1
|
Misra CS, Sounderajan S, Apte SK. Metal removal by metallothionein and an acid phosphatase PhoN, surface-displayed on the cells of the extremophile, Deinococcus radiodurans. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126477. [PMID: 34323731 DOI: 10.1016/j.jhazmat.2021.126477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The utility of surface layer proteins (Hpi and SlpA) of the radiation resistant bacterium, Deinococcus radiodurans, was investigated for surface display and bioremediation of cadmium and uranium. The smtA gene, from Synechococcus elongatus (encoding the metal binding metallothionein protein), was cloned and over-expressed in D. radiodurans, either as such or as a chimeric gene fused with hpi ORF (Hpi-SmtA), or fused to the nucleotide sequence encoding the SLH domain of the SlpA protein (SLH-SmtA). The expressed fusion proteins localized to the deinococcal cell surface, while the SmtA protein localized to the cytoplasm. Recombinant cells surface-displaying the SLH-SmtA or Hpi-SmtA fusion proteins respectively removed 1.5-3 times more cadmium than those expressing only cytosolic SmtA. The deinococcal Hpi protein layer per se also contributed to U binding, by conferring substantial negative charge to deinococcal cell surface. The ORF of an acid phosphatase, PhoN was fused with the hpi or SLH domain DNA sequence and purified. Isolated Hpi-PhoN and SLH-PhoN, immobilized on deinococcal peptidoglycan showed efficient uranium precipitation (446 and 160 mg U/g biomass used respectively). The study demonstrates effective exploitation of the deinococcal S layer protein components for (a) cell surface-based sequestration of cadmium, and (b) cell-free preparations for uranium remediation.
Collapse
Affiliation(s)
- Chitra Seetharam Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400094, India.
| | - Suvarna Sounderajan
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400094, India
| | - Shree Kumar Apte
- School of Biosciences, UM-DAE-Centre for Excellence in Basic Sciences, Vidyanagari, Kalina, Mumbai 400098, India.
| |
Collapse
|
2
|
Ravi J, Fioravanti A. S-layers: The Proteinaceous Multifunctional Armors of Gram-Positive Pathogens. Front Microbiol 2021; 12:663468. [PMID: 33889148 PMCID: PMC8056022 DOI: 10.3389/fmicb.2021.663468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
S-layers are self-assembled crystalline 2D lattices enclosing the cell envelopes of several bacteria and archaea. Despite their abundance, the landscape of S-layer structure and function remains a land of wonder. By virtue of their location, bacterial S-layers have been hypothesized to add structural stability to the cell envelope. In addition, S-layers are implicated in mediating cell-environment and cell-host interactions playing a key role in adhesion, cell growth, and division. Significant strides in the understanding of these bacterial cell envelope components were made possible by recent studies that have provided structural and functional insights on the critical S-layer and S-layer-associated proteins (SLPs and SLAPs), highlighting their roles in pathogenicity and their potential as therapeutic or vaccine targets. In this mini-review, we revisit the sequence-structure-function relationships of S-layers, SLPs, and SLAPs in Gram-positive pathogens, focusing on the best-studied classes, Bacilli (Bacillus anthracis) and Clostridia (Clostridioides difficile). We delineate the domains and their architectures in archetypal S-layer proteins across Gram-positive genera and reconcile them with experimental findings. Similarly, we highlight a few key "flavors" of SLPs displayed by Gram-positive pathogens to assemble and support the bacterial S-layers. Together, these findings indicate that S-layers are excellent candidates for translational research (developing diagnostics, antibacterial therapeutics, and vaccines) since they display the three crucial characteristics: accessible location at the cell surface, abundance, and unique lineage-specific signatures.
Collapse
Affiliation(s)
- Janani Ravi
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Dietrich C, Li de la Sierra-Gallay I, Masi M, Girard E, Dautin N, Constantinesco-Becker F, Tropis M, Daffé M, van Tilbeurgh H, Bayan N. The C-terminal domain of Corynebacterium glutamicum mycoloyltransferase A is composed of five repeated motifs involved in cell wall binding and stability. Mol Microbiol 2020; 114:1-16. [PMID: 32073722 DOI: 10.1111/mmi.14492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/07/2020] [Indexed: 12/29/2022]
Abstract
The genomes of Corynebacteriales contain several genes encoding mycoloyltransferases (Myt) that are specific cell envelope enzymes essential for the biogenesis of the outer membrane. MytA is a major mycoloyltransferase of Corynebacterium glutamicum, displaying an N-terminal domain with esterase activity and a C-terminal extension containing a conserved repeated Leu-Gly-Phe-Pro (LGFP) sequence motif of unknown function. This motif is highly conserved in Corynebacteriales and found associated with cell wall hydrolases and with proteins of unknown function. In this study, we determined the crystal structure of MytA and found that its C-terminal domain is composed of five LGFP motifs and forms a long stalk perpendicular to the N-terminal catalytic α/β-hydrolase domain. The LGFP motifs are composed of a 4-stranded β-fold and occupy alternating orientations along the axis of the stalk. Multiple acetate binding pockets were identified in the stalk, which could correspond to putative ligand-binding sites. By using various MytA mutants and complementary in vitro and in vivo approaches, we provide evidence that the C-terminal LGFP domain interacts with the cell wall peptidoglycan-arabinogalactan polymer. We also show that the C-terminal LGFP domain is not required for the activity of MytA but rather contributes to the overall integrity of the cell envelope.
Collapse
Affiliation(s)
- Christiane Dietrich
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Muriel Masi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Eric Girard
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Nathalie Dautin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | | | - Maryelle Tropis
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse Cedex, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse Cedex, France
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Nicolas Bayan
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Majumder S, Das S, Kingston J, Shivakiran MS, Batra HV, Somani VK, Bhatnagar R. Functional characterization and evaluation of protective efficacy of EA752-862 monoclonal antibody against B. anthracis vegetative cell and spores. Med Microbiol Immunol 2019; 209:125-137. [PMID: 31811379 DOI: 10.1007/s00430-019-00650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 11/22/2019] [Indexed: 08/30/2023]
Abstract
The most promising means of controlling anthrax, a lethal zoonotic disease during the early infection stages, entail restricting the resilient infectious form, i.e., the spores from proliferating to replicating bacilli in the host. The extractible antigen (EA1), a major S-layer protein present on the vegetative cells and spores of Bacillus anthracis, is highly immunogenic and protects mice against lethal challenge upon immunization. In the present study, mice were immunized with r-EA1C, the C terminal crystallization domain of EA1, to generate a neutralizing monoclonal antibody EA752-862, that was evaluated for its anti-spore and anti-bacterial properties. The monoclonal antibody EA752-862 had a minimum inhibitory concentration of 0.08 mg/ml, was bactericidal at a concentration of 0.1 mg/ml and resulted in 100% survival of mice against challenge with B. anthracis vegetative cells. Bacterial cell lysis as observed by scanning electron microscopy and nucleic acid leakage assay could be attributed as a possible mechanism for the bactericidal property. The association of mAb EA752-862 with spores inhibits their subsequent germination to vegetative cells in vitro, enhances phagocytosis of the spores and killing of the vegetative cells within the macrophage, and subsequently resulted in 90% survival of mice upon B. anthracis Ames spore challenge. Therefore, owing to its anti-spore and bactericidal properties, the present study demonstrates mAb EA752-862 as an efficient neutralizing antibody that hinders the establishment of early infection before massive multiplication and toxin release takes place.
Collapse
Affiliation(s)
- Saugata Majumder
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Shreya Das
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Joseph Kingston
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India.
| | - M S Shivakiran
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - H V Batra
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Vikas Kumar Somani
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh Bhatnagar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
5
|
Pham ML, Tran AM, Kittibunchakul S, Nguyen TT, Mathiesen G, Nguyen TH. Immobilization of β-Galactosidases on the Lactobacillus Cell Surface Using the Peptidoglycan-Binding Motif LysM. Catalysts 2019; 9:443. [PMID: 31595189 PMCID: PMC6783300 DOI: 10.3390/catal9050443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lysin motif (LysM) domains are found in many bacterial peptidoglycan hydrolases. They can bind non-covalently to peptidoglycan and have been employed to display heterologous proteins on the bacterial cell surface. In this study, we aimed to use a single LysM domain derived from a putative extracellular transglycosylase Lp_3014 of Lactobacillus plantarum WCFS1 to display two different lactobacillal β-galactosidases, the heterodimeric LacLM-type from Lactobacillus reuteri and the homodimeric LacZ-type from Lactobacillus delbrueckii subsp. bulgaricus, on the cell surface of different Lactobacillus spp. The β-galactosidases were fused with the LysM domain and the fusion proteins, LysM-LacLMLreu and LysM-LacZLbul, were successfully expressed in Escherichia coli and subsequently displayed on the cell surface of L. plantarum WCFS1. β-Galactosidase activities obtained for L. plantarum displaying cells were 179 and 1153 U per g dry cell weight, or the amounts of active surface-anchored β-galactosidase were 0.99 and 4.61 mg per g dry cell weight for LysM-LacLMLreu and LysM-LacZLbul, respectively. LysM-LacZLbul was also displayed on the cell surface of other Lactobacillus spp. including L. delbrueckii subsp. bulgaricus, L. casei and L. helveticus, however L. plantarum is shown to be the best among Lactobacillus spp. tested for surface display of fusion LysM-LacZLbul, both with respect to the immobilization yield as well as the amount of active surface-anchored enzyme. The immobilized fusion LysM-β-galactosidases are catalytically efficient and can be reused for several repeated rounds of lactose conversion. This approach, with the β-galactosidases being displayed on the cell surface of non-genetically modified food-grade organisms, shows potential for applications of these immobilized enzymes in the synthesis of prebiotic galacto-oligosaccharides.
Collapse
Affiliation(s)
- Mai-Lan Pham
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Anh-Minh Tran
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
- Department of Biology, Faculty of Fundamental Sciences, Ho Chi Minh City University of Medicine and Pharmacy, 217 Hong Bang, Ho Chi Minh City, Vietnam
| | - Suwapat Kittibunchakul
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Tien-Thanh Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
- Correspondence: ; Tel.: +43-1-47654-75215; Fax: +43-1-47654-75039
| |
Collapse
|
6
|
Chapman RN, Liu L, Boons GJ. 4,6- O-Pyruvyl Ketal Modified N-Acetylmannosamine of the Secondary Cell Wall Polysaccharide of Bacillus anthracis Is the Anchoring Residue for Its Surface Layer Proteins. J Am Chem Soc 2018; 140:17079-17085. [PMID: 30452253 DOI: 10.1021/jacs.8b08857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The secondary cell wall polysaccharide (SCWP) of Bacillus anthracis plays a key role in the organization of the cell envelope of vegetative cells and is intimately involved in host-guest interactions. Genetic studies have indicated that it anchors S-layer and S-layer-associated proteins, which are involved in multiple vital biological functions, to the cell surface of B. anthracis. Phenotypic observations indicate that specific functional groups of the terminal unit of SCWP, including 4,6- O-pyruvyl ketal and acetyl esters, are important for binding of these proteins. These observations are based on genetic manipulations and have not been corroborated by direct binding studies. To address this issue, a synthetic strategy was developed that could provide a range of pyruvylated oligosaccharides derived from B. anthracis SCWP bearing base-labile acetyl esters and free amino groups. The resulting oligosaccharides were used in binding studies with a panel of S-layer and S-layer-associated proteins, which identified structural features of SCWP important for binding. A single pyruvylated ManNAc monosaccharide exhibited strong binding to all proteins, making it a promising structure for S-layer protein manipulation. The acetyl esters and free amine of SCWP did not significantly impact binding, and this observation is contrary to a proposed model in which SCWP acetylation is a prerequisite for association of some but not all S-layer and S-layer-associated proteins.
Collapse
Affiliation(s)
- Robert N Chapman
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Lin Liu
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
7
|
Klotz C, Barrangou R. Engineering Components of the Lactobacillus S-Layer for Biotherapeutic Applications. Front Microbiol 2018; 9:2264. [PMID: 30333802 PMCID: PMC6176008 DOI: 10.3389/fmicb.2018.02264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are frequently harnessed for the delivery of biomolecules to mucosal tissues. Several species of Lactobacillus are commonly employed for this task, of which a subset are known to possess surface-layers (S-layers). S-layers are two-dimensional crystalline arrays of repeating proteinaceous subunits that form the outermost coating of many prokaryotic cell envelopes. Their periodicity and abundance have made them a target for numerous biotechnological applications. In the following review, we examine the multi-faceted S-layer protein (Slp), and its use in both heterologous protein expression systems and mucosal vaccine delivery frameworks, through its diverse genetic components: the strong native promoter, capable of synthesizing as many as 500 Slp subunits per second; the signal peptide that stimulates robust secretion of recombinant proteins; and the structural domains, which can be harnessed for both cell surface display of foreign peptides or adhesion enhancement of a host bacterium. Although numerous studies have established vaccine platforms based on one or more components of the Lactobacillus S-layer, this area of research still remains largely in its infancy, thus this review is meant to not only highlight past works, but also advocate for the future usage of Slps in biotherapeutic research.
Collapse
Affiliation(s)
- Courtney Klotz
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
8
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
9
|
Zhang Q, Li H, Zhu X, Lai F, Zhai Z, Wang Y. Exploration of the key functional proteins from an efficient cellulolytic microbial consortium using dilution-to-extinction approach. J Environ Sci (China) 2016; 43:199-207. [PMID: 27155425 DOI: 10.1016/j.jes.2015.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
In the present study, the cellulose binding proteins (CBPs) secreted by a putative cellulolytic microbial consortium were isolated and purified by affinity digestion. The purified CBPs were subsequently separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Using mass spectrometric analyses, eight CBPs were identified and annotated to be similar to known proteins secreted by Clostridium clariflavum DSM 19732 and Paenibacillus sp. W-61. In addition, in combination with dilution-to-extinction approach and zymogram analysis technique, CBPs 6 (97kDa) and 12 (52kDa) were confirmed to be the key functional proteins that influence cellulolytic activities. Moreover, structural domain analyses and enzymatic activity detection indicated that CBPs 6 and 12 contained glycoside hydrolase families (GH) 9 and 48 catalytic modules, which both revealed endoglucandase and xylanase activities. It was suggested that the coexistence of GH9 and GH48 catalytic domains present in these two proteins could synergistically promote the efficient degradation of cellulose.
Collapse
Affiliation(s)
- Qinghua Zhang
- College of Bioscience and Engineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Hanguang Li
- College of Bioscience and Engineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xiangdong Zhu
- College of Bioscience and Engineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fenju Lai
- College of Bioscience and Engineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhijun Zhai
- College of Bioscience and Engineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanxiu Wang
- College of Bioscience and Engineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
10
|
Misra CS, Basu B, Apte SK. Surface (S)-layer proteins of Deinococcus radiodurans and their utility as vehicles for surface localization of functional proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3181-7. [DOI: 10.1016/j.bbamem.2015.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
11
|
Production and cell surface display of recombinant anthrax protective antigen on the surface layer of attenuated Bacillus anthracis. World J Microbiol Biotechnol 2014; 31:345-52. [PMID: 25504373 DOI: 10.1007/s11274-014-1786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
To investigate the surface display of the anthrax protective antigen (PA) on attenuated Bacillus anthracis, a recombinant B. anthracis strain, named AP429 was constructed by integrating into the chromosome a translational fusion harboring the DNA fragments encoding the cell wall-targeting domain of the S-layer protein EA1 and the anthrax PA. Crerecombinase action at the loxP sites excised the antibiotic marker. Western blot analysis, fluorescence-activated cell sorting and immunofluorescence analysis confirmed that PA was successfully expressed on the S-layer of the recombinant antibiotic marker-free strain. Notwithstanding extensive proteolytic degradation of the hybrid protein SLHs-PA, quantitative ELISA revealed that approximately 8.1 × 10(6) molecules of SLHs-PA were gained from each Bacillus cell. Moreover, electron microscopy assay indicated that the typical S-layer structures could be clearly observed from the recombinant strain micrographs.
Collapse
|
12
|
Sleytr UB, Schuster B, Egelseer E, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823-64. [PMID: 24483139 PMCID: PMC4232325 DOI: 10.1111/1574-6976.12063] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023] Open
Abstract
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B. Sleytr
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bernhard Schuster
- Institute of Synthetic BiologyDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva‐Maria Egelseer
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dietmar Pum
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
13
|
Candela T, Balomenou S, Aucher W, Bouriotis V, Simore JP, Fouet A, Boneca IG. N-acetylglucosamine deacetylases modulate the anchoring of the gamma-glutamyl capsule to the cell wall of Bacillus anthracis. Microb Drug Resist 2014; 20:222-30. [PMID: 24833281 DOI: 10.1089/mdr.2014.0063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bacillus anthracis has a complex cell wall structure composed of a peptidoglycan (PG) layer to which major structures are anchored such as a neutral polysaccharide, an S-layer, and a poly-γ-D-glutamate (PDGA) capsule. Many of these structures have central roles in the biology of B. anthracis, particularly, in virulence. However, little attention has been devoted to structurally study the PG and how it is modified in the presence of these secondary cell wall components. We present here the fine structure of the PG of the encapsulated RPG1 strain harboring both pXO1 and pXO2 virulence plasmids. We show that B. anthracis has a high degree of cross-linking and its GlcNAc residues are highly modified by N-deacetylation. The PG composition is not dependent on the presence of either LPXTG proteins or the capsule. Using NMR analysis of the PG-PDGA complex, we provide evidence for the anchoring of the PDGA to the glucosamine residues. We show that anchoring of the PDGA capsule is impaired in two PG N-deacetylase mutants, Ba1961 and Ba3679. Thus, these multiple N-deactylase activities would constitute excellent drug targets in B. anthracis by simultaneously affecting its resistance to lysozyme and to phagocytosis impairing B. anthracis survival in the host.
Collapse
Affiliation(s)
- Thomas Candela
- 1 Institut Pasteur , Unité Toxines et Pathogénie Bactérienne, Paris, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Janesch B, Koerdt A, Messner P, Schäffer C. The S-layer homology domain-containing protein SlhA from Paenibacillus alvei CCM 2051(T) is important for swarming and biofilm formation. PLoS One 2013; 8:e76566. [PMID: 24058714 PMCID: PMC3776848 DOI: 10.1371/journal.pone.0076566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/28/2013] [Indexed: 01/23/2023] Open
Abstract
Background Swarming and biofilm formation have been studied for a variety of bacteria. While this is well investigated for Gram-negative bacteria, less is known about Gram-positive bacteria, including Paenibacillus alvei, a secondary invader of diseased honeybee colonies infected with Melissococcuspluton, the causative agent of European foulbrood (EFB). Methodology Paenibacillus alvei CCM 2051T is a Gram-positive bacterium which was recently shown to employ S-layer homology (SLH) domains as cell wall targeting modules to display proteins on its cell surface. This study deals with the newly identified 1335-amino acid protein SlhA from P. alvei which carries at the C‑terminus three consecutive SLH-motifs containing the predicted binding sequences SRGE, VRQD, and LRGD instead of the common TRAE motif. Based on the proof of cell surface location of SlhA by fluorescence microscopy using a SlhA-GFP chimera, the binding mechanism was investigated in an in vitro assay. To unravel a putative function of the SlhA protein, a knockout mutant was constructed. Experimental data indicated that one SLH domain is sufficient for anchoring of SlhA to the cell surface, and the SLH domains of SlhA recognize both the peptidoglycan and the secondary cell wall polymer in vitro. This is in agreement with previous data from the S-layer protein SpaA, pinpointing a wider utilization of that mechanism for cell surface display of proteins in P. alvei. Compared to the wild-type bacterium ΔslhA revealed changed colony morphology, loss of swarming motility and impaired biofilm formation. The phenotype was similar to that of the flagella knockout Δhag, possibly due to reduced EPS production influencing the functionality of the flagella of ΔslhA. Conclusion This study demonstrates the involvement of the SLH domain-containing protein SlhA in swarming and biofilm formation of P. alvei CCM 2051T.
Collapse
Affiliation(s)
- Bettina Janesch
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| | - Andrea Koerdt
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| | - Paul Messner
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
- * E-mail: (CS); (PM)
| | - Christina Schäffer
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
- * E-mail: (CS); (PM)
| |
Collapse
|
15
|
Hynönen U, Palva A. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 2013; 97:5225-43. [PMID: 23677442 PMCID: PMC3666127 DOI: 10.1007/s00253-013-4962-2] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 12/26/2022]
Abstract
Bacterial surface (S) layers are the outermost proteinaceous cell envelope structures found on members of nearly all taxonomic groups of bacteria and Archaea. They are composed of numerous identical subunits forming a symmetric, porous, lattice-like layer that completely covers the cell surface. The subunits are held together and attached to cell wall carbohydrates by non-covalent interactions, and they spontaneously reassemble in vitro by an entropy-driven process. Due to the low amino acid sequence similarity among S-layer proteins in general, verification of the presence of an S-layer on the bacterial cell surface usually requires electron microscopy. In lactobacilli, S-layer proteins have been detected on many but not all species. Lactobacillus S-layer proteins differ from those of other bacteria in their smaller size and high predicted pI. The positive charge in Lactobacillus S-layer proteins is concentrated in the more conserved cell wall binding domain, which can be either N- or C-terminal depending on the species. The more variable domain is responsible for the self-assembly of the monomers to a periodic structure. The biological functions of Lactobacillus S-layer proteins are poorly understood, but in some species S-layer proteins mediate bacterial adherence to host cells or extracellular matrix proteins or have protective or enzymatic functions. Lactobacillus S-layer proteins show potential for use as antigen carriers in live oral vaccine design because of their adhesive and immunomodulatory properties and the general non-pathogenicity of the species.
Collapse
Affiliation(s)
- Ulla Hynönen
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Ganguly J, Low LY, Kamal N, Saile E, Forsberg LS, Gutierrez-Sanchez G, Hoffmaster AR, Liddington R, Quinn CP, Carlson RW, Kannenberg EL. The secondary cell wall polysaccharide of Bacillus anthracis provides the specific binding ligand for the C-terminal cell wall-binding domain of two phage endolysins, PlyL and PlyG. Glycobiology 2013; 23:820-32. [PMID: 23493680 DOI: 10.1093/glycob/cwt019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endolysins are bacteriophage enzymes that lyse their bacterial host for phage progeny release. They commonly contain an N-terminal catalytic domain that hydrolyzes bacterial peptidoglycan (PG) and a C-terminal cell wall-binding domain (CBD) that confers enzyme localization to the PG substrate. Two endolysins, phage lysin L (PlyL) and phage lysin G (PlyG), are specific for Bacillus anthracis. To date, the cell wall ligands for their C-terminal CBD have not been identified. We recently described structures for a number of secondary cell wall polysaccharides (SCWPs) from B. anthracis and B. cereus strains. They are covalently bound to the PG and are comprised of a -ManNAc-GlcNAc-HexNAc- backbone with various galactosyl or glucosyl substitutions. Surface plasmon resonance (SPR) showed that the endolysins PlyL and PlyG bind to the SCWP from B. anthracis (SCWPBa) with high affinity (i.e. in the μM range with dissociation constants ranging from 0.81 × 10(-6) to 7.51 × 10(-6) M). In addition, the PlyL and PlyG SCWPBa binding sites reside with their C-terminal domains. The dissociation constants for the interactions of these endolysins and their derived C-terminal domains with the SCWPBa were in the range reported for other protein-carbohydrate interactions. Our findings show that the SCWPBa is the ligand that confers PlyL and PlyG lysin binding and localization to the PG. PlyL and PlyG also bound the SCWP from B. cereus G9241 with comparable affinities to SCWPBa. No detectable binding was found to the SCWPs from B. cereus ATCC (American Type Culture Collection) 10987 and ATCC 14579, thus demonstrating specificity of lysin binding to SCWPs.
Collapse
Affiliation(s)
- Jhuma Ganguly
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Balomenou S, Fouet A, Tzanodaskalaki M, Couture-Tosi E, Bouriotis V, Boneca IG. Distinct functions of polysaccharide deacetylases in cell shape, neutral polysaccharide synthesis and virulence ofBacillus anthracis. Mol Microbiol 2013; 87:867-83. [DOI: 10.1111/mmi.12137] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Mary Tzanodaskalaki
- Institute of Molecular Biology and Biotechnology; 70013; Heraklion; Crete; Greece
| | | | | | | |
Collapse
|
18
|
Are the surface layer homology domains essential for cell surface display and glycosylation of the S-layer protein from Paenibacillus alvei CCM 2051T? J Bacteriol 2012. [PMID: 23204458 DOI: 10.1128/jb.01487-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Paenibacillus alvei CCM 2051(T) cells are decorated with a two-dimensional (2D) crystalline array comprised of the glycosylated S-layer protein SpaA. At its N terminus, SpaA possesses three consecutive surface layer (S-layer) homology (SLH) domains containing the amino acid motif TRAE, known to play a key role in cell wall binding, as well as the TVEE and TRAQ variations thereof. SpaA is predicted to be anchored to the cell wall by interaction of the SLH domains with a peptidoglycan (PG)-associated, nonclassical, pyruvylated secondary cell wall polymer (SCWP). In this study, we have analyzed the role of the three predicted binding motifs within the SLH domains by mutating them into TAAA motifs, either individually, pairwise, or all of them. Effects were visualized in vivo by homologous expression of chimeras made of the mutated S-layer proteins and enhanced green fluorescent protein and in an in vitro binding assay using His-tagged SpaA variants and native PG-containing cell wall sacculi that either contained SCWP or were deprived of it. Experimental data indicated that (i) the TRAE, TVEE, and TRAQ motifs are critical for the binding function of SLH domains, (ii) two functional motifs are sufficient for cell wall binding, regardless of the domain location, (iii) SLH domains have a dual-recognition function for the SCWP and the PG, and (iv) cell wall anchoring is not necessary for SpaA glycosylation. Additionally, we showed that the SLH domains of SpaA are sufficient for in vivo cell surface display of foreign proteins at the cell surface of P. alvei.
Collapse
|
19
|
Abstract
Bacillus anthracis grows in chains of rod-shaped cells, a trait that contributes to its escape from phagocytic clearance in host tissues. Using a genetic approach to search for determinants of B. anthracis chain length, we identified mutants with insertional lesions in secA2. All isolated secA2 mutants exhibited an exaggerated chain length, whereas the dimensions of individual cells were not changed. Complementation studies revealed that slaP (S-layer assembly protein), a gene immediately downstream of secA2 on the B. anthracis chromosome, is also a determinant of chain length. Both secA2 and slaP are required for the efficient secretion of Sap and EA1 (Eag), the two S-layer proteins of B. anthracis, but not for the secretion of S-layer-associated proteins or of other secreted products. S-layer assembly via secA2 and slaP contributes to the proper positioning of BslO, the S-layer-associated protein, and murein hydrolase, which cleaves septal peptidoglycan to separate chains of bacilli. SlaP was found to be both soluble in the bacterial cytoplasm and associated with the membrane. The purification of soluble SlaP from B. anthracis-cleared lysates did not reveal a specific ligand, and the membrane association of SlaP was not dependent on SecA2, Sap, or EA1. We propose that SecA2 and SlaP promote the efficient secretion of S-layer proteins by modifying the general secretory pathway of B. anthracis to transport large amounts of Sap and EA1.
Collapse
|
20
|
Poppinga L, Janesch B, Fünfhaus A, Sekot G, Garcia-Gonzalez E, Hertlein G, Hedtke K, Schäffer C, Genersch E. Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of American Foulbrood of honey bees. PLoS Pathog 2012; 8:e1002716. [PMID: 22615573 PMCID: PMC3355101 DOI: 10.1371/journal.ppat.1002716] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/07/2012] [Indexed: 11/23/2022] Open
Abstract
The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), a globally occurring, deathly epizootic of honey bee brood. AFB outbreaks are predominantly caused by two genotypes of P. larvae, ERIC I and ERIC II, with P. larvae ERIC II being the more virulent genotype on larval level. Recently, comparative proteome analyses have revealed that P. larvae ERIC II but not ERIC I might harbour a functional S-layer protein, named SplA. We here determine the genomic sequence of splA in both genotypes and demonstrate by in vitro self-assembly studies of recombinant and purified SplA protein in combination with electron-microscopy that SplA is a true S-layer protein self-assembling into a square 2D lattice. The existence of a functional S-layer protein is novel for this bacterial species. For elucidating the biological function of P. larvae SplA, a genetic system for disruption of gene expression in this important honey bee pathogen was developed. Subsequent analyses of in vivo biological functions of SplA were based on comparing a wild-type strain of P. larvae ERIC II with the newly constructed splA-knockout mutant of this strain. Differences in cell and colony morphology suggest that SplA is a shape-determining factor. Marked differences between P. larvae ERIC II wild-type and mutant cells with regard to (i) adhesion to primary pupal midgut cells and (ii) larval mortality as measured in exposure bioassays corroborate the assumption that the S-layer of P. larvae ERIC II is an important virulence factor. Since SplA is the first functionally proven virulence factor for this species, our data extend the knowledge of the molecular differences between these two genotypes of P. larvae and contribute to explaining the observed differences in virulence. These results present an immense advancement in our understanding of P. larvae pathogenesis. Paenibacillus larvae is the most devastating bacterial pathogen of honey bees. However, the molecular interactions between infected larvae and P. larvae are poorly understood and little more than speculation exist concerning virulence factors. Recently, a putative S-layer protein has been identified in P. larvae. We here demonstrate that only representatives of P. larvae genotype ERIC II harbor a functional splA-gene and that SplA is a true S-layer protein with self-assembly capability. The presence of a functional S-layer protein is novel for P. larvae. When elucidating the biological function of SplA we broke new ground by establishing primary cell culture for pupal gut cells and by developing a genetic system for disruption of gene expression in this important honey bee pathogen. By using these novel methods we were able to prove that SplA serves as a shape-determining factor, mediates adhesion to host cells, and is a key virulence factor of P. larvae ERIC II. These results present an immense advancement in our understanding of P. larvae pathogenesis. Furthermore, we propose P. larvae as a model system for the analysis of the in vivo functions of S-layer proteins because P. larvae SlpA knockout-mutants retain viability and are thus suitable for functional studies.
Collapse
Affiliation(s)
- Lena Poppinga
- Institute for Bee Research, Department of Molecular Bee Pathology, Hohen Neuendorf, Germany
| | - Bettina Janesch
- Department für NanoBiotechnologie, NanoGlycobiology, Universität für Bodenkultur Wien, Wien, Austria
| | - Anne Fünfhaus
- Institute for Bee Research, Department of Molecular Bee Pathology, Hohen Neuendorf, Germany
| | - Gerhard Sekot
- Department für NanoBiotechnologie, NanoGlycobiology, Universität für Bodenkultur Wien, Wien, Austria
| | - Eva Garcia-Gonzalez
- Institute for Bee Research, Department of Molecular Bee Pathology, Hohen Neuendorf, Germany
| | - Gillian Hertlein
- Institute for Bee Research, Department of Molecular Bee Pathology, Hohen Neuendorf, Germany
| | - Kati Hedtke
- Institute for Bee Research, Department of Molecular Bee Pathology, Hohen Neuendorf, Germany
| | - Christina Schäffer
- Department für NanoBiotechnologie, NanoGlycobiology, Universität für Bodenkultur Wien, Wien, Austria
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Bee Pathology, Hohen Neuendorf, Germany
- * E-mail:
| |
Collapse
|
21
|
Schneewind O, Missiakas DM. Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 2012; 367:1123-39. [PMID: 22411983 PMCID: PMC3297441 DOI: 10.1098/rstb.2011.0210] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
22
|
Ilk N, Egelseer EM, Sleytr UB. S-layer fusion proteins--construction principles and applications. Curr Opin Biotechnol 2011; 22:824-31. [PMID: 21696943 PMCID: PMC3271365 DOI: 10.1016/j.copbio.2011.05.510] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 12/04/2022]
Abstract
Crystalline bacterial cell surface layers (S-layers) are the outermost cell envelope component of many bacteria and archaea. S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. The wealth of information available on the structure, chemistry, genetics and assembly of S-layers revealed a broad spectrum of applications in nanobiotechnology and biomimetics. By genetic engineering techniques, specific functional domains can be incorporated in S-layer proteins while maintaining the self-assembly capability. These techniques have led to new types of affinity structures, microcarriers, enzyme membranes, diagnostic devices, biosensors, vaccines, as well as targeting, delivery and encapsulation systems.
Collapse
|
23
|
Evolutionary history and functional characterization of three large genes involved in sporulation in Bacillus cereus group bacteria. J Bacteriol 2011; 193:5420-30. [PMID: 21821775 DOI: 10.1128/jb.05309-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus cereus group of bacteria is a group of closely related species that are of medical and economic relevance, including B. anthracis, B. cereus, and B. thuringiensis. Bacteria from the Bacillus cereus group encode three large, highly conserved genes of unknown function (named crdA, crdB, and crdC) that are composed of 16 to 35 copies of a repeated domain of 132 amino acids at the protein level. Bioinformatic analysis revealed that there is a phylogenetic bias in the genomic distribution of these genes and that strains harboring all three large genes mainly belong to cluster III of the B. cereus group phylogenetic tree. The evolutionary history of the three large genes implicates gain, loss, duplication, internal deletion, and lateral transfer. Furthermore, we show that the transcription of previously identified antisense open reading frames in crdB is simultaneously regulated with its host gene throughout the life cycle in vitro, with the highest expression being at the onset of sporulation. In B. anthracis, different combinations of double- and triple-knockout mutants of the three large genes displayed slower and less efficient sporulation processes than the parental strain. Altogether, the functional studies suggest an involvement of these three large genes in the sporulation process.
Collapse
|
24
|
Kern J, Wilton R, Zhang R, Binkowski TA, Joachimiak A, Schneewind O. Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J Biol Chem 2011; 286:26042-9. [PMID: 21572039 DOI: 10.1074/jbc.m111.248070] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surface (S)-layers, para-crystalline arrays of protein, are deposited in the envelope of most bacterial species. These surface organelles are retained in the bacterial envelope through the non-covalent association of proteins with cell wall carbohydrates. Bacillus anthracis, a Gram-positive pathogen, produces S-layers of the protein Sap, which uses three consecutive repeats of the surface-layer homology (SLH) domain to engage secondary cell wall polysaccharides (SCWP). Using x-ray crystallography, we reveal here the structure of these SLH domains, which assume the shape of a three-prong spindle. Each SLH domain contributes to a three-helical bundle at the spindle base, whereas another α-helix and its connecting loops generate the three prongs. The inter-prong grooves contain conserved cationic and anionic residues, which are necessary for SLH domains to bind the B. anthracis SCWP. Modeling experiments suggest that the SLH domains of other S-layer proteins also fold into three-prong spindles and capture bacterial envelope carbohydrates by a similar mechanism.
Collapse
Affiliation(s)
- Justin Kern
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wang YC, Jiang N, Zhan DW, Tao HX, Yuan SL, Wang P, Wang LC, Zhang ZS, Liu CJ. Surface display of the 20-kDa N-terminal fragment of anthrax protective antigen based on attenuated recombinant Bacillus anthracis. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0729-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Honsa ES, Maresso AW. Mechanisms of iron import in anthrax. Biometals 2011; 24:533-45. [PMID: 21258843 DOI: 10.1007/s10534-011-9413-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
During an infection, bacterial pathogens must acquire iron from the host to survive. However, free iron is sequestered in host proteins, which presents a barrier to iron-dependent bacterial replication. In response, pathogens have developed mechanisms to acquire iron from the host during infection. Interestingly, a significant portion of the iron pool is sequestered within heme, which is further bound to host proteins such as hemoglobin. The copious amount of heme-iron makes hemoglobin an ideal molecule for targeted iron uptake during infection. While the study of heme acquisition is well represented in Gram-negative bacteria, the systems and mechanism of heme uptake in Gram-positive bacteria has only recently been investigated. Bacillus anthracis, the causative agent of anthrax disease, represents an excellent model organism to study iron acquisition processes owing to a multifaceted lifecycle consisting of intra- and extracellular phases and a tremendous replicative potential upon infection. This review provides an in depth description of the current knowledge of B. anthracis iron acquisition and applies these findings to a general understanding of how pathogenic Gram-positive bacteria transport this critical nutrient during infection.
Collapse
Affiliation(s)
- Erin Sarah Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
27
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
28
|
The Structure of Bacterial S-Layer Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:73-130. [DOI: 10.1016/b978-0-12-415906-8.00004-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Kern J, Ryan C, Faull K, Schneewind O. Bacillus anthracis surface-layer proteins assemble by binding to the secondary cell wall polysaccharide in a manner that requires csaB and tagO. J Mol Biol 2010; 401:757-75. [PMID: 20603129 PMCID: PMC4652593 DOI: 10.1016/j.jmb.2010.06.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 06/09/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, requires surface (S)-layer proteins for the pathogenesis of infection. Previous work characterized S-layer protein binding via the surface layer homology domain to a pyruvylated carbohydrate in the envelope of vegetative forms. The molecular identity of this carbohydrate and the mechanism of its display in the bacterial envelope are still unknown. Analyzing acid-solubilized, purified carbohydrates by mass spectrometry and NMR spectroscopy, we identify secondary cell wall polysaccharide (SCWP) as the ligand of S-layer proteins. In agreement with the model that surface layer homology domains bind to pyruvylated carbohydrate, SCWP was observed to be linked to pyruvate in a manner requiring csaB, the only structural gene known to be required for S-layer assembly. B. anthracis does not elaborate wall teichoic acids; however, its genome harbors tagO and tagA, genes responsible for the synthesis of the linkage unit that tethers teichoic acids to the peptidoglycan layer. The tagO gene appears essential for B. anthracis growth and complements the tagO mutant phenotypes of staphylococci. Tunicamycin-mediated inhibition of TagO resulted in deformed, S-layer-deficient bacilli. Together, these results suggest that tagO-mediated assembly of linkage units tethers pyruvylated SCWP to the B. anthracis envelope, thereby enabling S-layer assembly and providing for the pathogenesis of anthrax infections.
Collapse
Affiliation(s)
- Justin Kern
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Christopher Ryan
- Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kym Faull
- Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Zarschler K, Janesch B, Kainz B, Ristl R, Messner P, Schäffer C. Cell surface display of chimeric glycoproteins via the S-layer of Paenibacillus alvei. Carbohydr Res 2010; 345:1422-31. [PMID: 20513375 PMCID: PMC4401010 DOI: 10.1016/j.carres.2010.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/01/2010] [Accepted: 04/11/2010] [Indexed: 10/19/2022]
Abstract
The Gram-positive, mesophilic bacterium Paenibacillus alvei CCM 2051(T) possesses a two-dimensional crystalline protein surface layer (S-layer) with oblique lattice symmetry composed of a single type of O-glycoprotein species. Herein, we describe a strategy for nanopatterned in vivo cell surface co-display of peptide and glycan epitopes based on this S-layer glycoprotein self-assembly system. The open reading frame of the corresponding structural gene spaA codes for a protein of 983 amino acids, including a signal peptide of 24 amino acids. The mature S-layer protein has a theoretical molecular mass of 105.95kDa and a calculated pI of 5.83. It contains three S-layer homology domains at the N-terminus that are involved in anchoring of the glycoprotein via a non-classical, pyruvylated secondary cell wall polymer to the peptidoglycan layer of the cell wall. For this polymer, several putative biosynthesis enzymes were identified upstream of the spaA gene. For in vivo cell surface display, the hexahistidine tag and the enhanced green fluorescent protein, respectively, were translationally fused to the C-terminus of SpaA. Immunoblot analysis, immunofluorescence staining, and fluorescence microscopy revealed that the fused epitopes were efficiently expressed and successfully displayed via the S-layer glycoprotein matrix on the surface of P. alvei CCM 2051(T) cells. In contrast, exclusively non-glycosylated chimeric SpaA proteins were displayed, when the S-layer of the glycosylation-deficient wsfP mutant was used as a display matrix.
Collapse
Affiliation(s)
| | - Bettina Janesch
- Department für NanoBiotechnologie, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Birgit Kainz
- Department für NanoBiotechnologie, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Robin Ristl
- Department für NanoBiotechnologie, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Paul Messner
- Department für NanoBiotechnologie, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Christina Schäffer
- Department für NanoBiotechnologie, Vienna Institute of BioTechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| |
Collapse
|
31
|
A Bacillus anthracis S-layer homology protein that binds heme and mediates heme delivery to IsdC. J Bacteriol 2010; 192:3503-11. [PMID: 20435727 DOI: 10.1128/jb.00054-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilitating iron acquisition from extracellular heme pools and delivery to iron-regulated surface determinant (Isd) proteins covalently attached to the cell wall. However, several Gram-positive pathogens, including B. anthracis, contain genes that encode near iron transporter (NEAT) proteins that are genomically distant from the genetically linked Isd locus. NEAT domains are protein modules that partake in several functions related to heme transport, including binding heme and hemoglobin. This finding raises interesting questions concerning the relative role of these NEAT proteins, relative to hemophores and the Isd system, in iron uptake. Here, we present evidence that a B. anthracis S-layer homology (SLH) protein harboring a NEAT domain binds and directionally transfers heme to the Isd system via the cell wall protein IsdC. This finding suggests that the Isd system can receive heme from multiple inputs and may reflect an adaptation of B. anthracis to changing iron reservoirs during an infection. Understanding the mechanism of heme uptake in pathogenic bacteria is important for the development of novel therapeutics to prevent and treat bacterial infections.
Collapse
|
32
|
Bertin M, Château A, Fouet A. Full expression of Bacillus anthracis toxin gene in the presence of bicarbonate requires a 2.7-kb-long atxA mRNA that contains a terminator structure. Res Microbiol 2010; 161:249-59. [PMID: 20359529 DOI: 10.1016/j.resmic.2010.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Bacillus anthracis toxin gene expression requires AtxA, a virulence regulator that also activates capsule gene transcription and controls expression of more than a hundred genes. Here we report that atxA mRNA is 2.7-kb-long and ends, after a 500 nt-long 3' untranslated region, with a stem loop structure followed by a run of U's. The presence of this structure stabilizes atxA mRNA and is necessary for AtxA maximal accumulation, full expression of the PA toxin gene, pagA and optimal PA accumulation. This structure displays terminator activity independently of its orientation when cloned between an inducible promoter and a reporter gene. The 3.6-kb-long DNA fragment carrying both AtxA promoters and the terminator is sufficient for full expression of pagA in the presence of bicarbonate. No pXO1-encoded element other than the DNA fragment encompassing the 2.7 kb atxA transcript and the pagA promoter is required for bicarbonate induction of pagA transcription.
Collapse
Affiliation(s)
- Marine Bertin
- Institut Pasteur, Unité Toxines et Pathogénie Bactérienne, CNRS, URA 2172, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
33
|
Kern J, Schneewind O. BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol Microbiol 2010; 75:324-32. [PMID: 19906175 PMCID: PMC2828814 DOI: 10.1111/j.1365-2958.2009.06958.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microbial pathogens use adhesive surface proteins to bind to and interact with host tissues, events that are universal for the pathogenesis of infectious diseases. A surface adhesin of Bacillus anthracis, the causative agent of anthrax, required to mediate these steps has not been discovered. Previous work identified BslA, an S-layer protein, to be necessary and sufficient for adhesion of the anthrax vaccine strain, Bacillus anthracis Sterne, to host cells. Here we asked whether encapsulated bacilli require BslA for anthrax pathogenesis in guinea pigs. Compared with the highly virulent parent strain B. anthracis Ames, bslA mutants displayed a dramatic increase in the lethal dose and in mean time-to-death. Whereas all tissues of animals infected with B. anthracis Ames contained high numbers of bacilli, only few vegetative forms could be recovered from internal organs of animals infected with the bslA mutant. Surface display of BslA occurred at the poles of encapsulated bacilli and enabled the binding of vegetative forms to host cells. Together these results suggest that BslA functions as the surface adhesin of the anthrax pathogen B. anthracis strain Ames.
Collapse
Affiliation(s)
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
34
|
The global regulator CodY regulates toxin gene expression in Bacillus anthracis and is required for full virulence. Infect Immun 2009; 77:4437-45. [PMID: 19651859 DOI: 10.1128/iai.00716-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-positive bacteria, CodY is an important regulator of genes whose expression changes upon nutrient limitation and acts as a repressor of virulence gene expression in some pathogenic species. Here, we report the role of CodY in Bacillus anthracis, the etiologic agent of anthrax. Disruption of codY completely abolished virulence in a toxinogenic, noncapsulated strain, indicating that the activity of CodY is required for full virulence of B. anthracis. Global transcriptome analysis of a codY mutant and the parental strain revealed extensive differences. These differences could reflect direct control for some genes, as suggested by the presence of CodY binding sequences in their promoter regions, or indirect effects via the CodY-dependent control of other regulatory proteins or metabolic rearrangements in the codY mutant strain. The differences included reduced expression of the anthrax toxin genes in the mutant strain, which was confirmed by lacZ reporter fusions and immunoblotting. The accumulation of the global virulence regulator AtxA protein was strongly reduced in the mutant strain. However, in agreement with the microarray data, expression of atxA, as measured using an atxA-lacZ transcriptional fusion and by assaying atxA mRNA, was not significantly affected in the codY mutant. An atxA-lacZ translational fusion was also unaffected. Overexpression of atxA restored toxin component synthesis in the codY mutant strain. These results suggest that CodY controls toxin gene expression by regulating AtxA accumulation posttranslationally.
Collapse
|
35
|
Fouet A. The surface of Bacillus anthracis. Mol Aspects Med 2009; 30:374-85. [PMID: 19607856 DOI: 10.1016/j.mam.2009.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/25/2022]
Abstract
Bacillus anthracis is a Gram positive organism possessing a complex parietal structure. An S-layer, a bi-dimensional crystalline layer, and a peptidic capsule surround the thick peptidoglycan of bacilli harvested during infection. A review of the current literature indicates that elements from each of these three structures, as well as membrane components, have been studied. So-called cell-wall secondary polymers, be they attached to the cell-wall or to the membrane play important functions, either per se or because they permit the anchoring of proteins. Some surface proteins, whichever compartment they are attached to, play, as had been hypothesized, key roles in virulence. Others, of yet unknown function, are nevertheless expressed in vivo. This review will focus on well-studied polymers or proteins and indicate, when appropriate, the mechanisms by which they are targeted to their respective locations.
Collapse
Affiliation(s)
- Agnès Fouet
- Institut Pasteur, Unité Toxines et Pathogénie Bactérienne, CNRS, URA2172, F-75015 Paris, France.
| |
Collapse
|
36
|
Species-specific cell wall binding affinity of the S-layer proteins of mosquitocidal bacterium Bacillus sphaericus C3-41. Appl Environ Microbiol 2009; 75:3891-5. [PMID: 19395560 DOI: 10.1128/aem.00356-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding affinities and specificities of six truncated S-layer homology domain (SLH) polypeptides of mosquitocidal Bacillus sphaericus strain C3-41 with the purified cell wall sacculi have been assayed. The results indicated that the SLH polypeptide comprised of amino acids 31 to 210 was responsible for anchoring the S-layer subunits to the rigid cell wall layer via a distinct type of secondary cell wall polymer and that a motif of the recombinant SLH polypeptide comprising amino acids 152 to 210 (rSLH(152-210)) was essential for the stable binding of the S-layer with the bacterial cell walls. The quantitative assays revealed that the K(D) (equilibrium dissociation constant) values of rSLH(152-210) and rSLH(31-210) with purified cell wall sacculi were 1.11 x 10(-6) M and 1.40 x 10(-6) M, respectively. The qualitative assays demonstrated that the SLH domain of strain C3-41 could bind only to the cell walls or the cells treated with 5 M guanidinium hydrochloride of both toxic and nontoxic B. sphaericus strains but not to those from other bacteria, indicating the species-specific binding of the SLH polypeptide of B. sphaericus with bacterial cell walls.
Collapse
|
37
|
Zhu C, Yu Z. The surface layer protein of Bacillus thuringiensis CTC forms unique intracellular parasporal inclusion body. J Basic Microbiol 2008; 48:302-7. [PMID: 18720489 DOI: 10.1002/jobm.200800013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacillus thuringiensis subsp. finitimus strain CTC forms round parasporal inclusion body. The inclusion body protein gene ctc has been cloned and characterized. Sequence homology analysis reveals that the amino acid sequence of CTC protein shows 87% identity with the surface layer (S-layer) protein Sap (GenBank Z36946) in B. anthracis. In this report, transmission electron microscope observation showed that CTC formed intracellular parasporal inclusion body and sheet structure of S-layer-like protein at the spore phase. Furthermore, the ctc gene was transformed into an acrystalliferous B. thuringiensis strain BMB171. The resulting transformant could form parasporal body which had the same shape and molecular weight of protein with that of B. thuringiensis CTC. These results, together with the sequence homology analysis of ctc gene, confirmed that the unique intracellular parasporal inclusion body of B. thuringiensis was comprised of S-layer protein.
Collapse
Affiliation(s)
- Chenguang Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | | |
Collapse
|
38
|
|
39
|
Pollmann K, Matys S. Construction of an S-layer protein exhibiting modified self-assembling properties and enhanced metal binding capacities. Appl Microbiol Biotechnol 2007; 75:1079-85. [PMID: 17437097 DOI: 10.1007/s00253-007-0937-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 11/24/2022]
Abstract
The functional S-layer protein gene slfB of the uranium mining waste pile isolate Bacillus sphaericus JG-A12 was cloned as a polymerase chain reaction product into the expression vector pET Lic/Ek 30 and heterologously expressed in Escherichia coli Bl21(DE3). The addition of His tags to the N and C termini enabled the purification of the recombinant protein by Ni-chelating chromatography. The Ni binding capacity of the His-tagged recombinant S-layer protein was compared with that of the wild-type S layer. The inductively coupled plasma mass spectrometry analyses demonstrate a significantly enhanced Ni binding capability of the recombinant protein. In addition, the self-assembling properties of the purified modified S-layer proteins were studied by light microscopy and scanning electron microscopy. Whereas the wild-type S-layer proteins re-assembled into regular cylindric structures, the recombinant S-layer proteins reassembled into regular sheets that formed globular agglomerating structures. The nanoporous structure of the protein meshwork, together with its enhanced Ni binding capacity, makes the recombinant S-layer attractive as a novel self-assembling biological template for the fabrication of metal nanoclusters and construction of nanomaterials that are of technical interest.
Collapse
Affiliation(s)
- Katrin Pollmann
- Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf e.V., 01314, Dresden, Germany.
| | | |
Collapse
|
40
|
Sleytr UB, Huber C, Ilk N, Pum D, Schuster B, Egelseer EM. S-layers as a tool kit for nanobiotechnological applications. FEMS Microbiol Lett 2007; 267:131-44. [PMID: 17328112 DOI: 10.1111/j.1574-6968.2006.00573.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Crystalline bacterial cell surface layers (S-layers) have been identified in a great number of different species of bacteria and represent an almost universal feature of archaea. Isolated native S-layer proteins and S-layer fusion proteins incorporating functional sequences self-assemble into monomolecular crystalline arrays in suspension, on a great variety of solid substrates and on various lipid structures including planar membranes and liposomes. S-layers have proven to be particularly suited as building blocks and patterning elements in a biomolecular construction kit involving all major classes of biological molecules (proteins, lipids, glycans, nucleic acids and combinations of them) enabling innovative approaches for the controlled 'bottom-up' assembly of functional supramolecular structures and devices. Here, we review the basic principles of S-layer proteins and the application potential of S-layers in nanobiotechnology and biomimetics including life and nonlife sciences.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences Vienna, Gregor Mendel Strasse 33, A-1180 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
41
|
Zhang L, Ruan L, Hu C, Wu H, Chen S, Yu Z, Sun M. Fusion of the genes for AHL-lactonase and S-layer protein in Bacillus thuringiensis increases its ability to inhibit soft rot caused by Erwinia carotovora. Appl Microbiol Biotechnol 2007; 74:667-75. [PMID: 17216466 DOI: 10.1007/s00253-006-0696-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 09/28/2006] [Accepted: 09/30/2006] [Indexed: 10/23/2022]
Abstract
Two genes, ctc and ctc2, responsible for surface layer (S-layer) protein synthesis in Bacillus thuringiensis CTC, were mutated and resulted in B. thuringiensis Tr5. To synthesize and express the N-acyl-homoserine lactonase (AHL-lactonase) in the extracellular space of B. thuringiensis, the aiiA ( 4Q7 ) gene (an AHL-lactonase gene from B. thuringiensis 4Q7), which confers the ability to inhibit plant soft rot disease in B. thuringiensis 4Q7, was fused with the upstream sequence of the ctc gene, which in turn is essential for S-layer protein secretion and anchoring on the cell surface. The resulting fusion gene, slh-aiiA, was expressed in B. thuringiensis Tr5 to avoid competition for the extracellular space with the native S-layer protein. Our results indicate that B. thuringiensis Tr5 containing the fusion gene slh-aiiA displayed high extracellular AHL-degrading activity. When compared with wild-type B. thuringiensis strains, the ability of the constructed strain to inhibit soft rot disease caused by Erwinia carotovora SCG1 was markedly increased. These findings provide evidence for a significant advance in our ability to inhibit soft rot disease caused by E. carotovora.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | |
Collapse
|
42
|
May A, Pusztahelyi T, Hoffmann N, Fischer RJ, Bahl H. Mutagenesis of conserved charged amino acids in SLH domains of Thermoanaerobacterium thermosulfurigenes EM1 affects attachment to cell wall sacculi. Arch Microbiol 2006; 185:263-9. [PMID: 16470371 DOI: 10.1007/s00203-006-0092-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/17/2006] [Accepted: 01/20/2006] [Indexed: 02/03/2023]
Abstract
SLH domains (for surface layer homology) are involved in the attachment of proteins to bacterial cell walls. The data presented here assign the conserved TRAE motif within SLH domains a key role for the binding. The charged amino acids arginine (R) or/and glutamic acid (E) were replaced via site-directed mutagenesis by different amino acids. Effects were visualized in an in vitro binding assay using native cell wall sacculi of Thermoanaerobacterium thermosulfurigenes EM1 and different variants of an SLH protein which consisted of the triplicate SLH domain of xylanase XynA of this bacterium and which was purified after expression in Escherichia coli. The results indicated (1) that the TRAE motif is critical for the binding function of SLH domains, (2) that a functional TRAE motif is necessary in all three domains, (3) that a least one (preferentially positively) charged amino acid in the TRAE motif is required for the functionality of the SLH domain, and (4) that the position of the negatively and positively charged amino acids is important. The finding that the cell wall of T. thermosulfurigenes EM1 contains pyruvate (4 microg mg(-1)) is in agreement with the hypothesis that pyruvylated secondary cell wall polymers function as ligand for SLH domains.
Collapse
Affiliation(s)
- Antje May
- Institute of Biological Sciences, Division of Microbiology, University of Rostock, Albert-Einstein-Str. 3, 18051, Rostock, Germany
| | | | | | | | | |
Collapse
|
43
|
Davison S, Couture-Tosi E, Candela T, Mock M, Fouet A. Identification of the Bacillus anthracis (gamma) phage receptor. J Bacteriol 2005; 187:6742-9. [PMID: 16166537 PMCID: PMC1251577 DOI: 10.1128/jb.187.19.6742-6749.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bacillus anthracis, a gram-positive, spore-forming bacterium, is the etiological agent of anthrax. It belongs to the Bacillus cereus group, which also contains Bacillus cereus and Bacillus thuringiensis. Most B. anthracis strains are sensitive to phage gamma, but most B. cereus and B. thuringiensis strains are resistant to the lytic action of phage gamma. Here, we report the identification of a protein involved in the bacterial receptor for the gamma phage, which we term GamR (Gamma phage receptor). It is an LPXTG protein (BA3367, BAS3121) and is anchored by the sortase A. A B. anthracis sortase A mutant is not as sensitive as the parental strain nor as the sortase B and sortase C mutants, whereas the GamR mutant is resistant to the lytic action of the phage. Electron microscopy reveals the binding of the phage to the surface of the parental strain and its absence from the GamR mutant. Spontaneous B. anthracis mutants resistant to the phage harbor mutations in the gene encoding the GamR protein. A B. cereus strain that is sensitive to the phage possesses a protein similar (89% identity) to GamR. B. thuringiensis 97-27, a strain which, by sequence analysis, is predicted to harbor a GamR-like protein, is resistant to the phage but nevertheless displays phage binding.
Collapse
Affiliation(s)
- Sophie Davison
- Toxines et Pathogénie Bactérienne, Institut Pasteur, 28 Rue du Dr. Roux, cedex 15, Paris 75724, France
| | | | | | | | | |
Collapse
|
44
|
Takác M, Bläsi U. Phage P68 virion-associated protein 17 displays activity against clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 2005; 49:2934-40. [PMID: 15980371 PMCID: PMC1168661 DOI: 10.1128/aac.49.7.2934-2940.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 01/26/2005] [Accepted: 03/27/2005] [Indexed: 11/20/2022] Open
Abstract
Phage-encoded murein hydrolases are either part of the lysis cassette or found as structural components of the phage virion. Here, we show that Staphylococcus aureus bacteriophage P68 contains a virion-associated muralytic enzyme. Protein 17 has a composite structure. The N-terminal part comprises the muralytic activity, whereas the C-terminal part is required for binding to the cell surface. A high multiplicity of infection with phage P68 caused rapid lysis, and purified protein 17 triggered premature lysis when added to S. aureus cells prior to infection with P68, suggesting that it functions to weaken the murein at the site of phage DNA entry. Protein 17 displayed activity against clinical S. aureus isolates, which are resistant to infection by phage P68, demonstrating that the protein targets surface structures distinct from the phage receptor. This broad activity spectrum of protein 17 could qualify virion-associated muralytic enzymes as attractive antimicrobials.
Collapse
Affiliation(s)
- Marian Takác
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at the Vienna Biocenter, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | | |
Collapse
|
45
|
Candela T, Fouet A. Bacillus anthracis CapD, belonging to the γ-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol 2005; 57:717-26. [PMID: 16045616 DOI: 10.1111/j.1365-2958.2005.04718.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several examples of bacterial surface-structure anchoring have been described, but they do not include polyglutamate capsule. Bacillus anthracis capsule, which is composed only of poly-gamma- d-glutamate, is one of the two major virulence factors of the bacterium. We analysed its anchoring. We report that the polyglutamate is anchored directly to the peptidoglycan and that the bond is covalent. We constructed a capD mutant strain, capD being the fourth gene of the capsule biosynthetic operon. The mutant bacilli are surrounded by polyglutamate material that is not covalently anchored. Thus, CapD is required for the covalent anchoring of polyglutamate to the peptidoglycan. Sequence similarities suggest that CapD is a gamma-glutamyltranspeptidase. Furthermore, CapD is cleaved at the gamma-glutamyltranspeptidase consensus cleavage site, and the two subunits remain associated, as necessary for gamma-glutamyltranspeptidase activity. Other Gram-positive gamma-glutamyltranspeptidases are secreted, but CapD is located at the Bacillus surface, associated both with the membrane and the peptidoglycan. Polyglutamate is hydrolysed by CapD indicating that it is a CapD substrate. We suggest that CapD catalyses the capsule anchoring reaction. Interestingly, the CapD(-) strain is far less virulent than the parental strain.
Collapse
Affiliation(s)
- Thomas Candela
- Unité Toxines and Pathogénie Bactérienne (CNRS, URA 2172) Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
46
|
Candela T, Mignot T, Hagnerelle X, Haustant M, Fouet A. Genetic analysis of Bacillus anthracis Sap S-layer protein crystallization domain. Microbiology (Reading) 2005; 151:1485-1490. [PMID: 15870458 DOI: 10.1099/mic.0.27832-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillus anthracis, the aetiological agent of anthrax, synthesizes two surface-layer (S-layer) proteins. S-layers are two-dimensional crystalline arrays that completely cover bacteria. In rich medium, the B. anthracis S-layer consists of Sap during the exponential growth phase. Sap is a modular protein composed of an SLH (S-layer homology)-anchoring domain followed by a putative crystallization domain (Sapc). A projection map of the two-dimensional Sap array has been established on deflated bacteria. In this work, the authors used two approaches to investigate whether Sapc is the crystallization domain. The purified Sapc polypeptide (604 aa) was sufficient to form a crystalline structure, as illustrated by electron microscopy. Consistent with this result, the entire Sapc domain promoted auto-interaction in a bacterial two-hybrid screen developed for the present study. The screen was derived from a system that takes advantage of the Bordetella pertussis cyclase subdomain structure to enable one to identify peptides that interact. A screening strategy was then employed to study Sapc subdomains that mediate interaction. A random library, derived from the Sapc domain, was constructed and screened. The selected polypeptides interacting with the complete Sapc were all larger (155 aa and above) than the mean size of the randomly cloned peptides (approx. 60 residues). This result suggests that, in contrast with observations for other interactions studied with this two-hybrid system, large fragments were required to ensure efficient interaction. It was noteworthy that only one polypeptide, which spanned aa 148–358, was able to interact with less than the complete Sapc, in fact, with itself.
Collapse
Affiliation(s)
- Thomas Candela
- Unité Toxines et Pathogénie Bactérienne (CNRS, URA 2172), Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Tâm Mignot
- Unité Toxines et Pathogénie Bactérienne (CNRS, URA 2172), Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Xavier Hagnerelle
- Unité de Biochimie Structurale (CNRS, URA 2185), Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Michel Haustant
- Unité Toxines et Pathogénie Bactérienne (CNRS, URA 2172), Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Agnès Fouet
- Unité Toxines et Pathogénie Bactérienne (CNRS, URA 2172), Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| |
Collapse
|
47
|
Xu Q, Barak Y, Kenig R, Shoham Y, Bayer EA, Lamed R. A novel Acetivibrio cellulolyticus anchoring scaffoldin that bears divergent cohesins. J Bacteriol 2004; 186:5782-9. [PMID: 15317783 PMCID: PMC516847 DOI: 10.1128/jb.186.17.5782-5789.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 06/02/2004] [Indexed: 11/20/2022] Open
Abstract
Sequencing of a cellulosome-integrating gene cluster in Acetivibrio cellulolyticus was completed. The cluster contains four tandem scaffoldin genes (scaA, scaB, scaC, and scaD) bounded upstream and downstream, respectively, by a presumed cellobiose phosphorylase and a nucleotide methylase. The sequences and properties of scaA, scaB, and scaC were reported previously, and those of scaD are reported here. The scaD gene encodes an 852-residue polypeptide that includes a signal peptide, three cohesins, and a C-terminal S-layer homology (SLH) module. The calculated molecular weight of the mature ScaD is 88,960; a 67-residue linker segment separates cohesins 1 and 2, and two approximately 30-residue linkers separate cohesin 2 from 3 and cohesin 3 from the SLH module. The presence of an SLH module in ScaD indicates its role as an anchoring protein. The first two ScaD cohesins can be classified as type II, similar to the four cohesins of ScaB. Surprisingly, the third ScaD cohesin belongs to the type I cohesins, like the seven ScaA cohesins. ScaD is the first scaffoldin to be described that contains divergent types of cohesins as integral parts of the polypeptide chain. The recognition properties among selected recombinant cohesins and dockerins from the different scaffoldins of the gene cluster were investigated by affinity blotting. The results indicated that the divergent types of ScaD cohesins also differ in their preference of dockerins. ScaD thus plays a dual role, both as a primary scaffoldin, capable of direct incorporation of a single dockerin-borne enzyme, and as a secondary scaffoldin that anchors the major primary scaffoldin, ScaA and its complement of enzymes to the cell surface.
Collapse
Affiliation(s)
- Qi Xu
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
48
|
Mignot T, Couture-Tosi E, Mesnage S, Mock M, Fouet A. In vivo Bacillus anthracis gene expression requires PagR as an intermediate effector of the AtxA signalling cascade. Int J Med Microbiol 2004; 293:619-24. [PMID: 15149039 DOI: 10.1078/1438-4221-00306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription of the major Bacillus anthracis virulence genes is triggered by CO2, a signal mimicking the host environment. A 182-kb plasmid, pXO1, carries the anthrax toxin genes and the genes responsible for their regulation of transcription, namely atxA and, pagR, the second gene of the pag operon. AtxA has major effects on the physiology of B. anthracis. It coordinates the transcription activation of the toxin genes with that of the capsule biosynthetic enzyme operon, located on the second virulence plasmid, pXO2. In rich medium, B. anthracis synthesises alternatively two S-layer proteins (Sap and EA1). An exponential phase "Sap-layer" is subsequently replaced by a stationary phase "EA1-layer". S-layer gene transcription is controlled by alternative sigma factors and by Sap acting as a transcriptional repressor of eag. Furthermore, in vitro in presence of CO2 and in vivo, AtxA is part of the sap and eag regulatory network. Only eag is significantly expressed in these conditions and this is due to AtxA activating eag and repressing sap transcription. PagR, and not AtxA itself, is the direct effector of this regulation by binding to sap and eag promoter regions. Therefore, PagR mediates the effect of AtxA on eag and sap and is the most downstream element of a signalling cascade initiated by AtxA. Taken together, these results indicate that the B. anthracis transcriptional regulator AtxA is controlling the synthesis of the three toxin components and of the surface elements (capsule and S-layer). Thus, AtxA is a master regulator that coordinates the response to host signals by orchestrating positive and negative controls over genes located on all genetic elements.
Collapse
Affiliation(s)
- Tâm Mignot
- Unité Toxines et Pathogénie Bactérienne, CNRS URA 2172, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
49
|
Cava F, de Pedro MA, Schwarz H, Henne A, Berenguer J. Binding to pyruvylated compounds as an ancestral mechanism to anchor the outer envelope in primitive bacteria. Mol Microbiol 2004; 52:677-90. [PMID: 15101975 DOI: 10.1111/j.1365-2958.2004.04011.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron microscopy of isolated cell walls of the ancient bacterium Thermus thermophilus revealed that most of the peptidoglycan (PG) surface, apart from the septal region, was shielded against specific alphaPG antibodies. On the other hand, an antiserum raised against S-layer-attached cell wall fragments (alphaSAC) bound to most of the surface except for the septal regions. Treatments with alpha-amylase and pronase E made the entire cell wall surface uniformly accessible to alphaPG and severely decreased the binding of alphaSAC. We concluded that a layer of strongly bound secondary cell wall polymers (SCWPs) covers most of the cell wall surface in this ancient bacterium. A preliminary analysis revealed that such SCWPs constitute 14% of the cell wall and are essentially composed of sugars. Enzyme treatments of the cell walls revealed that SCWP was required in vitro for the binding of the S-layer protein through the S-layer homology (SLH) motif. The csaB gene was necessary for the attachment of the S-layer-outer membrane (OM) complex to the cell wall in growing cells of T. thermophilus. In vitro experiments confirmed that cell walls from a csaB mutant bound to the S-layer with a much lower affinity ( approximately 1/10) than that of the wild type. CsaB was found to be required for pyruvylation of components of the SCWP and for immunodetection with alpha-SAC antiserum. Therefore, the S-layer-OM complex of T. thermophilus binds to the cell wall through the SLH motif of the S-layer protein via a strong interaction with a highly immunogenic pyruvylated component of the SCWP. Immuno-cross-reactive compounds were detected with alphaSAC on cell walls of other Thermus spp. and in the phylogenetically related microorganism Deinococcus radiodurans. These results imply that the interaction between the SLH motif and pyruvylated components of the cell wall arose early during bacterial evolution as an ancestral mechanism for anchoring proteins and outer membranes to the cell walls of primitive bacteria.
Collapse
Affiliation(s)
- Felipe Cava
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
50
|
Mader C, Huber C, Moll D, Sleytr UB, Sára M. Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology. J Bacteriol 2004; 186:1758-68. [PMID: 14996807 PMCID: PMC355981 DOI: 10.1128/jb.186.6.1758-1768.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 12/05/2003] [Indexed: 11/20/2022] Open
Abstract
The interaction between S-layer protein SbsB and the secondary cell wall polymer (SCWP) of Geobacillus stearothermophilus PV72/p2 was investigated by real-time surface plasmon resonance biosensor technology. The SCWP is an acidic polysaccharide that contains N-acetylglucosamine, N-acetylmannosamine, and pyruvic acid. For interaction studies, recombinant SbsB (rSbsB) and two truncated forms consisting of either the S-layer-like homology (SLH) domain (3SLH) or the residual part of SbsB were used. Independent of the setup, the data showed that the SLH domain was exclusively responsible for SCWP binding. The interaction was found to be highly specific, since neither the peptidoglycan nor SCWPs from other organisms nor other polysaccharides were recognized. Data analysis from that setup in which 3SLH was immobilized on a sensor chip and SCWP represented the soluble analyte was done in accordance with a model that describes binding of a bivalent analyte to a fixed ligand in terms of an overall affinity for all binding sites. The measured data revealed the presence of at least two binding sites on a single SCWP molecule with a distance of about 14 nm and an overall Kd of 7.7 x 10(-7) M. Analysis of data from the inverted setup in which the SCWP was immobilized on a sensor chip was done in accordance with an extension of the heterogeneous-ligand model, which indicated the existence of three binding sites with low (Kd = 2.6 x 10(-5) M), medium (Kd = 6.1 x 10(-8) M), and high (Kd = 6.7 x 10(-11) M) affinities. Since in this setup 3SLH was the soluble analyte and the presence of small amounts of oligomers in even monomeric protein solutions cannot be excluded, the high-affinity binding site may result from avidity effects caused by binding of at least dimeric 3SLH. Solution competition assays performed with both setups confirmed the specificity of the protein-carbohydrate interaction investigated.
Collapse
Affiliation(s)
- Christoph Mader
- Center for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nanotechnology, University of Natural Resources and Applied Life Sciences Vienna, Austria.
| | | | | | | | | |
Collapse
|