1
|
Worton AJ, Norman RA, Gilbert L, Porter RB. GIS-ODE: linking dynamic population models with GIS to predict pathogen vector abundance across a country under climate change scenarios. J R Soc Interface 2024; 21:20240004. [PMID: 39106949 PMCID: PMC11303026 DOI: 10.1098/rsif.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 06/20/2024] [Indexed: 08/09/2024] Open
Abstract
Mechanistic mathematical models such as ordinary differential equations (ODEs) have a long history for their use in describing population dynamics and determining estimates of key parameters that summarize the potential growth or decline of a population over time. More recently, geographic information systems (GIS) have become important tools to provide a visual representation of statistically determined parameters and environmental features over space. Here, we combine these tools to form a 'GIS-ODE' approach to generate spatiotemporal maps predicting how projected changes in thermal climate may affect population densities and, uniquely, population dynamics of Ixodes ricinus, an important tick vector of several human pathogens. Assuming habitat and host densities are not greatly affected by climate warming, the GIS-ODE model predicted that, even under the lowest projected temperature increase, I. ricinus nymph densities could increase by 26-99% in Scotland, depending on the habitat and climate of the location. Our GIS-ODE model provides the vector-borne disease research community with a framework option to produce predictive, spatially explicit risk maps based on a mechanistic understanding of vector and vector-borne disease transmission dynamics.
Collapse
Affiliation(s)
- A. J. Worton
- Division of Computing Science and Mathematics, University of Stirling, StirlingFK9 4LA, UK
| | - R. A. Norman
- Division of Computing Science and Mathematics, University of Stirling, StirlingFK9 4LA, UK
| | - L. Gilbert
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - R. B. Porter
- Department of Engineering and Mathematics, Sheffield Hallam University, SheffieldS1 1WB, UK
| |
Collapse
|
2
|
Peralbo-Moreno A, Espí A, Barandika JF, García-Pérez AL, Acevedo P, Ruiz-Fons F. Spatiotemporal dynamics of Ixodes ricinus abundance in northern Spain. Ticks Tick Borne Dis 2024; 15:102373. [PMID: 38964219 DOI: 10.1016/j.ttbdis.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Ixodes ricinus is the most medically relevant tick species in Europe because it transmits the pathogens that cause Lyme borreliosis and tick-borne encephalitis. Northern Spain represents the southernmost margin of its main European range and has the highest rate of Lyme borreliosis hospitalisations in the country. Currently, the environmental determinants of the spatiotemporal patterns of I. ricinus abundance remain unknown in this region and these may differ from drivers in highly favourable areas for the species in Europe. Therefore, our study aimed to understand the main factors modulating questing I. ricinus population dynamics to map abundance patterns in northern Spain. From 2012 to 2014, monthly/fortnightly samplings were conducted at 13 sites in two regions of northern Spain to estimate spatiotemporal variation in I. ricinus questing abundance. Local abundance of I. ricinus was modelled in relation to variation in local biotic and abiotic environmental conditions by constructing generalised linear mixed models with a zero-inflated negative binomial distribution for overdispersed data. The different developmental stages of I. ricinus were most active at different times of the year. Adults and nymphs showed a peak of abundance in spring, while questing larvae were more frequent in summer. The main determinants affecting the spatiotemporal abundance of the different stages were related to humidity and temperature. For adults and larvae, summer seemed to be the most influential period for their abundance, while for nymphs, winter conditions and those of the preceding months seemed to be determining factors. The highest abundances of nymphs and adults were predicted for the regions of northern Spain with the highest rate of Lyme borreliosis hospitalisations. Our models could be the basis on which to build more accurate predictive models to identify the spatiotemporal windows of greatest potential interaction between animals/humans and I. ricinus that may lead to the transmission of I. ricinus-borne pathogens.
Collapse
Affiliation(s)
- Alfonso Peralbo-Moreno
- Health & Biotechnology (SaBio) group, Spanish Game & Wildlife Research Institute (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | - Jesús F Barandika
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana L García-Pérez
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Pelayo Acevedo
- Health & Biotechnology (SaBio) group, Spanish Game & Wildlife Research Institute (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Francisco Ruiz-Fons
- Health & Biotechnology (SaBio) group, Spanish Game & Wildlife Research Institute (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain; CIBERINFEC, ISC III, Madrid, Spain.
| |
Collapse
|
3
|
Mansfield KL, Schilling M, Sanders C, Holding M, Johnson N. Arthropod-Borne Viruses of Human and Animal Importance: Overwintering in Temperate Regions of Europe during an Era of Climate Change. Microorganisms 2024; 12:1307. [PMID: 39065076 PMCID: PMC11278640 DOI: 10.3390/microorganisms12071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
The past three decades have seen an increasing number of emerging arthropod-borne viruses in temperate regions This process is ongoing, driven by human activities such as inter-continental travel, combined with the parallel emergence of invasive arthropods and an underlying change in climate that can increase the risk of virus transmission and persistence. In addition, natural events such as bird migration can introduce viruses to new regions. Despite the apparent regularity of virus emergence, arthropod-borne viruses circulating in temperate regions face the challenge of the late autumn and winter months where the arthropod vector is inactive. Viruses therefore need mechanisms to overwinter or they will fail to establish in temperate zones. Prolonged survival of arthropod-borne viruses within the environment, outside of both vertebrate host and arthropod vector, is not thought to occur and therefore is unlikely to contribute to overwintering in temperate zones. One potential mechanism is continued infection of a vertebrate host. However, infection is generally acute, with the host either dying or producing an effective immune response that rapidly clears the virus. There are few exceptions to this, although prolonged infection associated with orbiviruses such as bluetongue virus occurs in certain mammals, and viraemic vertebrate hosts therefore can, in certain circumstances, provide a route for long-term viral persistence in the absence of active vectors. Alternatively, a virus can persist in the arthropod vector as a mechanism for overwintering. However, this is entirely dependent on the ecology of the vector itself and can be influenced by changes in the climate during the winter months. This review considers the mechanisms for virus overwintering in several key arthropod vectors in temperate areas. We also consider how this will be influenced in a warming climate.
Collapse
Affiliation(s)
- Karen L. Mansfield
- Vector Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (K.L.M.); (M.S.)
| | - Mirjam Schilling
- Vector Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (K.L.M.); (M.S.)
| | | | - Maya Holding
- Virology and Pathogenesis Group, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK;
| | - Nicholas Johnson
- Vector Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (K.L.M.); (M.S.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
4
|
Kahl O, Gray JS. The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick Borne Dis 2023; 14:102114. [PMID: 36603231 DOI: 10.1016/j.ttbdis.2022.102114] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Prior to its identification as the vector of Lyme borreliosis spirochaetes in Europe in 1983, interest in Ixodes ricinus (L.) was moderate and mainly concerned the transmission of pathogens to farm animals and of tick-borne encephalitis virus to humans. The situation now is very different, and more papers have been published on I. ricinus than on any other ixodid tick species. However, this large literature is scattered and in recent years has become dominated by the molecular detection and characterization of the many pathogens that I. ricinus transmits. Several decades have now elapsed since a review addressing its basic biology and ecology appeared, and the present publication seeks to present basic aspects of its biology and ecology that are related to its role as a vector of disease agents, including its life cycle, feeding behaviour, host relations, survival off the host, and the impact of weather and climate.
Collapse
Affiliation(s)
- Olaf Kahl
- tick-radar GmbH, 10555 Berlin, Germany.
| | | |
Collapse
|
5
|
Brandenburg PJ, Obiegala A, Schmuck HM, Dobler G, Chitimia-Dobler L, Pfeffer M. Seroprevalence of Tick-Borne Encephalitis (TBE) Virus Antibodies in Wild Rodents from Two Natural TBE Foci in Bavaria, Germany. Pathogens 2023; 12:pathogens12020185. [PMID: 36839457 PMCID: PMC9962257 DOI: 10.3390/pathogens12020185] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Tick-borne encephalitis (TBE) is Eurasia's most important tick-borne viral disease. Rodents play an important role as natural hosts. Longitudinal studies on the dynamics of the seroprevalence rates in wild rodents in natural foci over the year are rare, and the dynamics of the transmission cycle still need to be understood. To better understand the infection dynamics, rodents were captured in a capture-mark-release-recapture-study in two natural foci in Bavaria, Germany, monthly from March 2019 to October 2022. Overall, 651 blood and thoracic lavage samples from 478 different wild rodents (Clethrionomys glareolus and Apodemus flavicollis) were analyzed for antibodies against tick-borne encephalitis virus (TBEV) by indirect immunofluorescence assay (IIFA) and confirmed using a serum neutralization test (SNT). Furthermore, a generalized linear mixed model (GLMM) analysis was performed to investigate ecological and individual factors for the probability of infection in rodents. Clethrionomys glareolus (19.4%) had a higher seroprevalence than A. flavicollis (10.5%). Within Cl. glareolus, more males (40.4%) than females (15.6%) were affected, and more adults (25.4%) than juveniles (9.8%). The probability of infection of rodents rather depends on factors such as species, sex, and age than on the study site of a natural focus, year, and season. The high incidence rates of rodents, particularly male adult bank voles, highlight their critical role in the transmission cycle of TBEV in a natural focus and demonstrate that serologically positive rodents can be reliably detected in a natural focus regardless of season or year. In addition, these data contribute to a better understanding of the TBEV cycle and thus could improve preventive strategies for human infections.
Collapse
Affiliation(s)
- Philipp Johannes Brandenburg
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-97-38150
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Hannah Maureen Schmuck
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Gerhard Dobler
- National Consulting Laboratory for TBE, Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Lidia Chitimia-Dobler
- National Consulting Laboratory for TBE, Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Delimitation of the Tick-Borne Flaviviruses. Resolving the Tick-Borne Encephalitis virus and Louping-Ill Virus Paraphyletic Taxa. Mol Phylogenet Evol 2022; 169:107411. [PMID: 35032647 DOI: 10.1016/j.ympev.2022.107411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
The tick-borne flavivirus (TBFV) group contains at least 12 members where five of them are important pathogens of humans inducing diseases with varying severity (from mild fever forms to acute encephalitis). The taxonomy structure of TBFV is not fully clarified at present. In particular, there is a number of paraphyletic issues of tick-borne encephalitis virus (TBEV) and louping-ill virus (LIV). In this study, we aimed to apply different bioinformatic approaches to analyze all available complete genome amino acid sequences to delineate TBFV members at the species level. Results showed that the European subtype of TBEV (TBEV-E) is a distinct species unit. LIV, in turn, should be separated into two species. Additional analysis of TBEV and LIV antigenic determinant diversity also demonstrate that TBEV-E and LIV are significantly different both from each other and from the other TBEV subtypes. The analysis of available literature provided data on other virus phenotypic particularities that supported our hypothesis. So, within the TBEV+LIV paraphyletic group, we offer to assign four species to get a more accurate understanding of the TBFV interspecies structure according to the modern monophyletic conception.
Collapse
|
7
|
Clark JJ, Gilray J, Orton RJ, Baird M, Wilkie G, Filipe ADS, Johnson N, McInnes CJ, Kohl A, Biek R. Population genomics of louping ill virus provide new insights into the evolution of tick-borne flaviviruses. PLoS Negl Trop Dis 2020; 14:e0008133. [PMID: 32925939 PMCID: PMC7515184 DOI: 10.1371/journal.pntd.0008133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/24/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors. Tick-borne pathogens represent a major emerging threat to public health and in recent years have been expanding into new areas. LIV is a neglected virus endemic to the UK and Ireland (though it has been detected in Scandinavia and Russia) which is closely related to the major human pathogen TBEV, but predominantly causes disease in sheep and grouse. The recent detection of TBEV in the UK, which has also emerged elsewhere in Europe, requires more detailed understanding of the spread and sequence diversity of LIV. This could be important for diagnosis and vaccination, but also to improve our understanding of the evolution and emergence of these tick-borne viruses. Here we describe the sequencing of 22 LIV isolates which have been sampled from several host species across the past century. We have utilised this dataset to investigate the evolutionary pressures that LIV is subjected to and have explored the evolution of LIV using phylogenetic analysis. Crucially we were unable to estimate a reliable molecular clock rate for LIV and found that this problem also extends to a larger phylogeny of TBEV sequences. This work highlights a previously unknown caveat of tick-borne flavivirus evolutionary analysis which may be important for understanding the evolution of these important pathogens.
Collapse
Affiliation(s)
- Jordan J. Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail: (JC); (RB)
| | - Janice Gilray
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Margaret Baird
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine - University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JC); (RB)
| |
Collapse
|
8
|
Gilbert L, Brülisauer F, Willoughby K, Cousens C. Identifying Environmental Risk Factors for Louping Ill Virus Seroprevalence in Sheep and the Potential to Inform Wildlife Management Policy. Front Vet Sci 2020; 7:377. [PMID: 32695800 PMCID: PMC7339109 DOI: 10.3389/fvets.2020.00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/28/2020] [Indexed: 11/18/2022] Open
Abstract
Identifying the risk factors for disease is crucial for developing policy and strategies for controlling exposure to pathogens. However, this is often challenging, especially in complex disease systems, such as vector-borne diseases with multiple hosts and other environmental drivers. Here we combine seroprevalence data with GIS-based environmental variables to identify the environmental risk factors associated with an endemic tick-borne pathogen—louping ill virus—in sheep in Scotland. Higher seroprevalences were associated with (i) upland/moorland habitats, in accordance with what we predicted from the habitat preferences of alternative LIV transmission hosts (such as red grouse), (ii) areas of higher deer density, which supports predictions from previous theoretical models, since deer are the key Ixodes ricinus tick reproduction host in this system, and (iii) a warmer climate, concurring with our current knowledge of how temperature affects tick activity and development rates. The implications for policy include adopting increased disease management and awareness in high risk habitats and in the presence of alternative LIV hosts (e.g., grouse) and tick hosts (especially deer). These results can also inform deer management policy, especially where there may be conflict between contrasting upland management objectives, for example, revenue from deer hunting vs. sheep farmers.
Collapse
Affiliation(s)
- Lucy Gilbert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Kim Willoughby
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| |
Collapse
|
9
|
Folly AJ, Dorey-Robinson D, Hernández-Triana LM, Phipps LP, Johnson N. Emerging Threats to Animals in the United Kingdom by Arthropod-Borne Diseases. Front Vet Sci 2020; 7:20. [PMID: 32118054 PMCID: PMC7010938 DOI: 10.3389/fvets.2020.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023] Open
Abstract
Worldwide, arthropod-borne disease transmission represents one of the greatest threats to public and animal health. For the British Isles, an island group on the north-western coast of continental Europe consisting of the United Kingdom (UK) and the Republic of Ireland, physical separation offers a barrier to the introduction of many of the pathogens that affect animals on the rest of the continent. Added to this are strict biosecurity rules at ports of entry and the depauperate vector biodiversity found on the islands. Nevertheless, there are some indigenous arthropod-borne pathogens that cause sporadic outbreaks, such as the tick-borne louping ill virus, found almost exclusively in the British Isles, and a range of piroplasmid infections that are poorly characterized. These provide an ongoing source of infection whose emergence can be unpredictable. In addition, the risk remains for future introductions of both exotic vectors and the pathogens they harbor, and can transmit. Current factors that are driving the increases of both disease transmission and the risk of emergence include marked changes to the climate in the British Isles that have increased summer and winter temperatures, and extended the period over which arthropods are active. There have also been dramatic increases in the distribution of mosquito-borne diseases, such as West Nile and Usutu viruses in mainland Europe that are making the introduction of these pathogens through bird migration increasingly feasible. In addition, the establishment of midge-borne bluetongue virus in the near continent has increased the risk of wind-borne introduction of infected midges and the inadvertent importation of infected cattle. Arguably the greatest risk is associated with the continual increase in the movement of people, pets and trade into the UK. This, in particular, is driving the introduction of invasive arthropod species that either bring disease-causing pathogens, or are known competent vectors, that increase the risk of disease transmission if introduced. The following review documents the current pathogen threats to animals transmitted by mosquitoes, ticks and midges. This includes both indigenous and exotic pathogens to the UK. In the case of exotic pathogens, the pathway and risk of introduction are also discussed.
Collapse
Affiliation(s)
- Arran J. Folly
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Daniel Dorey-Robinson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | | | - L. Paul Phipps
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
- Faculty of Health and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
10
|
Paulsen KM, das Neves CG, Granquist EG, Madslien K, Stuen S, Pedersen BN, Vikse R, Rocchi M, Laming E, Stiasny K, Andreassen ÅK. Cervids as sentinel-species for tick-borne encephalitis virus in Norway - A serological study. Zoonoses Public Health 2019; 67:342-351. [PMID: 31855321 DOI: 10.1111/zph.12675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE). TBEV is one of the most important neurological pathogens transmitted by tick bites in Europe. The objectives of this study were to investigate the seroprevalence of TBE antibodies in cervids in Norway and the possible emergence of new foci, and furthermore to evaluate if cervids can function as sentinel animals for the distribution of TBEV in the country. Serum samples from 286 moose, 148 roe deer, 140 red deer and 83 reindeer from all over Norway were collected and screened for TBE immunoglobulin G (IgG) antibodies with a modified commercial enzyme-linked immunosorbent assay (ELISA) and confirmed by TBEV serum neutralisation test (SNT). The overall seroprevalence against the TBEV complex in the cervid specimens from Norway was 4.6%. The highest number of seropositive cervids was found in south-eastern Norway, but seropositive cervids were also detected in southern- and central Norway. Antibodies against TBEV detected by SNT were present in 9.4% of the moose samples, 1.4% in red deer, 0.7% in roe deer, and nil in reindeer. The majority of the positive samples in our study originated from areas where human cases of TBE have been reported in Norway. The study is the first comprehensive screening of cervid species in Norway for antibodies to TBEV, and shows that cervids are useful sentinel animals to indicate TBEV occurrence, as supplement to studies in ticks. Furthermore, the results indicate that TBEV might be spreading northwards in Norway. This information may be of relevance for public health considerations and supports previous findings of TBEV in ticks in Norway.
Collapse
Affiliation(s)
- Katrine M Paulsen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Erik G Granquist
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research and Herd Health, Norwegian University of Life Sciences, Sandnes, Norway
| | - Benedikte N Pedersen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Rose Vikse
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mara Rocchi
- Virus Surveillance Unit, Moredun Research Institute, Penicuik, Scotland, UK
| | - Ellie Laming
- Virus Surveillance Unit, Moredun Research Institute, Penicuik, Scotland, UK
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Åshild K Andreassen
- Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
11
|
Michelitsch A, Wernike K, Klaus C, Dobler G, Beer M. Exploring the Reservoir Hosts of Tick-Borne Encephalitis Virus. Viruses 2019; 11:E669. [PMID: 31336624 PMCID: PMC6669706 DOI: 10.3390/v11070669] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important arbovirus, which is found across large parts of Eurasia and is considered to be a major health risk for humans. Like any other arbovirus, TBEV relies on complex interactions between vectors, reservoir hosts, and the environment for successful virus circulation. Hard ticks are the vectors for TBEV, transmitting the virus to a variety of animals. The importance of these animals in the lifecycle of TBEV is still up for debate. Large woodland animals seem to have a positive influence on virus circulation by providing a food source for adult ticks; birds are suspected to play a role in virus distribution. Bank voles and yellow-necked mice are often referred to as classical virus reservoirs, but this statement lacks strong evidence supporting their highlighted role. Other small mammals (e.g., insectivores) may also play a crucial role in virus transmission, not to mention the absence of any suspected reservoir host for non-European endemic regions. Theories highlighting the importance of the co-feeding transmission route go as far as naming ticks themselves as the true reservoir for TBEV, and mammalian hosts as a mere bridge for transmission. A deeper insight into the virus reservoir could lead to a better understanding of the development of endemic regions. The spatial distribution of TBEV is constricted to certain areas, forming natural foci that can be restricted to sizes of merely 500 square meters. The limiting factors for their occurrence are largely unknown, but a possible influence of reservoir hosts on the distribution pattern of TBE is discussed. This review aims to give an overview of the multiple factors influencing the TBEV transmission cycle, focusing on the role of virus reservoirs, and highlights the questions that are waiting to be further explored.
Collapse
Affiliation(s)
- Anna Michelitsch
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christine Klaus
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, German Center of Infection Research (DZIF) partner site Munich, Neuherbergstraße 11, 80937 München, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
12
|
Esser HJ, Mögling R, Cleton NB, van der Jeugd H, Sprong H, Stroo A, Koopmans MPG, de Boer WF, Reusken CBEM. Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors 2019; 12:265. [PMID: 31133059 PMCID: PMC6537422 DOI: 10.1186/s13071-019-3515-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Arboviruses represent a significant burden to public health and local economies due to their ability to cause unpredictable and widespread epidemics. To maximize early detection of arbovirus emergence in non-endemic areas, surveillance efforts should target areas where circulation is most likely. However, identifying such hotspots of potential emergence is a major challenge. The ecological conditions leading to arbovirus outbreaks are shaped by complex interactions between the virus, its vertebrate hosts, arthropod vector, and abiotic environment that are often poorly understood. Here, we systematically review the ecological risk factors associated with the circulation of six arboviruses that are of considerable concern to northwestern Europe. These include three mosquito-borne viruses (Japanese encephalitis virus, West Nile virus, Rift Valley fever virus) and three tick-borne viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, and louping-ill virus). We consider both intrinsic (e.g. vector and reservoir host competence) and extrinsic (e.g. temperature, precipitation, host densities, land use) risk factors, identify current knowledge gaps, and discuss future directions. Our systematic review provides baseline information for the identification of regions and habitats that have suitable ecological conditions for endemic circulation, and therefore may be used to target early warning surveillance programs aimed at detecting multi-virus and/or arbovirus emergence.
Collapse
Affiliation(s)
- Helen J Esser
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Ramona Mögling
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Natalie B Cleton
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Economic Affairs, Wageningen, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem F de Boer
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
13
|
Millins C, Gilbert L, Medlock J, Hansford K, Thompson DB, Biek R. Effects of conservation management of landscapes and vertebrate communities on Lyme borreliosis risk in the United Kingdom. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0123. [PMID: 28438912 PMCID: PMC5413871 DOI: 10.1098/rstb.2016.0123] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 02/01/2023] Open
Abstract
Landscape change and altered host abundance are major drivers of zoonotic pathogen emergence. Conservation and biodiversity management of landscapes and vertebrate communities can have secondary effects on vector-borne pathogen transmission that are important to assess. Here we review the potential implications of these activities on the risk of Lyme borreliosis in the United Kingdom. Conservation management activities include woodland expansion, management and restoration, deer management, urban greening and the release and culling of non-native species. Available evidence suggests that increasing woodland extent, implementing biodiversity policies that encourage ecotonal habitat and urban greening can increase the risk of Lyme borreliosis by increasing suitable habitat for hosts and the tick vectors. However, this can depend on whether deer population management is carried out as part of these conservation activities. Exclusion fencing or culling deer to low densities can decrease tick abundance and Lyme borreliosis risk. As management actions often constitute large-scale perturbation experiments, these hold great potential to understand underlying drivers of tick and pathogen dynamics. We recommend integrating monitoring of ticks and the risk of tick-borne pathogens with conservation management activities. This would help fill knowledge gaps and the production of best practice guidelines to reduce risks. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’.
Collapse
Affiliation(s)
- Caroline Millins
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK .,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK.,School of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Lucy Gilbert
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Jolyon Medlock
- Medical Entomology Group, Emergency Response Department, Public Health England, Salisbury, SP4 0JG, UK.,Health Protection Research Unit in Environment and Health, Porton Down, Salisbury SP4 0JG, UK
| | - Kayleigh Hansford
- Medical Entomology Group, Emergency Response Department, Public Health England, Salisbury, SP4 0JG, UK
| | - Des Ba Thompson
- Scottish Natural Heritage, 231 Corstorphine Road, Edinburgh, EH12 7AT, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
14
|
Hofmeester TR, Sprong H, Jansen PA, Prins HHT, van Wieren SE. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasit Vectors 2017; 10:433. [PMID: 28927432 PMCID: PMC5606071 DOI: 10.1186/s13071-017-2370-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding which factors drive population densities of disease vectors is an important step in assessing disease risk. We tested the hypothesis that the density of ticks from the Ixodes ricinus complex, which are important vectors for tick-borne diseases, is determined by the density of deer, as adults of these ticks mainly feed on deer. METHODS We performed a cross-sectional study to investigate I. ricinus density across 20 forest plots in the Netherlands that ranged widely in deer availability to ticks, and performed a deer-exclosure experiment in four pairs of 1 ha forest plots in a separate site. RESULTS Ixodes ricinus from all stages were more abundant in plots with deer (n = 17) than in plots without deer (n = 3). Where deer were present, the density of ticks did not increase with the abundance of deer. Experimental exclosure of deer reduced nymph density by 66% and adult density by 32% within a timeframe of two years. CONCLUSIONS In this study, deer presence rather than abundance explained the density of I. ricinus. This is in contrast to previous studies and might be related to the relatively high host-species richness in Dutch forests. This means that reduction of the risk of acquiring a tick bite would require the complete elimination of deer in species rich forests. The fact that small exclosures (< 1 ha) substantially reduced I. ricinus densities suggests that fencing can be used to reduce tick-borne disease risk in areas with high recreational pressure.
Collapse
Affiliation(s)
- Tim R. Hofmeester
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Patrick A. Jansen
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands
- Center for Tropical Forest Science, Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Herbert H. T. Prins
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands
| | - Sipke E. van Wieren
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands
| |
Collapse
|
15
|
Opalińska P, Wierzbicka A, Asman M. The PCR and nested PCR detection of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Dermacentor reticulatus F. collected in a new location in Poland (Trzciel, Western Poland). Acta Parasitol 2016; 61:849-854. [PMID: 27787203 DOI: 10.1515/ap-2016-0117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/05/2016] [Indexed: 11/15/2022]
Abstract
The study was performed in the Trzciel Forest Districts which is located in the west part of Poland. The Scots pine is the main tree species creating forest landscape there. Dermacentor reticulatus, usually found in wet, boggy and damp habitat, in this case was discovered in fresh mixed coniferous forest and fresh coniferous forest. In Central Europe the Dermacentor reticulatus is after Ixodes ricinus the second most important vector for tick-borne diseases in Europe. The ticks were collected by flagging from lower vegetation during the autumn peak of their activity. All Dermacentor reticulatus were checked for presence of tickborne pathogens using PCR and nested PCR. In total 125 Dermacentor reticulatus ticks were collected. Among the pathogens examined, only Babesia microti has been found in 4% of them whereas Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum have not been found. In this research the presence of Babesia. microti in Dermacentor reticulatus has been proved. It should be stressed that it is a new focus for the Dermacentor reticulatus tick in Western Poland.
Collapse
|
16
|
Campana MG, Hawkins MTR, Henson LH, Stewardson K, Young HS, Card LR, Lock J, Agwanda B, Brinkerhoff J, Gaff HD, Helgen KM, Maldonado JE, McShea WJ, Fleischer RC. Simultaneous identification of host, ectoparasite and pathogen DNA via in-solution capture. Mol Ecol Resour 2016; 16:1224-39. [DOI: 10.1111/1755-0998.12524] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Michael G. Campana
- Center for Conservation and Evolutionary Genetics; Smithsonian Conservation Biology Institute; 3001 Connecticut Avenue NW Washington DC 20008 USA
| | - Melissa T. R. Hawkins
- Center for Conservation and Evolutionary Genetics; Smithsonian Conservation Biology Institute; 3001 Connecticut Avenue NW Washington DC 20008 USA
- Division of Mammals; National Museum of Natural History; Smithsonian Institution; MRC 108, P.O. Box 37012 Washington DC 20013-7012 USA
| | - Lauren H. Henson
- Center for Conservation and Evolutionary Genetics; Smithsonian Conservation Biology Institute; 3001 Connecticut Avenue NW Washington DC 20008 USA
| | - Kristin Stewardson
- Center for Conservation and Evolutionary Genetics; Smithsonian Conservation Biology Institute; 3001 Connecticut Avenue NW Washington DC 20008 USA
| | - Hillary S. Young
- Department of Ecology, Evolution and Marine Biology; University of California Santa Barbara; Santa Barbara CA 93106 USA
| | - Leah R. Card
- Smithsonian Conservation Biology Institute; National Zoological Park; 1500 Remount Rd. Front Royal VA 22630 USA
| | - Justin Lock
- Center for Conservation and Evolutionary Genetics; Smithsonian Conservation Biology Institute; 3001 Connecticut Avenue NW Washington DC 20008 USA
| | | | - Jory Brinkerhoff
- Department of Biology; B322 Gottwald Center for the Sciences; University of Richmond; 28 Westhampton Way Richmond VA 23173 USA
| | - Holly D. Gaff
- Department of Biological Sciences; Old Dominion University; Norfolk VA 23529 USA
| | - Kristofer M. Helgen
- Division of Mammals; National Museum of Natural History; Smithsonian Institution; MRC 108, P.O. Box 37012 Washington DC 20013-7012 USA
| | - Jesús E. Maldonado
- Center for Conservation and Evolutionary Genetics; Smithsonian Conservation Biology Institute; 3001 Connecticut Avenue NW Washington DC 20008 USA
- Division of Mammals; National Museum of Natural History; Smithsonian Institution; MRC 108, P.O. Box 37012 Washington DC 20013-7012 USA
| | - William J. McShea
- Smithsonian Conservation Biology Institute; National Zoological Park; 1500 Remount Rd. Front Royal VA 22630 USA
| | - Robert C. Fleischer
- Center for Conservation and Evolutionary Genetics; Smithsonian Conservation Biology Institute; 3001 Connecticut Avenue NW Washington DC 20008 USA
| |
Collapse
|
17
|
Gilbert L. Louping ill virus in the UK: a review of the hosts, transmission and ecological consequences of control. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:363-374. [PMID: 26205612 DOI: 10.1007/s10493-015-9952-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/14/2015] [Indexed: 05/26/2023]
Abstract
Louping ill virus (LIV) is a tick-borne flavivirus that is part of the tick-borne encephalitis complex of viruses (TBEV) and has economic and welfare importance by causing illness and death in livestock, especially sheep, Ovies aries, and red grouse, Lagopus lagopus scoticus, an economically valuable gamebird. Unlike Western TBEV which is found primarily in woodlands and is reservoired by small rodents, LIV is not generally transmitted by small rodents but instead by sheep, red grouse and mountain hares and, therefore, is associated with upland heather moorland and rough grazing land. Red grouse are a particularly interesting transmission host because they may acquire most of their LIV infections through eating ticks rather than being bitten by ticks. Furthermore, the main incentive for the application of LIV control methods is not to protect sheep, but to protect red grouse, which is an economically important gamebird. The widespread intensive culling of mountain hares which has been adopted in several areas of Scotland to try to control ticks and LIV has become an important issue in Scotland in recent years. This review outlines the reservoir hosts and transmission cycles of LIV in the UK, then describes the various control methods that have been tried or modelled, with far-reaching implications for conservation and public opinion.
Collapse
Affiliation(s)
- Lucy Gilbert
- James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
18
|
Impacts of deer management practices on the spatial dynamics of the tick Ixodes ricinus: A scenario analysis. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2013.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Jeffries CL, Mansfield KL, Phipps LP, Wakeley PR, Mearns R, Schock A, Bell S, Breed AC, Fooks AR, Johnson N. Louping ill virus: an endemic tick-borne disease of Great Britain. J Gen Virol 2014; 95:1005-1014. [PMID: 24552787 DOI: 10.1099/vir.0.062356-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Europe and Asia, Ixodid ticks transmit tick-borne encephalitis virus (TBEV), a flavivirus that causes severe encephalitis in humans but appears to show no virulence for livestock and wildlife. In the British Isles, where TBEV is absent, a closely related tick-borne flavivirus, named louping ill virus (LIV), is present. However, unlike TBEV, LIV causes a febrile illness in sheep, cattle, grouse and some other species, that can progress to fatal encephalitis. The disease is detected predominantly in animals from upland areas of the UK and Ireland. This distribution is closely associated with the presence of its arthropod vector, the hard tick Ixodes ricinus. The virus is a positive-strand RNA virus belonging to the genus Flavivirus, exhibiting a high degree of genetic homology to TBEV and other mammalian tick-borne viruses. In addition to causing acute encephalomyelitis in sheep, other mammals and some avian species, the virus is recognized as a zoonotic agent with occasional reports of seropositive individuals, particularly those whose occupation involves contact with sheep. Preventative vaccination in sheep is effective although there is no treatment for disease. Surveillance for LIV in Great Britain is limited despite an increased awareness of emerging arthropod-borne diseases and potential changes in distribution and epidemiology. This review provides an overview of LIV and highlights areas where further effort is needed to control this disease.
Collapse
Affiliation(s)
- C L Jeffries
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - K L Mansfield
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - L P Phipps
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - P R Wakeley
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - R Mearns
- Animal Health and Veterinary Laboratories Agency - Penrith, Merrythought, Calthwaite, Penrith CA11 9RR, UK
| | - A Schock
- Animal Health and Veterinary Laboratories Agency - Lasswade, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, UK
| | - S Bell
- Animal Health and Veterinary Laboratories Agency -Shrewsbury Investigation Centre & Laboratory, Kendal Road, Harlscott, Shrewsbury, Shropshire SY1 4HD, UK
| | - A C Breed
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - A R Fooks
- University of Liverpool, Department of Clinical Infection, Microbiology and Immunology, Liverpool, Merseyside L69 7BE, UK.,Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - N Johnson
- Animal Health and Veterinary Laboratories Agency - Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
20
|
Investigating the loss of recruitment potential in red grouse (Lagopus lagopus scoticus): the relative importance of hen mortality, food supply, tick infestation and louping-ill. EUR J WILDLIFE RES 2013. [DOI: 10.1007/s10344-013-0788-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Lubinga JC, Tuppurainen ESM, Stoltsz WH, Ebersohn K, Coetzer JAW, Venter EH. Detection of lumpy skin disease virus in saliva of ticks fed on lumpy skin disease virus-infected cattle. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 61:129-38. [PMID: 23456606 DOI: 10.1007/s10493-013-9679-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
Lumpy skin disease is an economically important disease of cattle that is caused by the lumpy skin disease virus (LSDV), which belongs to the genus Capripoxvirus. It is endemic in Africa and outbreaks have also been reported in the Middle-East. Transmission has mostly been associated with blood-feeding insects but recently, the authors have demonstrated mechanical transmission by Rhipicephalus appendiculatus as well as mechanical/intrastadial and transstadial transmission by Amblyomma hebraeum. Saliva is the medium of transmission of pathogens transmitted by biting arthropods and, simultaneously, it potentiates infection in the vertebrate host. This study aimed to detect LSDV in saliva of A. hebraeum and R. appendiculatus adult ticks fed, as nymphs or as adults, on LSDV-infected animals, thereby also demonstrating transstadial or mechanical/intrastadial passage of the virus in these ticks. Saliva samples were tested for LSDV by real-time PCR and virus isolation. Supernatants obtained from virus isolation were further tested by real-time PCR to confirm that the cytopathic effects observed were due to LSDV. Lumpy skin disease virus was detected, for the first time, in saliva samples of both A. hebraeum and R. appendiculatus ticks. At the same time, mechanical/intrastadial and transstadial passage of the virus was demonstrated and confirmed in R. appendiculatus and A. hebraeum.
Collapse
Affiliation(s)
- J C Lubinga
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private bag X04 Onderstepoort, Pretoria 0110, South Africa.
| | | | | | | | | | | |
Collapse
|
22
|
Ytrehus B, Vainio K, Dudman SG, Gilray J, Willoughby K. Tick-borne encephalitis virus and louping-ill virus may co-circulate in Southern Norway. Vector Borne Zoonotic Dis 2013; 13:762-8. [PMID: 23808981 DOI: 10.1089/vbz.2012.1023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The European subtype of tick-borne encephalitis virus (TBEV-Eu) and louping-ill virus (LIV) are two closely related tick-borne flaviviruses. However, whereas the first is the cause of one of Europe's most important zoonoses, the latter most often only causes disease in sheep and grouse. TBEV-Eu is typically found in the forests of central and northeastern Europe, and LIV typically is found in sheep pastures in the British Isles. In the 1980s, however, LIV was isolated from sheep with encephalomyelitis in Norway. In the 1990s, the first cases of human TBEV were also detected in this country, but while Louping-ill in sheep is very rare, the number of human TBEV cases is increasing. No larger investigations of TBEV and/or LIV seroprevalence and distribution in Norway have been published. However, before such studies are initiated, it is pertinent to know if LIV and TBEV are potentially co-circulating. In the current study, we examined if antibodies against LIV and TBEV were found in wild cervids in one location (Farsund) in southern and one location (Molde) in northwestern Norway using a commercially available enzyme-linked immunosorbent assay for detection of anti-TBEV immunoglobulin G (IgG) and a hemagglutination inhibition test for anti-LIV IgG. Positive results were confirmed by serum neutralization tests. In Farsund, 22 of 54 cervids had antibodies against TBEV and 8 antibodies against LIV. In Molde, 1 of 64 cervids was confirmed positive for TBEV, whereas none were positive for LIV. This shows that TBEV and LIV may co-circulate in southern Norway and that virus(es) antigenetically very similar to TBEV may be found in northwestern Norway. The latter is intriguing, because the climatic conditions typical of TBEV locations should not be expected this far north.
Collapse
Affiliation(s)
- Bjørnar Ytrehus
- 1 Norwegian Veterinary Institute , Section for Pathology, Oslo, Norway
| | | | | | | | | |
Collapse
|
23
|
An alternative to killing? Treatment of reservoir hosts to control a vector and pathogen in a susceptible species. Parasitology 2012; 140:247-57. [PMID: 22939093 DOI: 10.1017/s0031182012001400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parasite-mediated apparent competition occurs when one species affects another through the action of a shared parasite. One way of controlling the parasite in the more susceptible host is to manage the reservoir host. Culling can cause issues in terms of ethics and biodiversity impacts, therefore we ask: can treating, as compared to culling, a wildlife host protect a target species from the shared parasite? We used Susceptible Infected Recovered (SIR) models parameterized for the tick-borne louping ill virus (LIV) system. Deer are the key hosts of the vector (Ixodes ricinus) that transmits LIV to red grouse Lagopus lagopus scoticus, causing high mortality. The model was run under scenarios of varying acaricide efficacy and deer densities. The model predicted that treating deer can increase grouse density through controlling ticks and LIV, if acaricide efficacies are high and deer densities low. Comparing deer treated with 70% acaricide efficacy with a 70% cull rate suggested that treatment may be more effective than culling if initial deer densities are high. Our results will help inform tick control policies, optimize the targeting of control methods and identify conditions where host management is most likely to succeed. Our approach is applicable to other host-vector-pathogen systems.
Collapse
|
24
|
Abstract
The aim of this review is to present briefly background information on 27 tick-borne viruses ("tiboviruses") that have been detected in Europe, viz flaviviruses tick-borne encephalitis (TBEV), louping-ill (LIV), Tyuleniy (TYUV), and Meaban (MEAV); orthobunyaviruses Bahig (BAHV) and Matruh (MTRV); phleboviruses Grand Arbaud (GAV), Ponteves (PTVV), Uukuniemi (UUKV), Zaliv Terpeniya (ZTV), and St. Abb's Head (SAHV); nairoviruses Soldado (SOLV), Puffin Island (PIV), Avalon (AVAV), Clo Mor (CMV), Crimean-Congo hemorrhagic fever (CCHFV); bunyavirus Bhanja (BHAV); coltivirus Eyach (EYAV); orbiviruses Tribec (TRBV), Okhotskiy (OKHV), Cape Wrath (CWV), Mykines (MYKV), Tindholmur (TDMV), and Bauline (BAUV); two thogotoviruses (Thogoto THOV, Dhori DHOV); and one asfivirus (African swine fever virus ASFV). Emphasis is laid on the taxonomic status of these viruses, range of their ixodid or argasid vectors and vertebrate hosts, pathogenicity for vertebrates including humans, and relevance to public health. In general, three groups of tibovirus diseases can be recognized according to main clinical symptoms produced: (i) febrile illness-usually with a rapid onset, fever, sweating, headache, nausea, weakness, myalgia, arthralgia, sometimes polyarthritis and rash; (ii) the CNS affection-meningitis, meningoencephalitis or encephalomyelitis with pareses, paralysis and other sequelae; (iii) hemorrhagic disease. Several "European" tiboviruses cause very serious human (TBEV, CCHFV) or animal (LIV, ASFV) diseases. Other arboviruses play definite role in human or animal pathology though the disease is usually either less serious or infrequently reported (TYUV, BHAV, AVAV, EYAV, TRBV, DHOV, THOV). The other European arboviruses are "orphans" without a proven medical or veterinary significance (BAHV, MTRV, MEAV, GAV, PTVV, ZTV, SAHV, UUKV, SOLV, PIV, AVAV, CMV, OKHV, CWV, MYKV, TDMV, BAUV). However, certain arbovirus diseases of free-living vertebrates (but also those of domestic animals and even man) may often pass unnoticed or misdiagnosed and eventually, they might potentially appear as emerging diseases. Active search for new tiboviruses or for new, pathogenic variants of the known tiboviruses in Europe should therefore continue.
Collapse
Affiliation(s)
- Zdenek Hubálek
- Institute of Vertebrate Biology, v.v.i., Academy of Sciences of the Czech Republic, Květná 8, 60365, Brno, Czech Republic.
| | | |
Collapse
|
25
|
Gilbert L, Maffey GL, Ramsay SL, Hester AJ. The effect of deer management on the abundance of Ixodes ricinus in Scotland. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:658-667. [PMID: 22611862 DOI: 10.1890/11-0458.1] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The management of wildlife hosts for controlling parasites and disease has a history of mixed success. Deer can be important hosts for ticks, such as Ixodes ricinus, which is the primary vector of disease-causing zoonotic pathogens in Europe. Deer are generally managed by culling and fencing for forestry protection, habitat conservation, and commercial hunting, and in this study we test whether these deer management methods can be useful for controlling ticks, with implications for tick-borne pathogens. At different spatial scales and habitats we tested the hypotheses that tick abundance is reduced by (1) culling deer and (2) deer exclusion using fencing. We compared abundance indices of hosts and questing I. ricinus nymphs using a combination of small-scale fencing experiments on moorland, a large-scale natural experiment of fenced and unfenced pairs of forests, and cross-sectional surveys of forest and moorland areas with varying deer densities. As predicted, areas with fewer deer had fewer ticks, and fenced exclosures had dramatically fewer ticks in both large-scale forest and small-scale moorland plots. Fencing and reducing deer density were also associated with higher ground vegetation. The implications of these results on other hosts, pathogen prevalence, and disease risk are discussed. This study provides evidence of how traditional management methods of a keystone species can reduce a generalist parasite, with implications for disease risk mitigation.
Collapse
Affiliation(s)
- L Gilbert
- James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Burri C, Korva M, Bastic V, Knap N, Avsic-Zupanc T, Gern L. Serological evidence of tick-borne encephalitis virus infection in rodents captured at four sites in Switzerland. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:436-439. [PMID: 22493864 DOI: 10.1603/me11084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In a previous study, the presence of tick-borne encephalitis virus (TBEV) in questing Ixodes ricinus L. ticks and in field derived ticks that engorged on small mammals (n = 9,986) was investigated at four sites located in a TBE area in Switzerland. Two of these sites were already recognized as TBE foci (Thun and Belp) and the screening of ticks revealed the presence of TBEV in ticks at a third site, Kiesen, but not at the fourth one, Trimstein. The aim here was to test another approach to detect TBE endemic areas. Sera from 333 small mammals (Apodemus flavicollis, A. sylvaticus, Myodes glareolus) captured in 2006 and 2007 at the four sites were examined for the presence of antibodies against TBEV using immunofluorescence and avidity tests. Overall the prevalence of antibodies against TBEV in rodents reached 3.6% (12/333). At two sites known as TBE foci, Thun and Belp, anti-TBEV antibodies were detected in 9.9% (9/91) and 1.6% (1/63) of rodent sera, respectively. At the third site, Kiesen, recently identified as a TBE focus by the detection of TBEV in ticks, anti-TBEV antibodies were detected in 1.8% (2/113) of rodent sera. Finally, at Trimstein, none of the examined rodent sera had antibodies against TBEV (0/66). This study shows another approach to detect TBE foci by testing antibodies in small mammal sera that is less time-consuming and less expensive than molecular tools.
Collapse
Affiliation(s)
- Caroline Burri
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Kiffner C, Lödige C, Alings M, Vor T, Rühe F. Attachment site selection of ticks on roe deer, Capreolus capreolus. EXPERIMENTAL & APPLIED ACAROLOGY 2011; 53:79-94. [PMID: 20585837 PMCID: PMC2992130 DOI: 10.1007/s10493-010-9378-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/10/2010] [Indexed: 05/28/2023]
Abstract
The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May-August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.
Collapse
Affiliation(s)
- C. Kiffner
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - C. Lödige
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - M. Alings
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - T. Vor
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - F. Rühe
- Department of Forest Zoology and Forest Conservation incl. Wildlife Biology and Game Management, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Barandika JF, Hurtado A, Juste RA, García-Pérez AL. Seasonal Dynamics of Ixodes ricinus in a 3-Year Period in Northern Spain: First Survey on the Presence of Tick-Borne Encephalitis Virus. Vector Borne Zoonotic Dis 2010; 10:1027-35. [DOI: 10.1089/vbz.2009.0148] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jesús F. Barandika
- Department of Animal Health, NEIKER—Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Ana Hurtado
- Department of Animal Health, NEIKER—Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Ramón A. Juste
- Department of Animal Health, NEIKER—Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Ana L. García-Pérez
- Department of Animal Health, NEIKER—Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| |
Collapse
|
29
|
The role of deer as vehicles to move ticks, Ixodes ricinus, between contrasting habitats. Int J Parasitol 2010; 40:1013-20. [DOI: 10.1016/j.ijpara.2010.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 11/22/2022]
|
30
|
Harrison A, Newey S, Gilbert L, Haydon DT, Thirgood S. Culling wildlife hosts to control disease: mountain hares, red grouse and louping ill virus. J Appl Ecol 2010. [DOI: 10.1111/j.1365-2664.2010.01834.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Randolph SE, Rogers DJ. Tick-borne disease systems: mapping geographic and phylogenetic space. ADVANCES IN PARASITOLOGY 2009; 62:263-91. [PMID: 16647973 DOI: 10.1016/s0065-308x(05)62008-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Evidence is presented that the evolution of the tick-borne flaviviruses is driven by biotic factors, principally the exploitation of new hosts as transmission routes. Because vector-borne diseases are limited by climatic conditions, however, abiotic factors have the potential to direct and constrain the evolutionary pathways. This idea is explored by testing the hypothesis that closely related viruses occupy more similar eco-climatic spaces than do more distantly related viruses. A statistical comparison of the conventional phylogenetic tree derived from molecular distances and a novel phenetic tree derived from distances between the climatic spaces within which each virus circulates, indicates that these trees match each other more closely than would be expected at random. This suggests that these viruses are indeed limited in the degree to which they can evolve into new environmental conditions.
Collapse
Affiliation(s)
- S E Randolph
- Oxford Tick Research Group, Tinbergen Building, Department of Zoology, South Parks Road, Oxford, UK
| | | |
Collapse
|
32
|
Gilbert L. Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia 2009; 162:217-25. [PMID: 19685082 DOI: 10.1007/s00442-009-1430-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 07/24/2009] [Indexed: 11/28/2022]
Abstract
The impact of climate change on vector-borne infectious diseases is currently controversial. In Europe the primary arthropod vectors of zoonotic diseases are ticks, which transmit Borrelia burgdorferi sensu lato (the agent of Lyme disease), tick-borne encephalitis virus and louping ill virus between humans, livestock and wildlife. Ixodes ricinus ticks and reported tick-borne disease cases are currently increasing in the UK. Theories for this include climate change and increasing host abundance. This study aimed to test how I. ricinus tick abundance might be influenced by climate change in Scotland by using altitudinal gradients as a proxy, while also taking into account the effects of hosts, vegetation and weather effects. It was predicted that tick abundance would be higher at lower altitudes (i.e. warmer climates) and increase with host abundance. Surveys were conducted on nine hills in Scotland, all of open moorland habitat. Tick abundance was positively associated with deer abundance, but even after taking this into account, there was a strong negative association of ticks with altitude. This was probably a real climate effect, with temperature (and humidity, i.e. saturation deficit) most likely playing an important role. It could be inferred that ticks may become more abundant at higher altitudes in response to climate warming. This has potential implications for pathogen prevalence such as louping ill virus if tick numbers increase at elevations where competent transmission hosts (red grouse Lagopus lagopus scoticus and mountain hares Lepus timidus) occur in higher numbers.
Collapse
Affiliation(s)
- Lucy Gilbert
- Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen, UK.
| |
Collapse
|
33
|
The effect of host movement on viral transmission dynamics in a vector-borne disease system. Parasitology 2009; 136:1221-34. [DOI: 10.1017/s0031182009990424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYMany vector-borne pathogens whose primary vectors are generalists, such as Ixodid ticks, can infect a wide range of host species and are often zoonotic. Understanding their transmission dynamics is important for the development of disease management programmes. Models exist to describe the transmission dynamics of such diseases, but are necessarily simplistic and generally limited by knowledge of vector population dynamics. They are typically deterministic SIR-type models, which predict disease dynamics in a single, non-spatial, closed patch. Here we explore the limitations of such a model of louping-ill virus dynamics by challenging it with novel field data. The model was only partially successful in predicting Ixodes ricinus density and louping-ill virus prevalence at 6 Scottish sites. We extend the existing multi-host model by forming a two-patch model, incorporating the impact of roaming hosts. This demonstrates that host movement may account for some of the discrepancies between the original model and empirical data. We conclude that insights into the dynamics of multi-host vector-borne pathogens can be gained by using a simple two-patch model. Potential improvements to the model, incorporating aspects of spatial and temporal heterogeneity, are outlined.
Collapse
|
34
|
Waudby HP, Petit S, Dixon B, Andrews RH. Hosts of the exotic ornate kangaroo tick, Amblyomma triguttatum triguttatum Koch, on southern Yorke Peninsula, South Australia. Parasitol Res 2007; 101:1323-30. [PMID: 17611781 DOI: 10.1007/s00436-007-0642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 06/13/2007] [Indexed: 12/01/2022]
Abstract
Amblyomma triguttatum triguttatum is assumed to be endemic to south-western Western Australia (including Barrow Island), Queensland (excluding Cape York Peninsula), and New South Wales, south to Dubbo and Barham. The species has been recorded on a range of mammalian hosts including macropods and domestic animals. In Queensland, A. triguttatum triguttatum is implicated in the epidemiology of Q fever. In 2000, the species was detected on southern Yorke Peninsula in South Australia. We aimed to identify A. triguttatum triguttatum's hosts through trapping, sampling of carcasses, and opportunistic capture of vertebrates on Yorke Peninsula. A. triguttatum triguttatum was removed from black rats (Rattus rattus), wild rabbits (Oryctolagus cuniculus), western grey kangaroos (Macropus fuliginosus), Tammar wallabies (M. eugenii eugenii), domesticated cats and dogs, and humans. Before this study, A. triguttatum triguttatum had not been found on black rats or rabbits in the wild. This research has implications for the management of wildlife, livestock, and visitors on Yorke Peninsula. The potential for A. triguttatum triguttatum to spread to other areas of Yorke Peninsula and South Australia is considerable, as visitors (tourists) to southern Yorke Peninsula report the presence of ticks both on themselves and among camping equipment on arriving home.
Collapse
Affiliation(s)
- Helen P Waudby
- School of Natural and Built Environments, University of South Australia, Mawson Lakes, 5095, South Australia, Australia
| | | | | | | |
Collapse
|
35
|
Laurenson MK, McKendrick IJ, Reid HW, Challenor R, Mathewson GK. Prevalence, spatial distribution and the effect of control measures on louping-ill virus in the Forest of Bowland, Lancashire. Epidemiol Infect 2007; 135:963-73. [PMID: 17346361 PMCID: PMC2870653 DOI: 10.1017/s0950268806007692] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex pathogen-host-vector system of the tick-borne louping-ill virus causes economic losses to sheep and red grouse in upland United Kingdom. This paper examines the spatial distribution, incidence and effect of control measures on louping-ill virus in the Bowland Fells of Lancashire. Seroprevalence in sheep at the beginning of the study varied within the area and was affected significantly by the frequency of acaricide treatment. There was a clear decrease over 5 years in the effective force of infection on farms implementing a vaccination programme, irrespective of acaricide treatment regime, however, only one third of farms apparently eliminated infection. On farms where vaccination did not occur or where vaccination was carried out intermittently, the estimated force of infection was variable or possibly increased. Thus, as befits a complex host-pathogen system, reductions in prevalence were not as dramatic as predicted; we discuss the potential explanations for these observations.
Collapse
Affiliation(s)
- M K Laurenson
- Wildlife and Emerging Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | | | | | | | | |
Collapse
|
36
|
Kallio-Kokko H, Uzcategui N, Vapalahti O, Vaheri A. Viral zoonoses in Europe. FEMS Microbiol Rev 2005; 29:1051-77. [PMID: 16024128 PMCID: PMC7110368 DOI: 10.1016/j.femsre.2005.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 04/11/2005] [Accepted: 04/19/2005] [Indexed: 12/19/2022] Open
Abstract
A number of new virus infections have emerged or re-emerged during the past 15 years. Some viruses are spreading to new areas along with climate and environmental changes. The majority of these infections are transmitted from animals to humans, and thus called zoonoses. Zoonotic viruses are, as compared to human-only viruses, much more difficult to eradicate. Infections by several of these viruses may lead to high mortality and also attract attention because they are potential bio-weapons. This review will focus on zoonotic virus infections occurring in Europe.
Collapse
Affiliation(s)
- Hannimari Kallio-Kokko
- Haartman Institute, Department of Virology, University of Helsinki, POB 21, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
37
|
Kirby AD, Smith AA, Benton TG, Hudson PJ. Rising burden of immature sheep ticks (Ixodes ricinus) on red grouse (Lagopus lagopus scoticus) chicks in the Scottish uplands. MEDICAL AND VETERINARY ENTOMOLOGY 2004; 18:67-70. [PMID: 15009449 DOI: 10.1111/j.0269-283x.2004.0479.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The sheep tick Ixodes ricinus (L.) (Acari: Ixodidae) is an ectoparasite of major economic and pathogenic importance in Scotland. Its distribution in the Scottish uplands is assumed to be governed by the abundance and distribution of its definitive hosts (deer and sheep) and climatic variables such as temperature and rainfall. As the numbers of its major host in Scotland, red deer, have increased dramatically and climatic conditions have become more favourable, the level of parasitism could have been expected to rise. We use data gathered from tick counts on over 4000 red grouse chicks Lagopus lagopus scoticus Latham (Galliformes: Tetraonidae) in various experiments over the past 19 years to ascertain whether the intensity and prevalence of parasitism has been increasing. From 1985 to 2003 the average tick burden of a parasitized red grouse chick has grown from 2.60 +/- 1.12 ticks per chick to 12.71 +/- 1.44. Over this period the percentage of chicks of a given brood parasitized has also increased from 4 +/- 2% to 92 +/- 3%. The possible implications of this increase in parasitism for red grouse production are discussed.
Collapse
Affiliation(s)
- A D Kirby
- Department of Biological Science, University of Stirling, Game Conservancy Trust, School of Biological Sciences, Tillydrone, Aberdeen, Scotland.
| | | | | | | |
Collapse
|
38
|
Gilbert L, Norman R, Laurenson KM, Reid HW, Hudson PJ. Disease persistence and apparent competition in a three-host community: an empirical and analytical study of large-scale, wild populations. J Anim Ecol 2002. [DOI: 10.1046/j.0021-8790.2001.00558.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|