnRH / LH system and Kisspeptin expression; however, the simultaneous injection of SP and RFRP-3 was devoid of significant alterations in the assessed parameters. The results showed that RFRP-3 can modulates the impacts of SP on the reproductive performance in ovariectomized female rats in part through adjusting Kisspeptin expression.
Collapse
Affiliation(s)
- Parastoo Rahdar
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
15
|
Abstract
Objectives: The relationships between orexins and stress-related conditions have been well documented in animal studies. However, human studies confirming this relationship are limited. The aim of this study was to investigate the association between orexin-A and anxiety disorders in adolescents. Additionally, we aimed to examine the relationship between orexin-A and cortisol levels in those with anxiety disorders.Methods: A total of 56 medication-free adolescents diagnosed with any anxiety disorder, except for specific phobias, and 32 healthy controls were included in this study. Depression, state and trait anxiety levels of the participants were measured using self-report scales. Orexin-A and cortisol levels were measured by an enzyme-linked immunosorbent assay (ELISA).Results: Analysis of covariance (ANCOVA) indicated that serum orexin-A levels were significantly higher in the anxiety disorder group than in the control group while controlling for age, sex and depression levels. After controlling for age and sex, orexin-A levels were positively and negatively correlated to depression and cortisol levels, respectively. In addition, a positive correlation trend between trait anxiety and orexin-A was found.Conclusions: Orexin-A levels are higher in adolescents with anxiety disorder; however, depressive symptoms should be considered when investigating this relationship.
Collapse
Affiliation(s)
- Ömer Faruk Akça
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Necati Uzun
- Department of Child and Adolescent Psychiatry, Dr. Ali Kemal Belviranlı Children Hospital, Konya, Turkey
| | - İbrahim Kılınç
- Department of Biochemistry, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| |
Collapse
|
16
|
Russell JA, Brunton PJ. Giving a good start to a new life via maternal brain allostatic adaptations in pregnancy. Front Neuroendocrinol 2019; 53:100739. [PMID: 30802468 DOI: 10.1016/j.yfrne.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/29/2019] [Accepted: 02/21/2019] [Indexed: 12/23/2022]
Abstract
Successful pregnancy requires adjustments to multiple maternal homeostatic mechanisms, governed by the maternal brain to support and enable survival of the growing fetus and placenta. Such adjustments fit the concept of allostasis (stability through change) and have a cost: allostatic load. Allostasis is driven by ovarian, anterior pituitary, placental and feto-placental hormones acting on the maternal brain to promote adaptations that support the pregnancy and protect the fetus. Many women carry an existing allostatic load into pregnancy, from socio-economic circumstances, poor mental health and in 'developed' countries, also from obesity. These pregnancies have poorer outcomes indicating negative interactions (failing allostasis) between pre-pregnancy and pregnancy allostatic loads. Use of animal models, such as adult prenatally stressed female offspring with abnormal neuroendocrine, metabolic and behavioural phenotypes, to probe gene expression changes, and epigenetic mechanisms in the maternal brain in adverse pregnancies are discussed, with the prospect of ameliorating poor pregnancy outcomes.
Collapse
Affiliation(s)
- John A Russell
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Paula J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK; Zhejiang University-University of Edinburgh Institute, Haining, Zhejiang, PR China.
| |
Collapse
|
17
|
Lu J, Li S, Li H, Mou T, Zhou L, Huang B, Huang M, Xu Y. Changes In Plasma NPY, IL-1β And Hypocretin In People Who Died By Suicide. Neuropsychiatr Dis Treat 2019; 15:2893-2900. [PMID: 31632037 PMCID: PMC6791488 DOI: 10.2147/ndt.s219962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE There is growing evidence showing that inflammatory cytokines and neuropeptides may be involved in the pathophysiology of suicidal behavior. However, studies have yielded contradictory data, and no biological markers that help predict suicide have been identified. This study aimed to identify biological patterns, such as NPY, IL-1β and hypocretin plasma levels, in people who died by suicide. PATIENTS AND METHODS Twenty-two people who died by suicide compared with 22 controls matched for age and sex were studied. In suicide and control subjects, we estimated the levels of NPY, IL-1β and hypocretin in plasma using enzyme-linked immunosorbent assay. The data are presented as the median (25th-75th percentile). RESULTS We found (1) a significant elevation in plasma NPY levels in suicide subjects versus control subjects (suicide: 11.38 (9.380-16.55); controls: 8.95 (7.590-10.93); P=0.013), and plasma NPY concentrations were approximately 62% higher in suicide subjects than those in control subjects; (2) a significant decrease in plasma IL-1β concentrations between suicide and control subjects (suicide: 121.1 (82.97-143.0); controls: 425.9 (233.1-835.3); P<0.001) as well as a decrease in IL-1β concentrations by almost 80%; and (3) no significant difference in plasma hypocretin levels between suicide and control subjects (suicide: 16.62 (13.62-25.77); controls: 21.63 (14.97-29.72); P=0.356). CONCLUSION Our results suggest that plasma NPY and IL-1β were related with suicide behavior rather than to suicide causes or suicide method. Specific combinations of plasma biomarkers may discriminate between types of suicidal behaviors and indicate increased risk for future suicide attempts.
Collapse
Affiliation(s)
- Jing Lu
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shangda Li
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Haimei Li
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Tingting Mou
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lihong Zhou
- Institute of Criminal Science and Technology, Hangzhou Public Security Bureau, Hangzhou, Zhejiang Province, People's Republic of China
| | - Bochao Huang
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Manli Huang
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yi Xu
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang University Brain Research Institute, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
18
|
Hosseini A, Khazali H. Central Orexin A Affects Reproductive Axis by Modulation of Hypothalamic Kisspeptin/Neurokinin B/Dynorphin Secreting Neurons in the Male Wistar Rats. Neuromolecular Med 2018; 20:525-536. [PMID: 30218420 DOI: 10.1007/s12017-018-8506-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
It is an established fact that orexin plays an important role in regulating the reproductive axis and the secretions of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH). However, its precise cellular and molecular mechanisms are not fully recognized. Accordingly, the aim of the present study is to find out whether the central injection of orexin A (OXA) and its antagonists, SB-334867 (as orexin receptor antagonist 1; OX1RA) and JNJ-10397049 (as orexin receptor antagonist 2; OX2RA), either alone or in combination, can leave any impact on the reproductive axis (either hormonal or behavioral) in the male Wistar rats. Furthermore, in order to see whether OXA signals can be relayed through the pathway of kisspeptin/neurokinin B/dynorphin (known as KNDy neurons, a neural network which works upstream of GnRH neurons) or not, the relative gene expression of these neuropeptides were measured. Overall, the data from radioimmunoassay revealed that OXA significantly decreases the mean serum level of LH and testosterone and, in a similar vein, its antagonists neutralize this impact. Moreover, data from real-time quantitative PCR indicated that OXA has significantly reduced the hypothalamic expression of Gnrh. In this line, the gene expressions of Kisspeptin and Neurokinin b decreased. However, OXA antagonists neutralize this impact. Also, the expression of Dynorphin gene was upregulated by the following application of the OXA. The results of this study are related to the impact of orexin on the reproductive axis. It is recommended that KNDy neurons as the interneural pathway relay the information of orexin to the GnRH neurons.
Collapse
Affiliation(s)
- Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
19
|
Balkan B, Pogun S. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides During the Stress Response. Curr Neuropharmacol 2018; 16:371-387. [PMID: 28730966 PMCID: PMC6018196 DOI: 10.2174/1570159x15666170720092442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The hypothalamus harbors high levels of cholinergic neurons and axon terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regulatory role for nicotine in the regulation of the stress responses. The present review will discuss the hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and nicotine exposure on hypothalamic-pituitaryadrenal (HPA) axis regulation at the hypothalamic level will be analyzed in view of the different neuropeptides involved. METHODS Published research related to nicotinic cholinergic regulation of the HPA axis activity at the hypothalamic level is reviewed. RESULTS The nicotinic cholinergic system is one of the major modulators of the HPA axis activity. There is substantial evidence supporting the regulation of hypothalamic neuropeptides by nicotinic acetylcholine receptors. However, most of the studies showing the nicotinic regulation of hypothalamic neuropeptides have employed systemic administration of nicotine. Additionally, we know little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypothalamus and the physiological responses they trigger in these neurons. CONCLUSION Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pathologies such as depression, anxiety disorders and obesity, which are common and significant health problems. A better understanding of the nicotinic regulation of hypothalamic neuropeptides will aid in drug development and provide means to cope with these diseases. Considering that nicotine is also an abused substance, a better understanding of the role of the nicotinic cholinergic system on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation.
Collapse
Affiliation(s)
- Burcu Balkan
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey.,Department of Physiology, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sakire Pogun
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
20
|
Alvarez B, Barrientos T, Gac L, Teske J, Perez-Leighton C. Effects on Hedonic Feeding, Energy Expenditure and Balance of the Non-opioid Peptide DYN-A2-17. Neuroscience 2018; 371:337-345. [DOI: 10.1016/j.neuroscience.2017.11.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 11/28/2022]
|
21
|
Azogu I, Plamondon H. Inhibition of TrkB at the nucleus accumbens, using ANA-12, regulates basal and stress-induced orexin A expression within the mesolimbic system and affects anxiety, sociability and motivation. Neuropharmacology 2017; 125:129-145. [PMID: 28705440 DOI: 10.1016/j.neuropharm.2017.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/05/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
Repeated stress exposure can lead to the development of anxiety and mood disorders. An emerging biological substrate of depression and associated pathology is the nucleus accumbens (NAc), which through interactions with limbic, cognitive and motor circuits can regulate a variety of stress responses. Within these circuits, orexin neurons are involved in arousal and stress adaptability, effects proposed mediated via brain-derived neurotrophic factor signaling. This study tested the hypotheses that 1) repeated exposure to heterotypic stress alters social ability and preference and passive avoidant behaviors, 2) TrkB receptors at the NAc shell regulates stress-induced behavioral responses and orexin expression within the mesocorticolimbic system. Our findings indicate that ANA-12 (0.25 μg/0.5 μl) enhanced sociability during the social interaction test, although treatment had no effect on social preference. The development of conditioned place preference, and fear retention in the passive avoidance test were also facilitated by ANA-12. Biochemical assessments on brain tissues collected within 2 h of a forced swim exposure revealed that ANA-12 increased orexin A immunoreactivity (ir) in the hypothalamic perifornical area, while expression was reduced in the ventral portion of the hippocampal CA1 layer, irrespective of the stress condition. This contrasts changes at the VTA characterized by elevated versus reduced orexin A-ir in ANA-12-treated stress and non-stress rats, respectively. Colocalized orexin A- and tyrosine hydroxylase (TH)-ir at the VTA supports a different temporal expression post stress, TH-ir being unaffected 9 days post stress. These findings support a role for TrkB receptors in regulating basal and stress-induced social, cognitive and motivational behavior, and modulatory actions of BDNF, via TrkB signaling, on orexin A signaling upon stress exposure.
Collapse
Affiliation(s)
- Idu Azogu
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Helene Plamondon
- Behavioral Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON, Canada.
| |
Collapse
|
22
|
Prepro-orexin and orexin expression in the hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes of free-living Eurasian beavers (Castor fiber L.) depends on season. J Mammal 2017. [DOI: 10.1093/jmammal/gyx041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Orexin 2 receptor regulation of the hypothalamic-pituitary-adrenal (HPA) response to acute and repeated stress. Neuroscience 2017; 348:313-323. [PMID: 28257896 DOI: 10.1016/j.neuroscience.2017.02.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
Orexins are hypothalamic neuropeptides that have a documented role in mediating the acute stress response. However, their role in habituation to repeated stress, and the role of orexin receptors (OX1R and OX2R) in the stress response, has yet to be defined. Orexin neuronal activation and levels in the cerebrospinal fluid (CSF) were found to be stimulated with acute restraint, but were significantly reduced by day five of repeated restraint. As certain disease states such as panic disorder are associated with increased central orexin levels and failure to habituate to repeated stress, the effect of activating orexin signaling via Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) on the hypothalamic-pituitary-adrenal (HPA) response was evaluated after repeated restraint. While vehicle-treated rats displayed habituation of Adrenocorticotropic Hormone (ACTH) from day 1 to day 5 of restraint, stimulating orexins did not further increase ACTH beyond vehicle levels for either acute or repeated restraint. We delineated the roles of orexin receptors in acute and repeated stress using a selective OX2R antagonist (MK-1064). Pretreatment with MK-1064 reduced day 1 ACTH levels, but did not allow further habituation on day 5 compared with vehicle-treated rats, indicating that endogenous OX2R activity plays a role in acute stress, but not in habituation to repeated stress. However, in restrained rats with further stimulated orexins by DREADDs, MK-1064 decreased ACTH levels on day 5. Collectively, these results indicate that the OX2R plays a role in acute stress, and can prevent habituation to repeated stress under conditions of high orexin release.
Collapse
|
24
|
James MH, Campbell EJ, Dayas CV. Role of the Orexin/Hypocretin System in Stress-Related Psychiatric Disorders. Curr Top Behav Neurosci 2017; 33:197-219. [PMID: 28083790 DOI: 10.1007/7854_2016_56] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Orexins (hypocretins) are critically involved in coordinating appropriate physiological and behavioral responses to aversive and threatening stimuli. Acute stressors engage orexin neurons via direct projections from stress-sensitive brain regions. Orexin neurons, in turn, facilitate adaptive behavior via reciprocal connections as well as via direct projections to the hypophysiotropic neurons that coordinate the hypothalamic-pituitary-adrenal (HPA) axis response to stress. Consequently, hyperactivity of the orexin system is associated with increased motivated arousal and anxiety, and is emerging as a key feature of panic disorder. Accordingly, there has been significant interest in the therapeutic potential of pharmacological agents that antagonize orexin signaling at their receptors for the treatment of anxiety disorders. In contrast, disorders characterized by inappropriately low levels of motivated arousal, such as depression, generally appear to be associated with hypoactivity of the orexin system. This includes narcolepsy with cataplexy, a disorder characterized by the progressive loss of orexin neurons and increased rates of moderate/severe depression symptomology. Here, we provide a comprehensive overview of both clinical and preclinical evidence highlighting the role of orexin signaling in stress reactivity, as well as how perturbations to this system can result in dysregulated behavioral phenotypes.
Collapse
Affiliation(s)
- Morgan H James
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 2337, Australia
| | - Erin J Campbell
- School of Biomedical Sciences and Pharmacy, Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, Australia
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia.
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, Australia.
| |
Collapse
|
25
|
Elbaz I, Levitas-Djerbi T, Appelbaum L. The Hypocretin/Orexin Neuronal Networks in Zebrafish. Curr Top Behav Neurosci 2017; 33:75-92. [PMID: 28012092 DOI: 10.1007/7854_2016_59] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hypothalamic Hypocretin/Orexin (Hcrt) neurons secrete two Hcrt neuropeptides. These neurons and peptides play a major role in the regulation of feeding, sleep wake cycle, reward-seeking, addiction, and stress. Loss of Hcrt neurons causes the sleep disorder narcolepsy. The zebrafish has become an attractive model to study the Hcrt neuronal network because it is a transparent vertebrate that enables simple genetic manipulation, imaging of the structure and function of neuronal circuits in live animals, and high-throughput monitoring of behavioral performance during both day and night. The zebrafish Hcrt network comprises ~16-60 neurons, which similar to mammals, are located in the hypothalamus and widely innervate the brain and spinal cord, and regulate various fundamental behaviors such as feeding, sleep, and wakefulness. Here we review how the zebrafish contributes to the study of the Hcrt neuronal system molecularly, anatomically, physiologically, and pathologically.
Collapse
Affiliation(s)
- Idan Elbaz
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Talia Levitas-Djerbi
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Lior Appelbaum
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
26
|
Czerwinska J, Chojnowska K, Kaminski T, Bogacka I, Smolinska N, Kaminska B. Orexin receptor expression in the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes of free-living European beavers (Castor fiber L.) in different periods of the reproductive cycle. Gen Comp Endocrinol 2017; 240:103-113. [PMID: 27664717 DOI: 10.1016/j.ygcen.2016.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/07/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
Orexins are hypothalamic neuropeptides acting via two G protein-coupled receptors in mammals: orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R). In European beavers, which are seasonally breeding animals, the presence and functions of orexins and their receptors remain unknown. Our study aimed to determine the expression of OXR mRNAs and the localization of OXR proteins in hypothalamic-pituitary-adrenal/gonadal (HPA/HPG) axes in free-living beavers. The expression of OXR genes (OX1R, OX2R) and proteins was found in all analysed tissues during three periods of beavers' reproductive cycle (April, July, November). The expression of OXR mRNAs in the beaver HPA axis varied seasonally (P<0.05). The levels of OX1R mRNA also differed between the sexes (P<0.05). In the mediobasal hypothalamus, OX1R transcript content increased in pregnant females in April (P<0.05) and OX2R expression increased in males in July (P<0.05). In the pituitary and adrenals, OX1R mRNA levels were relatively constant in females and peaked in July in males (P<0.05), whereas the OX2R was most highly expressed in males in November and in females in April (P<0.05). In gonads, OX1R expression did not fluctuate between seasons or sexes, but transcript levels were elevated in the testes in November and in the ovaries in July (P<0.05). In turn, OX2R mRNA levels varied between the sexes (P<0.05) and were higher in females (July and November) than in males (P<0.05). The circannual variations in OXR mRNA levels in HPA and HPG axes suggest that the expression of these receptors is associated with sex-specific changes in beavers' reproductive activity and their environmental adaptations.
Collapse
Affiliation(s)
- Joanna Czerwinska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland.
| | - Katarzyna Chojnowska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Iwona Bogacka
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| | - Barbara Kaminska
- University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Physiology, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland
| |
Collapse
|
27
|
Cohen S, Ifergane G, Vainer E, Matar MA, Kaplan Z, Zohar J, Mathé AA, Cohen H. The wake-promoting drug modafinil stimulates specific hypothalamic circuits to promote adaptive stress responses in an animal model of PTSD. Transl Psychiatry 2016; 6:e917. [PMID: 27727245 PMCID: PMC5315545 DOI: 10.1038/tp.2016.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
Pharmacotherapeutic intervention during traumatic memory consolidation has been suggested to alleviate or even prevent the development of posttraumatic stress disorder (PTSD). We recently reported that, in a controlled, prospective animal model, depriving rats of sleep following stress exposure prevents the development of a PTSD-like phenotype. Here, we report that administering the wake-promoting drug modafinil to rats in the aftermath of a stressogenic experience has a similar prophylactic effect, as it significantly reduces the prevalence of PTSD-like phenotype. Moreover, we show that the therapeutic value of modafinil appears to stem from its ability to stimulate a specific circuit within the hypothalamus, which ties together the neuropeptide Y, the orexin system and the HPA axis, to promote adaptive stress responses. The study not only confirms the value of sleep prevention and identifies the mechanism of action of a potential prophylactic treatment after traumatic exposure, but also contributes to understanding mechanisms underlying the shift towards adaptive behavioral response.
Collapse
Affiliation(s)
- S Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - G Ifergane
- Headache Clinic, Department of Neurology, Soroka Medical Centre, Ben-Gurion University of the Negev, Beer- Sheva, Israel
| | - E Vainer
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - M A Matar
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Z Kaplan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - J Zohar
- Division of Psychiatry, The Chaim Sheba Medical Center, Ramat-Gan, Israel,Sackler Medical School, Tel-Aviv University, Tel-Aviv, Israel
| | - A A Mathé
- Karolinska Institutet - Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - H Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 4600, Beer-Sheva 84170, Israel. E-mail:
| |
Collapse
|
28
|
Emam AH, Hajesfandiari N, Shahidi S, Komaki A, Ganji M, Sarihi A. Modulation of nociception by medial pre-optic area orexin a receptors and its relation with morphine in male rats. Brain Res Bull 2016; 127:141-147. [PMID: 27641968 DOI: 10.1016/j.brainresbull.2016.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Recent studies have shown that medial pre-optic area (MPOA) of hypothalamus are involved in nociception. Orexin A (hypocretin 1) has been found to have numerous applications including pain modulation. However, the role of orexin A receptors in the MPOA on the nociception has not been yet studied. Therefore, the aim of the present study is to investigate the effect of orexin A microinjection on MPOA on the nociception transmission and morphine induced analgesia in adult male rats. METHODS Using stereotaxic surgery, a cannula was implanted at a site 1mm above the MPOA in the anesthetized rats. After the recovery period, tail-flick (TF) latency was measured as 0, 15, 30, 45 and 60min following the onset of two experimental protocols. Two experiments were carried out. Experiment 1: The male rats received intra-MPOA of 25, 100, 1000, 10000pmol/0.5μl orexin A or 0.5μl of aCSF (control, just 5min before the TF assay. Experiment 2: The aim of this experiment was to examine the effect of orexin microinjection into MPOA on morphine analgesia (3mg/kg,s.c). Morphine was administered 30min before orexin A intra-MPOA microinjection (four doses similar to experiment 1) or aCSF, then TF latency was measured. RESULTS The results indicated that microinjection of orexin A into the MPOA showed anti-nociceptive effect in a time-dependent manner. Dose response curve results also revealed that the maximum effective dose of orexin A injection into MPOA for pain inhibition is 1000pmol/0.5μl. Co-administration of systemic morphine and orexin into the MPOA has additive analgesia with different time course compared morphine or orexin alone. CONCLUSION It can be concluded that MPOA OrexinA receptors play an important role in the modulation of pain in normal and morphine treated male rats.
Collapse
Affiliation(s)
- Amir Hossein Emam
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naeimeh Hajesfandiari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maziar Ganji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
29
|
Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9:111. [PMID: 26300745 PMCID: PMC4523943 DOI: 10.3389/fnsys.2015.00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.
Collapse
Affiliation(s)
- Allison K Graebner
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Manasi Iyer
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Matthew E Carter
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| |
Collapse
|
30
|
Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 2015; 6:6266. [PMID: 25695914 PMCID: PMC4335349 DOI: 10.1038/ncomms7266] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/09/2015] [Indexed: 01/01/2023] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis functions to coordinate behavioural and physiological responses to stress in a manner that depends on the behavioural state of the organism. However, the mechanisms through which arousal and metabolic states influence the HPA axis are poorly understood. Here using optogenetic approaches in mice, we show that neurons that produce hypocretin (Hcrt)/orexin in the lateral hypothalamic area (LHA) regulate corticosterone release and a variety of behaviours and physiological hallmarks of the stress response. Interestingly, we found that Hcrt neuronal activity and Hcrt-mediated stress responses were inhibited by the satiety hormone leptin, which acts, in part, through a network of leptin-sensitive neurons in the LHA. These data demonstrate how peripheral metabolic signals interact with hypothalamic neurons to coordinate stress and arousal and suggest one mechanism through which hyperarousal or altered metabolic states may be linked with abnormal stress responses. The hypothalamic-pituitary-adrenal axis coordinates behavioral and physiological responses to stress but the mechanisms are poorly understood. Here, the authors show that neurons that produce hypocretin/orexin in the lateral hypothalamic area regulate corticosterone release and a variety of behaviors related to the stress response.
Collapse
Affiliation(s)
- Patricia Bonnavion
- 1] Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road , Stanford, California 94305, USA [2] Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB)-UNI, 1070 Brussels, Belgium
| | - Alexander C Jackson
- 1] Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA [2] Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Matthew E Carter
- Department of Biology, Williams College, Williamstown, Massachusetts 01267, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road , Stanford, California 94305, USA
| |
Collapse
|
31
|
Thompson MD, Xhaard H, Sakurai T, Rainero I, Kukkonen JP. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics. Front Neurosci 2014; 8:57. [PMID: 24834023 PMCID: PMC4018553 DOI: 10.3389/fnins.2014.00057] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/12/2014] [Indexed: 01/01/2023] Open
Abstract
Orexin/hypocretin peptide mutations are rare in humans. Even though human narcolepsy is associated with orexin deficiency, this is only extremely rarely due to mutations in the gene coding prepro-orexin, the precursor for both orexin peptides. In contrast, coding and non-coding variants of the OX1 and OX2 orexin receptors have been identified in many human populations; sometimes, these have been associated with disease phenotype, although most confer a relatively low risk. In most cases, these studies have been based on a candidate gene hypothesis that predicts the involvement of orexins in the relevant pathophysiological processes. In the current review, the known human OX1/HCRTR1 and OX2/HCRTR2 genetic variants/polymorphisms as well as studies concerning their involvement in disorders such as narcolepsy, excessive daytime sleepiness, cluster headache, polydipsia-hyponatremia in schizophrenia, and affective disorders are discussed. In most cases, the functional cellular or pharmacological correlates of orexin variants have not been investigated—with the exception of the possible impact of an amino acid 10 Pro/Ser variant of OX2 on orexin potency—leaving conclusions on the nature of the receptor variant effects speculative. Nevertheless, we present perspectives that could shape the basis for further studies. The pharmacology and other properties of the orexin receptor variants are discussed in the context of GPCR signaling. Since orexinergic therapeutics are emerging, the impact of receptor variants on the affinity or potency of ligands deserves consideration. This perspective (pharmacogenetics) is also discussed in the review.
Collapse
Affiliation(s)
- Miles D Thompson
- University of Toronto Epilepsy Research Program, Department of Pharmacology, University of Toronto Toronto, ON, Canada
| | - Henri Xhaard
- Faculty of Pharmacy, Centre for Drug Research, University of Helsinki Helsinki, Finland
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | | | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki Helsinki, Finland
| |
Collapse
|
32
|
Yeoh JW, Campbell EJ, James MH, Graham BA, Dayas CV. Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci 2014; 8:36. [PMID: 24616658 PMCID: PMC3934415 DOI: 10.3389/fnins.2014.00036] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/10/2014] [Indexed: 11/20/2022] Open
Abstract
The tight regulation of sleep/wake states is critical for mental and physiological wellbeing. For example, dysregulation of sleep/wake systems predisposes individuals to metabolic disorders such as obesity and psychiatric problems, including depression. Contributing to this understanding, the last decade has seen significant advances in our appreciation of the complex interactions between brain systems that control the transition between sleep and wake states. Pivotal to our increased understanding of this pathway was the description of a group of neurons in the lateral hypothalamus (LH) that express the neuropeptides orexin A and B (hypocretin, Hcrt-1 and Hcrt-2). Orexin neurons were quickly placed at center stage with the demonstration that loss of normal orexin function is associated with the development of narcolepsy—a condition in which sufferers fail to maintain normal levels of daytime wakefulness. Since these initial seminal findings, much progress has been made in our understanding of the physiology and function of the orexin system. For example, the orexin system has been identified as a key modulator of autonomic and neuroendocrine function, arousal, reward and attention. Notably, studies in animals suggest that dysregulation of orexin function is associated with neuropsychiatric states such as addiction and mood disorders including depression and anxiety. This review discusses the progress associated with therapeutic attempts to restore orexin system function and treat neuropsychiatric conditions such as addiction, depression and anxiety. We also highlight potential pitfalls and challenges associated with targeting this system to treat these neuropsychiatric states.
Collapse
Affiliation(s)
- Jiann Wei Yeoh
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Erin J Campbell
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Morgan H James
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Brett A Graham
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Christopher V Dayas
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| |
Collapse
|
33
|
Dual orexin receptor antagonists - promising agents in the treatment of sleep disorders. Int J Neuropsychopharmacol 2014; 17:157-68. [PMID: 23702225 DOI: 10.1017/s1461145713000552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Insomnia is a serious medical and social problem, its prevalence in the general population ranges from 9 to 35% depending on the country and assessment method. Often, patients are subject to inappropriate and therefore dangerous pharmacotherapies that include prolonged administration of hypnotic drugs, benzodiazepines and other GABAA receptor modulators. This usually does not lead to a satisfactory improvement in patients' clinical states and may cause lifelong drug dependence. Brain state transitions require the coordinated activity of numerous neuronal pathways and brain structures. It is thought that orexin-expressing neurons play a crucial role in this process. Due to their interaction with the sleep-wake-regulating neuronal population, they can activate vigilance-promoting regions and prevent unwanted sleep intrusions. Understanding the multiple orexin modulatory effects is crucial in the context of pathogenesis of insomnia and should lead to the development of novel treatments. An important step in this process was the synthesis of dual antagonists of orexin receptors. Crucially, these drugs, as opposed to benzodiazepines, do not change the sleep architecture and have limited side-effects. This new pharmacological approach might be the most appropriate to treat insomnia.
Collapse
|
34
|
Xu TR, Yang Y, Ward R, Gao L, Liu Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cell Signal 2013; 25:2413-23. [DOI: 10.1016/j.cellsig.2013.07.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 07/26/2013] [Indexed: 12/29/2022]
|
35
|
Central administration of an orexin receptor 1 antagonist prevents the stimulatory effect of Olanzapine on endogenous glucose production. Brain Res 2013; 1527:238-45. [DOI: 10.1016/j.brainres.2013.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 12/31/2022]
|
36
|
Steiner MA, Sciarretta C, Brisbare-Roch C, Strasser DS, Studer R, Jenck F. Examining the role of endogenous orexins in hypothalamus-pituitary-adrenal axis endocrine function using transient dual orexin receptor antagonism in the rat. Psychoneuroendocrinology 2013; 38:560-71. [PMID: 22917622 DOI: 10.1016/j.psyneuen.2012.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
Abstract
The orexin neuropeptide system regulates wakefulness and contributes to physiological and behavioral stress responses. Moreover, a role for orexins in modulating hypothalamus-pituitary-adrenal (HPA) axis activity has been proposed. Brain penetrating dual orexin receptor (OXR) antagonists such as almorexant decrease vigilance and have emerged as a novel therapeutic class for the treatment of insomnia. Almorexant was used here as a pharmacological tool to examine the role of endogenous orexin signaling in HPA axis endocrine function under natural conditions. After confirming the expression of prepro-orexin and OXR-1 and OXR-2 mRNA in hypothalamus, pituitary and adrenal glands, the effects of systemic almorexant were investigated on peripheral HPA axis hormone release in the rat under baseline, stress and pharmacological challenge conditions. Almorexant did not alter basal or stress-induced corticosterone release despite affecting wake and sleep stages (detected by radiotelemetric electroencephalography/electromyography) during the stress exposure. Moreover, almorexant did not affect the release of adrenocorticotropin (ACTH) and corticosterone at different time points along the diurnal rhythm, nor corticotrophin-releasing hormone (CRH)- and ACTH-stimulated neuroendocrine responses, measured in vivo under stress-free conditions. These results illustrate that dual OXR antagonists, despite modulating stress-induced wakefulness, do not interfere with endocrine HPA axis function in the rat. They converge to suggest that endogenous orexin signaling plays a minor role in stress hormone release under basal conditions and under challenge.
Collapse
Affiliation(s)
- Michel A Steiner
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| | | | | | | | | | | |
Collapse
|
37
|
Erami E, Azhdari-Zarmehri H, Rahmani A, Ghasemi-Dashkhasan E, Semnanian S, Haghparast A. Blockade of orexin receptor 1 attenuates the development of morphine tolerance and physical dependence in rats. Pharmacol Biochem Behav 2012; 103:212-9. [DOI: 10.1016/j.pbb.2012.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/12/2012] [Accepted: 08/15/2012] [Indexed: 11/30/2022]
|
38
|
Hollander JA, Pham D, Fowler CD, Kenny PJ. Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: pharmacological and behavioral genetics evidence. Front Behav Neurosci 2012; 6:47. [PMID: 22837742 PMCID: PMC3402880 DOI: 10.3389/fnbeh.2012.00047] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/05/2012] [Indexed: 11/13/2022] Open
Abstract
Considerable evidence suggests that transmission at hypocretin-1 (orexin-1) receptors (Hcrt-R1) plays an important role in the reinstatement of extinguished cocaine-seeking behaviors in rodents. However, far less is known about the role for hypocretin transmission in regulating ongoing cocaine-taking behavior. Here, we investigated the effects of the selective Hcrt-R1 antagonist SB-334867 on cocaine intake, as measured by intravenous (IV) cocaine self-administration in rats. The stimulatory effects of cocaine on brain reward systems contribute to the establishment and maintenance of cocaine-taking behaviors. Therefore, we also assessed the effects of SB-334867 on the reward-enhancing properties of cocaine, as measured by cocaine-induced lowering of intracranial self-stimulation (ICSS) thresholds. Finally, to definitively establish a role for Hcrt-R1 in regulating cocaine intake, we assessed IV cocaine self-administration in Hcrt-R1 knockout mice. We found that SB-334867 (1-4 mg/kg) dose-dependently decreased cocaine (0.5 mg/kg/infusion) self-administration in rats but did not alter responding for food rewards under the same schedule of reinforcement. This suggests that SB-334867 decreased cocaine reinforcement without negatively impacting operant performance. SB-334867 (1-4 mg/kg) also dose-dependently attenuated the stimulatory effects of cocaine (10 mg/kg) on brain reward systems, as measured by reversal of cocaine-induced lowering of ICSS thresholds in rats. Finally, we found that Hcrt-R1 knockout mice self-administered far less cocaine than wildtype mice across the entire dose-response function. These data demonstrate that Hcrt-R1 play an important role in regulating the reinforcing and reward-enhancing properties of cocaine and suggest that hypocretin transmission is likely essential for establishing and maintaining the cocaine habit in human addicts.
Collapse
Affiliation(s)
- Jonathan A Hollander
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter FL, USA
| | | | | | | |
Collapse
|
39
|
Hsiao YT, Jou SB, Yi PL, Chang FC. Activation of GABAergic pathway by hypocretin in the median raphe nucleus (MRN) mediates stress-induced theta rhythm in rats. Behav Brain Res 2012; 233:224-31. [PMID: 22579972 DOI: 10.1016/j.bbr.2012.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/26/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
The frequency of electroencephalograms (EEGs) is predominant in theta rhythm during stress (e.g., footshock) in rats. Median raphe nucleus (MRN) desynchronizes hippocampal theta waves via activation of GABAergic neurons in the medial septum-diagonal band of Broca (MS-DBB), a theta rhythm pacemaker. Increased hypocretin mediates stress responses in addition to the maintenance of wakefulness. Hypocretin receptors are abundant in the MRN, suggesting a possible role of hypocretin in modulating stress-induced theta rhythm. Our results indicated that the intensity of theta waves was enhanced by footshock and that a hypocretin receptor antagonist (TCS1102) suppressed the footshock-induced theta waves. Administration of hypocretin-1 (1 and 10 μg) and hypocretin-2 (10 μg) directly into the MRN simulated the effect of footshock and significantly increased theta waves. Co-administration of GABA(A) receptor antagonist, bicuculline, into the MRN blocked the increase of theta waves induced by hypocretins or footshock. These results suggested that stress enhances the release of hypocretins, activates GABAergic neurons in the MRN, blocks the ability of MRN to desynchronize theta waves, and subsequently increases the intensity of theta rhythm.
Collapse
Affiliation(s)
- Yi-Tse Hsiao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
40
|
Bruijnzeel AW. Tobacco addiction and the dysregulation of brain stress systems. Neurosci Biobehav Rev 2012; 36:1418-41. [PMID: 22405889 PMCID: PMC3340450 DOI: 10.1016/j.neubiorev.2012.02.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/01/2012] [Accepted: 02/23/2012] [Indexed: 11/15/2022]
Abstract
Tobacco is a highly addictive drug and is one of the most widely abused drugs in the world. The first part of this review explores the role of stressors and stress-associated psychiatric disorders in the initiation of smoking, the maintenance of smoking, and relapse after a period of abstinence. The reviewed studies indicate that stressors facilitate the initiation of smoking, decrease the motivation to quit, and increase the risk for relapse. Furthermore, people with depression or an anxiety disorder are more likely to smoke than people without these disorders. The second part of this review describes animal studies that investigated the role of brain stress systems in nicotine addiction. These studies indicate that corticotropin-releasing factor, Neuropeptide Y, the hypocretins, and norepinephrine play a pivotal role in nicotine addiction. In conclusion, the reviewed studies indicate that smoking briefly decreases subjective stress levels but also leads to a further dysregulation of brain stress systems. Drugs that decrease the activity of brain stress systems may diminish nicotine withdrawal and improve smoking cessation rates.
Collapse
Affiliation(s)
- Adrie W Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida, 1149 S. Newell Dr., Gainesville, FL 32611, USA.
| |
Collapse
|
41
|
Rusyniak DE, Zaretsky DV, Zaretskaia MV, Durant PJ, DiMicco JA. The orexin-1 receptor antagonist SB-334867 decreases sympathetic responses to a moderate dose of methamphetamine and stress. Physiol Behav 2012; 107:743-50. [PMID: 22361264 DOI: 10.1016/j.physbeh.2012.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 11/29/2022]
Abstract
We recently discovered that inhibiting neurons in the dorsomedial hypothalamus (DMH) attenuated hyperthermia, tachycardia, hypertension, and hyperactivity evoked by the substituted amphetamine 3, 4-methylenedioxymethamphetamine (MDMA). Neurons that synthesize orexin are also found in the region of the DMH. As orexin and its receptors are involved in the regulation of heart rate and temperature, they would seem to be logical candidates as mediators of the effects evoked by amphetamines. The goal of this study was to determine if blockade of orexin-1 receptors in conscious rats would suppress cardiovascular and thermogenic responses evoked by a range of methamphetamine (METH) doses. Male Sprague-Dawley rats (n=6 per group) were implanted with telemetric transmitters measuring body temperature, heart rate, and mean arterial pressure. Animals were randomized to receive pretreatment with either the orexin-1 receptor antagonist SB-334867 (10mg/kg) or an equal volume of vehicle. Thirty minutes later animals were given intraperitoneal (i.p.) injections of either saline, a low (1mg/kg), moderate (5mg/kg) or high (10mg/kg) dose of METH. Pretreatment with SB-334867 significantly attenuated increases in body temperature and mean arterial pressure evoked by the moderate but not the low or high dose of METH. Furthermore, animals treated with SB-334867, compared to vehicle, had lower temperature and heart rate increases after the stress of an i.p. injection. In conclusion, temperature and cardiovascular responses to a moderate dose of METH and to stress appear to involve orexin-1 receptors. The failure to affect a low and a high dose of METH suggests a complex pharmacology dependent on dose. A better understanding of this may lead to the knowledge of how monoamines influence the orexin system and vice versa.
Collapse
Affiliation(s)
- Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | | | | | | | | |
Collapse
|
42
|
Kaminski T, Smolinska N. Expression of orexin receptors in the pituitary. VITAMINS AND HORMONES 2012; 89:61-73. [PMID: 22640608 DOI: 10.1016/b978-0-12-394623-2.00004-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Orexin receptors type 1 (OX1R) and type 2 (OX2R) are G protein-coupled receptors whose structure is highly conserved in mammals. OX1R is selective for orexin A, and OX2R binds orexin A and orexin B with similar affinity. Orexin receptor expression was observed in human, rat, porcine, sheep as well as Xenopus laevis pituitaries, both in the adenohypophysis and in the neurohypophysis. The expression level is regulated by gonadal steroid hormones and GnRH. The majority of orexins reaching the pituitary originate from the lateral hypothalamus, but due to the presence of the receptors and the local production of orexins in the pituitary, orexins could deliver an auto/paracrine effect within the gland. Cumulative data indicate that orexins are involved in the regulation of LH, GH, PRL, ACTH, and TSH secretion by pituitary cells, pointing to orexins' effect on the functioning of the endocrine axes. Those hormones may also serve as a signal linking metabolic status with endocrine control of sleep, arousal, and reproduction processes.
Collapse
Affiliation(s)
- Tadeusz Kaminski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | | |
Collapse
|
43
|
Tsunematsu T, Yamanaka A. The Role of Orexin/Hypocretin in the Central Nervous System and Peripheral Tissues. SLEEP HORMONES 2012; 89:19-33. [DOI: 10.1016/b978-0-12-394623-2.00002-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. PROGRESS IN BRAIN RESEARCH 2012; 198:133-61. [PMID: 22813973 DOI: 10.1016/b978-0-444-59489-1.00009-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A panic response is an adaptive response to deal with an imminent threat and consists of an integrated pattern of behavioral (aggression, fleeing, or freezing) and increased cardiorespiratory and endocrine responses that are highly conserved across vertebrate species. In the 1920s and 1940s, Philip Bard and Walter Hess, respectively, determined that the posterior regions of the hypothalamus are critical for a "fight-or-flight" reaction to deal with an imminent threat. Since the 1940s it was determined that the posterior hypothalamic panic area was located dorsal (perifornical hypothalamus: PeF) and dorsomedial (dorsomedial hypothalamus: DMH) to the fornix. This area is also critical for regulating circadian rhythms and in 1998, a novel wake-promoting neuropeptide called orexin (ORX)/hypocretin was discovered and determined to be almost exclusively synthesized in the DMH/PeF perifornical hypothalamus and adjacent lateral hypothalamus. The most proximally emergent role of ORX is in regulation of wakefulness through interactions with efferent systems that mediate arousal and energy homeostasis. A hypoactive ORX system is also linked to narcolepsy. However, ORX role in more complex emotional responses is emerging in more recent studies where ORX is linked to depression and anxiety states. Here, we review data that demonstrates ORX ability to mobilize a coordinated adaptive panic/defense response (anxiety, cardiorespiratory, and endocrine components), and summarize the evidence that supports a hyperactive ORX system being linked to pathological panic and anxiety states.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | | | |
Collapse
|
45
|
Schmidt FM, Arendt E, Steinmetzer A, Bruegel M, Kratzsch J, Strauss M, Baum P, Hegerl U, Schönknecht P. CSF-hypocretin-1 levels in patients with major depressive disorder compared to healthy controls. Psychiatry Res 2011; 190:240-3. [PMID: 21757240 DOI: 10.1016/j.psychres.2011.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/13/2011] [Accepted: 06/05/2011] [Indexed: 01/25/2023]
Abstract
Depressive patients exhibit symptoms of impaired regulation of wakefulness with hyperarousal and agitation as well as difficulties to falling asleep and preserving sleep continuity. Changes in hypocretin (hcrt) levels as polypeptides with impact on arousal and sleep-wake-regulation have been discussed in affective disorders but have not been investigated in patients with solely unipolar depression in comparison to healthy controls. In the present study, cerebrospinal fluid (CSF) levels of hcrt-1 for the first time were analyzed in patients with major depressive disorder (MDD) without psychiatric comorbidities and compared with levels in healthy controls. In 17 inpatients with MDD (mean Hamilton Depression Rating Scale 13.9 ± 7.4) and 10 healthy controls, CSF-hcrt-1 levels were measured using a fluorescence immunoassay (FIA). The mean hcrt-1 CSF levels in patients with MDD (74.3 ± 17.8pg/ml) did not differ compared to that of healthy controls (82.8 ± 22.1pg/ml). Hcrt-1 levels did not correlate with the severity of depressive episode, the symptoms of depression or the number of episodes. Although autonomic and neurohumoral signs of hyperarousal are common in MDD, hcrt-1 levels in CSF were not found to be altered in MDD compared to healthy controls. Whether hcrt-1 levels are altered in depressive patients exhibiting impaired vigilance regulation has to be investigated in further studies combining measures of CSF-hcrt-1 with electroencephalography.
Collapse
Affiliation(s)
- Frank Martin Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hata T, Chen J, Ebihara K, Date Y, Ishida Y, Nakahara D. Intra-ventral tegmental area or intracerebroventricular orexin-A increases the intra-cranial self-stimulation threshold via activation of the corticotropin-releasing factor system in rats. Eur J Neurosci 2011; 34:816-26. [PMID: 21848921 DOI: 10.1111/j.1460-9568.2011.07808.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although orexin-A peptide was recently found to inhibit the brain reward system, the exact neural substrates for this phenomenon remain unclear. The aim of the present study was to investigate the role of orexin neurons in intra-cranial self-stimulation behavior and to clarify the pathways through which orexin-A inhibits the brain reward system. Immunohistochemical examination using Fos, a neuronal activation marker, revealed that the percentage of activated orexin cells was very low in the lateral hypothalamus even in the hemisphere ipsilateral to self-stimulation, suggesting that orexin neurons play only a small part, if any, in performing intra-cranial self-stimulation behavior. Intra-ventral tegmental area administration of orexin-A (1.0 nmol) significantly increased the intra-cranial self-stimulation threshold. Furthermore, the threshold-increasing effects of intra-ventral tegmental area or intracerebroventricular orexin-A were inhibited by administration of the nonspecific corticotropin-releasing factor receptor antagonist, d-Phe-CRF(12-41) (20 μg). Following intra-ventral tegmental area infusion of orexin-A, the percentage of cells double-labeled with corticotropin-releasing factor and Fos antibodies increased in the central nucleus of the amygdala but not in the bed nucleus of the stria terminalis, and brain microdialysis analyses indicated that dopamine efflux in both the central nucleus of the amygdala and bed nucleus of the stria terminalis were enhanced. Taken together, the present findings suggest that intra-ventral tegmental area or intracerebroventricular administration of orexin-A exerts its threshold-increasing effect via subsequent activation of the corticotropin-releasing factor system.
Collapse
Affiliation(s)
- Toshimichi Hata
- Faculty of Psychology, Doshisha University, 1-3 Tatara, Miyakodani, Kyotanabe 610-0394, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Kiyokawa M, Matsuzaki T, Iwasa T, Ogata R, Murakami M, Kinouchi R, Yoshida S, Kuwahara A, Yasui T, Irahara M. Neuropeptide Y mediates orexin A-mediated suppression of pulsatile gonadotropin-releasing hormone secretion in ovariectomized rats. THE JOURNAL OF MEDICAL INVESTIGATION 2011; 58:11-8. [PMID: 21372482 DOI: 10.2152/jmi.58.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Reproductive functions are influenced by various feeding regulators. Orexin, which is one of orexinergic peptides, suppresses the pulsatile secretion of luteinizing hormone (LH) in bilaterally ovariectomized (OVX) rats. However, the mechanism of this effect is still not clear. To investigate whether neuropeptide Y (NPY) is involved in the orexin A-mediated suppression of pulsatile LH secretion, we evaluated the effects of NPY antibody on the suppressive effect of orexin A. METHODS Orexin A was administered intracerebroventricularly (icv) and NPY antibody (NPY-Ab) was injected before icv administration of orexin A in OVX rats. Pulsatile LH secretion was analyzed by measuring serum LH concentrations in the next 2 h in blood samples drawn at 6-min intervals by radioimmunoassay. RESULTS Administration of orexin A significantly reduced the mean LH concentration and LH pulse frequency. Co-administration of NPY antibody with orexin A significantly restored the suppressive effect of orexin A on the mean LH concentration and LH pulse frequency. CONCLUSION NPY mediated the suppressive effect of intracerebroventricularly injected orexin A on pulsatile LH secretion, suggesting that hypothalamic orexin suppressed pulsatile gonadotropin-releasing hormone (GnRH) secretion via NPY in the hypothalamus of female rats.
Collapse
Affiliation(s)
- Machiko Kiyokawa
- Department of Obstetrics and Gynecology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction. Pharmaceuticals (Basel) 2011; 4:804-821. [PMID: 23997653 PMCID: PMC3755900 DOI: 10.3390/ph4060804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Drug addiction is a chronic illness characterized by high rates of relapse. Relapse to drug use can be triggered by re-exposure to drug-associated cues, stressful events, or the drug itself after a period of abstinence. Pharmacological intervention to reduce the impact of relapse-instigating factors offers a promising target for addiction treatment. Growing evidence has implicated an important role of the orexin/hypocretin system in drug reward and drug-seeking, including animal models of relapse. Here, we review the evidence for the role of orexins in modulating reward and drug-seeking in animal models of addiction and the potential for orexin receptors as specific targets for anti-relapse medication approaches.
Collapse
|
49
|
The role of orexin-1 receptors in physiologic responses evoked by microinjection of PgE2 or muscimol into the medial preoptic area. Neurosci Lett 2011; 498:162-6. [PMID: 21596094 DOI: 10.1016/j.neulet.2011.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 11/23/2022]
Abstract
The medial preoptic area (mPOA) of the hypothalamus has long been thought to play an important role in both fever production and thermoregulation. Microinjections of prostaglandin E2 (PgE2) or the GABA(A) agonist muscimol into the mPOA cause similar increases in body temperature, heart rate, and blood pressure. Microinjections of these compounds however evoke different behavioral responses with muscimol increasing and PgE2 having no effect on locomotion. The purpose of this study was to determine the role of orexin-1 receptors in mediating these dissimilar responses. Systemic injections of the orexin-1 receptor antagonist SB-334867 reduced temperature and cardiovascular responses produced by microinjections of muscimol, but had no effect on either response produced by PgE2. SB-334867 did not significantly decrease locomotion evoked by microinjections of muscimol into the mPOA. These data suggest that there are two central nervous system circuits involved in increasing body temperature, heart rate and blood pressure: one circuit activated by muscimol, involving orexin neurons, and a separate orexin-independent circuit activated by PgE2.
Collapse
|
50
|
Kagerer SM, Eichholz C, Jöhren O. Orexins/hypocretins increase the promoter activity of selective steroidogenic enzymes. Peptides 2011; 32:839-43. [PMID: 21256172 DOI: 10.1016/j.peptides.2011.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Orexins (hypocretins) regulate multiple physiological functions, including central regulation of energy homeostasis and sleep-wake behavior but also peripheral hormonal actions. Recent data suggest specific effects of orexins at adrenal glands. To further assess the mechanism by which orexins regulate steroidogenesis we analyzed the effect of orexin A and B on the transcriptional activity of the luciferase reporter gene driven by the human steroid 21-hydroxylase (CYP21), 3β-hydroxysteroid dehydrogenase (HSD3B2), 11β-hydroxylase (CYP11B1), and aldosterone synthase (CYP11B2) gene promoter regions. After transient transfection of the reporter gene constructs into human NCI H295R cells, treatment with orexin A and B for 6 and 12h increased the promoter activity of the CYP11B2, HSD3B2 and, to a lesser extend, CYP21 genes. The activity of the CYP11B1 was increased by both orexins after 3h of treatment. Compared to the effects of forskolin or angiotensin II, however, the effect of orexins on the transcriptional activity of the steroidogenic enzyme genes was moderate. Our results suggest that orexins increase the expression of steroidogenic enzymes at the transcriptional level and that orexins play a role in the long term regulation of adrenal steroid production.
Collapse
Affiliation(s)
- Sonja M Kagerer
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | |
Collapse
|