1
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
2
|
Zaheri B, Morse D. An overview of transcription in dinoflagellates. Gene 2022; 829:146505. [PMID: 35447242 DOI: 10.1016/j.gene.2022.146505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Dinoflagellates are a vital diverse family of unicellular algae widespread in various aquatic environments. Typically large genomes and permanently condensed chromosomes without histones make these organisms unique among eukaryotes in terms of chromatin structure and gene expression. Genomic and transcriptomic sequencing projects have provided new insight into the genetic foundation of dinoflagellate behaviors. Genes in tandem arrays, trans-splicing of mRNAs and lower levels of transcriptional regulation compared to other eukaryotes all contribute to the differences seen. Here we present a general overview of transcription in dinoflagellates based on previously described work.
Collapse
Affiliation(s)
- Bahareh Zaheri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada.
| |
Collapse
|
3
|
Davies SW, Moreland KN, Wham DC, Kanke MR, Matz MV. Cladocopium community divergence in two Acropora coral hosts across multiple spatial scales. Mol Ecol 2020; 29:4559-4572. [PMID: 33002237 DOI: 10.1111/mec.15668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Many broadly-dispersing corals acquire their algal symbionts (Symbiodiniaceae) "horizontally" from their environment upon recruitment. Horizontal transmission could promote coral fitness across diverse environments provided that corals can associate with divergent algae across their range and that these symbionts exhibit reduced dispersal potential. Here we quantified community divergence of Cladocopium algal symbionts in two coral host species (Acropora hyacinthus, Acropora digitifera) across two spatial scales (reefs on the same island, and between islands) across the Micronesian archipelago using microsatellites. We find that both hosts associated with a variety of multilocus genotypes (MLG) within two genetically distinct Cladocopium lineages (C40, C21), confirming that Acropora coral hosts associate with a range of Cladocopium symbionts across this region. Both C40 and C21 included multiple asexual lineages bearing identical MLGs, many of which spanned host species, reef sites within islands, and even different islands. Both C40 and C21 exhibited moderate host specialization and divergence across islands. In addition, within every island, algal symbiont communities were significantly clustered by both host species and reef site, highlighting that coral-associated Cladocopium communities are structured across small spatial scales and within hosts on the same reef. This is in stark contrast to their coral hosts, which never exhibited significant genetic divergence between reefs on the same island. These results support the view that horizontal transmission could improve local fitness for broadly dispersing Acropora coral species.
Collapse
Affiliation(s)
- Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kelsey N Moreland
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Drew C Wham
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Matt R Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Sproles AE, Oakley CA, Krueger T, Grossman AR, Weis VM, Meibom A, Davy SK. Sub-cellular imaging shows reduced photosynthetic carbon and increased nitrogen assimilation by the non-native endosymbiont Durusdinium trenchii in the model cnidarian Aiptasia. Environ Microbiol 2020; 22:3741-3753. [PMID: 32592285 DOI: 10.1111/1462-2920.15142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023]
Abstract
Hosting different symbiont species can affect inter-partner nutritional fluxes within the cnidarian-dinoflagellate symbiosis. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we measured the spatial incorporation of photosynthetically fixed 13 C and heterotrophically derived 15 N into host and symbiont cells of the model symbiotic cnidarian Aiptasia (Exaiptasia pallida) when colonized with its native symbiont Breviolum minutum or the non-native Durusdinium trenchii. Breviolum minutum exhibited high photosynthetic carbon assimilation per cell and translocation to host tissue throughout symbiosis establishment, whereas D. trenchii assimilated significantly less carbon, but obtained more host nitrogen. These findings suggest that D. trenchii has less potential to provide photosynthetically fixed carbon to the host despite obtaining considerable amounts of heterotrophically derived nitrogen. These sub-cellular events help explain previous observations that demonstrate differential effects of D. trenchii compared to B. minutum on the host transcriptome, proteome, metabolome and host growth and asexual reproduction. Together, these differential effects suggest that the non-native host-symbiont pairing is sub-optimal with respect to the host's nutritional benefits under normal environmental conditions. This contributes to our understanding of the ways in which metabolic integration impacts the benefits of a symbiotic association, and the potential evolution of novel host-symbiont pairings.
Collapse
Affiliation(s)
- Ashley E Sproles
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.,The California Center for Algae Biotechnology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.,Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| |
Collapse
|
5
|
Howells EJ, Bauman AG, Vaughan GO, Hume BCC, Voolstra CR, Burt JA. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol Ecol 2020; 29:899-911. [DOI: 10.1111/mec.15372] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Emily J. Howells
- Center for Genomics and Systems Biology New York University Abu Dhabi Abu Dhabi United Arab Emirates
- Centre for Sustainable Ecosystem Solutions and School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong NSW Australia
| | - Andrew G. Bauman
- Experimental Marine Ecology Laboratory Department of Biological Sciences National University of Singapore Singapore City Singapore
| | - Grace O. Vaughan
- Center for Genomics and Systems Biology New York University Abu Dhabi Abu Dhabi United Arab Emirates
| | - Benjamin C. C. Hume
- Red Sea Research Center Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
- Department of Biology University of Konstanz Konstanz Germany
| | - John A. Burt
- Center for Genomics and Systems Biology New York University Abu Dhabi Abu Dhabi United Arab Emirates
| |
Collapse
|
6
|
Sproles AE, Oakley CA, Matthews JL, Peng L, Owen JG, Grossman AR, Weis VM, Davy SK. Proteomics quantifies protein expression changes in a model cnidarian colonised by a thermally tolerant but suboptimal symbiont. THE ISME JOURNAL 2019; 13:2334-2345. [PMID: 31118473 PMCID: PMC6775970 DOI: 10.1038/s41396-019-0437-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 11/09/2022]
Abstract
The acquisition of thermally tolerant algal symbionts by corals has been proposed as a natural or assisted mechanism of increasing coral reef resilience to anthropogenic climate change, but the cell-level processes determining the performance of new symbiotic associations are poorly understood. We used liquid chromatography-mass spectrometry to investigate the effects of an experimentally induced symbiosis on the host proteome of the model sea anemone Exaiptasia pallida. Aposymbiotic specimens were colonised by either the homologous dinoflagellate symbiont (Breviolum minutum) or a thermally tolerant, ecologically invasive heterologous symbiont (Durusdinium trenchii). Anemones containing D. trenchii exhibited minimal expression of Niemann-Pick C2 proteins, which have predicted biochemical roles in sterol transport and cell recognition, and glutamine synthetases, which are thought to be involved in nitrogen assimilation and recycling between partners. D. trenchii-colonised anemones had higher expression of methionine-synthesising betaine-homocysteine S-methyltransferases and proteins with predicted oxidative stress response functions. Multiple lysosome-associated proteins were less abundant in both symbiotic treatments compared with the aposymbiotic treatment. The differentially abundant proteins are predicted to represent pathways that may be involved in nutrient transport or resource allocation between partners. These results provide targets for specific experiments to elucidate the mechanisms underpinning compensatory physiology in the coral-dinoflagellate symbiosis.
Collapse
Affiliation(s)
- Ashley E Sproles
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Jennifer L Matthews
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| |
Collapse
|
7
|
Brian JI, Davy SK, Wilkinson SP. Multi-gene incongruence consistent with hybridisation in Cladocopium (Symbiodiniaceae), an ecologically important genus of coral reef symbionts. PeerJ 2019; 7:e7178. [PMID: 31289699 PMCID: PMC6598746 DOI: 10.7717/peerj.7178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/22/2019] [Indexed: 12/23/2022] Open
Abstract
Coral reefs rely on their intracellular dinoflagellate symbionts (family Symbiodiniaceae) for nutritional provision in nutrient-poor waters, yet this association is threatened by thermally stressful conditions. Despite this, the evolutionary potential of these symbionts remains poorly characterised. In this study, we tested the potential for divergent Symbiodiniaceae types to sexually reproduce (i.e. hybridise) within Cladocopium, the most ecologically prevalent genus in this family. With sequence data from three organelles (cob gene, mitochondrion; psbAncr region, chloroplast; and ITS2 region, nucleus), we utilised the Incongruence Length Difference test, Approximately Unbiased test, tree hybridisation analyses and visual inspection of raw data in stepwise fashion to highlight incongruences between organelles, and thus provide evidence of reticulate evolution. Using this approach, we identified three putative hybrid Cladocopium samples among the 158 analysed, at two of the seven sites sampled. These samples were identified as the common Cladocopium types C40 or C1 with respect to the mitochondria and chloroplasts, but the rarer types C3z, C3u and C1# with respect to their nuclear identity. These five Cladocopium types have previously been confirmed as evolutionarily distinct and were also recovered in non-incongruent samples multiple times, which is strongly suggestive that they sexually reproduced to produce the incongruent samples. A concomitant inspection of next generation sequencing data for these samples suggests that other plausible explanations, such as incomplete lineage sorting or the presence of co-dominance, are much less likely. The approach taken in this study allows incongruences between gene regions to be identified with confidence, and brings new light to the evolutionary potential within Symbiodiniaceae.
Collapse
Affiliation(s)
- Joshua I Brian
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Shaun P Wilkinson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
Bayliss SLJ, Scott ZR, Coffroth MA, terHorst CP. Genetic variation in Breviolum antillogorgium, a coral reef symbiont, in response to temperature and nutrients. Ecol Evol 2019; 9:2803-2813. [PMID: 30891218 PMCID: PMC6406013 DOI: 10.1002/ece3.4959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023] Open
Abstract
Symbionts within the family Symbiodiniaceae are important on coral reefs because they provide significant amounts of carbon to many different reef species. The breakdown of this mutualism that occurs as a result of increasingly warmer ocean temperatures is a major threat to coral reef ecosystems globally. Recombination during sexual reproduction and high rates of somatic mutation can lead to increased genetic variation within symbiont species, which may provide the fuel for natural selection and adaptation. However, few studies have asked whether such variation in functional traits exists within these symbionts. We used several genotypes of two closely related species, Breviolum antillogorgium and B. minutum, to examine variation of traits related to symbiosis in response to increases in temperature or nitrogen availability in laboratory cultures. We found significant genetic variation within and among symbiont species in chlorophyll content, photosynthetic efficiency, and growth rate. Two genotypes showed decreases in traits in response to increased temperatures predicted by climate change, but one genotype responded positively. Similarly, some genotypes within a species responded positively to high-nitrogen environments, such as those expected within hosts or eutrophication associated with global change, while other genotypes in the same species responded negatively, suggesting context-dependency in the strength of mutualism. Such variation in traits implies that there is potential for natural selection on symbionts in response to temperature and nutrients, which could confer an adaptive advantage to the holobiont.
Collapse
Affiliation(s)
- Shannon L. J. Bayliss
- Biology DepartmentCalifornia State UniversityNorthridgeCalifornia
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee
| | - Zoë R. Scott
- Biology DepartmentCalifornia State UniversityNorthridgeCalifornia
| | - Mary Alice Coffroth
- Department of Geology and Graduate Program in Evolution, Ecology and BehaviorUniversity at BuffaloBuffaloNew York
| | | |
Collapse
|
9
|
Lewis AM, Chan AN, LaJeunesse TC. New Species of Closely Related Endosymbiotic Dinoflagellates in the Greater Caribbean have Niches Corresponding to Host Coral Phylogeny. J Eukaryot Microbiol 2018; 66:469-482. [DOI: 10.1111/jeu.12692] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Allison M. Lewis
- Department of Biology Pennsylvania State University University Park Pennsylvania 16802
| | - Andrea N. Chan
- Department of Biology Pennsylvania State University University Park Pennsylvania 16802
| | - Todd C. LaJeunesse
- Department of Biology Pennsylvania State University University Park Pennsylvania 16802
| |
Collapse
|
10
|
Baumann JH, Davies SW, Aichelman HE, Castillo KD. Coral Symbiodinium Community Composition Across the Belize Mesoamerican Barrier Reef System is Influenced by Host Species and Thermal Variability. MICROBIAL ECOLOGY 2018; 75:903-915. [PMID: 29098358 DOI: 10.1007/s00248-017-1096-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Reef-building corals maintain a symbiotic relationship with dinoflagellate algae of the genus Symbiodinium, and this symbiosis is vital for the survival of the coral holobiont. Symbiodinium community composition within the coral host has been shown to influence a coral's ability to resist and recover from stress. A multitude of stressors including ocean warming, ocean acidification, and eutrophication have been linked to global scale decline in coral health and cover in recent decades. Three distinct thermal regimes (highTP, modTP, and lowTP) following an inshore-offshore gradient of declining average temperatures and thermal variation were identified on the Belize Mesoamerican Barrier Reef System (MBRS). Quantitative metabarcoding of the ITS-2 locus was employed to investigate differences and similarities in Symbiodinium genetic diversity of the Caribbean corals Siderastrea siderea, S. radians, and Pseudodiploria strigosa between the three thermal regimes. A total of ten Symbiodinium lineages were identified across the three coral host species. S. siderea was associated with distinct Symbiodinium communities; however, Symbiodinium communities of its congener, S. radians and P. strigosa, were more similar to one another. Thermal regime played a role in defining Symbiodinium communities in S. siderea but not S. radians or P. strigosa. Against expectations, Symbiodinium trenchii, a symbiont known to confer thermal tolerance, was dominant only in S. siderea at one sampled offshore site and was rare inshore, suggesting that coral thermal tolerance in more thermally variable inshore habitats is achieved through alternative mechanisms. Overall, thermal parameters alone were likely not the only primary drivers of Symbiodinium community composition, suggesting that environmental variables unrelated to temperature (i.e., light availability or nutrients) may play key roles in structuring coral-algal communities in Belize and that the relative importance of these environmental variables may vary by coral host species.
Collapse
Affiliation(s)
- J H Baumann
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3300, USA.
| | - S W Davies
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3300, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - H E Aichelman
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3300, USA
- Department of Biological Sciences, Old Dominion University, 302 Miles Godwin building, Norfolk, VA, 23529, USA
| | - K D Castillo
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3300, USA
| |
Collapse
|
11
|
|
12
|
Cunning R, Gates RD, Edmunds PJ. Using high-throughput sequencing of ITS2 to describe Symbiodinium metacommunities in St. John, US Virgin Islands. PeerJ 2017. [PMID: 28649474 PMCID: PMC5482262 DOI: 10.7717/peerj.3472] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Symbiotic microalgae (Symbiodinium spp.) strongly influence the performance and stress-tolerance of their coral hosts, making the analysis of Symbiodinium communities in corals (and metacommunities on reefs) advantageous for many aspects of coral reef research. High-throughput sequencing of ITS2 nrDNA offers unprecedented scale in describing these communities, yet high intragenomic variability at this locus complicates the resolution of biologically meaningful diversity. Here, we demonstrate that generating operational taxonomic units by clustering ITS2 sequences at 97% similarity within, but not across, samples collapses sequence diversity that is more likely to be intragenomic, while preserving diversity that is more likely interspecific. We utilize this ‘within-sample clustering’ to analyze Symbiodinium from ten host taxa on shallow reefs on the north and south shores of St. John, US Virgin Islands. While Symbiodinium communities did not differ between shores, metacommunity network analysis of host-symbiont associations revealed Symbiodinium lineages occupying ‘dominant’ and ‘background’ niches, and coral hosts that are more ‘flexible’ or ‘specific’ in their associations with Symbiodinium. These methods shed new light on important questions in coral symbiosis ecology, and demonstrate how application-specific bioinformatic pipelines can improve the analysis of metabarcoding data in microbial metacommunity studies.
Collapse
Affiliation(s)
- Ross Cunning
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, United States of America
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, United States of America
| | - Peter J Edmunds
- Department of Biology, California State University, Northridge, CA, United States of America
| |
Collapse
|
13
|
Thornhill DJ, Howells EJ, Wham DC, Steury TD, Santos SR. Population genetics of reef coral endosymbionts (Symbiodinium
, Dinophyceae). Mol Ecol 2017; 26:2640-2659. [DOI: 10.1111/mec.14055] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/02/2023]
Affiliation(s)
- D. J. Thornhill
- Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies; Auburn University; 101 Rouse Life Sciences Building Auburn AL 36849 USA
| | - E. J. Howells
- Center for Genomics and Systems Biology; New York University Abu Dhabi; PO Box 129188 Abu Dhabi United Arab Emirates
| | - D. C. Wham
- Department of Biology; Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| | - T. D. Steury
- School of Forestry and Wildlife Sciences; Auburn University; 3301 Forestry and Wildlife Building Auburn AL 36849 USA
| | - S. R. Santos
- Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies; Auburn University; 101 Rouse Life Sciences Building Auburn AL 36849 USA
| |
Collapse
|
14
|
Hawkins TD, Hagemeyer JCG, Warner ME. Temperature moderates the infectiousness of two conspecific
Symbiodinium
strains isolated from the same host population. Environ Microbiol 2016; 18:5204-5217. [DOI: 10.1111/1462-2920.13535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Thomas D. Hawkins
- School of Marine Science and Policy, College of Earth, Ocean and EnvironmentUniversity of DelawareLewes Delaware, USA
| | - Julia. C. G. Hagemeyer
- School of Marine Science and Policy, College of Earth, Ocean and EnvironmentUniversity of DelawareLewes Delaware, USA
| | - Mark E. Warner
- School of Marine Science and Policy, College of Earth, Ocean and EnvironmentUniversity of DelawareLewes Delaware, USA
| |
Collapse
|
15
|
Howells EJ, Willis BL, Bay LK, van Oppen MJH. Microsatellite allele sizes alone are insufficient to delineate species boundaries inSymbiodinium. Mol Ecol 2016; 25:2719-23. [DOI: 10.1111/mec.13631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/10/2016] [Accepted: 03/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- E. J. Howells
- Center for Genomics and Systems Biology; New York University Abu Dhabi; Saadiyat Island Abu Dhabi United Arab Emirates
| | - B. L. Willis
- ARC Centre of Excellence for Coral Reef Studies and College of Marine and Environmental Sciences; James Cook University; Townsville Qld 4811 Australia
| | - L. K. Bay
- Australian Institute of Marine Science; PMB 3 MC Townsville Qld 4810 Australia
| | - M. J. H. van Oppen
- Australian Institute of Marine Science; PMB 3 MC Townsville Qld 4810 Australia
- School of Biosciences; The University of Melbourne; Parkville Vic. 3052 Australia
| |
Collapse
|
16
|
Wham DC, LaJeunesse TC. Symbiodinium population genetics: testing for species boundaries and analysing samples with mixed genotypes. Mol Ecol 2016; 25:2699-712. [DOI: 10.1111/mec.13623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Drew C. Wham
- Department of Biology Pennsylvania State University University Park PA 16802 USA
| | - Todd C. LaJeunesse
- Department of Biology Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
17
|
Animal–Symbiodinium Symbioses: Foundations of Coral Reef Ecosystems. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Limbu SM, Kyewalyanga MS. Spatial and temporal variations in environmental variables in relation to phytoplankton composition and biomass in coral reef areas around Unguja, Zanzibar, Tanzania. SPRINGERPLUS 2015; 4:646. [PMID: 26543780 PMCID: PMC4628011 DOI: 10.1186/s40064-015-1439-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/14/2015] [Indexed: 11/10/2022]
Abstract
Phytoplankton can indirectly indicate health status of coral reefs due to their sensitivity to changes in water quality parameters. This study explored the spatial and temporal variability in water quality and nutrients in relation to phytoplankton community composition and chlorophyll a concentration at Bawe, Mnemba, Chumbe and Pongwe coral reef sites in Unguja Island. In situ measurements of dissolved oxygen, temperature, salinity and pH were done every month for 1 year. Surface water samples were collected for determination of phytoplankton composition, nutrients and chlorophyll a concentration. Dissolved oxygen, temperature, salinity and pH did not differ significantly among the four sites (p > 0.05) but showed significant temporal variations among months (p < 0.05). Bawe had significantly higher phosphate concentration (1.45 ± 0.57 µg L(-1)) than Chumbe (0.74 ± 0.53 µg L(-1)), Mnemba (0.42 ± 0.30 µg L(-1)) and Pongwe (0.28 ± 0.10 µg L(-1); p < 0.05). Similarly, Bawe had significantly higher nitrate concentration (0.81 ± 0.43 µg L(-1)) than Mnemba (0.33 ± 0.14 µg L(-1)) and Pongwe (0.24 ± 0.13 µg L(-1); p < 0.05) but similar to Chumbe (0.90 ± 0.35 µg L(-1); p > 0.05). However, values obtained at all the studied sites were less than 3 and 14 mg L(-1) for phosphate and nitrate, respectively, for eutrophic oceans. Phytoplankton species were dominated by Bacillariophyceae (70.83 %) and some species identified such as Ceratium sp., Dinophysis sp., Protoperidinium sp., Prorocentrum sp., Oscillatoria sp. and Dictyocha fibula are known to produce toxins that affect fish species. Bawe had significantly higher chlorophyll a concentration (0.47 ± 0.07 mg L(-1)) than Mnemba (0.33 ± 0.04 mg L(-1)) and Chumbe (0.33 ± 0.04 mg L(-1); p < 0.05). Chlorophyll a concentration was spatially inversely related to distance from Unguja town (p < 0.05) while it was temporally significantly positively correlated with dissolved oxygen, nitrate and phosphate (p < 0.05). The study revealed that, the coral reef sites have low nutrient levels and are in good health. The existence of toxic phytoplankton species suggests careful consumption of fisheries resources at the four coral reef sites and frequent monitoring for Harmful Algal Blooms (HABs) is required. The higher nutrients and chlorophyll a concentrations at Bawe Island compared to other sites calls for mechanisms to limit the release of domestic sewage from households and hotels to safeguard the coral reefs.
Collapse
Affiliation(s)
- S M Limbu
- Department of Aquatic Sciences and Fisheries, University of Dar es Salaam, P.O. Box 35064, Dar es Salaam, Tanzania ; Department of Biology, School of Life Sciences, Laboratory of Aquaculture Nutrition and Environmental Health, East China Normal University, 500 Dong Chuan Road, Shanghai, 200241 China
| | - M S Kyewalyanga
- Institute of Marine Sciences, University of Dar es Salaam, Mizingani Road, P.O. Box 668, Zanzibar, Tanzania
| |
Collapse
|
19
|
Intraspecific diversity among partners drives functional variation in coral symbioses. Sci Rep 2015; 5:15667. [PMID: 26497873 PMCID: PMC4620489 DOI: 10.1038/srep15667] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
The capacity of coral-dinoflagellate mutualisms to adapt to a changing climate relies in part on standing variation in host and symbiont populations, but rarely have the interactions between symbiotic partners been considered at the level of individuals. Here, we tested the importance of inter-individual variation with respect to the physiology of coral holobionts. We identified six genetically distinct Acropora palmata coral colonies that all shared the same isoclonal Symbiodinium ‘fitti’ dinoflagellate strain. No other Symbiodinium could be detected in host tissues. We exposed fragments of each colony to extreme cold and found that the stress-induced change in symbiont photochemical efficiency varied up to 3.6-fold depending on host genetic background. The S. ‘fitti’ strain was least stressed when associating with hosts that significantly altered the expression of 184 genes under cold shock; it was most stressed in hosts that only adjusted 14 genes. Key expression differences among hosts were related to redox signaling and iron availability pathways. Fine-scale interactions among unique host colonies and symbiont strains provide an underappreciated source of raw material for natural selection in coral symbioses.
Collapse
|
20
|
Parkinson JE, Coffroth MA, LaJeunesse TC. New species of Clade B Symbiodinium (Dinophyceae) from the greater Caribbean belong to different functional guilds: S. aenigmaticum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and S. pseudominutum sp. nov. JOURNAL OF PHYCOLOGY 2015; 51:850-858. [PMID: 26986882 DOI: 10.1111/jpy.12340] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
Molecular approaches have begun to supersede traditional morphometrics in the species delineation of micro-eukaryotes. In addition to fixed differences in DNA sequences, recent genetics-based descriptions within the dinoflagellate genus Symbiodinium have incorporated confirmatory morphological, physiological, and ecological evidence when possible. However, morphological and physiological data are difficult to collect from species that have not been cultured, while the natural ecologies of many cultured species remain unknown. Here, we rely on genetic evidence-the only data consistently available among all taxa investigated-to describe four new Clade B Symbiodinium species. The 'host-specialized' species (S. antillogorgium sp. nov. and S. endomadracis sp. nov.) engage in mutualisms with specific cnidarian hosts, but exhibit differences in our ability to culture them in vitro. The ecologically 'cryptic' species (S. aenigmaticum sp. nov. and S. pseudominutum sp. nov.) thrive in culture, but their roles or functions in the ecosystem (i.e., niches) are yet to be documented. These new species call further attention to the spectrum of ecological guilds among Symbiodinium.
Collapse
Affiliation(s)
- John Everett Parkinson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Mary Alice Coffroth
- Graduate Program in Evolution, Ecology and Behavior and Department of Geological Sciences, State University of New York at Buffalo, Buffalo, New York, 14260, USA
| | - Todd C LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
21
|
Affiliation(s)
- Bor L Tang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore Singapore, Singapore
| |
Collapse
|
22
|
Wilson NG, Burghardt I. Here be dragons - phylogeography ofPteraeolidia ianthina(Angas, 1864) reveals multiple species of photosynthetic nudibranchs (Aeolidina: Nudibranchia). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nerida G Wilson
- Western Australian Museum; 49 Kew St Welshpool 6106 WA Australia
| | - Ingo Burghardt
- Australian Museum; 6 College St Sydney 2010 NSW Australia
| |
Collapse
|
23
|
Reichman JR, Vize PD. Separate introns gained within short and long soluble peridinin-chlorophyll a-protein genes during radiation of Symbiodinium (Dinophyceae) clade A and B lineages. PLoS One 2014; 9:e110608. [PMID: 25330037 PMCID: PMC4201569 DOI: 10.1371/journal.pone.0110608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Here we document introns in two Symbiodinium clades that were most likely gained following divergence of this genus from other peridinin-containing dinoflagellate lineages. Soluble peridinin-chlorophyll a-proteins (sPCP) occur in short and long forms in different species. Duplication and fusion of short sPCP genes produced long sPCP genes. All short and long sPCP genes characterized to date, including those from free living species and Symbiodinium sp. 203 (clade C/type C2) are intronless. However, we observed that long sPCP genes from two Caribbean Symbiodinium clade B isolates each contained two introns. To test the hypothesis that introns were gained during radiation of clade B, we compared sPCP genomic and cDNA sequences from 13 additional distinct Caribbean and Pacific Symbiodinium clade A, B, and F isolates. Long sPCP genes from all clade B/B1 and B/B19 descendants contain orthologs of both introns. Short sPCP genes from S. pilosum (A/A2) and S. muscatinei (B/B4) plus long sPCP genes from S. microadriaticum (A/A1) and S. kawagutii (F/F1) are intronless. Short sPCP genes of S. microadriaticum have a third unique intron. Symbiodinium clade B long sPCP sequences are useful for assessing divergence among B1 and B19 descendants. Phylogenetic analyses of coding sequences from four dinoflagellate orders indicate that introns were gained independently during radiation of Symbiodinium clades A and B. Long sPCP introns were present in the most recent common ancestor of Symbiodinium clade B core types B1 and B19, which apparently diverged sometime during the Miocene. The clade A short sPCP intron was either gained by S. microadriaticum or possibly by the ancestor of Symbiodinium types A/A1, A3, A4 and A5. The timing of short sPCP intron gain in Symbiodinium clade A is less certain. But, all sPCP introns were gained after fusion of ancestral short sPCP genes, which we confirm as occurring once in dinoflagellate evolution.
Collapse
Affiliation(s)
- Jay R. Reichman
- US Environmental Protection Agency, Western Ecology Division, Corvallis, Oregon, United States of America
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, Oregon, United States of America
- * E-mail:
| | - Peter D. Vize
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Ramsby BD, Shirur KP, Iglesias-Prieto R, Goulet TL. Symbiodinium photosynthesis in Caribbean octocorals. PLoS One 2014; 9:e106419. [PMID: 25192405 PMCID: PMC4156329 DOI: 10.1371/journal.pone.0106419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/06/2014] [Indexed: 01/17/2023] Open
Abstract
Symbioses with the dinoflagellate Symbiodinium form the foundation of tropical coral reef communities. Symbiodinium photosynthesis fuels the growth of an array of marine invertebrates, including cnidarians such as scleractinian corals and octocorals (e.g., gorgonian and soft corals). Studies examining the symbioses between Caribbean gorgonian corals and Symbiodinium are sparse, even though gorgonian corals blanket the landscape of Caribbean coral reefs. The objective of this study was to compare photosynthetic characteristics of Symbiodinium in four common Caribbean gorgonian species: Pterogorgia anceps, Eunicea tourneforti, Pseudoplexaura porosa, and Pseudoplexaura wagenaari. Symbiodinium associated with these four species exhibited differences in Symbiodinium density, chlorophyll a per cell, light absorption by chlorophyll a, and rates of photosynthetic oxygen production. The two Pseudoplexaura species had higher Symbiodinium densities and chlorophyll a per Symbiodinium cell but lower chlorophyll a specific absorption compared to P. anceps and E. tourneforti. Consequently, P. porosa and P. wagenaari had the highest average photosynthetic rates per cm2 but the lowest average photosynthetic rates per Symbiodinium cell or chlorophyll a. With the exception of Symbiodinium from E. tourneforti, isolated Symbiodinium did not photosynthesize at the same rate as Symbiodinium in hospite. Differences in Symbiodinium photosynthetic performance could not be attributed to Symbiodinium type. All P. anceps (n = 9) and P. wagenaari (n = 6) colonies, in addition to one E. tourneforti and three P. porosa colonies, associated with Symbiodinium type B1. The B1 Symbiodinium from these four gorgonian species did not cluster with lineages of B1 Symbiodinium from scleractinian corals. The remaining eight E. tourneforti colonies harbored Symbiodinium type B1L, while six P. porosa colonies harbored type B1i. Understanding the symbioses between gorgonian corals and Symbiodinium will aid in deciphering why gorgonian corals dominate many Caribbean reefs.
Collapse
Affiliation(s)
- Blake D. Ramsby
- Department of Biology, University of Mississippi, University, Mississippi, United States of America
| | - Kartick P. Shirur
- Department of Biology, University of Mississippi, University, Mississippi, United States of America
| | - Roberto Iglesias-Prieto
- Unidad Académica de Sistemas Arrecifales (Puerto Morelos), Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cancún, México
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, Mississippi, United States of America
| |
Collapse
|
25
|
Parkinson JE, Baums IB. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front Microbiol 2014; 5:445. [PMID: 25202306 PMCID: PMC4142987 DOI: 10.3389/fmicb.2014.00445] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/04/2014] [Indexed: 12/11/2022] Open
Abstract
Reef-building corals owe much of their success to a symbiosis with dinoflagellate microalgae in the genus Symbiodinium. In this association, the performance of each organism is tied to that of its partner, and together the partners form a holobiont that can be subject to selection. Climate change affects coral reefs, which are declining globally as a result. Yet the extent to which coral holobionts will be able to acclimate or evolve to handle climate change and other stressors remains unclear. Selection acts on individuals and evidence from terrestrial systems demonstrates that intraspecific genetic diversity plays a significant role in symbiosis ecology and evolution. However, we have a limited understanding of the effects of such diversity in corals. As molecular methods have advanced, so too has our recognition of the taxonomic and functional diversity of holobiont partners. Resolving the major components of the holobiont to the level of the individual will help us assess the importance of intraspecific diversity and partner interactions in coral-algal symbioses. Here, we hypothesize that unique combinations of coral and algal individuals yield functional diversity that affects not only the ecology and evolution of the coral holobiont, but associated communities as well. Our synthesis is derived from reviewing existing evidence and presenting novel data. By incorporating the effects of holobiont extended phenotypes into predictive models, we may refine our understanding of the evolutionary trajectory of corals and reef communities responding to climate change.
Collapse
Affiliation(s)
| | - Iliana B. Baums
- Department of Biology, The Pennsylvania State University, University ParkPA, USA
| |
Collapse
|
26
|
Prada C, McIlroy SE, Beltrán DM, Valint DJ, Ford SA, Hellberg ME, Coffroth MA. Cryptic diversity hides host and habitat specialization in a gorgonian-algal symbiosis. Mol Ecol 2014; 23:3330-40. [DOI: 10.1111/mec.12808] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Carlos Prada
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA 70803 USA
| | - Shelby E. McIlroy
- Department of Geology and Graduate Program in Evolution, Ecology and Behavior; State University of New York at Buffalo; Buffalo NY 14260 USA
| | - Diana M. Beltrán
- Department of Marine Sciences; University of Puerto Rico; Mayagüez PR 00667 USA
| | - Daniel J. Valint
- Department of Geology and Graduate Program in Evolution, Ecology and Behavior; State University of New York at Buffalo; Buffalo NY 14260 USA
| | - Scott A. Ford
- Department of Geology and Graduate Program in Evolution, Ecology and Behavior; State University of New York at Buffalo; Buffalo NY 14260 USA
| | - Michael E. Hellberg
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA 70803 USA
| | - Mary Alice Coffroth
- Department of Geology and Graduate Program in Evolution, Ecology and Behavior; State University of New York at Buffalo; Buffalo NY 14260 USA
| |
Collapse
|
27
|
Baums IB, Devlin-Durante MK, LaJeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 2014; 23:4203-15. [DOI: 10.1111/mec.12788] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/28/2014] [Accepted: 05/05/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Iliana B. Baums
- Department of Biology; The Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| | - Meghann K. Devlin-Durante
- Department of Biology; The Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| | - Todd C. LaJeunesse
- Department of Biology; The Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| |
Collapse
|
28
|
Green EA, Davies SW, Matz MV, Medina M. Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico. PeerJ 2014; 2:e386. [PMID: 24883247 PMCID: PMC4034615 DOI: 10.7717/peerj.386] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/28/2014] [Indexed: 12/22/2022] Open
Abstract
The genetic composition of the resident Symbiodinium endosymbionts can strongly modulate the physiological performance of reef-building corals. Here, we used quantitative metabarcoding to investigate Symbiodinium genetic diversity in two species of mountainous star corals, Orbicella franksi and Orbicella faveolata, from two reefs separated by 19 km of deep water. We aimed to determine if the frequency of different symbiont genotypes varied with respect to coral host species or geographic location. Our results demonstrate that across the two reefs both coral species contained seven haplotypes of Symbiodinium, all identifiable as clade B and most closely related to type B1. Five of these haplotypes have not been previously described and may be endemic to the Flower Garden Banks. No significant differences in symbiont composition were detected between the two coral species. However, significant quantitative differences were detected between the east and west banks for three background haplotypes comprising 0.1%-10% of the total. The quantitative metabarcoding approach described here can help to sensitively characterize cryptic genetic diversity of Symbiodinium and potentially contribute to the understanding of physiological variations among coral populations.
Collapse
Affiliation(s)
- Elizabeth A. Green
- Quantitative and Systems Biology, University of California, Merced, CA, USA
| | - Sarah W. Davies
- Department of Integrative Biology, The University of Texas at Austin, TX, USA
| | - Mikhail V. Matz
- Department of Integrative Biology, The University of Texas at Austin, TX, USA
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
29
|
Chi J, Parrow MW, Dunthorn M. Cryptic Sex in Symbiodinium
(Alveolata, Dinoflagellata) is Supported by an Inventory of Meiotic Genes. J Eukaryot Microbiol 2014; 61:322-7. [DOI: 10.1111/jeu.12110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jingyun Chi
- Department of Ecology; University of Kaiserslautern; Erwin Schrödinger Strasse 14 D-67663 Kaiserslautern Germany
| | - Matthew W. Parrow
- Department of Biology; University of North Carolina at Charlotte; 9201 University City Boulevard Charlotte North Carolina 28223 USA
| | - Micah Dunthorn
- Department of Ecology; University of Kaiserslautern; Erwin Schrödinger Strasse 14 D-67663 Kaiserslautern Germany
| |
Collapse
|
30
|
Wirshing HH, Feldheim KA, Baker AC. Vectored dispersal of Symbiodinium by larvae of a Caribbean gorgonian octocoral. Mol Ecol 2014; 22:4413-32. [PMID: 23980762 DOI: 10.1111/mec.12405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 11/28/2022]
Abstract
The ability of coral reefs to recover from natural and anthropogenic disturbance is difficult to predict, in part due to uncertainty regarding the dispersal capabilities and connectivity of their reef inhabitants. We developed microsatellite markers for the broadcast spawning gorgonian octocoral Eunicea (Plexaura) flexuosa (four markers) and its dinoflagellate symbiont, Symbiodinium B1 (five markers), and used them to assess genetic connectivity, specificity and directionality of gene flow among sites in Florida, Panama, Saba and the Dominican Republic. Bayesian analyses found that most E. flexuosa from the Florida reef tract, Saba and the Dominican Republic were strongly differentiated from many E. flexuosa in Panama, with the exception of five colonies from Key West that clustered with colonies from Panama. In contrast, Symbiodinium B1 was more highly structured. At least seven populations were detected that showed patterns of isolation by distance. The symbionts in the five unusual Key West colonies also clustered with symbionts from Panama, suggesting these colonies are the result of long-distance dispersal. Migration rate tests indicated a weak signal of northward immigration from the Panama population into the lower Florida Keys. As E. flexuosa clonemates only rarely associated with the same Symbiodinium B1 genotype (and vice versa), these data suggest a dynamic host-symbiont relationship in which E. flexuosa is relatively well dispersed but likely acquires Symbiodinium B1 from highly structured natal areas prior to dispersal. Once vectored by host larvae, these symbionts may then spread through the local population, and/or host colonies may acquire different local symbiont genotypes over time.
Collapse
Affiliation(s)
- Herman H Wirshing
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbaker Causeway, Miami, FL 33149, USA.
| | | | | |
Collapse
|
31
|
Gomaa F, Kosakyan A, Heger TJ, Corsaro D, Mitchell EAD, Lara E. One alga to rule them all: unrelated mixotrophic testate amoebae (amoebozoa, rhizaria and stramenopiles) share the same symbiont (trebouxiophyceae). Protist 2014; 165:161-76. [PMID: 24646792 DOI: 10.1016/j.protis.2014.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 01/08/2014] [Accepted: 01/18/2014] [Indexed: 11/16/2022]
Abstract
Endosymbiosis is a central and much studied process in the evolution of eukaryotes. While plastid evolution in eukaryotic algae has been extensively studied, much less is known about the evolution of mixotrophy in amoeboid protists, which has been found in three of the five super groups of Eukaryotes. We identified the green endosymbionts in four obligate mixotrophic testate amoeba species belonging to three major eukaryotic clades, Hyalosphenia papilio and Heleopera sphagni (Amoebozoa: Arcellinida), Placocista spinosa (Rhizaria: Euglyphida), and Archerella flavum (Stramenopiles: Labyrinthulomycetes) based on rbcL (ribulose-1,5-diphosphate carboxylase/oxygenase large subunit) gene sequences. We further investigated whether there were different phylotypes of algal endosymbionts within single H. papilio cells and the degree of host-symbiont specificity by amplifying two genes: COI (mitochondrial cytochrome oxydase subunit 1) from the testate amoeba host, and rbcL from the endosymbiont. Results show that all studied endosymbionts belong to genus Chlorella sensu stricto, closely related to Paramecium bursaria Chlorella symbionts, some lichen symbionts and also several free-living algae. Most rbcL gene sequences derived from symbionts from all testate amoeba species were almost identical (at most 3 silent nucleotides difference out of 780 bp) and were assigned to a new Trebouxiophyceae taxon we named TACS (Testate Amoeba Chlorella Symbionts). This "one alga fits all mixotrophic testate amoeba" pattern suggests that photosynthetic symbionts have pre-adaptations to endosymbiosis and colonise diverse hosts from a free-living stage.
Collapse
Affiliation(s)
- Fatma Gomaa
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Switzerland; Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Anush Kosakyan
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Switzerland
| | - Thierry J Heger
- Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Daniele Corsaro
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Switzerland
| | - Edward A D Mitchell
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Switzerland
| | - Enrique Lara
- Laboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Switzerland.
| |
Collapse
|
32
|
Jeong HJ, Lim AS, Yoo YD, Lee MJ, Lee KH, Jang TY, Lee K. Feeding by Heterotrophic Dinoflagellates and Ciliates on the Free-living Dinoflagellate Symbiodinium
sp. (Clade E). J Eukaryot Microbiol 2013; 61:27-41. [DOI: 10.1111/jeu.12083] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/13/2013] [Accepted: 08/20/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Hae Jin Jeong
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul 151-747 Korea
| | - An Suk Lim
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul 151-747 Korea
| | - Yeong Du Yoo
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul 151-747 Korea
| | - Moo Joon Lee
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul 151-747 Korea
| | - Kyung Ha Lee
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul 151-747 Korea
| | - Tae Young Jang
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul 151-747 Korea
| | - Kitack Lee
- School of Environmental Science and Engineering; Pohang University of Science and Technology; Pohang 790-784 Korea
| |
Collapse
|
33
|
Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC. HOST-SPECIALIST LINEAGES DOMINATE THE ADAPTIVE RADIATION OF REEF CORAL ENDOSYMBIONTS. Evolution 2013; 68:352-67. [DOI: 10.1111/evo.12270] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel J. Thornhill
- Department of Conservation Science and Policy; Defenders of Wildlife; 1130 17th Street NW Washington DC 20007
| | - Allison M. Lewis
- Department of Biology; Pennsylvania State University, 208 Mueller Laboratory; University Park PA 16802
| | - Drew C. Wham
- Department of Biology; Pennsylvania State University, 208 Mueller Laboratory; University Park PA 16802
| | - Todd C. LaJeunesse
- Department of Biology; Pennsylvania State University, 208 Mueller Laboratory; University Park PA 16802
| |
Collapse
|
34
|
Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol 2013; 22:4499-515. [DOI: 10.1111/mec.12416] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel J. Thornhill
- Department of Conservation Science and Policy; Defenders of Wildlife; Washington DC 20036 USA
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | - Yu Xiang
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | - D. Tye Pettay
- College of Earth, Ocean, and Environment; University of Delaware; Lewes DE 19958 USA
| | - Min Zhong
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | - Scott R. Santos
- Department of Biological Sciences, Cellular and Molecular Biosciences Peak Program; Auburn University; Auburn AL 36849 USA
- Molette Biology Laboratory for Environmental and Climate Change Studies; Auburn University; Auburn AL 36849 USA
| |
Collapse
|
35
|
Baker DM, Weigt L, Fogel M, Knowlton N. Ancient DNA from coral-hosted Symbiodinium reveal a static mutualism over the last 172 years. PLoS One 2013; 8:e55057. [PMID: 23405111 PMCID: PMC3566211 DOI: 10.1371/journal.pone.0055057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Ancient DNA (aDNA) provides powerful evidence for detecting the genetic basis for adaptation to environmental change in many taxa. Among the greatest of changes in our biosphere within the last century is rapid anthropogenic ocean warming. This phenomenon threatens corals with extinction, evidenced by the increasing observation of widespread mortality following mass bleaching events. There is some evidence and conjecture that coral-dinoflagellate symbioses change partnerships in response to changing external conditions over ecological and evolutionary timescales. Until now, we have been unable to ascertain the genetic identity of Symbiodinium hosted by corals prior to the rapid global change of the last century. Here, we show that Symbiodinium cells recovered from dry, century old specimens of 6 host species of octocorals contain sufficient DNA for amplification of the ITS2 subregion of the nuclear ribosomal DNA, commonly used for genotyping within this genus. Through comparisons with modern specimens sampled from similar locales we show that symbiotic associations among several species have been static over the last century, thereby suggesting that adaptive shifts to novel symbiont types is not common among these gorgonians, and perhaps, symbiotic corals in general.
Collapse
Affiliation(s)
- David M Baker
- Smithsonian Institution, Marine Science Network, Washington, DC, USA.
| | | | | | | |
Collapse
|
36
|
Specificity of associations between bacteria and the coral Pocillopora meandrina during early development. Appl Environ Microbiol 2012; 78:7467-75. [PMID: 22904048 DOI: 10.1128/aem.01232-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coral Pocillopora meandrina was investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of the Alphaproteobacteria, a Pseudoalteromonas species of the Gammaproteobacteria, and a Synechococcus species of the Cyanobacteria phylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination of P. meandrina planulae by fluorescence in situ hybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains of Pseudoalteromonas and Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade and Synechococcus did not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.
Collapse
|
37
|
Dziallas C, Allgaier M, Monaghan MT, Grossart HP. Act together-implications of symbioses in aquatic ciliates. Front Microbiol 2012; 3:288. [PMID: 22891065 PMCID: PMC3413206 DOI: 10.3389/fmicb.2012.00288] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/22/2012] [Indexed: 02/01/2023] Open
Abstract
Mutual interactions in the form of symbioses can increase the fitness of organisms and provide them with the capacity to occupy new ecological niches. The formation of obligate symbioses allows for rapid evolution of new life forms including multitrophic consortia. Microbes are important components of many known endosymbioses and their short generation times and strong potential for genetic exchange may be important drivers of speciation. Hosts provide endo- and ectosymbionts with stable, nutrient-rich environments, and protection from grazers. This is of particular importance in aquatic ecosystems, which are often highly variable, harsh, and nutrient-deficient habitats. It is therefore not surprising that symbioses are widespread in both marine and freshwater environments. Symbioses in aquatic ciliates are good model systems for exploring symbiont-host interactions. Many ciliate species are globally distributed and have been intensively studied in the context of plastid evolution. Their relatively large cell size offers an ideal habitat for numerous microorganisms with different functional traits including commensalism and parasitism. Phagocytosis facilitates the formation of symbiotic relationships, particularly since some ingested microorganisms can escape the digestion. For example, photoautotrophic algae and methanogens represent endosymbionts that greatly extend the biogeochemical functions of their hosts. Consequently, symbiotic relationships between protists and prokaryotes are widespread and often result in new ecological functions of the symbiotic communities. This enables ciliates to thrive under a wide range of environmental conditions including ultraoligotrophic or anoxic habitats. We summarize the current understanding of this exciting research topic to identify the many areas in which knowledge is lacking and to stimulate future research by providing an overview on new methodologies and by formulating a number of emerging questions in this field.
Collapse
Affiliation(s)
- Claudia Dziallas
- Marine Biological Section, University of CopenhagenHelsingør, Denmark
| | - Martin Allgaier
- Department of Limnology of Stratified Lakes, Leibniz-Institute of Freshwater Ecology and Inland FisheriesStechlin, Germany
- Berlin Center for Genomics in Biodiversity ResearchBerlin, Germany
| | - Michael T. Monaghan
- Department of Limnology of Shallow Lakes and Lowland Rivers, Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlin, Germany
| | - Hans-Peter Grossart
- Department of Limnology of Stratified Lakes, Leibniz-Institute of Freshwater Ecology and Inland FisheriesStechlin, Germany
- Institute for Biochemistry and Biology, Potsdam UniversityPotsdam, Germany
| |
Collapse
|
38
|
Stat M, Baker AC, Bourne DG, Correa AMS, Forsman Z, Huggett MJ, Pochon X, Skillings D, Toonen RJ, van Oppen MJH, Gates RD. Molecular delineation of species in the coral holobiont. ADVANCES IN MARINE BIOLOGY 2012; 63:1-65. [PMID: 22877610 DOI: 10.1016/b978-0-12-394282-1.00001-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The coral holobiont is a complex assemblage of organisms spanning a diverse taxonomic range including a cnidarian host, as well as various dinoflagellate, prokaryotic and acellular symbionts. With the accumulating information on the molecular diversity of these groups, binomial species classification and a reassessment of species boundaries for the partners in the coral holobiont is a logical extension of this work and will help enhance the capacity for comparative research among studies. To aid in this endeavour, we review the current literature on species diversity for the three best studied partners of the coral holobiont (coral, Symbiodinium, prokaryotes) and provide suggestions for future work on systematics within these taxa. We advocate for an integrative approach to the delineation of species using both molecular genetics in combination with phenetic characters. We also suggest that an a priori set of criteria be developed for each taxonomic group as no one species concept or accompanying set of guidelines is appropriate for delineating all members of the coral holobiont.
Collapse
Affiliation(s)
- Michael Stat
- Hawaii Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaii, Kaneohe, HI, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Thacker RW, Freeman CJ. Sponge-microbe symbioses: recent advances and new directions. ADVANCES IN MARINE BIOLOGY 2012; 62:57-111. [PMID: 22664121 DOI: 10.1016/b978-0-12-394283-8.00002-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sponges can host abundant and diverse communities of symbiotic microorganisms. In this chapter, we review recent work in the area of sponge-microbe symbioses, focusing on (1) the diversity of these associations, (2) host specificity, (3) modes of symbiont transmission, and (4) the positive and negative impacts of symbionts on their hosts. Over the past 4 years, numerous studies have catalogued the diversity of sponge-microbe symbioses, challenging previous hypotheses of a uniform, vertically transmitted microbial community and supporting a mixed model of symbiont community transmission. We emphasize the need for experimental manipulations of sponge-symbiont interactions coupled with advanced laboratory techniques to determine the identity of metabolically active microbial symbionts, to investigate the physiological processes underlying these interactions, and to elucidate whether symbionts act as mutualists, commensals, or parasites. The amazing diversity of these complex associations continues to offer critical insights into the evolution of symbiosis and the impacts of symbiotic microbes on nutrient cycling and other ecosystem functions.
Collapse
|
40
|
Thornhill DJ, Rotjan RD, Todd BD, Chilcoat GC, Iglesias-Prieto R, Kemp DW, LaJeunesse TC, Reynolds JM, Schmidt GW, Shannon T, Warner ME, Fitt WK. A connection between colony biomass and death in Caribbean reef-building corals. PLoS One 2011; 6:e29535. [PMID: 22216307 PMCID: PMC3245285 DOI: 10.1371/journal.pone.0029535] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/30/2011] [Indexed: 12/04/2022] Open
Abstract
Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994–2007), eleven years in the Exuma Cays, Bahamas (1995–2006), and four years in Puerto Morelos, Mexico (2003–2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1–4 m) compared to deeper-dwelling conspecifics (12–15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels.
Collapse
Affiliation(s)
- Daniel J. Thornhill
- Department of Field Conservation, Defenders of Wildlife, Washington, District of Columbia, United States of America, and Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
- * E-mail: (DT); (WF)
| | - Randi D. Rotjan
- Edgerton Research Laboratory, New England Aquarium, Boston, Massachusetts, United States of America
| | - Brian D. Todd
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, California, United States of America
| | - Geoff C. Chilcoat
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Roberto Iglesias-Prieto
- Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Cancun, Mexico
| | - Dustin W. Kemp
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | | | - Gregory W. Schmidt
- Department of Field Conservation, Defenders of Wildlife, Washington, District of Columbia, United States of America, and Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
- Edgerton Research Laboratory, New England Aquarium, Boston, Massachusetts, United States of America
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, California, United States of America
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Cancun, Mexico
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, United States of America
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, Delaware, United States of America
| | - Thomas Shannon
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Mark E. Warner
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, Delaware, United States of America
| | - William K. Fitt
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (DT); (WF)
| |
Collapse
|
41
|
Pettay DT, Wham DC, Pinzón JH, LaJeunesse TC. Genotypic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Mol Ecol 2011; 20:5197-212. [PMID: 22082053 PMCID: PMC5957298 DOI: 10.1111/j.1365-294x.2011.05357.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic data are rapidly advancing our understanding of various biological systems including the ecology and evolution of coral-algal symbioses. The fine-scale interactions between individual genotypes of host and symbiont remain largely unstudied and constitute a major gap in knowledge. By applying microsatellite markers developed for both host and symbiont, we investigated the intracolony diversity, prevalence and stability of Symbiodinium glynni (type D1) multilocus genotypes in association with dense populations of Pocillopora at two sites in the Gulf of California. The genetic diversity and allelic frequencies in reef populations of S. glynni remained stable over 3 years. Common clone genotypes persisted over this period, and no temporal population subdivision (Φ(PT) = 0.021 and -0.003) was detected. Collections from circular plots showed no statistical correlation between related Pocillopora individuals and their associations with particular S. glynni genotypes, with no spatial structuring or clonal aggregation across a reef for the symbiont. From permanent linear transects, samples were analysed from multiple locations within a colony and some were resampled approximately 1 year later. Many of these multisampled colonies (approximately 53%) were dominated by a single S. glynni genotype and tended to associate with the same symbiont genotype(s) over time, while colony ramets often possessed unrelated symbiont genotypes. In contrast to the species level, associations between genotypes of Pocillopora and S. glynni are apparently more flexible over space and time. The abundance of sexually recombinant genotypes of S. glynni combined with greater flexibility might provide adaptive mechanisms for these symbioses to evolve rapidly to changes in environmental conditions and allow particular symbiont genotypes to spread through a host population.
Collapse
Affiliation(s)
- Daniel T Pettay
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
42
|
Andras JP, Kirk NL, Drew Harvell C. Range-wide population genetic structure of Symbiodinium associated with the Caribbean Sea fan coral, Gorgonia ventalina. Mol Ecol 2011; 20:2525-42. [PMID: 21545573 DOI: 10.1111/j.1365-294x.2011.05115.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous marine invertebrates form endosymbiotic relationships with dinoflagellates of the genus Symbiodinium, yet few studies have examined the population structure of these symbionts. Here, we elucidate the population genetic structure of Symbiodinium harboured by the Caribbean octocoral Gorgonia ventalina throughout the entire range of the host. We used ten microsatellite loci to survey 35 localities spanning 3124 km across the Caribbean and Western Atlantic. Diversity of Symbiodinium haplotypes was low within colonies of G. ventalina but high among colonies. Despite high haplotypic diversity, significant evidence of clonal reproduction in Symbiodinium was detected, and most clones occurred within localities, not among them. Pairwise measures of F(ST) illustrated significant differentiation in 98% of comparisons between localities, suggesting low levels of gene flow. Clustering analyses identified six genetic groups whose distribution delimited four broad biogeographic regions. There was evidence of some connectivity among regions, corresponding with known geographic and oceanographic features. Fine-scale spatial surveys of G. ventalina colonies failed to detect differentiation among Symbiodinium at the metre scale. However, significant differentiation was observed among Symbiodinium hosted by sympatric G. ventalina colonies of different size/age classes. This cohort effect suggests that Symbiodinium may have an epidemic population structure, whereby G. ventalina recruits are infected by the locally predominant symbiont strain(s), which change over time.
Collapse
Affiliation(s)
- Jason P Andras
- Department of Ecology & Evolutionary Biology, Dale R. Corson Hall, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
43
|
van Zijll de Jong E, Guthridge KM, Spangenberg GC, Forster JW. Sequence Analysis of SSR-Flanking Regions Identifies Genome Affinities between Pasture Grass Fungal Endophyte Taxa. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:921312. [PMID: 21350638 PMCID: PMC3042632 DOI: 10.4061/2011/921312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022]
Abstract
Fungal species of the Neotyphodium and Epichloë genera are endophytes of pasture grasses showing complex differences of life-cycle and genetic architecture. Simple sequence repeat (SSR) markers have been developed from endophyte-derived expressed sequence tag (EST) collections. Although SSR array size polymorphisms are appropriate for phenetic analysis to distinguish between taxa, the capacity to resolve phylogenetic relationships is limited by both homoplasy and heteroploidy effects. In contrast, nonrepetitive sequence regions that flank SSRs have been effectively implemented in this study to demonstrate a common evolutionary origin of grass fungal endophytes. Consistent patterns of relationships between specific taxa were apparent across multiple target loci, confirming previous studies of genome evolution based on variation of individual genes. Evidence was obtained for the definition of endophyte taxa not only through genomic affinities but also by relative gene content. Results were compatible with the current view that some asexual Neotyphodium species arose following interspecific hybridisation between sexual Epichloë ancestors. Phylogenetic analysis of SSR-flanking regions, in combination with the results of previous studies with other EST-derived SSR markers, further permitted characterisation of Neotyphodium isolates that could not be assigned to known taxa on the basis of morphological characteristics.
Collapse
Affiliation(s)
- Eline van Zijll de Jong
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, VIC 3083, Australia
| | | | | | | |
Collapse
|
44
|
Microsatellite loci for Symbiodinium A3 (S. fitti) a common algal symbiont among Caribbean Acropora (stony corals) and Indo-Pacific giant clams (Tridacna). CONSERV GENET RESOUR 2010. [DOI: 10.1007/s12686-010-9283-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC. The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. MICROBIAL ECOLOGY 2010; 60:250-63. [PMID: 20502891 DOI: 10.1007/s00248-010-9681-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/21/2010] [Indexed: 05/22/2023]
Abstract
Dinoflagellates in the genus Symbiodinium are among the most abundant and important group of eukaryotic microbes found in coral reef ecosystems. Recent analyses conducted on various host cnidarians indicated that Symbiodinium assemblages in the Caribbean Sea are genetically and ecologically diverse. In order to further characterize this diversity and identify processes important to its origins, samples from six orders of Cnidaria comprising 45 genera were collected from reef habitats around Barbados (eastern Caribbean) and from the Mesoamerican barrier reef off the coast of Belize (western Caribbean). Fingerprinting of the ribosomal internal transcribed spacer 2 identified 62 genetically different Symbiodinium. Additional analyses of clade B Symbiodinium using microsatellite flanker sequences unequivocally characterized divergent lineages, or "species," within what was previously thought to be a single entity (B1 or B184). In contrast to the Indo-Pacific where host-generalist symbionts dominate many coral communities, partner specificity in the Caribbean is relatively high and is influenced little by the host's apparent mode of symbiont acquisition. Habitat depth (ambient light) and geographic isolation appeared to influence the bathymetric zonation and regional distribution for most of the Symbiodinium spp. characterized. Approximately 80% of Symbiodinium types were endemic to either the eastern or western Caribbean and 40-50% were distributed to compatible hosts living in shallow, high-irradiance, or deep, low-irradiance environments. These ecologic, geographic, and phylogenetic patterns indicate that most of the present Symbiodinium diversity probably originated from adaptive radiations driven by ecological specialization in separate Caribbean regions during the Pliocene and Pleistocene periods.
Collapse
Affiliation(s)
- J Christine Finney
- Centre for Resource Management and Environmental Studies (CERMES), University of the West Indies, Cave Hill Campus, Barbados
| | | | | | | | | | | |
Collapse
|
46
|
LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Pérez AL, Reyes-Bonilla H, Warner ME. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc Biol Sci 2010; 277:2925-34. [PMID: 20444713 DOI: 10.1098/rspb.2010.0385] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutualisms between reef-building corals and endosymbiotic dinoflagellates are particularly sensitive to environmental stress, yet the ecosystems they construct have endured major oscillations in global climate. During the winter of 2008, an extreme cold-water event occurred in the Gulf of California that bleached corals in the genus Pocillopora harbouring a thermally 'sensitive' symbiont, designated Symbiodinium C1b-c, while colonies possessing Symbiodinium D1 were mostly unaffected. Certain bleached colonies recovered quickly while others suffered partial or complete mortality. In most colonies, no appreciable change was observed in the identity of the original symbiont, indicating that these partnerships are stable. During the initial phases of recovery, a third species of symbiont B1(Aiptasia), genetically identical to that harboured by the invasive anemone, Aiptasia sp., grew opportunistically and was visible as light-yellow patches on the branch tips of several colonies. However, this symbiont did not persist and was displaced in all cases by C1b-c several months later. Colonies with D1 were abundant at inshore habitats along the continental eastern Pacific, where seasonal turbidity is high relative to offshore islands. Environmental conditions of the central and southern coasts of Mexico were not sufficient to explain the exclusivity of D1 Pocillopora in these regions. It is possible that mass mortalities associated with major thermal disturbances during the 1997-1998 El Niño Southern Oscillation eliminated C1b-c holobionts from these locations. The differential loss of Pocillopora holobionts in response to thermal stress suggests that natural selection on existing variation can cause rapid and significant shifts in the frequency of particular coral-algal partnerships. However, coral populations may take decades to recover following episodes of severe selection, thereby raising considerable uncertainty about the long-term viability of these communities.
Collapse
Affiliation(s)
- Todd C LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol Ecol 2010; 19:1705-20. [PMID: 20345691 DOI: 10.1111/j.1365-294x.2010.04574.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals' susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin-conjugated proteins with consistently higher levels found in back reef source colonies both pre and post-transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (F(ST) = 0.146 P < 0.0001, F(ST) = 0.335 P < 0.0001 for rDNA and mtDNA, respectively), whereas algal endosymbiont populations were genetically indistinguishable between the two sites. We propose that the genotype of the coral host may drive limitations to the physiological responses of these corals when faced with new environmental conditions. This result is important in understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes.
Collapse
Affiliation(s)
- D J Barshis
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Rd, Kāne'ohe, HI 96744, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Thornhill DJ, Xiang Y, Fitt WK, Santos SR. Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS One 2009; 4:e6262. [PMID: 19603078 PMCID: PMC2706050 DOI: 10.1371/journal.pone.0006262] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 06/19/2009] [Indexed: 11/30/2022] Open
Abstract
Background The dinoflagellate genus Symbiodinium forms symbioses with numerous protistan and invertebrate metazoan hosts. However, few data on symbiont genetic structure are available, hindering predictions of how these populations and their host associations will fair in the face of global climate change. Methodology/Principal Findings Here, Symbiodinium population structure from two of the Caribbean's ecologically dominant scleractinian corals, Montastraea faveolata and M. annularis, was examined. Tagged colonies on Florida Keys and Bahamian (i.e., Exuma Cays) reefs were sampled from 2003–2005 and their Symbiodinium diversity assessed via internal transcribed spacer 2 (ITS2) rDNA and three Symbiodinium Clade B-specific microsatellite loci. Generally, the majority of host individuals at a site harbored an identical Symbiodinium ITS2 “type” B1 microsatellite genotype. Notably, symbiont genotypes were largely reef endemic, suggesting a near absence of dispersal between populations. Relative to the Bahamas, sympatric M. faveolata and M. annularis in the Florida Keys harbored unique Symbiodinium populations, implying regional host specificity in these relationships. Furthermore, within-colony Symbiodinium population structure remained stable through time and environmental perturbation, including a prolonged bleaching event in 2005. Conclusions/Significance Taken together, the population-level endemism, specificity and stability exhibited by Symbiodinium raises concerns about the long-term adaptive capacity and persistence of these symbioses in an uncertain future of climate change.
Collapse
Affiliation(s)
- Daniel J Thornhill
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America.
| | | | | | | |
Collapse
|
49
|
Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, Weis VM, Medina M, Schwarz JA. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 2009; 10:258. [PMID: 19500365 PMCID: PMC2702317 DOI: 10.1186/1471-2164-10-258] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/05/2009] [Indexed: 12/14/2022] Open
Abstract
Background The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between cnidarian hosts and unicellular dinoflagellate algae. The molecular mechanisms underlying the establishment, maintenance, and breakdown of the symbiotic partnership are, however, not well understood. Efforts to dissect these questions have been slow, as corals are notoriously difficult to work with. In order to expedite this field of research, we generated and analyzed a collection of expressed sequence tags (ESTs) from the sea anemone Aiptasia pallida and its dinoflagellate symbiont (Symbiodinium sp.), a system that is gaining popularity as a model to study cellular, molecular, and genomic questions related to cnidarian-dinoflagellate symbioses. Results A set of 4,925 unique sequences (UniSeqs) comprising 1,427 clusters of 2 or more ESTs (contigs) and 3,498 unclustered ESTs (singletons) was generated by analyzing 10,285 high-quality ESTs from a mixed host/symbiont cDNA library. Using a BLAST-based approach to predict which unique sequences derived from the host versus symbiont genomes, we found that the contribution of the symbiont genome to the transcriptome was surprisingly small (1.6–6.4%). This may reflect low levels of gene expression in the symbionts, low coverage of alveolate genes in the sequence databases, a small number of symbiont cells relative to the total cellular content of the anemones, or failure to adequately lyse symbiont cells. Furthermore, we were able to identify groups of genes that are known or likely to play a role in cnidarian-dinoflagellate symbioses, including oxidative stress pathways that emerged as a prominent biological feature of this transcriptome. All ESTs and UniSeqs along with annotation results and other tools have been made accessible through the implementation of a publicly accessible database named AiptasiaBase. Conclusion We have established the first large-scale transcriptomic resource for Aiptasia pallida and its dinoflagellate symbiont. These data provide researchers with tools to study questions related to cnidarian-dinoflagellate symbioses on a molecular, cellular, and genomic level. This groundwork represents a crucial step towards the establishment of a tractable model system that can be utilized to better understand cnidarian-dinoflagellate symbioses. With the advent of next-generation sequencing methods, the transcriptomic inventory of A. pallida and its symbiont, and thus the extent of AiptasiaBase, should expand dramatically in the near future.
Collapse
Affiliation(s)
- Shinichi Sunagawa
- School of Natural Sciences, University of California, Merced, CA 95344, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sampayo EM, Dove S, Lajeunesse TC. Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 2009; 18:500-19. [PMID: 19161470 DOI: 10.1111/j.1365-294x.2008.04037.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diversity of symbiotic dinoflagellates (Symbiodinium) in pocilloporid corals originating from various reef habitats surrounding Heron Island, southern Great Barrier Reef, was examined by targeting ribosomal, mitochondrial, and chloroplast genes using six methods that analyse for sequence differences. The ability of each of 13 genetic analyses to characterize eight ecologically distinct Symbiodinium spp. was dependent on the level of conservation of the gene region targeted and the technique used. Other than differences in resolution, phylogenetic reconstructions using nuclear and organelle gene sequences were complementary and when combined produced a well-resolved phylogeny. Analysis of the ribosomal internal transcribed spacers using denaturing gradient gel electrophoresis fingerprinting in combination with sequencing of dominant bands provided a precise method for rapidly resolving and characterizing symbionts into ecologically and evolutionarily distinct units of diversity. Single-stranded conformation polymorphisms of the nuclear ribosomal large subunit (D1/D2 domain) identified the same number of ecologically distinct Symbiodinium spp., but profiles were less distinctive. The repetitive sequencing of bacterially cloned ITS2 polymerase chain reaction amplifications generated numerous sequence variants that clustered together according to the symbiont under analysis. The phylogenetic relationships between these clusters show how intragenomic variation in the ribosomal array diverges among closely related eukaryotic genomes. The strong correlation between phylogenetically independent lineages with different ecological and physiological attributes establishes a clear basis for assigning species designations to members of the genus Symbiodinium.
Collapse
Affiliation(s)
- E M Sampayo
- Centre for Marine Studies, University of Queensland, St. Lucia, Qld 4072, Australia.
| | | | | |
Collapse
|