1
|
Al Mamun AAM, Kissoon K, Li YG, Hancock E, Christie PJ. The F plasmid conjutome: the repertoire of E. coli proteins translocated through an F-encoded type IV secretion system. mSphere 2024; 9:e0035424. [PMID: 38940509 PMCID: PMC11288057 DOI: 10.1128/msphere.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Kimberley Kissoon
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Erin Hancock
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| |
Collapse
|
2
|
Fraikin N, Couturier A, Lesterlin C. The winding journey of conjugative plasmids toward a novel host cell. Curr Opin Microbiol 2024; 78:102449. [PMID: 38432159 DOI: 10.1016/j.mib.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
Horizontal transfer of plasmids by conjugation is a fundamental mechanism driving the widespread dissemination of drug resistance among bacterial populations. The successful colonization of a new host cell necessitates the plasmid to navigate through a series of sequential steps, each dependent on specific plasmid or host factors. This review explores recent advancements in comprehending the cellular and molecular mechanisms that govern plasmid transmission, establishment, and long-term maintenance. Adopting a plasmid-centric perspective, we describe the critical steps and bottlenecks in the plasmid's journey toward a new host cell, encompassing exploration and contact initiation, invasion, establishment and control, and assimilation.
Collapse
Affiliation(s)
- Nathan Fraikin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Agathe Couturier
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007 Lyon, France.
| |
Collapse
|
3
|
Al Mamun AAM, Kissoon K, Kishida K, Shropshire WC, Hanson B, Christie PJ. IncFV plasmid pED208: Sequence analysis and evidence for translocation of maintenance/leading region proteins through diverse type IV secretion systems. Plasmid 2022; 123-124:102652. [PMID: 36228885 PMCID: PMC10018792 DOI: 10.1016/j.plasmid.2022.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
Two phylogenetically distantly-related IncF plasmids, F and pED208, serve as important models for mechanistic and structural studies of F-like type IV secretion systems (T4SSFs) and F pili. Here, we present the pED208 sequence and compare it to F and pUMNF18, the closest match to pED208 in the NCBI database. As expected, gene content of the three cargo regions varies extensively, although the maintenance/leading regions (MLRs) and transfer (Tra) regions also carry novel genes or motifs with predicted modulatory effects on plasmid stability, dissemination and host range. By use of a Cre recombinase assay for translocation (CRAfT), we recently reported that pED208-carrying donors translocate several products of the MLR (ParA, ParB1, ParB2, SSB, PsiB, PsiA) intercellularly through the T4SSF. Here, we extend these findings by reporting that pED208-carrying donors translocate 10 additional MLR proteins during conjugation. In contrast, two F plasmid-encoded toxin components of toxin-antitoxin (TA) modules, CcdB and SrnB, were not translocated at detectable levels through the T4SSF. Remarkably, most or all of the pED208-encoded MLR proteins and CcdB and SrnB were translocated through heterologous T4SSs encoded by IncN and IncP plasmids pKM101 and RP4, respectively. Together, our sequence analyses underscore the genomic diversity of the F plasmid superfamily, and our experimental data demonstrate the promiscuous nature of conjugation machines for protein translocation. Our findings raise intriguing questions about the nature of T4SS translocation signals and of the biological and evolutionary consequences of conjugative protein transfer.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| | - Kimberly Kissoon
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - William C Shropshire
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| |
Collapse
|
4
|
Protein Transfer through an F Plasmid-Encoded Type IV Secretion System Suppresses the Mating-Induced SOS Response. mBio 2021; 12:e0162921. [PMID: 34253063 PMCID: PMC8406263 DOI: 10.1128/mbio.01629-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial type IV secretion systems (T4SSs) mediate the conjugative transfer of mobile genetic elements (MGEs) and their cargoes of antibiotic resistance and virulence genes. Here, we report that the pED208-encoded T4SS (TrapED208) translocates not only this F plasmid but several plasmid-encoded proteins, including ParA, ParB1, single-stranded DNA-binding protein SSB, ParB2, PsiB, and PsiA, to recipient cells. Conjugative protein translocation through the TrapED208 T4SS required engagement of the pED208 relaxosome with the TraD substrate receptor or coupling protein. T4SSs translocate MGEs as single-stranded DNA intermediates (T-strands), which triggers the SOS response in recipient cells. Transfer of pED208 deleted of psiB or ssb, which, respectively, encode the SOS inhibitor protein PsiB and single-stranded DNA-binding protein SSB, elicited a significantly stronger SOS response than pED208 or mutant plasmids deleted of psiA, parA, parB1, or parB2. Conversely, translocation of PsiB or SSB, but not PsiA, through the TrapED208 T4SS suppressed the mating-induced SOS response. Our findings expand the repertoire of known substrates of conjugation systems to include proteins with functions associated with plasmid maintenance. Furthermore, for this and other F-encoded Tra systems, docking of the DNA substrate with the TraD receptor appears to serve as a critical activating signal for protein translocation. Finally, the observed effects of PsiB and SSB on suppression of the mating-induced SOS response establishes a novel biological function for conjugative protein translocation and suggests the potential for interbacterial protein translocation to manifest in diverse outcomes influencing bacterial communication, physiology, and evolution.
Collapse
|
5
|
Foley SL, Kaldhone PR, Ricke SC, Han J. Incompatibility Group I1 (IncI1) Plasmids: Their Genetics, Biology, and Public Health Relevance. Microbiol Mol Biol Rev 2021; 85:e00031-20. [PMID: 33910982 PMCID: PMC8139525 DOI: 10.1128/mmbr.00031-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial plasmids are extrachromosomal genetic elements that often carry antimicrobial resistance (AMR) genes and genes encoding increased virulence and can be transmissible among bacteria by conjugation. One key group of plasmids is the incompatibility group I1 (IncI1) plasmids, which have been isolated from multiple Enterobacteriaceae of food animal origin and clinically ill human patients. The IncI group of plasmids were initially characterized due to their sensitivity to the filamentous bacteriophage If1. Two prototypical IncI1 plasmids, R64 and pColIb-P9, have been extensively studied, and the plasmids consist of unique regions associated with plasmid replication, plasmid stability/maintenance, transfer machinery apparatus, single-stranded DNA transfer, and antimicrobial resistance. IncI1 plasmids are somewhat unique in that they encode two types of sex pili, a thick, rigid pilus necessary for mating and a thin, flexible pilus that helps stabilize bacteria for plasmid transfer in liquid environments. A key public health concern with IncI1 plasmids is their ability to carry antimicrobial resistance genes, including those associated with critically important antimicrobials used to treat severe cases of enteric infections, including the third-generation cephalosporins. Because of the potential importance of these plasmids, this review focuses on the distribution of the plasmids, their phenotypic characteristics associated with antimicrobial resistance and virulence, and their replication, maintenance, and transfer.
Collapse
Affiliation(s)
- Steven L Foley
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Pravin R Kaldhone
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
- Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| | - Steven C Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Jing Han
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
6
|
Characteristics of the Conjugative Transfer System of the IncM Plasmid pCTX-M3 and Identification of Its Putative Regulators. J Bacteriol 2018; 200:JB.00234-18. [PMID: 29986941 PMCID: PMC6112013 DOI: 10.1128/jb.00234-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/30/2018] [Indexed: 12/21/2022] Open
Abstract
Horizontal gene transfer is responsible for rapid changes in bacterial genomes, and the conjugative transfer of plasmids has a great impact on the plasticity of bacteria. Here, we present a deletion analysis of the conjugative transfer system genes of the pCTX-M3 plasmid of the IncM group, which is responsible for the dissemination of antibiotic resistance genes in Enterobacteriaceae. We found that the deletion of either of the orf35 and orf36 genes, which are dispensable for conjugative transfer, increased the plasmid mobilization efficiency. Real-time quantitative PCR (RT-qPCR) analysis suggested the involvement of orf35 and orf36 in regulating the expression of transfer genes. We also revised the host range of pCTX-M3 by showing that its conjugative transfer system has a much broader host range than its replicon. Plasmid conjugative transfer systems comprise type IV secretion systems (T4SS) coupled to DNA processing and replication. The T4SSs are divided into two phylogenetic subfamilies, namely, IVA and IVB, or on the basis of the phylogeny of the VirB4 ATPase, into eight groups. The conjugation system of the IncM group plasmid pCTX-M3, from Citrobacter freundii, is classified in the IVB subfamily and in the MPFI group, as are the conjugation systems of IncI1 group plasmids. Although the majority of the conjugative genes of the IncM and IncI1 plasmids display conserved synteny, there are several differences. Here, we present a deletion analysis of 27 genes in the conjugative transfer regions of pCTX-M3. Notably, the deletion of either of two genes dispensable for conjugative transfer, namely, orf35 and orf36, resulted in an increased plasmid mobilization efficiency. Transcriptional analysis of the orf35 and orf36 deletion mutants suggested an involvement of these genes in regulating the expression of conjugative transfer genes. We also revised the host range of the pCTX-M3 replicon by finding that this replicon is unable to support replication in Agrobacterium tumefaciens, Ralstonia eutropha, and Pseudomonas putida, though its conjugation system is capable of introducing plasmids bearing oriTpCTX-M3 into these bacteria, which are representatives of Alpha-, Beta-, and Gammaproteobacteria, respectively. Thus, the conjugative transfer system of pCTX-M3 has a much broader host range than its replicon. IMPORTANCE Horizontal gene transfer is responsible for rapid changes in bacterial genomes, and the conjugative transfer of plasmids has a great impact on the plasticity of bacteria. Here, we present a deletion analysis of the conjugative transfer system genes of the pCTX-M3 plasmid of the IncM group, which is responsible for the dissemination of antibiotic resistance genes in Enterobacteriaceae. We found that the deletion of either of the orf35 and orf36 genes, which are dispensable for conjugative transfer, increased the plasmid mobilization efficiency. Real-time quantitative PCR (RT-qPCR) analysis suggested the involvement of orf35 and orf36 in regulating the expression of transfer genes. We also revised the host range of pCTX-M3 by showing that its conjugative transfer system has a much broader host range than its replicon.
Collapse
|
7
|
Harms A, Liesch M, Körner J, Québatte M, Engel P, Dehio C. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella. PLoS Genet 2017; 13:e1007077. [PMID: 29073136 PMCID: PMC5675462 DOI: 10.1371/journal.pgen.1007077] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal–the BID (Bep intracellular delivery) domain—similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins. Many bacterial pathogens use secretion systems to translocate effector proteins into host cells where they manipulate cell functions in favor of the pathogen. It is well-known that these secretion systems evolved from ancestors with functions in genuine bacterial contexts, but the origins of their secreted effectors have largely remained elusive. In this article we studied the evolutionary history of a host-targeting effector secretion system of the mammalian pathogen Bartonella that belongs to a group of machineries descended from secretion systems originally mediating DNA transfer between bacterial cells. Intriguingly, we found that such a DNA transfer machinery closely related to the host-targeting secretion system of Bartonella has recruited a bacterial protein involved in modulating DNA topology as an interbacterial effector protein that is translocated together with the DNA into recipient cells. The overall setup of this interbacterial effector is remarkably similar to the host-targeted effectors of Bartonella, and we propose that it represents an evolutionary missing link on the path from a genuine bacterial protein to effectors that manipulates host cell functioning. Further analyses showed that interbacterial effectors in DNA transfer may be a more common phenomenon and represent an important reservoir for the evolution of new host-targeted effectors.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Marius Liesch
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Jonas Körner
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Maxime Québatte
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Kubori T, Nagai H. The Type IVB secretion system: an enigmatic chimera. Curr Opin Microbiol 2016; 29:22-9. [DOI: 10.1016/j.mib.2015.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
|
9
|
Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci Rep 2015; 5:10912. [PMID: 26039110 PMCID: PMC4454188 DOI: 10.1038/srep10912] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022] Open
Abstract
The human pathogen Legionella pneumophila delivers a large array of the effector proteins into host cells using the Dot/Icm type IVB secretion system. Among the proteins composing the Dot/Icm system, an inner membrane protein DotI is known to be crucial for the secretion function but its structure and role in type IV secretion had not been elucidated. We report here the crystal structures of the periplasmic domains of DotI and its ortholog in the conjugation system of plasmid R64, TraM. These structures reveal a striking similarity to VirB8, a component of type IVA secretion systems, suggesting that DotI/TraM is the type IVB counterpart of VirB8. We further show that DotI and its partial paralog DotJ form a stable heterocomplex. R64 TraM, encoded by the conjugative plasmid lacking DotJ ortholog, forms a homo-hexamer. The DotI-DotJ complex is distinct from the core complex, which spans both inner and outer membranes to form a substrate conduit, and seems not to stably associate with the core complex. These results give insight into VirB8-family inner membrane proteins essential for type IV secretion and aid towards understanding the molecular basis of secretion systems essential for bacterial pathogenesis.
Collapse
|
10
|
Nagai H. [Host-pathogen interaction of Legionella pneumophila]. Nihon Saikingaku Zasshi 2015; 69:503-11. [PMID: 25186641 DOI: 10.3412/jsb.69.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Legionella are gram-negative bacteria ubiquitously found in freshwater and soil environments. Once inhaled by humans, Legionella infection could result in a severe form of pneumonia known as Legionellosis. Legionella translocate ~300 effector proteins into host cells via the Dot/Icm type IV secretion system, which is central to Legionella pathogenesis. Here I describe a brief review on recent advances in research on the molecular basis of Legionella-eukaryotic-cell interaction.
Collapse
Affiliation(s)
- Hiroki Nagai
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| |
Collapse
|
11
|
Native structure of a type IV secretion system core complex essential for Legionella pathogenesis. Proc Natl Acad Sci U S A 2014; 111:11804-9. [PMID: 25062693 DOI: 10.1073/pnas.1404506111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial type IV secretion systems are evolutionarily related to conjugation systems and play a pivotal role in infection by delivering numerous virulence factors into host cells. Using transmission electron microscopy, we report the native molecular structure of the core complex of the Dot/Icm type IV secretion system encoded by Legionella pneumophila, an intracellular human pathogen. The biochemically isolated core complex, composed of at least five proteins--DotC, DotD, DotF, DotG, and DotH--has a ring-shaped structure. Intriguingly, morphologically distinct premature complexes are formed in the absence of DotG or DotF. Our data suggest that DotG forms a central channel spanning inner and outer membranes. DotF, a component dispensable for type IV secretion, plays a role in efficient embedment of DotG into the functional core complex. These results highlight a common scheme for the biogenesis of transport machinery.
Collapse
|
12
|
A translocation motif in relaxase TrwC specifically affects recruitment by its conjugative type IV secretion system. J Bacteriol 2013; 195:4999-5006. [PMID: 23995644 DOI: 10.1128/jb.00367-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV secretion system (T4SS) substrates are recruited through a translocation signal that is poorly defined for conjugative relaxases. The relaxase TrwC of plasmid R388 is translocated by its cognate conjugative T4SS, and it can also be translocated by the VirB/D4 T4SS of Bartonella henselae, causing DNA transfer to human cells. In this work, we constructed a series of TrwC variants and assayed them for DNA transfer to bacteria and human cells to compare recruitment requirements by both T4SSs. Comparison with other reported relaxase translocation signals allowed us to determine two putative translocation sequence (TS) motifs, TS1 and TS2. Mutations affecting TS1 drastically affected conjugation frequencies, while mutations affecting either motif had only a mild effect on DNA transfer rates through the VirB/D4 T4SS of B. henselae. These results indicate that a single substrate can be recruited by two different T4SSs through different signals. The C terminus affected DNA transfer rates through both T4SSs tested, but no specific sequence requirement was detected. The addition of a Bartonella intracellular delivery (BID) domain, the translocation signal for the Bartonella VirB/D4 T4SS, increased DNA transfer up to 4% of infected human cells, providing an excellent tool for DNA delivery to specific cell types. We show that the R388 coupling protein TrwB is also required for this high-efficiency TrwC-BID translocation. Other elements apart from the coupling protein may also be involved in substrate recognition by T4SSs.
Collapse
|
13
|
Qiu J, Luo ZQ. Effector translocation by the Legionella Dot/Icm type IV secretion system. Curr Top Microbiol Immunol 2013; 376:103-15. [PMID: 23918176 DOI: 10.1007/82_2013_345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Legionella pneumophila is an opportunistic pathogen responsible for Legionnaires' disease. This bacterium survives and replicates within phagocytes by bypassing their bactericidal activity. Intracellular replication of L. pneumophila requires the Dot/Icm type IV secretion system made of approximately 27 proteins that presumably traverses the bacterial and phagosomal membranes. The perturbation of the host killing ability largely is mediated by the collective functions of the protein substrates injected into host cells via the Dot/Icm transporter. Proper protein translocation by Dot/Icm is determined by a number of factors, including signals recognizable by the translocator, chaperones that may facilitate the proper folding of substrates and transcriptional regulation and protein stability that determine the abundance and temporal transfer of the substrates. Although a large number of Dot/Icm substrates have been identified, investigation to understand the translocation is ongoing. Here we summarized the recent advancements in our understanding of the factors that determine the protein translocation activity of the Dot/Icm transporter.
Collapse
Affiliation(s)
- Jiazhang Qiu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|
14
|
Nagai H, Kubori T. Type IVB Secretion Systems of Legionella and Other Gram-Negative Bacteria. Front Microbiol 2011; 2:136. [PMID: 21743810 PMCID: PMC3127085 DOI: 10.3389/fmicb.2011.00136] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 06/11/2011] [Indexed: 12/03/2022] Open
Abstract
Type IV secretion systems (T4SSs) play a central role in the pathogenicity of many important pathogens, including Agrobacterium tumefaciens, Helicobacter pylori, and Legionella pneumophila. The T4SSs are related to bacterial conjugation systems, and are classified into two subgroups, type IVA (T4ASS) and type IVB (T4BSS). The T4BSS, which is closely related to conjugation systems of IncI plasmids, was originally found in human pathogen L. pneumophila; pathogenesis by L. pneumophila infection requires functional Dot/Icm T4BSS. A zoonotic pathogen, Coxiella burnetii, and an arthropod pathogen, Rickettsiella grylli – both of which carry T4BSSs highly similar to the Legionella Dot/Icm system – are evolutionarily closely related and comprise a monophyletic group. A growing body of bacterial genomic information now suggests that T4BSSs are not limited to Legionella and related bacteria and IncI plasmids. Here, we review the current knowledge on T4BSS apparatus and component proteins, gained mainly from studies on L. pneumophila Dot/Icm T4BSS. Recent structural studies, along with previous findings, suggest that the Dot/Icm T4BSS contains components with primary or higher-order structures similar to those in other types of secretion systems – types II, III, IVA, and VI, thus highlighting the mosaic nature of T4BSS architecture.
Collapse
Affiliation(s)
- Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University Osaka, Japan
| | | |
Collapse
|
15
|
Filloux A, Hachani A, Bleves S. The bacterial type VI secretion machine: yet another player for protein transport across membranes. MICROBIOLOGY-SGM 2008; 154:1570-1583. [PMID: 18524912 DOI: 10.1099/mic.0.2008/016840-0] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Several secretion systems have evolved that are widespread among Gram-negative bacteria. Recently, a new secretion system was recognized, which is named the type VI secretion system (T6SS). The T6SS components are encoded within clusters of genes initially identified as IAHP for IcmF-associated homologous proteins, since they were all found to contain a gene encoding an IcmF-like component. IcmF was previously reported as a component of the type IV secretion system (T4SS). However, with the exception of DotU, other T4SS components are not encoded within T6SS loci. Thus, the T6SS is probably a novel kind of complex multi-component secretion machine, which is often involved in interaction with eukaryotic hosts, be it a pathogenic or a symbiotic relationship. The expression of T6SS genes has been reported to be mostly induced in vivo. Interestingly, expression and assembly of T6SSs are tightly controlled at both the transcriptional and the post-translational level. This may allow a timely control of T6SS assembly and function. Two types of proteins, generically named Hcp and VgrG, are secreted via these systems, but it is not entirely clear whether they are truly secreted effector proteins or are actually components of the T6SS. The precise role and mode of action of the T6SS is still unknown. This review describes current knowledge about the T6SS and summarizes its hallmarks and its differences from other secretion systems.
Collapse
Affiliation(s)
- Alain Filloux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France.,Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | - Abderrahman Hachani
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France.,Imperial College London, Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, South Kensington Campus, Flowers Building, London SW7 2AZ, UK
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR9027, CNRS-IBSM, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| |
Collapse
|
16
|
Garcillán-Barcia MP, de la Cruz F. Why is entry exclusion an essential feature of conjugative plasmids? Plasmid 2008; 60:1-18. [DOI: 10.1016/j.plasmid.2008.03.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/15/2022]
|
17
|
Parker C, Meyer RJ. The R1162 relaxase/primase contains two, type IV transport signals that require the small plasmid protein MobB. Mol Microbiol 2007; 66:252-61. [PMID: 17880426 DOI: 10.1111/j.1365-2958.2007.05925.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The relaxase of the plasmid R1162 is a large protein essential for conjugative transfer and containing two different and physically separate catalytic activities. The N-terminal half cleaves one of the DNA strands at the origin of transfer (oriT) and becomes covalently linked to the 5' terminal phosphate; the C-terminal half is a primase essential for initiation of plasmid vegetative replication. We show here that the two parts of the protein are independently transported by the type IV pathway. Part of the domain containing the catalytic activity, as well as an adjacent region, is required in each case, but the required regions do not physically overlap. Both transport systems contribute to the overall frequency of conjugative transfer. MobB is a small protein, encoded within mobA but in a different reading frame, that stabilizes the relaxase at oriT. MobB is required for efficient type IV transport of both the complete relaxase and its two, separate functional halves. MobB inserts into the membrane and could thus stabilize the association between the relaxase and the type IV transfer apparatus.
Collapse
Affiliation(s)
- Christopher Parker
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
18
|
Silby MW, Ferguson GC, Billington C, Heinemann JA. Localization of the plasmid-encoded proteins TraI and MobA in eukaryotic cells. Plasmid 2007; 57:118-30. [PMID: 17084894 DOI: 10.1016/j.plasmid.2006.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 08/24/2006] [Accepted: 08/30/2006] [Indexed: 12/25/2022]
Abstract
Conjugation mediates gene transfer not only between bacterial species but also from bacteria to yeast, plant, and animal cells. DNA transferred by conjugative plasmids from bacteria to eukaryotes must traverse subcellular membranes in the recipient before the transferred genes can be expressed and inherited. This process is most likely facilitated by putative DNA pilot proteins such as VirD2 of the Agrobacterium tumefaciens Ti plasmid. Here, we test this model as a general feature of trans-kingdom conjugation using the DNA-relaxases TraI and MobA of the IncP and IncQ groups. TraI localized unambiguously and uniformly to the nuclei of both yeast and human cells, whereas MobA displayed a range of subcellular localization patterns. The tendency to localize to the nucleus was not correlated with predicted nuclear localization sequence motifs in either protein, suggesting a lack of stringent requirements for nuclear localizing potential in pilot proteins mediating conjugative DNA transfer to eukaryotes. Further, our results indicate that nuclear localization ability may be more commonly associated with conjugative pilot proteins than previously recognized.
Collapse
Affiliation(s)
- Mark W Silby
- Centre for Integrated Research in Biosafety, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | | | | | | |
Collapse
|
19
|
Garcillán-Barcia MP, Jurado P, González-Pérez B, Moncalián G, Fernández LA, de la Cruz F. Conjugative transfer can be inhibited by blocking relaxase activity within recipient cells with intrabodies. Mol Microbiol 2006; 63:404-16. [PMID: 17163977 DOI: 10.1111/j.1365-2958.2006.05523.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Horizontal transfer of antibiotic resistance genes carried by conjugative plasmids poses a serious health problem. As conjugative relaxases are transported to recipient cells during bacterial conjugation, we investigated whether blocking relaxase activity in the recipient cell might inhibit conjugation. For that purpose, we used an intrabody approach generating a single-chain Fv antibody library against the relaxase TrwC of conjugative plasmid R388. Recombinant single-chain Fv antibodies were engineered for cytoplasmic expression in Escherichia coli cells and either selected in vitro for their specific binding to TrwC, or in vivo by their ability to interfere with conjugation using a high-throughput mating assay. Several intrabody clones were identified showing specific inhibition against R388 conjugation upon cytoplasmic expression in the recipient cell. The epitope recognized by one of these intrabodies was mapped to a region of TrwC containing Tyr-26 and involved in the conjugative DNA-processing termination reaction. These findings demonstrate that the transferred relaxase plays an important role in the recipient cell and open a new approach to identify specific inhibitors of bacterial conjugation.
Collapse
Affiliation(s)
- M Pilar Garcillán-Barcia
- Departamento de Biología Molecular (Laboratorio asociado al Centro de Investigaciones Biológicas, C.S.I.C.), Universidad de Cantabria, C/Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Lavigne JP, Botella E, O'Callaghan D. [Type IV secretion system and their effectors: an update]. ACTA ACUST UNITED AC 2006; 54:296-303. [PMID: 16473480 DOI: 10.1016/j.patbio.2005.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 04/12/2005] [Indexed: 12/26/2022]
Abstract
Subversion of eukaryotic hosts by bacterial pathogens requires specialized macromolecules secretion systems delivering virulence factors either into the environment or directly into host cells. Transport of molecules across bacterial and eukaryotic membranes is a process requiring multi-component machineries called secretion systems. This review focuses on the Type IV secretion system. This complex is required for genetic exchange (DNA transport) and secretion of effectors (proteins, macromolecules, DNA-proteins complex) into target cells. They transport a wide variety of substrates including large DNA/protein complexes, multi protein toxins, or individual proteins. We describe recent advances on the structure and the function of this secretion system, their effectors and their effects on the functions of eukaryotic cell.
Collapse
Affiliation(s)
- J-P Lavigne
- Inserm U 431, faculté de médecine, avenue Kennedy, 30908 Nîmes cedex 02, France.
| | | | | |
Collapse
|
21
|
Cascales E, Atmakuri K, Liu Z, Binns AN, Christie PJ. Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol 2005; 58:565-79. [PMID: 16194240 PMCID: PMC2749481 DOI: 10.1111/j.1365-2958.2005.04852.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agrobacterium tumefaciens uses a type IV secretion (T4S) system composed of VirB proteins and VirD4 to deliver oncogenic DNA (T-DNA) and protein substrates to susceptible plant cells during the course of infection. Here, by use of the Transfer DNA ImmunoPrecipitation (TrIP) assay, we present evidence that the mobilizable plasmid RSF1010 (IncQ) follows the same translocation pathway through the VirB/D4 secretion channel as described previously for the T-DNA. The RSF1010 transfer intermediate and the Osa protein of plasmid pSa (IncW), related in sequence to the FiwA fertility inhibition factor of plasmid RP1 (IncPalpha), render A. tumefaciens host cells nearly avirulent. By use of a semi-quantitative TrIP assay, we show that both of these 'oncogenic suppressor factors' inhibit binding of T-DNA to the VirD4 substrate receptor. Both factors also inhibit binding of the VirE2 protein substrate to VirD4, as shown by coimmunoprecipitation and bimolecular fluorescence complementation assays. Osa fused to the green fluorescent protein (GFP) also blocks T-DNA and VirE2 binding to VirD4, and Osa-GFP colocalizes with VirD4 at A. tumefaciens cell poles. RSF1010 and Osa interfere specifically with VirD4 receptor function and not with VirB channel activity, as shown by (i) TrIP and (ii) a genetic screen for effects of the oncogenic suppressors on pCloDF13 translocation through a chimeric secretion channel composed of the pCloDF13-encoded MobB receptor and VirB channel subunits. Our findings establish that a competing plasmid substrate and a plasmid fertility inhibition factor act on a common target, the T4S receptor, to inhibit docking of DNA and protein substrates to the translocation apparatus.
Collapse
Affiliation(s)
- Eric Cascales
- Department of Microbiology and Molecular Genetics, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Krishnamohan Atmakuri
- Department of Microbiology and Molecular Genetics, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Zhenying Liu
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Andrew N. Binns
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas-Houston, Medical School, Houston, TX 77030, USA
- For correspondence. E-mail ; Tel. (+1) 713 500 5440; Fax (+1) 713 500 5499
| |
Collapse
|
22
|
Segal G, Feldman M, Zusman T. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev 2005; 29:65-81. [PMID: 15652976 DOI: 10.1016/j.femsre.2004.07.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 07/03/2004] [Accepted: 07/07/2004] [Indexed: 12/23/2022] Open
Abstract
Type-IV secretion systems are devices present in a wide range of bacteria (including bacterial pathogens) that deliver macromolecules (proteins and single-strand-DNA) across kingdom barriers (as well as between bacteria and into the surroundings). The type-IV secretion systems were divided into two subgroups and Legionella pneumophila and Coxiella burnetii are the only two bacteria known today to utilize a type-IVB secretion system for pathogenesis. In this review we summarized the available information concerning the icm/dot type-IVB secretion systems by comparing the two bacteria that possess this system, the proteins components of their systems as well as the homology of proteins from type-IVB secretion systems to proteins from type-IVA secretion systems. In addition, the phenotypes associated with mutants in the L. pneumophila icm/dot genes, their relations to properties of specific Icm/Dot proteins as well as the protein substrates delivered by this system are described.
Collapse
Affiliation(s)
- Gil Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| | | | | |
Collapse
|
23
|
Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:219-34. [PMID: 15546668 DOI: 10.1016/j.bbamcr.2004.02.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/03/2004] [Accepted: 02/03/2004] [Indexed: 11/27/2022]
Abstract
The translocation of DNA across biological membranes is an essential process for many living organisms. In bacteria, type IV secretion systems (T4SS) are used to deliver DNA as well as protein substrates from donor to target cells. The T4SS are structurally complex machines assembled from a dozen or more membrane proteins in response to environmental signals. In Gram-negative bacteria, the conjugation machines are composed of a cell envelope-spanning secretion channel and an extracellular pilus. These dynamic structures (i) direct formation of stable contacts-the mating junction-between donor and recipient cell membranes, (ii) transmit single-stranded DNA as a nucleoprotein particle, as well as protein substrates, across donor and recipient cell membranes, and (iii) mediate disassembly of the mating junction following substrate transfer. This review summarizes recent progress in our understanding of the mechanistic details of DNA trafficking with a focus on the paradigmatic Agrobacterium tumefaciens VirB/D4 T4SS and related conjugation systems.
Collapse
|
24
|
Engledow AS, Medrano EG, Mahenthiralingam E, LiPuma JJ, Gonzalez CF. Involvement of a plasmid-encoded type IV secretion system in the plant tissue watersoaking phenotype of Burkholderia cenocepacia. J Bacteriol 2004; 186:6015-24. [PMID: 15342570 PMCID: PMC515160 DOI: 10.1128/jb.186.18.6015-6024.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 06/16/2004] [Indexed: 01/04/2023] Open
Abstract
Burkholderia cenocepacia strain K56-2, a representative of the Burkholderia cepacia complex, is part of the epidemic and clinically problematic ET12 lineage. The strain produced plant tissue watersoaking (ptw) on onion tissue, which is a plant disease-associated trait. Using plasposon mutagenesis, mutants in the ptw phenotype were generated. The translated sequence of a disrupted gene (ptwD4) from a ptw-negative mutant showed homology to VirD4-like proteins. Analysis of the region proximal to the transfer gene homolog identified a gene cluster located on the 92-kb resident plasmid that showed homology to type IV secretion systems. The role of ptwD4, ptwC, ptwB4, and ptwB10 in the expression of ptw activity was determined by conducting site-directed mutagenesis. The ptw phenotype was not expressed by K56-2 derivatives with a disruption in ptwD4, ptwB4, or ptwB10 but was observed in a derivative with a disruption in ptwC. Complementation of ptw-negative K56-2 derivatives in trans resulted in complete restoration of the ptw phenotype. In addition, analysis of culture supernatants revealed that the putative ptw effector(s) was a secreted, heat-stable protein(s) that caused plasmolysis of plant protoplasts. A second chromosomally encoded type IV secretion system with complete homology to the VirB-VirD system was identified in K56-2. Site-directed mutagenesis of key secretory genes in the VirB-VirD system did not affect expression of the ptw phenotype. Our findings indicate that in strain K56-2, the plasmid-encoded Ptw type IV secretion system is responsible for the secretion of a plant cytotoxic protein(s).
Collapse
Affiliation(s)
- Amanda S Engledow
- Department of Plant Pathology & Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
25
|
Luo ZQ, Isberg RR. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A 2004; 101:841-6. [PMID: 14715899 PMCID: PMC321768 DOI: 10.1073/pnas.0304916101] [Citation(s) in RCA: 390] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Legionella pneumophila is an intracellular pathogen that multiplies in a specialized vacuole within host cells. Biogenesis of this vacuole requires the Dot/Icm type IV protein translocation system. By using a Cre/loxP-based protein translocation assay, we found that proteins translocated by the Dot/Icm complex across the host phagosomal membrane can also be transferred from one bacterial cell to another. The flexibility of this system allowed the identification of several families of proteins translocated by the Dot/Icm complex. When analyzed by immunofluorescence microscopy, a protein identified by this procedure, SidC, was shown to translocate across the phagosomal membranes to the cytoplasmic face of the L. pneumophila phagosome. The identification of large numbers of these substrates, and the fact that the absence of any one substrate rarely results in strong defects in intracellular growth, indicate that there is significant functional redundancy among the Dot/Icm translocation targets.
Collapse
Affiliation(s)
- Zhao-Qing Luo
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
26
|
Ko KS, Hong SK, Lee HK, Park MY, Kook YH. Molecular evolution of the dotA gene in Legionella pneumophila. J Bacteriol 2003; 185:6269-77. [PMID: 14563861 PMCID: PMC219400 DOI: 10.1128/jb.185.21.6269-6277.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The molecular evolution of dotA, which is related to the virulence of Legionella pneumophila, was investigated by comparing the sequences of 15 reference strains (serogroups 1 to 15). It was found that dotA has a complex mosaic structure. The whole dotA gene of Legionella pneumophila subsp. pneumophila serogroups 2, 6, and 12 has been transferred from Legionella pneumophila subsp. fraseri. A discrepancy was found between the trees inferred from the nucleotide and deduced amino acid sequences of dotA, which suggests that multiple hits, resulting in synonymous substitutions, have occurred. Gene phylogenies inferred from three different segments (the 5'-end region, the central, large periplasmic domain, and the 3'-end region) showed impressively dissimilar topologies. This was concordant with the sequence polymorphisms, indicating that each region has experienced an independent evolutionary history, and was evident even within the same domain of each strain. For example, the PP2 domain was found to have a heterogeneous structure, which led us hypothesize that the dotA gene of L. pneumophila may have originated from two or more different sources. Comparisons of synonymous and nonsynonymous substitutions demonstrated that the PP2 domain has been under strong selective pressure with respect to amino acid change. Split decomposition analysis also supported the intragenic recombination of dotA. Multiple recombinational exchange within the dotA gene, encoding an integral cytoplasmic membrane protein that is secreted, probably provided increased fitness in certain environmental niches, such as within a particular biofilm community or species of amoebae.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Microbiology and Cancer Research Institute, Institute of Endemic Diseases, SNUMRC, Seoul National University College of Medicine, and Clinical Research Institute, Seoul National University Hospital, Seoul 110-799, Korea
| | | | | | | | | |
Collapse
|
27
|
Abstract
Bacteria use type IV secretion systems (T4SS) to translocate macromolecular substrates destined for bacterial, plant or human target cells. The T4SS are medically important, contributing to virulence-gene spread, genome plasticity and the alteration of host cellular processes during infection. The T4SS are ancestrally related to bacterial conjugation machines, but present-day functions include (i) conjugal transfer of DNA by cell-to-cell contact, (ii) translocation of effector molecules to eukaryotic target cells, and (iii) DNA uptake from or release to the extracellular milieu. Rapid progress has been made toward identification of type IV secretion substrates and the requirements for substrate recognition.
Collapse
Affiliation(s)
- Zhiyong Ding
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | |
Collapse
|
28
|
Atmakuri K, Ding Z, Christie PJ. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 2003; 49:1699-713. [PMID: 12950931 PMCID: PMC3882298 DOI: 10.1046/j.1365-2958.2003.03669.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens - a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) - and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2-terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB-encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector-coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily.
Collapse
|
29
|
Lawley TD, Klimke WA, Gubbins MJ, Frost LS. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 2003; 224:1-15. [PMID: 12855161 DOI: 10.1016/s0378-1097(03)00430-0] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The F sex factor of Escherichia coli is a paradigm for bacterial conjugation and its transfer (tra) region represents a subset of the type IV secretion system (T4SS) family. The F tra region encodes eight of the 10 highly conserved (core) gene products of T4SS including TraAF (pilin), the TraBF, -KF (secretin-like), -VF (lipoprotein) and TraCF (NTPase), -EF, -LF and TraGF (N-terminal region) which correspond to TrbCP, -IP, -GP, -HP, -EP, -JP, DP and TrbLP, respectively, of the P-type T4SS exemplified by the IncP plasmid RP4. F lacks homologs of TrbBP (NTPase) and TrbFP but contains a cluster of genes encoding proteins essential for F conjugation (TraFF, -HF, -UF, -WF, the C-terminal region of TraGF, and TrbCF) that are hallmarks of F-like T4SS. These extra genes have been implicated in phenotypes that are characteristic of F-like systems including pilus retraction and mating pair stabilization. F-like T4SS systems have been found on many conjugative plasmids and in genetic islands on bacterial chromosomes. Although few systems have been studied in detail, F-like T4SS appear to be involved in the transfer of DNA only whereas P- and I-type systems appear to transport protein or nucleoprotein complexes. This review examines the similarities and differences among the T4SS, especially F- and P-like systems, and summarizes the properties of the F transfer region gene products.
Collapse
Affiliation(s)
- T D Lawley
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Annick Gauthier
- Biotechnology Laboratory and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
31
|
Abstract
Evidence for the involvement of type IV protein secretion systems in bacterial virulence is accumulating. Many of the substrate proteins secreted by type IV systems either hijack or interfere with specific host cell pathways. These substrates can be injected directly into host cells via the type IV apparatus or are secreted by the type IV machinery in a state that allows them to gain access to cellular targets without the further assistance of the type IV system. Arguably, the protein substrates of most type IV secretion systems remain undiscovered. Here, we review the activities of known type IV substrates and discuss the putative roles of unidentified substrates.
Collapse
Affiliation(s)
- Hiroki Nagai
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, Room 354b, 295 Congress Avenue, New Haven, CT 06536, USA
| | | |
Collapse
|
32
|
Conover GM, Derré I, Vogel JP, Isberg RR. The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 2003; 48:305-21. [PMID: 12675793 DOI: 10.1046/j.1365-2958.2003.03400.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Legionella pneumophila establishes a replication vacuole within phagocytes that requires the bacterial Dot/Icm apparatus for its formation. This apparatus is predicted to translocate effectors into host cells. We hypothesized that some translocated proteins also function to maintain the integrity of the Dot/Icm translocator. Mutations that destroy this function are predicted to result in a Dot/Icm complex that poisons the bacterium, resulting in reduced viability. To identify such mutants, strains were isolated (called lid-) that showed reduced viability on bacteriological medium in the presence of an intact Dot/Icm apparatus, but which had high viability in the absence of the translocator. Several such mutants were analysed in detail to identify candidate strains that may have lost the ability to synthesize a translocated substrate of Dot/Icm. Two such strains had mutations in the lidA gene. The LidA protein exhibits properties expected for a translocated substrate of Dot/Icm that is important for maintenance of bacterial cell integrity: it associates with the phagosomal surface, promotes replication vacuole formation, and is important for both efficient intracellular growth and high viability on bacteriological media after introduction of a plasmid that allows high level expression of the dotA gene.
Collapse
Affiliation(s)
- Gloria M Conover
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine,136 Harrison Ave M and V 409, Boston, MA, 02111, USA
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Brian M Wilkins
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
34
|
Llosa M, Gomis-Rüth FX, Coll M, de la Cruz Fd F. Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 2002; 45:1-8. [PMID: 12100543 DOI: 10.1046/j.1365-2958.2002.03014.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial conjugation is a promiscuous DNA transport mechanism. Conjugative plasmids transfer themselves between most bacteria, thus being one of the main causal agents of the spread of antibiotic resistance among pathogenic bacteria. Moreover, DNA can be transferred conjugatively into eukaryotic host cells. In this review, we aim to address several basic questions regarding the DNA transfer mechanism. Conjugation can be visualized as a DNA rolling-circle replication (RCR) system linked to a type IV secretion system (T4SS), the latter being macromolecular transporters widely involved in pathogenic mechanisms. The scheme 'replication + secretion' suggests how the mechanism would work on the DNA substrate and at the bacterial membrane. But, how do these two parts come into contact? Furthermore, how is the DNA transported? T4SS are known to be involved in protein secretion in different organisms, but DNA is a very different macromolecule. The so-called coupling proteins could be the answer to both questions by performing a dual role in conjugation: coupling the two main components of the machinery (RCR and T4SS) and actively mediating DNA transport. We postulate that the T4SS is responsible for transport of the pilot protein (the relaxase) to the recipient. The DNA that is covalently linked to it is initially transported in a passive manner, trailing on the relaxase. We speculate that the pilus appendage could work as a needle, thrusting the substrate proteins to cross one or several membrane barriers into the recipient cytoplasm. This is the first step in conjugation. The second step is the active pumping of the DNA to the recipient, using the already available T4SS transport conduit. It is proposed that this second step is catalysed by the coupling proteins. Our 'shoot and pump' model solves the protein-DNA transport paradox of T4SS.
Collapse
Affiliation(s)
- Matxalen Llosa
- Dipartmento de Biología Molecular, Unidad Asociada al CIB-CSIC, Universidad de Cantabria, Santander, Spain.
| | | | | | | |
Collapse
|
35
|
Baron C, OCallaghan D, Lanka E. Bacterial secrets of secretion: EuroConference on the biology of type IV secretion processes. Mol Microbiol 2002; 43:1359-65. [PMID: 11918819 DOI: 10.1046/j.1365-2958.2002.02816.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Type IV secretion systems (TFSS) mediate secretion or direct cell-to-cell transfer of virulence factors (proteins or protein-DNA complexes) from many Gram-negative animal, human and plant pathogens, such as Agrobacterium tumefaciens, Bartonella tribocorum, Bordetella pertussis, Brucella suis, Helicobacter pylori, Legionella pneumophila and Rickettsia prowazekii, into eukaryotic cells. Bacterial conjugation is also classified as a TFSS-like process mediating the spread of broad-host-range plasmids between Gram-negative bacteria such as RP4 and R388, which carry antibiotic resistance genes. Genetic, biochemical, cell biological and structural biology experiments led to significant progress in the understanding of several aspects of TFSS processes. X-ray crystallography revealed that homologues of the A. tumefaciens inner membrane-associated proteins VirB11 and VirD4 from H. pylori and R388, respectively, may form channels for substrate translocation or assembly of the transmembrane TFSS machinery. Biochemical and cell biological experiments revealed interactions between components of the periplasmic core components VirB8, VirB9 and VirB10, which may form the translocation channel. Analysis of A. tumefaciens virulence proteins VirE2 and VirF suggested that the periplasmic translocation route of the pertussis toxin from B. pertussis may be more generally valid than previously anticipated. Secretion and modification of toxins from H. pylori and L. pneumophila profoundly affect host cell metabolism, thus entering the discipline of cellular microbiology. Finally, results from genome sequencing projects revealed the presence of up to three TFSS in a single organism, and the analysis of their interplay and adaptation to different functions will be a future challenge. TFSS-carrying plasmids were discovered in different ecosystems, suggesting that genetic exchange may speed up their evolution and adaptation to different cell-cell interactions.
Collapse
Affiliation(s)
- Christian Baron
- Ludwig-Maximilians-Universität, Department Biologie I, Bereich Genetik und Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany.
| | | | | |
Collapse
|
36
|
Schneiker S, Keller M, Dröge M, Lanka E, Pühler A, Selbitschka W. The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res 2001; 29:5169-81. [PMID: 11812851 PMCID: PMC97592 DOI: 10.1093/nar/29.24.5169] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2001] [Revised: 10/08/2001] [Accepted: 10/22/2001] [Indexed: 11/13/2022] Open
Abstract
Employing the biparental exogenous plasmid isolation method, conjugative plasmids conferring mercury resistance were isolated from the microbial community of the rhizosphere of field grown alfalfa plants. Five different plasmids were identified, designated pSB101-pSB105. One of the plasmids, pSB102, displayed broad host range (bhr) properties for plasmid replication and transfer unrelated to the known incompatibility (Inc) groups of bhr plasmids IncP-1, IncW, IncN and IncA/C. Nucleotide sequence analysis of plasmid pSB102 revealed a size of 55 578 bp. The transfer region of pSB102 was predicted on the basis of sequence similarity to those of other plasmids and included a putative mating pair formation apparatus most closely related to the type IV secretion system encoded on the chromosome of the mammalian pathogen Brucella sp. The region encoding replication and maintenance functions comprised genes exhibiting different degrees of similarity to RepA, KorA, IncC and KorB of bhr plasmids pSa (IncW), pM3 (IncP-9), R751 (IncP-1beta) and RK2 (IncP-1alpha), respectively. The mercury resistance determinants were located on a transposable element of the Tn5053 family designated Tn5718. No putative functions could be assigned to a quarter of the coding capacity of pSB102 on the basis of comparisons with database entries. The genetic organization of the pSB102 transfer region revealed striking similarities to plasmid pXF51 of the plant pathogen Xylella fastidiosa.
Collapse
Affiliation(s)
- S Schneiker
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Nagai H, Roy CR. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J 2001; 20:5962-70. [PMID: 11689436 PMCID: PMC125688 DOI: 10.1093/emboj/20.21.5962] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Legionella pneumophila requires the dot/icm genes to create an organelle inside eukaryotic host cells that will support bacterial replication. The dot/icm genes are predicted to encode a type IV-related secretion apparatus. However, no proteins have been identified that require the dot/icm genes for secretion. In this study we show that the DotA protein, which was previously found to be a polytopic membrane protein, is secreted by the Dot/Icm transporter into culture supernatants. Secreted DotA protein was purified and N-terminal sequencing of the purified protein revealed that a 19 amino acid leader peptide is removed from DotA prior to secretion. Extracellular DotA protein did not fractionate in membrane vesicles. Structures containing secreted DotA protein were visualized by electron microscopy and were shaped like hollow rings. These data indicate that the large poly topic membrane protein DotA is secreted from L.pneumophila by a unique process. This represents the first target secreted by the dot/icm-encoded apparatus and demonstrates that this transporter is competent for protein secretion.
Collapse
Affiliation(s)
- Hiroki Nagai
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA and Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| | - Craig R. Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA and Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan Corresponding author e-mail:
| |
Collapse
|
38
|
Zhao Z, Sagulenko E, Ding Z, Christie PJ. Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type IV secretion pathway. J Bacteriol 2001; 183:3855-65. [PMID: 11395448 PMCID: PMC95267 DOI: 10.1128/jb.183.13.3855-3865.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Agrobacterium tumefaciens uses a type IV secretion system to deliver oncogenic nucleoprotein particles and effector proteins, such as the multifunctional VirE2 protein, to plant cells. In this study, we examined the function of virE1 and its product, the VirE1 secretion chaperone, in mediating VirE2 export. A nonpolar virE1 null mutant accumulated low levels of VirE2, and trans expression of virE1 in this mutant only partially restored VirE2 abundance. Deletion of virE1 did not affect transcription but decreased translation of virE2, as shown by analysis of lacZ transcriptional and translational fusions. VirE2 was stable for a prolonged period, more than 6 h, when it was expressed in cis with virE1, and it exhibited half-lives of about 2 h when it was expressed in trans with virE1 and less than 10 min when it was expressed in the absence of virE1, as shown by pulse-chase experiments. VirE1 stabilized VirE2 via an interaction with a domain near the N terminus of VirE2, as shown by analyses of VirE2 truncation and insertion mutants synthesized in A. tumefaciens. VirE1 self-association was demonstrated by using bacteriophage lambda cI repressor fusion and pull-down assays, and evidence of VirE1 homomultimerization in vivo was obtained by native polyacrylamide gel electrophoresis and gel filtration chromatography. A putative VirE1-VirE2 complex with a molecular mass of about 70 to 80 kDa was detected by gel filtration chromatography of extracts from wild-type cells, whereas higher-order VirE2 complexes or aggregates were detected in extracts from a virE1 mutant. Taken together, our findings show that virE1 contributes in several ways to VirE2 export:(i) virE1 regulates efficient virE2 translation in the context of expression from the native P(virE) promoter; (ii) the VirE1 secretion chaperone stabilizes VirE2, most probably via an interaction with an N-terminal domain; and (iii) VirE1 forms a VirE1-VirE2 complex with a predicted 2:1 stoichiometry that inhibits assembly of higher-order VirE2 complexes or aggregates.
Collapse
Affiliation(s)
- Z Zhao
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
39
|
Christie PJ. Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 2001; 40:294-305. [PMID: 11309113 PMCID: PMC3922410 DOI: 10.1046/j.1365-2958.2001.02302.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial conjugation systems are highly promiscuous macromolecular transfer systems that impact human health significantly. In clinical settings, conjugation is exceptionally problematic, leading to the rapid dissemination of antibiotic resistance genes and other virulence traits among bacterial populations. Recent work has shown that several pathogens of plants and mammals - Agrobacterium tumefaciens, Bordetella pertussis, Helicobacter pylori and Legionella pneumophila - have evolved secretion pathways ancestrally related to conjugation systems for the purpose of delivering effector molecules to eukaryotic target cells. Each of these systems exports distinct DNA or protein substrates to effect a myriad of changes in host cell physiology during infection. Collectively, secretion pathways ancestrally related to bacterial conjugation systems are now referred to as the type IV secretion family. The list of putative type IV family members is increasing rapidly, suggesting that macromolecular transfer by these systems is a widespread phenomenon in nature.
Collapse
Affiliation(s)
- P J Christie
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School, 6431 Fannin, Houston, TX 77030, USA.
| |
Collapse
|