1
|
Santos RS, Martins-Silva G, Padilla AAÁ, Possari M, Degello SD, Bernardes Brustolini OJ, Vasconcelos ATR, Vallim MA, Pascon RC. Transcriptional and Post-Translational Roles of Calcineurin in Cationic Stress and Glycerol Biosynthesis in Cryptococcus neoformans. J Fungi (Basel) 2024; 10:531. [PMID: 39194857 DOI: 10.3390/jof10080531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Stress management is an adaptive advantage for survival in adverse environments. Pathogens face this challenge during host colonization, requiring an appropriate stress response to establish infection. The fungal pathogen Cryptococcus neoformans undergoes thermal, oxidative, and osmotic stresses in the environment and animal host. Signaling systems controlled by Ras1, Hog1, and calcineurin respond to high temperatures and osmotic stress. Cationic stress caused by Na+, K+, and Li+ can be overcome with glycerol, the preferred osmolyte. Deleting the glycerol phosphate phosphatase gene (GPP2) prevents cells from accumulating glycerol due to a block in the last step of its biosynthetic pathway. Gpp2 accumulates in a phosphorylated form in a cna1Δ strain, and a physical interaction between Gpp2 and Cna1 was found; moreover, the gpp2Δ strain undergoes slow growth and has attenuated virulence in animal models of infection. We provide biochemical evidence that growth in 1 M NaCl increases glycerol content in the wild type, whereas gpp2Δ, cna1Δ, and cnb1Δ mutants fail to accumulate it. The deletion of cnb1Δ or cna1Δ renders yeast cells sensitive to cationic stress, and the Gfp-Gpp2 protein assumes an abnormal localization. We suggest a mechanism in which calcineurin controls Gpp2 at the post-translational level, affecting its localization and activity, leading to glycerol biosynthesis. Also, we showed the transcriptional profile of glycerol-deficient mutants and established the cationic stress response mediated by calcineurin; among the biological processes differentially expressed are carbon utilization, translation, transmembrane transport, glutathione metabolism, oxidative stress response, and transcription regulation. To our knowledge, this is the first time that this transcriptional profile has been described. These results have implications for pathogen stress adaptability.
Collapse
Affiliation(s)
- Ronaldo Silva Santos
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil
| | - Gabriel Martins-Silva
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil
| | | | - Mateus Possari
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil
| | | | - Otávio J Bernardes Brustolini
- Laboratório Nacional de Computação Científica-LNCC, Labinfo-Laboratório de Bioinformática, Petrópolis 25651-075, RJ, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório Nacional de Computação Científica-LNCC, Labinfo-Laboratório de Bioinformática, Petrópolis 25651-075, RJ, Brazil
| | - Marcelo Afonso Vallim
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil
| | - Renata C Pascon
- Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil
| |
Collapse
|
2
|
Yadav V, Mohan R, Sun S, Heitman J. Calcineurin contributes to RNAi-mediated transgene silencing and small interfering RNA production in the human fungal pathogen Cryptococcus neoformans. Genetics 2024; 226:iyae010. [PMID: 38279937 PMCID: PMC10917508 DOI: 10.1093/genetics/iyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/27/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Adaptation to external environmental challenges at the cellular level requires rapid responses and involves relay of information to the nucleus to drive key gene expression changes through downstream transcription factors. Here, we describe an alternative route of adaptation through a direct role for cellular signaling components in governing gene expression via RNA interference-mediated small RNA production. Calcium-calcineurin signaling is a highly conserved signaling cascade that plays central roles in stress adaptation and virulence of eukaryotic pathogens, including the human fungal pathogen Cryptococcus neoformans. Upon activation in C. neoformans, calcineurin localizes to P-bodies, membraneless organelles that are also the site for RNA processing. Here, we studied the role of calcineurin and its substrates in RNAi-mediated transgene silencing. Our results reveal that calcineurin regulates both the onset and the reversion of transgene silencing. We found that some calcineurin substrates that localize to P-bodies also regulate transgene silencing but in opposing directions. Small RNA sequencing in mutants lacking calcineurin or its targets revealed a role for calcineurin in small RNA production. Interestingly, the impact of calcineurin and its substrates was found to be different in genome-wide analysis, suggesting that calcineurin may regulate small RNA production in C. neoformans through additional pathways. Overall, these findings define a mechanism by which signaling machinery induced by external stimuli can directly alter gene expression to accelerate adaptative responses and contribute to genome defense.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Riya Mohan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Yadav V, Mohan R, Sun S, Heitman J. Calcineurin contributes to RNAi-mediated transgene silencing and small interfering RNA production in the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550548. [PMID: 37546757 PMCID: PMC10402008 DOI: 10.1101/2023.07.25.550548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Adaptation to external environmental challenges at the cellular level requires rapid responses and involves relay of information to the nucleus to drive key gene expression changes through downstream transcription factors. Here, we describe an alternative route of adaptation through a direct role for cellular signaling components in governing gene expression via RNA interference-mediated small RNA production. Calcium-calcineurin signaling is a highly conserved signaling cascade that plays central roles in stress adaptation and virulence of eukaryotic pathogens, including the human fungal pathogen Cryptococcus neoformans. Upon activation in C. neoformans, calcineurin localizes to P-bodies, membrane-less organelles that are also the site for RNA processing. Here, we studied the role of calcineurin and its substrates in RNAi-mediated transgene silencing. Our results reveal that calcineurin regulates both the onset and the reversion of transgene silencing. We found that some calcineurin substrates that localize to P-bodies also regulate transgene silencing but in opposing directions. Small RNA sequencing in mutants lacking calcineurin or its targets revealed a role for calcineurin in small RNA production. Interestingly, the impact of calcineurin and its substrates was found to be different in genome-wide analysis, suggesting that calcineurin may regulate small RNA production in C. neoformans through additional pathways. Overall, these findings define a mechanism by which signaling machinery induced by external stimuli can directly alter gene expression to accelerate adaptative responses and contribute to genome defense.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Riya Mohan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Rivera A, Young Lim W, Park E, Dome PA, Hoy MJ, Spasojevic I, Sun S, Averette AF, Pina-Oviedo S, Juvvadi PR, Steinbach WJ, Ciofani M, Hong J, Heitman J. Enhanced fungal specificity and in vivo therapeutic efficacy of a C-22-modified FK520 analog against C. neoformans. mBio 2023; 14:e0181023. [PMID: 37737622 PMCID: PMC10653846 DOI: 10.1128/mbio.01810-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited, and the development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally active FDA-approved therapy. This research advances the development of much-needed newer antifungal treatment options with novel mechanisms of action.
Collapse
Affiliation(s)
- Angela Rivera
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Won Young Lim
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Eunchong Park
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Patrick A. Dome
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Michael J. Hoy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sergio Pina-Oviedo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Praveen R. Juvvadi
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - William J. Steinbach
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maria Ciofani
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jiyong Hong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Rivera A, Lim WY, Park E, Dome PA, Hoy MJ, Spasojevic I, Sun S, Averette AF, Pina-Oviedo S, Juvvadi PR, Steinbach WJ, Ciofani M, Hong J, Heitman J. Enhanced fungal specificity and in vivo therapeutic efficacy of a C-22 modified FK520 analog against C. neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543712. [PMID: 37333270 PMCID: PMC10274662 DOI: 10.1101/2023.06.05.543712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Fungal infections are of mounting global concern, and the current limited treatment arsenal poses challenges when treating such infections. In particular, infections by Cryptococcus neoformans are associated with high mortality, emphasizing the need for novel therapeutic options. Calcineurin is a protein phosphatase that mediates fungal stress responses, and calcineurin inhibition by the natural product FK506 blocks C. neoformans growth at 37°C. Calcineurin is also required for pathogenesis. However, because calcineurin is conserved in humans, and inhibition with FK506 results in immunosuppression, the use of FK506 as an anti-infective agent is precluded. We previously elucidated the structures of multiple fungal calcineurin-FK506-FKBP12 complexes and implicated the C-22 position on FK506 as a key point for differential modification of ligand inhibition of the mammalian versus fungal target proteins. Through in vitro antifungal and immunosuppressive testing of FK520 (a natural analog of FK506) derivatives, we identified JH-FK-08 as a lead candidate for further antifungal development. JH-FK-08 exhibited significantly reduced immunosuppressive activity and both reduced fungal burden and prolonged survival of infected animals. JH-FK-08 exhibited additive activity in combination with fluconazole in vivo . These findings further advance calcineurin inhibition as an antifungal therapeutic approach. Importance Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited and development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally-active FDA approved therapy. This research advances the development of much needed newer antifungal treatment options with novel mechanisms of action.
Collapse
|
6
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Kurakado S, Matsumoto Y, Yamada T, Shimizu K, Wakasa S, Sugita T. Tacrolimus inhibits stress responses and hyphal formation via the calcineurin signaling pathway in Trichosporon asahii. Microbiol Immunol 2023; 67:49-57. [PMID: 36398783 DOI: 10.1111/1348-0421.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
The pathogenic fungus Trichosporon asahii causes fatal deep-seated mycosis in immunocompromised patients. Calcineurin, which is widely conserved in eukaryotes, regulates cell growth and various stress responses in fungi. Tacrolimus (FK506), a calcineurin inhibitor, induces sensitivity to compounds that cause stress on the cell membrane and cell wall integrity. In this study, we demonstrated that FK506 affects stress responses and hyphal formation in T. asahii. In silico structural analysis revealed that amino acid residues in the binding site of the calcineurin-FKBP12 complex that interact with FK506 are conserved in T. asahii. The growth of T. asahii was delayed by FK506 in the presence of SDS or Congo red but not in the presence of calcium chloride. FK506 also inhibited hyphal formation in T. asahii. A mutant deficient of the cnb gene, which encodes the regulatory subunit B of calcineurin, exhibited stress sensitivities on exposure to SDS and Congo red and reduced the hyphal forming ability of T. asahii. In the cnb-deficient mutant, FK506 did not increase the stress sensitivity or reduce hyphal forming ability. These results suggest that FK506 affects stress responses and hyphal formation in T. asahii via the calcineurin signaling pathway.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Tokyo, Japan.,Asia International Institute of Infectious Disease Control, Teikyo University, Tokyo, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Shogo Wakasa
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
8
|
A critical role of calcineurin in stress responses, hyphal formation, and virulence of the pathogenic fungus Trichosporon asahii. Sci Rep 2022; 12:16126. [PMID: 36167890 PMCID: PMC9515189 DOI: 10.1038/s41598-022-20507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Trichosporon asahii is a conditional pathogenic fungus that causes severe and sometimes fatal infections in immunocompromised patients. While calcineurin, an essential component of a calcium-dependent signaling pathway, is known to regulate stress resistance and virulence of some pathogenic fungi, its role in T. asahii has not been investigated. Here, we demonstrated that calcineurin gene-deficient T. asahii mutants are sensitive to high temperature as well as cell-membrane and cell-wall stress, and exhibit decreased hyphal formation and virulence against silkworms. Growth of T. asahii mutants deficient in genes encoding subunits of calcineurin, cna1 and cnb1, was delayed at 40 °C. The cna1 and cnb1 gene-deficient mutants also showed sensitivity to sodium dodecyl sulfate, Congo red, dithiothreitol, and tunicamycin. On the other hand, these mutants exhibited no sensitivity to caffeine, sorbitol, monensin, CaCl2, LiCl, NaCl, amphotericin B, fluconazole, or voriconazole. The ratio of hyphal formation in the cna1 and cnb1 gene-deficient mutants was decreased. Moreover, the virulence of the cna1 and cnb1 gene-deficient mutants against silkworms was attenuated. These phenotypes were restored by re-introducing each respective gene into the gene-deficient mutants. Our findings suggest that calcineurin has a role in regulating the cellular stress response and virulence of T. asahii.
Collapse
|
9
|
Vacuolal and Peroxisomal Calcium Ion Transporters in Yeasts and Fungi: Key Role in the Translocation of Intermediates in the Biosynthesis of Fungal Metabolites. Genes (Basel) 2022; 13:genes13081450. [PMID: 36011361 PMCID: PMC9407949 DOI: 10.3390/genes13081450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Highlights The intracellular calcium content plays a key role in the expression of genes involved in the biosynthesis and secretion of fungal metabolites. The cytosolic calcium concentration in fungi is maintained by influx through the cell membrane and by release from store organelles. Some MSF transporters, e.g., PenV of Penicillium chrysogenum and CefP of Acremonium chrysogenum belong to the TRP calcium ion channels. A few of the numerous calcium ion transporters existing in organelles of different filamentous fungi have been characterized at the functional and subcellular localization levels. The cytosolic calcium signal seems to be transduced by the calcitonin/calcineurin cascade controlling the expression of many fungal genes.
Abstract The intracellular calcium content in fungal cells is influenced by a large number of environmental and nutritional factors. Sharp changes in the cytosolic calcium level act as signals that are decoded by the cell gene expression machinery, resulting in several physiological responses, including differentiation and secondary metabolites biosynthesis. Expression of the three penicillin biosynthetic genes is regulated by calcium ions, but there is still little information on the role of this ion in the translocation of penicillin intermediates between different subcellular compartments. Using advanced information on the transport of calcium in organelles in yeast as a model, this article reviews the recent progress on the transport of calcium in vacuoles and peroxisomes and its relation to the translocation of biosynthetic intermediates in filamentous fungi. The Penicillium chrysogenum PenV vacuole transporter and the Acremonium chrysogenum CefP peroxisomal transporter belong to the transient receptor potential (TRP) class CSC of calcium ion channels. The PenV transporter plays an important role in providing precursors for the biosynthesis of the tripeptide δ-(-α-aminoadipyl-L-cysteinyl-D-valine), the first intermediate of penicillin biosynthesis in P. chrysogenum. Similarly, CefP exerts a key function in the conversion of isopenicillin N to penicillin N in peroxisomes of A. chrysogenum. These TRP transporters are different from other TRP ion channels of Giberella zeae that belong to the Yvc1 class of yeast TRPs. Recent advances in filamentous fungi indicate that the cytosolic calcium concentration signal is connected to the calcitonin/calcineurin signal transduction cascade that controls the expression of genes involved in the subcellular translocation of intermediates during fungal metabolite biosynthesis. These advances open new possibilities to enhance the expression of important biosynthetic genes in fungi.
Collapse
|
10
|
Development of an efficient gene-targeting system for elucidating infection mechanisms of the fungal pathogen Trichosporon asahii. Sci Rep 2021; 11:18270. [PMID: 34521867 PMCID: PMC8440527 DOI: 10.1038/s41598-021-97287-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Trichosporon asahii is a pathogenic fungus that causes severe, deep-seated fungal infections in neutropenic patients. Elucidating the infection mechanisms of T. asahii based on genetic studies requires a specific gene-targeting system. Here, we established an efficient gene-targeting system in a highly pathogenic T. asahii strain identified using the silkworm infection model. By comparing the pathogenicity of T. asahii clinical isolates in a silkworm infection model, T. asahii MPU129 was identified as a highly pathogenic strain. Using an Agrobacterium tumefaciens-mediated gene transfer system, we obtained a T. asahii MPU129 mutant lacking the ku70 gene, which encodes the Ku70 protein involved in the non-homologous end-joining repair of DNA double-strand breaks. The ku70 gene-deficient mutant showed higher gene-targeting efficiency than the wild-type strain for constructing a mutant lacking the cnb1 gene, which encodes the beta-subunit of calcineurin. The cnb1 gene-deficient mutant showed reduced pathogenicity against silkworms compared with the parental strain. These results suggest that an efficient gene-targeting system in a highly pathogenic T. asahii strain is a useful tool for elucidating the molecular mechanisms of T. asahii infection.
Collapse
|
11
|
Squizani ED, Reuwsaat JC, Motta H, Tavanti A, Kmetzsch L. Calcium: a central player in Cryptococcus biology. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
The Transcription Factor Pdr802 Regulates Titan Cell Formation and Pathogenicity of Cryptococcus neoformans. mBio 2021; 12:mBio.03457-20. [PMID: 33688010 PMCID: PMC8092302 DOI: 10.1128/mbio.03457-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pathogenic yeast Cryptococcus neoformans presents a worldwide threat to human health, especially in the context of immunocompromise, and current antifungal therapy is hindered by cost, limited availability, and inadequate efficacy. After the infectious particle is inhaled, C. neoformans initiates a complex transcriptional program that integrates cellular responses and enables adaptation to the host lung environment. Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen that kills almost 200,000 people worldwide each year. It is acquired when mammalian hosts inhale the infectious propagules; these are deposited in the lung and, in the context of immunocompromise, may disseminate to the brain and cause lethal meningoencephalitis. Once inside the host, C. neoformans undergoes a variety of adaptive processes, including secretion of virulence factors, expansion of a polysaccharide capsule that impedes phagocytosis, and the production of giant (Titan) cells. The transcription factor Pdr802 is one regulator of these responses to the host environment. Expression of the corresponding gene is highly induced under host-like conditions in vitro and is critical for C. neoformans dissemination and virulence in a mouse model of infection. Direct targets of Pdr802 include the quorum sensing proteins Pqp1, Opt1, and Liv3; the transcription factors Stb4, Zfc3, and Bzp4, which regulate cryptococcal brain infectivity and capsule thickness; the calcineurin targets Had1 and Crz1, important for cell wall remodeling and C. neoformans virulence; and additional genes related to resistance to host temperature and oxidative stress, and to urease activity. Notably, cryptococci engineered to lack Pdr802 showed a dramatic increase in Titan cells, which are not phagocytosed and have diminished ability to directly cross biological barriers. This explains the limited dissemination of pdr802 mutant cells to the central nervous system and the consequently reduced virulence of this strain. The role of Pdr802 as a negative regulator of Titan cell formation is thus critical for cryptococcal pathogenicity.
Collapse
|
13
|
Stempinski PR, Zielinski JM, Dbouk NH, Huey ES, McCormack EC, Rubin AM, Chandrasekaran S, Kozubowski L. Genetic contribution to high temperature tolerance in Cryptococcus neoformans. Genetics 2021; 217:1-15. [PMID: 33683363 PMCID: PMC8045695 DOI: 10.1093/genetics/iyaa009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/24/2020] [Indexed: 11/12/2022] Open
Abstract
The human fungal pathogen Cryptococcus neoformans relies on a complex signaling network for the adaptation and survival at the host temperature. Protein phosphatase calcineurin is central to proliferation at 37°C but its exact contributions remain ill-defined. To better define genetic contributions to the C. neoformans temperature tolerance, 4031 gene knockouts were screened for genes essential at 37°C and under conditions that keep calcineurin inactive. Identified 83 candidate strains, potentially sensitive to 37°C, were subsequently subject to technologically simple yet robust assay, in which cells are exposed to a temperature gradient. This has resulted in identification of 46 genes contributing to the maximum temperature at which C. neoformans can proliferate (Tmax). The 46 mutants, characterized by a range of Tmax on drug-free media, were further assessed for Tmax under conditions that inhibit calcineurin, which led to identification of several previously uncharacterized knockouts exhibiting synthetic interaction with the inhibition of calcineurin. A mutant that lacked septin Cdc11 was among those with the lowest Tmax and failed to proliferate in the absence of calcineurin activity. To further define connections with calcineurin and the role for septins in high temperature growth, the 46 mutants were tested for cell morphology at 37°C and growth in the presence of agents disrupting cell wall and cell membrane. Mutants sensitive to calcineurin inhibition were tested for synthetic lethal interaction with deletion of the septin-encoding CDC12 and the localization of the septin Cdc3-mCherry. The analysis described here pointed to previously uncharacterized genes that were missed in standard growth assays indicating that the temperature gradient assay is a valuable complementary tool for elucidating the genetic basis of temperature range at which microorganisms proliferate.
Collapse
Affiliation(s)
- Piotr R Stempinski
- Department of Genetics & Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC 29634, USA
| | - Jessica M Zielinski
- Department of Genetics & Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC 29634, USA
| | - Nadir H Dbouk
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Elizabeth S Huey
- Department of Genetics & Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC 29634, USA
| | - Ellen C McCormack
- Department of Genetics & Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC 29634, USA
| | - Alexander M Rubin
- Department of Genetics & Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC 29634, USA
| | | | - Lukasz Kozubowski
- Department of Genetics & Biochemistry, Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
14
|
Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Botrytis cinerea. Int J Mol Sci 2021; 22:ijms22041694. [PMID: 33567582 PMCID: PMC7914984 DOI: 10.3390/ijms22041694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
Cyclophilin (Cyp) and Ca2+/calcineurin proteins are cellular components related to fungal morphogenesis and virulence; however, their roles in mediating the pathogenesis of Botrytis cinerea, the causative agent of gray mold on over 1000 plant species, remain largely unexplored. Here, we show that disruption of cyclophilin gene BcCYP2 did not impair the pathogen mycelial growth, osmotic and oxidative stress adaptation as well as cell wall integrity, but delayed conidial germination and germling development, altered conidial and sclerotial morphology, reduced infection cushion (IC) formation, sclerotial production and virulence. Exogenous cyclic adenosine monophosphate (cAMP) rescued the deficiency of IC formation of the ∆Bccyp2 mutants, and exogenous cyclosporine A (CsA), an inhibitor targeting cyclophilins, altered hyphal morphology and prevented host-cell penetration in the BcCYP2 harboring strains. Moreover, calcineurin-dependent (CND) genes are differentially expressed in strains losing BcCYP2 in the presence of CsA, suggesting that BcCyp2 functions in the upstream of cAMP- and Ca2+/calcineurin-dependent signaling pathways. Interestingly, during IC formation, expression of BcCYP2 is downregulated in a mutant losing BcJAR1, a gene encoding histone 3 lysine 4 (H3K4) demethylase that regulates fungal development and pathogenesis, in B. cinerea, implying that BcCyp2 functions under the control of BcJar1. Collectively, our findings provide new insights into cyclophilins mediating the pathogenesis of B. cinerea and potential targets for drug intervention for fungal diseases.
Collapse
|
15
|
Fabri JHTM, de Sá NP, Malavazi I, Del Poeta M. The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation. Prog Lipid Res 2020; 80:101063. [PMID: 32888959 DOI: 10.1016/j.plipres.2020.101063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023]
Abstract
All living beings have an optimal temperature for growth and survival. With the advancement of global warming, the search for understanding adaptive processes to climate changes has gained prominence. In this context, all living beings monitor the external temperature and develop adaptive responses to thermal variations. These responses ultimately change the functioning of the cell and affect the most diverse structures and processes. One of the first structures to detect thermal variations is the plasma membrane, whose constitution allows triggering of intracellular signals that assist in the response to temperature stress. Although studies on this topic have been conducted, the underlying mechanisms of recognizing thermal changes and modifying cellular functioning to adapt to this condition are not fully understood. Recently, many reports have indicated the participation of sphingolipids (SLs), major components of the plasma membrane, in the regulation of the thermal stress response. SLs can structurally reinforce the membrane or/and send signals intracellularly to control numerous cellular processes, such as apoptosis, cytoskeleton polarization, cell cycle arresting and fungal virulence. In this review, we discuss how SLs synthesis changes during both heat and cold stresses, focusing on fungi, plants, animals and human cells. The role of lysophospholipids is also discussed.
Collapse
Affiliation(s)
- João Henrique Tadini Marilhano Fabri
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA; Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Nivea Pereira de Sá
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA; Veterans Administration Medical Center, Northport, New York, USA.
| |
Collapse
|
16
|
LeBlanc EV, Polvi EJ, Veri AO, Privé GG, Cowen LE. Structure-guided approaches to targeting stress responses in human fungal pathogens. J Biol Chem 2020; 295:14458-14472. [PMID: 32796038 DOI: 10.1074/jbc.rev120.013731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022] Open
Abstract
Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.
Collapse
Affiliation(s)
- Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert G Privé
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Yu Y, Albrecht K, Groll J, Beilhack A. Innovative therapies for invasive fungal infections in preclinical and clinical development. Expert Opin Investig Drugs 2020; 29:961-971. [DOI: 10.1080/13543784.2020.1791819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yidong Yu
- Interdisciplinary Center for Clinical Research Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg, Germany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg, Germany
- Department of Pediatrics, University Hospital of Würzburg , Würzburg, Germany
| |
Collapse
|
18
|
Abstract
Calcium (Ca2+) is a universal signalling molecule of life. The Ca2+ signalling is an evolutionarily conserved process from prokaryotes to eukaryotes. Ca2+ at high concentration is deleterious to the cell; therefore, cell maintains a low resting level of intracellular free Ca2+ concentration ([Ca2+]c). The resting [Ca2+]c is tightly regulated, and a transient increase of the [Ca2+]c initiates a signalling cascade in the cell. Ca2+ signalling plays an essential role in various processes, including growth, development, reproduction, tolerance to stress conditions, and virulence in fungi. In this review, we describe the evolutionary aspects of Ca2+ signalling and cell functions of major Ca2+ signalling proteins in different fungi.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ajeet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
19
|
Zheng YQ, Pan KS, Latgé JP, Andrianopoulos A, Luo H, Yan RF, Wei JY, Huang CY, Cao CW. Calcineurin A Is Essential in the Regulation of Asexual Development, Stress Responses and Pathogenesis in Talaromyces marneffei. Front Microbiol 2020; 10:3094. [PMID: 32038542 PMCID: PMC6985273 DOI: 10.3389/fmicb.2019.03094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/20/2019] [Indexed: 11/27/2022] Open
Abstract
Talaromyces marneffei is a common cause of infection in immunocompromised patients in Southeast Asia and Southern China. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the cytotoxic processes of the host immune system and grow inside host macrophages. These mechanisms that allow T. marneffei to survive macrophage-induced death are poorly understood. In this study, we examined the role of a calcineurin homolog (cnaA) from T. marneffei during growth, morphogenesis and infection. Deletion of the cnaA gene in T. marneffei resulted in a strain with significant defects in conidiation, germination, morphogenesis, cell wall integrity, and resistance to various stressors. The ΔcnaA mutant showed a lower minimal inhibitory concentration (MIC) against caspofungin (16 μg/ml to 2 μg/ml) and micafungin (from 32 μg/ml to 4 μg/ml) compared with the wild-type. These results suggest that targeting calcineurin in combination with echinocandin treatment may be effective for life-threatening systemic T. marneffei infection. Importantly, the cnaA mutant was incapable of adapting to the macrophage environment in vitro and displayed virulence defects in a mouse model of invasive talaromycosis. For the first time, a role has been shown for cnaA in the morphology and pathogenicity of a dimorphic pathogenic filamentous fungus.
Collapse
Affiliation(s)
- Yan-Qing Zheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai-Su Pan
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | - Alex Andrianopoulos
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Hong Luo
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ru-Fan Yan
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin-Ying Wei
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun-Yang Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cun-Wei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Jung JA, Yoon YJ. Development of Non-Immunosuppressive FK506 Derivatives as Antifungal and Neurotrophic Agents. J Microbiol Biotechnol 2020; 30:1-10. [PMID: 31752059 PMCID: PMC9728173 DOI: 10.4014/jmb.1911.11008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
FK506, also known as tacrolimus, is a clinically important immunosuppressant drug and has promising therapeutic potentials owing to its antifungal, neuroprotective, and neuroregenerative activities. To generate various FK506 derivatives, the structure of FK506 has been modified by chemical methods or biosynthetic pathway engineering. Herein, we describe the mode of the antifungal action of FK506 and the structure-activity relationship of FK506 derivatives in the context of immunosuppressive and antifungal activities. In addition, we discuss the neurotrophic mechanism of FK506 known to date, along with the neurotrophic FK506 derivatives with significantly reduced immunosuppressive activity. This review suggests the possibility to generate novel FK506 derivatives as antifungal as well as neuroregenerative/neuroprotective agents.
Collapse
Affiliation(s)
- Jin A Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea,Corresponding author Phone: +82-2-3277-4082 Fax: +82-2-3277-3419 E-mail:
| |
Collapse
|
21
|
Maliehe M, Ntoi MA, Lahiri S, Folorunso OS, Ogundeji AO, Pohl CH, Sebolai OM. Environmental Factors That Contribute to the Maintenance of Cryptococcus neoformans Pathogenesis. Microorganisms 2020; 8:microorganisms8020180. [PMID: 32012843 PMCID: PMC7074686 DOI: 10.3390/microorganisms8020180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
The ability of microorganisms to colonise and display an intracellular lifestyle within a host body increases their fitness to survive and avoid extinction. This host–pathogen association drives microbial evolution, as such organisms are under selective pressure and can become more pathogenic. Some of these microorganisms can quickly spread through the environment via transmission. The non-transmittable fungal pathogens, such as Cryptococcus, probably return into the environment upon decomposition of the infected host. This review analyses whether re-entry of the pathogen into the environment causes restoration of its non-pathogenic state or whether environmental factors and parameters assist them in maintaining pathogenesis. Cryptococcus (C.) neoformans is therefore used as a model organism to evaluate the impact of environmental stress factors that aid the survival and pathogenesis of C. neoformans intracellularly and extracellularly.
Collapse
|
22
|
Vellanki S, Billmyre RB, Lorenzen A, Campbell M, Turner B, Huh EY, Heitman J, Lee SC. A Novel Resistance Pathway for Calcineurin Inhibitors in the Human-Pathogenic Mucorales Mucor circinelloides. mBio 2020; 11:e02949-19. [PMID: 31992620 PMCID: PMC6989107 DOI: 10.1128/mbio.02949-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Mucormycosis is an emerging lethal fungal infection in immunocompromised patients. Mucor circinelloides is a causal agent of mucormycosis and serves as a model system to understand genetics in Mucorales. Calcineurin is a conserved virulence factor in many pathogenic fungi, and calcineurin inhibition or deletion of the calcineurin regulatory subunit (CnbR) in Mucor results in a shift from hyphal to yeast growth. We analyzed 36 calcineurin inhibitor-resistant or bypass mutants that exhibited hyphal growth in the presence of calcineurin inhibitors or in the yeast-locked cnbRΔ mutant background without carrying any mutations in known calcineurin components. We found that a majority of the mutants had altered sequence in a gene, named here bycA (bypass of calcineurin). bycA encodes an amino acid permease. We verified that both the bycAΔ single mutant and the bycAΔ cnbRΔ double mutant are resistant to calcineurin inhibitor FK506, thereby demonstrating a novel mechanism of resistance against calcineurin inhibitors. We also found that the level of expression of bycA was significantly higher in the wild-type strain treated with FK506 and in the cnbRΔ mutants but was significantly lower in the wild-type strain without FK506 treatment. These findings suggest that bycA is a negative regulator of hyphal growth and/or a positive regulator of yeast growth in Mucor and that calcineurin suppresses expression of the bycA gene at the mRNA level to promote hyphal growth. BycA is involved in the Mucor hypha-yeast transition as our data demonstrate positive correlations among bycA expression, protein kinase A activity, and Mucor yeast growth. Also, calcineurin, independently of its role in morphogenesis, contributes to virulence traits, including phagosome maturation blockade, host cell damages, and proangiogenic growth factor induction during interactions with hosts.IMPORTANCEMucor is intrinsically resistant to most known antifungals, which makes mucormycosis treatment challenging. Calcineurin is a serine/threonine phosphatase that is widely conserved across eukaryotes. When calcineurin function is inhibited in Mucor, growth shifts to a less virulent yeast growth form, which makes calcineurin an attractive target for development of new antifungal drugs. Previously, we identified two distinct mechanisms through which Mucor can become resistant to calcineurin inhibitors involving Mendelian mutations in the gene for FKBP12, including mechanisms corresponding to calcineurin A or B subunits and epimutations silencing the FKBP12 gene. Here, we identified a third novel mechanism where loss-of-function mutations in the amino acid permease corresponding to the bycA gene contribute to resistance against calcineurin inhibitors. When calcineurin activity is absent, BycA can activate protein kinase A (PKA) to promote yeast growth via a cAMP-independent pathway. Our data also show that calcineurin activity contributes to host-pathogen interactions primarily in the pathogenesis of Mucor.
Collapse
Affiliation(s)
- Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Alejandra Lorenzen
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Micaela Campbell
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Broderick Turner
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Eun Young Huh
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
23
|
Canfield GS, Henao-Martínez AF, Franco-Paredes C, Zhelnin K, Wilson ML, Shihadeh KC, Wyles D, Gardner EM. Corticosteroids for Posttransplant Immune Reconstitution Syndrome in Cryptococcus gattii Meningoencephalitis: Case Report and Literature Review. Open Forum Infect Dis 2019; 6:ofz460. [PMID: 31737740 PMCID: PMC6847472 DOI: 10.1093/ofid/ofz460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/21/2019] [Indexed: 11/12/2022] Open
Abstract
Cryptococcus gattii represents an emerging fungal pathogen of immunocompromised and immunocompetent hosts in the United States. To our knowledge, this is the first case of posttransplant immune reconstitution syndrome due to C. gattii meningoencephalitis successfully treated with corticosteroids. We also report successful maintenance phase treatment with isavuconazole, a novel triazole, following fluconazole-induced prolonged QT syndrome.
Collapse
Affiliation(s)
- Gregory S Canfield
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Andrés F Henao-Martínez
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Carlos Franco-Paredes
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
- Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico
| | - Kristen Zhelnin
- Deparment of Pathology, Denver Health Medical Center, Denver, Colorado, USA
| | - Michael L Wilson
- Deparment of Pathology, Denver Health Medical Center, Denver, Colorado, USA
| | | | - David Wyles
- Department of Infectious Diseases, Denver Health Medical Center, Denver, Colorado, USA
| | - Edward M Gardner
- Department of Infectious Diseases, Denver Health Medical Center, Denver, Colorado, USA
| |
Collapse
|
24
|
Pianalto KM, Billmyre RB, Telzrow CL, Alspaugh JA. Roles for Stress Response and Cell Wall Biosynthesis Pathways in Caspofungin Tolerance in Cryptococcus neoformans. Genetics 2019; 213:213-227. [PMID: 31266771 PMCID: PMC6727808 DOI: 10.1534/genetics.119.302290] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Limited antifungal diversity and availability are growing problems for the treatment of fungal infections in the face of increasing drug resistance. The echinocandins, one of the newest classes of antifungal drugs, inhibit production of a crucial cell wall component. However, these compounds do not effectively inhibit the growth of the opportunistic fungal pathogen Cryptococcus neoformans, despite potent inhibition of the target enzyme in vitro Therefore, we performed a forward genetic screen to identify cellular processes that mediate the relative tolerance of this organism to the echinocandin drug caspofungin. Through these studies, we identified 14 genetic mutants that enhance caspofungin antifungal activity. Rather than directly affecting caspofungin antifungal activity, these mutations seem to prevent the activation of various stress-induced compensatory cellular processes. For example, the pfa4Δ mutant has defects in the palmitoylation and localization of many of its target proteins, including the Ras1 GTPase and the Chs3 chitin synthase, which are both required for caspofungin tolerance. Similarly, we have confirmed the link between caspofungin treatment and calcineurin signaling in this organism, but we suggest a deeper mechanism in which caspofungin tolerance is mediated by multiple pathways downstream of calcineurin function. In summary, we describe here several pathways in C. neoformans that contribute to the complex caspofungin tolerance phenotype in this organism.
Collapse
Affiliation(s)
- Kaila M Pianalto
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Calla L Telzrow
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| | - J Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
25
|
Bairwa G, Caza M, Horianopoulos L, Hu G, Kronstad J. Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen Cryptococcus neoformans. Cell Microbiol 2018; 21:e12961. [PMID: 30291809 DOI: 10.1111/cmi.12961] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
Heme is a major source of iron for pathogens of humans, and its use is critical in determining the outcome of infection and disease. Cryptococcus neoformans is an encapsulated fungal pathogen that causes life-threatening infections in immunocompromised individuals. C. neoformans effectively uses heme as an iron source, but the underlying mechanisms are poorly defined. Non-iron metalloporphyrins (MPPs) are toxic analogues of heme and are thought to enter microbial cells via endogenous heme acquisition systems. We therefore carried out a mutant screen for susceptibility against manganese MPP (MnMPP) to identify new components for heme uptake in C. neoformans. We identified several genes involved in signalling, DNA repair, sugar metabolism, and trafficking that play important roles in susceptibility to MnMPP and in the use of heme as an iron source. We focused on investigating the role of clathrin-mediated endocytosis (CME) and found that several components of CME including Chc1, Las17, Rvs161, and Rvs167 are required for growth on heme and hemoglobin and for endocytosis and intracellular trafficking of these molecules. We show that the hemoglobin uptake process in C. neoformans involves clathrin heavy chain, Chc1, which appears to colocalise with hemoglobin-containing vesicles and to potentially assist in proper delivery of hemoglobin to the vacuole. Additionally, C. neoformans strains lacking Chc1, Las17, Rvs161, or Rvs167 were defective in the elaboration of several key virulence factors, and a las17 mutant was avirulent in a mouse model of cryptococcosis. Overall, this study unveils crucial functions of CME in the use of heme iron by C. neoformans and reveals a role for CME in fungal pathogenesis.
Collapse
Affiliation(s)
- Gaurav Bairwa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Linda Horianopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
In Vitro and In Vivo Assessment of FK506 Analogs as Novel Antifungal Drug Candidates. Antimicrob Agents Chemother 2018; 62:AAC.01627-18. [PMID: 30181374 DOI: 10.1128/aac.01627-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022] Open
Abstract
FK506 (tacrolimus) is an FDA-approved immunosuppressant indicated for the prevention of allograft rejections in patients undergoing organ transplants. In mammals, FK506 inhibits the calcineurin-nuclear factor of activated T cells (NFAT) pathway to prevent T-cell proliferation by forming a ternary complex with its binding protein, FKBP12, and calcineurin. FK506 also exerts antifungal activity by inhibiting calcineurin, which is essential for the virulence of human-pathogenic fungi. Nevertheless, FK506 cannot be used directly as an antifungal drug due to its immunosuppressive action. In this study, we analyzed the cytotoxicity, immunosuppressive activity, and antifungal activity of four FK506 analogs, 31-O-demethyl-FK506, 9-deoxo-FK506, 9-deoxo-31-O-demethyl-FK506, and 9-deoxo-prolyl-FK506, in comparison with that of FK506. The four FK506 analogs generally possessed lower cytotoxicity and immunosuppressive activity than FK506. The FK506 analogs, except for 9-deoxo-prolyl-FK506, had strong antifungal activity against Cryptococcus neoformans and Candida albicans, which are two major invasive pathogenic yeasts, due to the inhibition of the calcineurin pathway. Furthermore, the FK506 analogs, except for 9-deoxo-prolyl-FK506, had strong antifungal activity against the invasive filamentous fungus Aspergillus fumigatus Notably, 9-deoxo-31-O-demethyl-FK506 and 31-O-demethyl-FK506 exhibited robust synergistic antifungal activity with fluconazole, similar to FK506. Considering the antifungal efficacy, cytotoxicity, immunosuppressive activity, and synergistic effect with commercial antifungal drugs, we selected 9-deoxo-31-O-demethyl-FK506 for further evaluation of its in vivo antifungal efficacy in a murine model of systemic cryptococcosis. Although 9-deoxo-31-O-demethyl-FK506 alone was not sufficient to treat the cryptococcal infection, when it was used in combination with fluconazole, it significantly extended the survival of C. neoformans-infected mice, confirming the synergistic in vivo antifungal efficacy between these two agents.
Collapse
|
27
|
The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum. Curr Genet 2018; 65:153-166. [DOI: 10.1007/s00294-018-0853-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
|
28
|
Zhang H, Mukherjee M, Kim J, Yu W, Shim W. Fsr1, a striatin homologue, forms an endomembrane-associated complex that regulates virulence in the maize pathogen Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2018; 19:812-826. [PMID: 28467007 PMCID: PMC6638083 DOI: 10.1111/mpp.12562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/06/2017] [Indexed: 05/09/2023]
Abstract
Fsr1, a homologue of mammalian striatin, containing multiple protein-binding domains and a coiled-coil (CC) domain, is critical for Fusarium verticillioides virulence. In mammals, striatin interacts with multiple proteins to form a STRIPAK (striatin-interacting phosphatase and kinase) complex that regulates a variety of developmental processes and cellular mechanisms. In this study, we identified the homologue of a key mammalian STRIPAK component STRIP1/2 (striatin-interacting proteins 1 and 2) in F. verticillioides, FvStp1, which interacts with Fsr1 in vivo. Gene deletion analysis indicates that FvStp1 is critical for F. verticillioides stalk rot virulence. In addition, we identified three proteins, designated FvCyp1, FvScp1 and FvSel1, which interact with the Fsr1 CC domain via a yeast two-hybrid screen. Importantly, FvCyp1, FvScp1 and FvSel1 co-localize to endomembrane structures, each having a preferred localization in the cell, and they are all required for F. verticillioides stalk rot virulence. Moreover, these proteins are necessary for the correct localization of Fsr1 to the endoplasmic reticulum (ER) and nuclear envelope. Thus, we identified several novel components in the STRIPAK complex that regulates F. verticillioides virulence, and propose that the correct organization and localization of Fsr1 are critical for STRIPAK complex function.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Plant Pathology & MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| | - Mala Mukherjee
- Department of Plant Pathology & MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| | - Jung‐Eun Kim
- Department of Plant Pathology & MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| | - Wenying Yu
- College of Life Science, Fujian Agricultural and Forestry UniversityFuzhou 350002China
| | - Won‐Bo Shim
- Department of Plant Pathology & MicrobiologyTexas A&M University, College StationTX 77843‐2132USA
| |
Collapse
|
29
|
Jung WH, Son YE, Oh SH, Fu C, Kim HS, Kwak JH, Cardenas ME, Heitman J, Park HS. Had1 Is Required for Cell Wall Integrity and Fungal Virulence in Cryptococcus neoformans. G3 (BETHESDA, MD.) 2018; 8:643-652. [PMID: 29233914 PMCID: PMC5919746 DOI: 10.1534/g3.117.300444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 12/16/2022]
Abstract
Calcineurin modulates environmental stress survival and virulence of the human fungal pathogen Cryptococcus neoformans Previously, we identified 44 putative calcineurin substrates, and proposed that the calcineurin pathway is branched to regulate targets including Crz1, Pbp1, and Puf4 in C. neoformans In this study, we characterized Had1, which is one of the putative calcineurin substrates belonging to the ubiquitously conserved haloacid dehalogenase β-phosphoglucomutase protein superfamily. Growth of the had1∆ mutant was found to be compromised at 38° or higher. In addition, the had1∆ mutant exhibited increased sensitivity to cell wall perturbing agents, including Congo Red and Calcofluor White, and to an endoplasmic reticulum stress inducer dithiothreitol. Virulence studies revealed that the had1 mutation results in attenuated virulence compared to the wild-type strain in a murine inhalation infection model. Genetic epistasis analysis revealed that Had1 and the zinc finger transcription factor Crz1 play roles in parallel pathways that orchestrate stress survival and fungal virulence. Overall, our results demonstrate that Had1 is a key regulator of thermotolerance, cell wall integrity, and virulence of C. neoformans.
Collapse
Affiliation(s)
- Won-Hee Jung
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Hun Oh
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Hye Shin Kim
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Jin-Hwan Kwak
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
30
|
Chakradeo K, Paul Chia YY, Liu C, Mudge DW, De Silva J. Disseminated cryptococcosis presenting initially as lower limb cellulitis in a renal transplant recipient - a case report. BMC Nephrol 2018; 19:18. [PMID: 29374464 PMCID: PMC5787248 DOI: 10.1186/s12882-018-0815-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/17/2018] [Indexed: 11/28/2022] Open
Abstract
Background Cellulitis is an unusual presentation of disseminated cryptococcosis, a serious infection seen predominantly in immunocompromised hosts. Disseminated cryptococcosis carries significant morbidity for transplant recipients, especially of the pulmonary and central nervous systems, and carries a high mortality risk. Case presentation We report a 59-year-old renal transplant recipient who presented with bilateral lower leg cellulitis without other symptoms or signs. Failure of conventional therapy for cellulitis prompted a skin biopsy confirming cryptococcal cellulitis. Additional evaluation to exclude disseminated disease revealed Cryptococcus neoformans in blood cultures and cerebrospinal fluid (CSF). Treatment included reduction in immunosuppression regimen and targeted treatment for cryptococcal disease with liposomal amphotericin B and flucytosine followed by fluconazole consolidation and maintenance therapy. Treatment with liposomal amphotericin B and flucytosine followed by fluconazole consolidation and maintenance therapy achieved a good clinical response. Our patient achieved significant reduction in leg cellulitis and recovered without serious complication. Conclusions This case suggests that cutaneous cryptococcosis in immunosuppressed patients warrants a low threshold for investigation for disseminated disease even in the absence of other symptoms or signs.
Collapse
Affiliation(s)
- Katrina Chakradeo
- Department of Medicine, Mackay Base Hospital, Bridge Road, Mackay, Australia. .,Griffith University School of Medicine, Griffith University, Gold Coast, Australia.
| | - Y Y Paul Chia
- Department of Medicine, Mackay Base Hospital, Bridge Road, Mackay, Australia.,College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Cheng Liu
- Department of Anatomical Pathology, Royal Brisbane and Woman's Hospital, Brisbane, Australia
| | - David W Mudge
- Queensland Renal Transplant Service, Princess Alexandra Hospital, Brisbane, Australia
| | - Janath De Silva
- Department of Medicine, Mackay Base Hospital, Bridge Road, Mackay, Australia
| |
Collapse
|
31
|
Dissecting the Roles of the Calcineurin Pathway in Unisexual Reproduction, Stress Responses, and Virulence in Cryptococcus deneoformans. Genetics 2017; 208:639-653. [PMID: 29233811 DOI: 10.1534/genetics.117.300422] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/07/2017] [Indexed: 01/12/2023] Open
Abstract
The Ca2+/calmodulin-dependent protein phosphatase calcineurin orchestrates sexual reproduction, stress responses, and virulence via branched downstream pathways in the opportunistic human fungal pathogen Cryptococcus neoformans The calcineurin-binding protein Cbp1, the calcineurin temperature suppressor Cts1, the calcineurin-responsive zinc finger transcription factor Crz1, and the calcineurin targets Pbp1, Tif3, and Puf4, all function downstream of calcineurin to orchestrate distinct cellular processes. To elucidate how the calcineurin pathway regulatory network governs unisexual reproduction, stress responses, and virulence, we have analyzed the self-filamentous C. deneoformans strain, XL280α, and generated double mutants of these calcineurin downstream genes. We demonstrated that calcineurin governs unisexual reproduction at different sexual developmental stages, in which the initiation of the yeast-hyphal morphological transition is independent of Crz1, whereas the sporulation process is dependent on Crz1. Calcineurin-dependent unisexual reproduction is independent of the pheromone response pathway. Crz1 synergistically interacts with different calcineurin downstream targets in responding to ER, high-calcium, and cell wall stresses. We observed a widespread synergy suggesting that these proteins function in complex branched pathways downstream of calcineurin with some functional redundancy, which may allow efficient signaling network rewiring within the pathway for prompt adaptation to changing environments. Finally, we showed that deletion of PBP1 or TIF3 in the cna1∆ mutant background conferred a modest level of growth tolerance at 37°, but that the cna1∆ pbp1∆ and cna1∆ tif3∆ double mutants were both avirulent, suggesting that calcineurin may control virulence via mechanisms beyond thermotolerance.
Collapse
|
32
|
FKBP12-Dependent Inhibition of Calcineurin Mediates Immunosuppressive Antifungal Drug Action in Malassezia. mBio 2017; 8:mBio.01752-17. [PMID: 29066552 PMCID: PMC5654937 DOI: 10.1128/mbio.01752-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The genus Malassezia includes yeasts that are commonly found on the skin or hair of animals and humans as commensals and are associated with a number of skin disorders. We have previously developed an Agrobacterium tumefaciens transformation system effective for both targeted gene deletion and insertional mutagenesis in Malassezia furfur and M. sympodialis. In the present study, these molecular resources were applied to characterize the immunophilin FKBP12 as the target of tacrolimus (FK506), ascomycin, and pimecrolimus, which are calcineurin inhibitors that are used as alternatives to corticosteroids in the treatment of inflammatory skin disorders such as those associated with Malassezia species. While M. furfur and M. sympodialis showed in vitro sensitivity to these agents, fkb1Δ mutants displayed full resistance to all three of them, confirming that FKBP12 is the target of these calcineurin inhibitors and is essential for their activity. We found that calcineurin inhibitors act additively with fluconazole through an FKBP12-dependent mechanism. Spontaneous M. sympodialis isolates resistant to calcineurin inhibitors had mutations in the gene encoding FKBP12 in regions predicted to affect the interactions between FKBP12 and FK506 based on structural modeling. Due to the presence of homopolymer nucleotide repeats in the gene encoding FKBP12, an msh2Δ hypermutator of M. sympodialis was engineered and exhibited an increase of more than 20-fold in the rate of emergence of resistance to FK506 compared to that of the wild-type strain, with the majority of the mutations found in these repeats. Malassezia species are the most abundant fungal components of the mammalian and human skin microbiome. Although they belong to the natural skin commensal flora of humans, they are also associated with a variety of clinical skin disorders. The standard treatment for Malassezia-associated inflammatory skin infections is topical corticosteroids, although their use has adverse side effects and is not recommended for long treatment periods. Calcineurin inhibitors have been proposed as a suitable alternative to treat patients affected by skin lesions caused by Malassezia. Although calcineurin inhibitors are well-known as immunosuppressive drugs, they are also characterized by potent antimicrobial activity. In the present study, we investigated the mechanism of action of FK506 (tacrolimus), ascomycin (FK520), and pimecrolimus in M. furfur and M. sympodialis and found that the conserved immunophilin FKBP12 is the target of these drugs with which it forms a complex that directly binds calcineurin and inhibits its signaling activity. We found that FKBP12 is also required for the additive activity of calcineurin inhibitors with fluconazole. Furthermore, the increasing natural occurrence in fungal pathogen populations of mutator strains poses a high risk for the rapid emergence of drug resistance and adaptation to host defense. This led us to generate an engineered hypermutator msh2Δ mutant strain of M. sympodialis and genetically evaluate mutational events resulting in a substantially increased rate of resistance to FK506 compared to that of the wild type. Our study paves the way for the novel clinical use of calcineurin inhibitors with lower immunosuppressive activity that could be used clinically to treat a broad range of fungal infections, including skin disorders caused by Malassezia.
Collapse
|
33
|
Xu X, Lin J, Zhao Y, Kirkman E, So YS, Bahn YS, Lin X. Glucosamine stimulates pheromone-independent dimorphic transition in Cryptococcus neoformans by promoting Crz1 nuclear translocation. PLoS Genet 2017; 13:e1006982. [PMID: 28898238 PMCID: PMC5595294 DOI: 10.1371/journal.pgen.1006982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Morphotype switch is a cellular response to external and internal cues. The Cryptococcus neoformans species complex can undergo morphological transitions between the yeast and the hypha form, and such morphological changes profoundly affect cryptococcal interaction with various hosts. Filamentation in Cryptococcus was historically considered a mating response towards pheromone. Recent studies indicate the existence of pheromone-independent signaling pathways but their identity or the effectors remain unknown. Here, we demonstrated that glucosamine stimulated the C. neoformans species complex to undergo self-filamentation. Glucosamine-stimulated filamentation was independent of the key components of the pheromone pathway, which is distinct from pheromone-elicited filamentation. Glucosamine stimulated self-filamentation in H99, a highly virulent serotype A clinical isolate and a widely used reference strain. Through a genetic screen of the deletion sets made in the H99 background, we found that Crz1, a transcription factor downstream of calcineurin, was essential for glucosamine-stimulated filamentation despite its dispensability for pheromone-mediated filamentation. Glucosamine promoted Crz1 translocation from the cytoplasm to the nucleus. Interestingly, multiple components of the high osmolality glycerol response (HOG) pathway, consisting of the phosphorelay system and some of the Hog1 MAPK module, acted as repressors of glucosamine-elicited filamentation through their calcineurin-opposing effect on Crz1’s nuclear translocation. Surprisingly, glucosamine-stimulated filamentation did not require Hog1 itself and was distinct from the conventional general stress response. The results demonstrate that Cryptococcus can resort to multiple genetic pathways for morphological transition in response to different stimuli. Given that the filamentous form attenuates cryptococcal virulence and is immune-stimulatory in mammalian models, the findings suggest that morphogenesis is a fertile ground for future investigation into novel means to compromise cryptococcal pathogenesis. Cryptococcal meningitis claims half a million lives each year. There is no clinically available vaccine and the current antifungal therapies have serious limitations. Thus identifying cryptococcal specific programs that can be targeted for antifungal or vaccine development is of great value. We have shown previously that switching from the yeast to the hypha form drastically attenuates/abolishes cryptococcal virulence. Cryptococcal cells in the filamentous form also trigger host immune responses that can protect the host from a subsequent lethal challenge. However, self-filamentation is rarely observed in serotype A isolates that are responsible for the vast majority of cryptococcosis cases. In this study, we found that glucosamine stimulated self-filamentation in genetically distinct strains of the Cryptococcus species complex, including the most commonly used serotype A reference strain H99. We demonstrated that filamentation elicited by glucosamine did not depend on the pheromone pathway, but it requires the calcineurin transcription factor Crz1. Glucosamine promotes nuclear translocation of Crz1, which is positively controlled by the phosphatase calcineurin and is suppressed by the HOG pathway. These findings raise the possibility of manipulating genetic pathways controlling fungal morphogenesis against diseases caused by the Cryptococcus species complex.
Collapse
Affiliation(s)
- Xinping Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (XL); (XX)
| | - Jianfeng Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Youbao Zhao
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Elyssa Kirkman
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Yee-Seul So
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (XL); (XX)
| |
Collapse
|
34
|
Transcriptomic Analysis Reveals Genes Mediating Salt Tolerance through Calcineurin/CchA-Independent Signaling in Aspergillus nidulans. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4378627. [PMID: 28904958 PMCID: PMC5585587 DOI: 10.1155/2017/4378627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 01/11/2023]
Abstract
Adaptation to changes in the environment is crucial for the viability of all organisms. Although the importance of calcineurin in the stress response has been highlighted in filamentous fungi, little is known about the involvement of ion-responsive genes and pathways in conferring salt tolerance without calcium signaling. In this study, high-throughput RNA-seq was used to investigate salt stress-induced genes in the parent, ΔcnaB, and ΔcnaBΔcchA strains of Aspergillus nidulans, which differ greatly in salt adaption. In total, 2,884 differentially expressed genes including 1,382 up- and 1,502 downregulated genes were identified. Secondary transporters, which were upregulated to a greater extent in ΔcnaBΔcchA than in the parent or ΔcnaB strains, are likely to play important roles in response to salt stress. Furthermore, 36 genes were exclusively upregulated in the ΔcnaBΔcchA under salt stress. Functional analysis of differentially expressed genes revealed that genes involved in transport, heat shock protein binding, and cell division processes were exclusively activated in ΔcnaBΔcchA. Overall, our findings reveal that secondary transporters and stress-responsive genes may play crucial roles in salt tolerance to bypass the requirement for the CchA-calcineurin pathway, contributing to a deeper understanding of the mechanisms that influence fungal salt stress adaption in Aspergillus.
Collapse
|
35
|
Heat shock protein 90 localizes to the surface and augments virulence factors of Cryptococcus neoformans. PLoS Negl Trop Dis 2017; 11:e0005836. [PMID: 28783748 PMCID: PMC5559104 DOI: 10.1371/journal.pntd.0005836] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/16/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Background Thermotolerance is an essential attribute for pathogenesis of Cryptococcus as exemplified by the fact that only two species in the genus, which can grow at 37°C, are human pathogens. Species which have other virulence factors including capsule formation and melanisation, but lack the ability to propagate at 37°C are not pathogenic. In another related fungal pathogen, Candida albicans, heat shock protein 90 has been implicated to be a central player in commanding pathogenicity by governing yeast to hyphal transition and drug resistance. Exploring Hsp90 biology in Cryptococcus in context of thermotolerance may thus highlight important regulatory principles of virulence and open new therapeutic avenues. Methodology/Principal findings Hsp90 is involved in regulating thermotolerance in Cryptococcus as indicated by growth hypersensitivity at 37°C upon mild compromise of Hsp90 function relative to 25°C. Biochemical studies revealed a more potent inhibition of ATPase activity by pharmacological inhibitor 17-AAG at 37°C as compared to 25°C. Catalytic efficiency of the protein at 37°C was found to be 6.39×10−5μM-1. Furthermore, indirect immunofluorescence analysis using a specific antibody revealed cell surface localization of Hsp90 via ER Golgi classical secretory pathway. Hsp90 was found to be induced under capsule inducing conditions and Hsp90 inhibition led to decrease in capsular volume. Finally compromising Hsp90 function improved anidulafungin tolerance in Cryptococcus. Conclusions/Significance Our findings highlight that Hsp90 regulates pathogenicity of the fungus by myriad ways. Firstly, it is involved in mediating thermotolerance which implies targeting Hsp90 can abrogate thermotolerance and hence growth of the fungus. Secondly, this study provides the first report of biochemical properties of Hsp90 of a pathogenic fungus. Finally, since Hsp90 is localised at the cell wall, targeting cell surface Hsp90 can represent a novel strategy to combat this lethal infection. Thermotolerance is a pre-requisite for microbes to propagate successfully as human pathogens. In this study, we have investigated the role of Heat shock protein 90 in the pathogenesis and thermotolerance of C. neoformans, an environmental fungus that causes meningoencephalitis in humans. We show that thermotolerance of Cryptococcus critically depends on Hsp90 function as modest inhibition of Hsp90 function, robustly compromised growth of the fungus at 37°C with little effect at 25°C. This observation correlated with the fact that pharmacological inhibitor, 17-AAG also showed a more potent inhibition of ATPase activity of the protein at 37°C as indicated by a lower IC50 as compared to 25°C. Indirect immunofluorescence analysis using an antibody specific to CnHsp90 revealed cell surface localization of Hsp90. BFA sensitivity of such surface localization indicated involvement of ER-Golgi classical secretory pathway for this localization. Furthermore, inhibition of Hsp90 function not only abrogated the natural resistance of C. neoformans to cell wall targeting inhibitors echinocandins but also led to decrease in capsular assembly which is one of the classical virulence determinants of the pathogen. In all, this study provides the first detailed biochemical as well as functional insights into the role of Hsp90 in governing thermotolerance and augmenting virulence factors in C. neoformans.
Collapse
|
36
|
Yang DH, Jung KW, Bang S, Lee JW, Song MH, Floyd-Averette A, Festa RA, Ianiri G, Idnurm A, Thiele DJ, Heitman J, Bahn YS. Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans. Genetics 2017; 205:201-219. [PMID: 27866167 PMCID: PMC5223503 DOI: 10.1534/genetics.116.190595] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023] Open
Abstract
Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.
Collapse
Affiliation(s)
- Dong-Hoon Yang
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang-Woo Jung
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Soohyun Bang
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jang-Won Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Hee Song
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Anna Floyd-Averette
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Richard A Festa
- Departments of Pharmacology and Cancer Biology and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Giuseppe Ianiri
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Dennis J Thiele
- Departments of Pharmacology and Cancer Biology and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
37
|
Park HS, Chow EWL, Fu C, Soderblom EJ, Moseley MA, Heitman J, Cardenas ME. Calcineurin Targets Involved in Stress Survival and Fungal Virulence. PLoS Pathog 2016; 12:e1005873. [PMID: 27611567 PMCID: PMC5017699 DOI: 10.1371/journal.ppat.1005873] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/15/2016] [Indexed: 12/26/2022] Open
Abstract
Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Calcineurin is activated by increased Ca2+ levels caused by stress, and transduces signals by dephosphorylating protein substrates. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic TiO2 enrichment and quantitative mass spectrometry. The identified targets include the transactivator Crz1 as well as novel substrates whose functions are linked to P-bodies/stress granules (PBs/SGs) and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and Crz1 localization and transcriptional activity are controlled by calcineurin. We previously demonstrated that thermal and other stresses trigger calcineurin localization to PBs/SGs. Several calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, contribute to stress resistance and virulence individually or in conjunction with Crz1. Moreover, Pbp1 is also required for sexual development. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings support a model whereby calcineurin controls stress and virulence, at the transcriptional level via Crz1, and post-transcriptionally by localizing to PBs/SGs and acting on targets involved in mRNA metabolism. The calcineurin targets identified in this study share little overlap with known calcineurin substrates, with the exception of Crz1. In particular, the mRNA binding proteins and PBs/SGs residents comprise a cohort of novel calcineurin targets that have not been previously linked to calcineurin in mammals or in Saccharomyces cerevisiae. This study suggests either extensive evolutionary rewiring of the calcineurin pathway, or alternatively that these novel calcineurin targets have yet to be characterized as calcineurin targets in other organisms. These findings further highlight C. neoformans as an outstanding model to define calcineurin-responsive virulence networks as targets for antifungal therapy. Calcineurin is a Ca2+/calmodulin-dependent protein phosphatase essential for stress survival, sexual development, and virulence of the human fungal pathogen Cryptococcus neoformans and other major pathogenic fungi of global human health relevance. However, no calcineurin substrates are known in pathogenic fungi. Employing state-of-the-art phosphoproteomic approaches we identified calcineurin substrates, including calcineurin itself and the conserved Crz1 transcriptional activator known to function in calcium signaling and stress survival. Remarkably, our study also identified novel calcineurin targets involved in RNA processing, stability, and translation, which colocalize together with calcineurin in stress granules/P-bodies upon thermal stress. These findings support a model whereby calcineurin functions in a branched pathway, via Crz1 and several of the identified novel targets, that governs transcriptional and posttranscriptional circuits to drive stress survival, sexual development, and fungal virulence. Our study underscores C. neoformans as an experimental model to define basic paradigms of calcineurin signaling in global thermostress responsive virulence networks that can be targeted for fungal therapy.
Collapse
Affiliation(s)
- Hee-Soo Park
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eve W. L. Chow
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (MEC)
| | - Maria E. Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JH); (MEC)
| |
Collapse
|
38
|
Calcineurin and Calcium Channel CchA Coordinate the Salt Stress Response by Regulating Cytoplasmic Ca2+ Homeostasis in Aspergillus nidulans. Appl Environ Microbiol 2016; 82:3420-3430. [PMID: 27037124 DOI: 10.1128/aem.00330-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/28/2016] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic calcium/calmodulin-dependent protein phosphatase calcineurin is crucial for the environmental adaption of fungi. However, the mechanism of coordinate regulation of the response to salt stress by calcineurin and the high-affinity calcium channel CchA in fungi is not well understood. Here we show that the deletion of cchA suppresses the hyphal growth defects caused by the loss of calcineurin under salt stress in Aspergillus nidulans Additionally, the hypersensitivity of the ΔcnaA strain to extracellular calcium and cell-wall-damaging agents can be suppressed by cchA deletion. Using the calcium-sensitive photoprotein aequorin to monitor the cytoplasmic Ca(2+) concentration ([Ca(2+)]c) in living cells, we found that calcineurin negatively regulates CchA on calcium uptake in response to external calcium in normally cultured cells. However, in salt-stress-pretreated cells, loss of either cnaA or cchA significantly decreased the [Ca(2+)]c, but a deficiency in both cnaA and cchA switches the [Ca(2+)]c to the reference strain level, indicating that calcineurin and CchA synergistically coordinate calcium influx under salt stress. Moreover, real-time PCR results showed that the dysfunction of cchA in the ΔcnaA strain dramatically restored the expression of enaA (a major determinant for sodium detoxification), which was abolished in the ΔcnaA strain under salt stress. These results suggest that double deficiencies of cnaA and cchA could bypass the requirement of calcineurin to induce enaA expression under salt stress. Finally, YvcA, a member of the transient receptor potential channel (TRPC) protein family of vacuolar Ca(2+) channels, was proven to compensate for calcineurin-CchA in fungal salt stress adaption.IMPORTANCE The feedback inhibition relationship between calcineurin and the calcium channel Cch1/Mid1 has been well recognized from yeast. Interestingly, our previous study (S. Wang et al., PLoS One 7:e46564, 2012, http://dx.doi.org/10.1371/journal.pone.0046564) showed that the deletion of cchA could suppress the hyphal growth defects caused by the loss of calcineurin under salt stress in Aspergillus nidulans In this study, our findings suggest that fungi are able to develop a unique mechanism for adapting to environmental salt stress. Compared to cells cultured normally, the NaCl-pretreated cells had a remarkable increase in transient [Ca(2+)]c Furthermore, we show that calcineurin and CchA are required to modulate cellular calcium levels and synergistically coordinate calcium influx under salt stress. Finally, YvcA, a member of of the TRPC family of vacuolar Ca(2+) channels, was proven to compensate for calcineurin-CchA in fungal salt stress adaption. The findings in this study provide insights into the complex regulatory links between calcineurin and CchA to maintain cytoplasmic Ca(2+) homeostasis in response to different environments.
Collapse
|
39
|
Tamuli R, Deka R, Borkovich KA. Calcineurin Subunits A and B Interact to Regulate Growth and Asexual and Sexual Development in Neurospora crassa. PLoS One 2016; 11:e0151867. [PMID: 27019426 PMCID: PMC4809485 DOI: 10.1371/journal.pone.0151867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/04/2016] [Indexed: 01/26/2023] Open
Abstract
Calcineurin is a calcium/calmodulin dependent protein phosphatase in eukaryotes that consists of a catalytic subunit A and a regulatory subunit B. Previous studies in the filamentous fungus Neurospora crassa had suggested that the catalytic subunit of calcineurin might be an essential protein. We generated N. crassa strains expressing the A (cna-1) and B (cnb-1) subunit genes under the regulation of Ptcu-1, a copper-responsive promoter. In these strains, addition of bathocuproinedisulfonic acid (BCS), a copper chelator, results in induction of cna-1 and cnb-1, while excess Cu2+ represses gene expression. Through analysis of these strains under repressing and inducing conditions, we found that the calcineurin is required for normal growth, asexual development and female fertility in N. crassa. Moreover, we isolated and analyzed cnb-1 mutant alleles generated by repeat-induced point mutation (RIP), with the results further supporting roles for calcineurin in growth and fertility in N. crassa. We demonstrated a direct interaction between the CNA-1 and CNB-1 proteins using an assay system developed to study protein-protein interactions in N. crassa.
Collapse
Affiliation(s)
- Ranjan Tamuli
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
- * E-mail:
| | - Rekha Deka
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Katherine A. Borkovich
- Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
40
|
Paul AS, Saha S, Engelberg K, Jiang RHY, Coleman BI, Kosber AL, Chen CT, Ganter M, Espy N, Gilberger TW, Gubbels MJ, Duraisingh MT. Parasite Calcineurin Regulates Host Cell Recognition and Attachment by Apicomplexans. Cell Host Microbe 2015; 18:49-60. [PMID: 26118996 DOI: 10.1016/j.chom.2015.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/30/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022]
Abstract
Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse-genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition, and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans.
Collapse
Affiliation(s)
- Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sudeshna Saha
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Rays H Y Jiang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Aziz L Kosber
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Markus Ganter
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicole Espy
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tim W Gilberger
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; Centre for Structural Systems Biology, 22607 Hamburg, Germany
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Lee SC, Li A, Calo S, Inoue M, Tonthat NK, Bain JM, Louw J, Shinohara ML, Erwig LP, Schumacher MA, Ko DC, Heitman J. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol Microbiol 2015; 97:844-65. [PMID: 26010100 DOI: 10.1111/mmi.13071] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 01/09/2023]
Abstract
Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Alicia Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Silvia Calo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Makoto Inoue
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nam K Tonthat
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Judith M Bain
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Johanna Louw
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Mari L Shinohara
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lars P Erwig
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Center for Human Genome Variation, Duke University Medical Center, Durham, NC, 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
42
|
Abstract
Cryptococcus neoformans is a pathogenic basidiomycetous fungus that engages in outcrossing, inbreeding, and selfing forms of unisexual reproduction as well as canonical sexual reproduction between opposite mating types. Long thought to be clonal, >99% of sampled environmental and clinical isolates of C. neoformans are MATα, limiting the frequency of opposite mating-type sexual reproduction. Sexual reproduction allows eukaryotic organisms to exchange genetic information and shuffle their genomes to avoid the irreversible accumulation of deleterious changes that occur in asexual populations, known as Muller's ratchet. We tested whether unisexual reproduction, which dispenses with the requirement for an opposite mating-type partner, is able to purge the genome of deleterious mutations. We report that the unisexual cycle can restore mutant strains of C. neoformans to wild-type genotype and phenotype, including prototrophy and growth rate. Furthermore, the unisexual cycle allows attenuated strains to purge deleterious mutations and produce progeny that are returned to wild-type virulence. Our results show that unisexual populations of C. neoformans are able to avoid Muller's ratchet and loss of fitness through a unisexual reproduction cycle involving α-α cell fusion, nuclear fusion, and meiosis. Similar types of unisexual reproduction may operate in other pathogenic and saprobic eukaryotic taxa.
Collapse
|
43
|
Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin-mediated regulation of hyphal growth, septation, and virulence in Aspergillus fumigatus. Mycopathologia 2014; 178:341-8. [PMID: 25118871 DOI: 10.1007/s11046-014-9794-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/31/2014] [Indexed: 01/26/2023]
Abstract
Calcineurin is a heterodimeric protein phosphatase complex composed of catalytic (CnaA) and regulatory (CnaB) subunits and plays diverse roles in regulating fungal stress responses, morphogenesis, and pathogenesis. Fungal pathogens utilize the calcineurin pathway to survive in the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making calcineurin a promising antifungal drug target. Here, we review novel findings on calcineurin localization and functions in Aspergillus fumigatus hyphal growth and septum formation through regulation of proteins involved in cell wall biosynthesis. Extensive mutational analysis in the functional domains of A. fumigatus CnaA has led to an understanding of the relevance of these domains for the localization and function of CnaA at the hyphal septum. An evolutionarily conserved novel mode of calcineurin regulation by phosphorylation in filamentous fungi was found to be responsible for virulence in A. fumigatus. This finding of a filamentous fungal-specific mechanism controlling hyphal growth and virulence represents a potential target for antifungal therapy.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, 427 Jones Building, Research Drive, Durham, NC, 27710, USA,
| | | | | |
Collapse
|
44
|
Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, Bahn YS. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 2014; 4:a019760. [PMID: 24985132 PMCID: PMC4066639 DOI: 10.1101/cshperspect.a019760] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the two etiologic agents of cryptococcosis. They belong to the phylum Basidiomycota and can be readily distinguished from other pathogenic yeasts such as Candida by the presence of a polysaccharide capsule, formation of melanin, and urease activity, which all function as virulence determinants. Infection proceeds via inhalation and subsequent dissemination to the central nervous system to cause meningoencephalitis. The most common risk for cryptococcosis caused by C. neoformans is AIDS, whereas infections caused by C. gattii are more often reported in immunocompetent patients with undefined risk than in the immunocompromised. There have been many chapters, reviews, and books written on C. neoformans. The topics we focus on in this article include species description, pathogenesis, life cycle, capsule, and stress response, which serve to highlight the specializations in virulence that have occurred in this unique encapsulated melanin-forming yeast that causes global deaths estimated at more than 600,000 annually.
Collapse
Affiliation(s)
- Kyung J Kwon-Chung
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhou Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Guilhem Janbon
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, 75015 Paris, France
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
45
|
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder of the gastrointestinal tract of unknown etiology that frequently presents in the pediatric population. The evaluation of pediatric UC involves excluding infection, and a colonoscopy that documents the clinical and histologic features of chronic colitis. Initial management of mild UC is typically with mesalamine therapy for induction and maintenance. Moderate UC is often initially treated with oral prednisone. Depending on disease severity and response to prednisone, maintenance options include mesalamine, mercaptopurine, azathioprine, infliximab, or adalimumab. Severe UC is typically treated with intravenous corticosteroids. Corticosteroid nonresponders should either undergo a colectomy or be treated with second-line medical rescue therapy (infliximab or calcineurin inhibitors). The severe UC patients who respond to medical rescue therapy can be maintained on infliximab or thiopurine, but 1-year remission rates for such patients are under 50 %. These medications are discussed in detail along with the initial work-up and a treatment algorithm.
Collapse
Affiliation(s)
- Brian P Regan
- Department of Gastroenterology, Inflammatory Bowel Disease Center, GI Division-Hunnewell Ground, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA,
| | | |
Collapse
|
46
|
Tsai HC, Chung KR. Calcineurin phosphatase and phospholipase C are required for developmental and pathological functions in the citrus fungal pathogen Alternaria alternata. MICROBIOLOGY-SGM 2014; 160:1453-1465. [PMID: 24763426 DOI: 10.1099/mic.0.077818-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excessive Ca(2+) or compounds interfering with phosphoinositide cycling have been found to inhibit the growth of the tangerine pathotype of Alternaria alternata, suggesting a crucial role of Ca(2+) homeostasis in this pathotype. The roles of PLC1, a phospholipase C-coding gene and CAL1, a calcineurin phosphatase-coding gene were investigated. Targeted gene disruption showed that both PLC1 and CAL1 were required for vegetative growth, conidial formation and pathogenesis in citrus. Fungal strains lacking PLC1 or CAL1 exhibited extremely slow growth and induced small lesions on calamondin leaves. Δplc1 mutants produced fewer conidia, which germinated at slower rates than wild-type. Δcal1 mutants produced abnormal hyphae and failed to produce any mature conidia, but instead produced highly melanized bulbous hyphae with distinct septae. Fluorescence microscopy using Fluo-3 dye as a Ca(2+) indicator revealed that the Δplc1 mutant hyphae emitted stronger cytosolic fluorescence, and the Δcal1 mutant hyphae emitted less cytosolic fluorescence, than those of wild-type. Infection assessed on detached calamondin leaves revealed that application of CaCl2 or neomycin 24 h prior to inoculation provided protection against Alt. alternata. These data indicate that a dynamic equilibrium of cellular Ca(2+) is critical for developmental and pathological processes of Alt. alternata.
Collapse
Affiliation(s)
- Hsieh-Chin Tsai
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Kuang-Ren Chung
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
47
|
Schaenman JM, Khuu T, Kubak BM. Fungi as Eukaryotes: Understanding the Antifungal Effects of Immunosuppressive Drugs. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-013-0169-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Stress signaling pathways for the pathogenicity of Cryptococcus. EUKARYOTIC CELL 2013; 12:1564-77. [PMID: 24078305 DOI: 10.1128/ec.00218-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas.
Collapse
|
49
|
Lee SC, Li A, Calo S, Heitman J. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathog 2013; 9:e1003625. [PMID: 24039585 PMCID: PMC3764228 DOI: 10.1371/journal.ppat.1003625] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022] Open
Abstract
Many pathogenic fungi are dimorphic and switch between yeast and filamentous states. This switch alters host-microbe interactions and is critical for pathogenicity. However, in zygomycetes, whether dimorphism contributes to virulence is a central unanswered question. The pathogenic zygomycete Mucor circinelloides exhibits hyphal growth in aerobic conditions but switches to multi-budded yeast growth under anaerobic/high CO₂ conditions. We found that in the presence of the calcineurin inhibitor FK506, Mucor exhibits exclusively multi-budded yeast growth. We also found that M. circinelloides encodes three calcineurin catalytic A subunits (CnaA, CnaB, and CnaC) and one calcineurin regulatory B subunit (CnbR). Mutations in the latch region of CnbR and in the FKBP12-FK506 binding domain of CnaA result in hyphal growth of Mucor in the presence of FK506. Disruption of the cnbR gene encoding the sole calcineurin B subunit necessary for calcineurin activity yielded mutants locked in permanent yeast phase growth. These findings reveal that the calcineurin pathway plays key roles in the dimorphic transition from yeast to hyphae. The cnbR yeast-locked mutants are less virulent than the wild-type strain in a heterologous host system, providing evidence that hyphae or the yeast-hyphal transition are linked to virulence. Protein kinase A activity (PKA) is elevated during yeast growth under anaerobic conditions, in the presence of FK506, or in the yeast-locked cnbR mutants, suggesting a novel connection between PKA and calcineurin. cnaA mutants lacking the CnaA catalytic subunit are hypersensitive to calcineurin inhibitors, display a hyphal polarity defect, and produce a mixture of yeast and hyphae in aerobic culture. The cnaA mutants also produce spores that are larger than wild-type, and spore size is correlated with virulence potential. Our results demonstrate that the calcineurin pathway orchestrates the yeast-hyphal and spore size dimorphic transitions that contribute to virulence of this common zygomycete fungal pathogen.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alicia Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Silvia Calo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
50
|
Kmetzsch L, Staats CC, Cupertino JB, Fonseca FL, Rodrigues ML, Schrank A, Vainstein MH. The calcium transporter Pmc1 provides Ca2+ tolerance and influences the progression of murine cryptococcal infection. FEBS J 2013; 280:4853-64. [PMID: 23895559 DOI: 10.1111/febs.12458] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/15/2013] [Accepted: 07/26/2013] [Indexed: 01/14/2023]
Abstract
The Ca(2+)-calcineurin signaling pathway in the human fungal pathogen Cryptococcus neoformans is essential for adaptation to the host environment during infection. Calcium transporters regulate cytosolic calcium concentrations, providing Ca(2+) loading into storage organelles. The three calcium transporters that have been characterized in C. neoformans, Cch1, Eca1 and Vcx1, are required for fungal virulence, supporting a role for calcium-mediated signaling in cryptococcal pathogenesis. In the present study, we report the functional characterization of the putative vacuolar calcium ATPase Pmc1 in C. neoformans. Our results demonstrate that Pmc1 provides tolerance to high Ca(2+) concentrations. The double knockout of C. neoformans PMC1 and VCX1 genes impaired the intracellular calcium transport, resulting in a significant increase in cytosolic calcium levels. Furthermore, Pmc1 was essential for both the progression of pulmonary infection and brain colonization in mice, emphasizing the crucial role of calcium signaling and transport for cryptococcal pathogenesis.
Collapse
Affiliation(s)
- Livia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|