1
|
Anand A, Falquet L, Abou-Mansour E, L'Haridon F, Keel C, Weisskopf L. Biological hydrogen cyanide emission globally impacts the physiology of both HCN-emitting and HCN-perceiving Pseudomonas. mBio 2023; 14:e0085723. [PMID: 37650608 PMCID: PMC10653877 DOI: 10.1128/mbio.00857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Bacteria communicate by exchanging chemical signals, some of which are volatile and can remotely reach other organisms. HCN was one of the first volatiles discovered to severely impact exposed organisms by inhibiting their respiration. Using HCN-deficient mutants in two Pseudomonas strains, we demonstrate that HCN's impact goes beyond the sole inhibition of respiration and affects both emitting and receiving bacteria in a global way, modulating their motility, biofilm formation, and production of antimicrobial compounds. Our data suggest that bacteria could use HCN not only to control their own cellular functions, but also to remotely influence the behavior of other bacteria sharing the same environment. Since HCN emission occurs in both clinically and environmentally relevant Pseudomonas, these findings are important to better understand or even modulate the expression of bacterial traits involved in both virulence of opportunistic pathogens and in biocontrol efficacy of plant-beneficial strains.
Collapse
Affiliation(s)
- Abhishek Anand
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Amemiya K, Rozak DA, Dankmeyer JL, Dorman WR, Marchand C, Fetterer DP, Worsham PL, Purcell BK. Shiga-Toxin-Producing Strains of Escherichia coli O104:H4 and a Strain of O157:H7, Which Can Cause Human Hemolytic Uremic Syndrome, Differ in Biofilm Formation in the Presence of CO 2 and in Their Ability to Grow in a Novel Cell Culture Medium. Microorganisms 2023; 11:1744. [PMID: 37512916 PMCID: PMC10384166 DOI: 10.3390/microorganisms11071744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
One pathogen that commonly causes gastrointestinal illnesses from the consumption of contaminated food is Escherichia coli O157:H7. In 2011 in Germany, however, there was a prominent outbreak of bloody diarrhea with a high incidence of hemolytic uremic syndrome (HUS) caused by an atypical, more virulent E. coli O104:H4 strain. To facilitate the identification of this lesser-known, atypical E. coli O104:H4 strain, we wanted to identify phenotypic differences between it and a strain of O157:H7 in different media and culture conditions. We found that E. coli O104:H4 strains produced considerably more biofilm than the strain of O157:H7 at 37 °C (p = 0.0470-0.0182) Biofilm production was significantly enhanced by the presence of 5% CO2 (p = 0.0348-0.0320). In our study on the innate immune response to the E. coli strains, we used HEK293 cells that express Toll-like receptors (TLRs) 2 or 4. We found that E. coli O104:H4 strains had the ability to grow in a novel HEK293 cell culture medium, while the E. coli O157:H7 strain could not. Thus, we uncovered previously unknown phenotypic properties of E. coli O104:H4 to further differentiate this pathogen from E. coli O157:H7.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David A Rozak
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - William R Dorman
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Charles Marchand
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David P Fetterer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Brett K Purcell
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Department of Medicine, University of Florida, Orlando, FL 32816, USA
| |
Collapse
|
3
|
Lamprecht O, Ratnikava M, Jacek P, Kaganovitch E, Buettner N, Fritz K, Biazruchka I, Köhler R, Pietsch J, Sourjik V. Regulation by cyclic di-GMP attenuates dynamics and enhances robustness of bimodal curli gene activation in Escherichia coli. PLoS Genet 2023; 19:e1010750. [PMID: 37186613 DOI: 10.1371/journal.pgen.1010750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/25/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Curli amyloid fibers are a major constituent of the extracellular biofilm matrix formed by bacteria of the Enterobacteriaceae family. Within Escherichia coli biofilms, curli gene expression is limited to a subpopulation of bacteria, leading to heterogeneity of extracellular matrix synthesis. Here we show that bimodal activation of curli gene expression also occurs in well-mixed planktonic cultures of E. coli, resulting in all-or-none stochastic differentiation into distinct subpopulations of curli-positive and curli-negative cells at the entry into the stationary phase of growth. Stochastic curli activation in individual E. coli cells could further be observed during continuous growth in a conditioned medium in a microfluidic device, which further revealed that the curli-positive state is only metastable. In agreement with previous reports, regulation of curli gene expression by the second messenger c-di-GMP via two pairs of diguanylate cyclase and phosphodiesterase enzymes, DgcE/PdeH and DgcM/PdeR, modulates the fraction of curli-positive cells. Unexpectedly, removal of this regulatory network does not abolish the bimodality of curli gene expression, although it affects dynamics of activation and increases heterogeneity of expression levels among individual cells. Moreover, the fraction of curli-positive cells within an E. coli population shows stronger dependence on growth conditions in the absence of regulation by DgcE/PdeH and DgcM/PdeR pairs. We thus conclude that, while not required for the emergence of bimodal curli gene expression in E. coli, this c-di-GMP regulatory network attenuates the frequency and dynamics of gene activation and increases its robustness to cellular heterogeneity and environmental variation.
Collapse
Affiliation(s)
- Olga Lamprecht
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Maryia Ratnikava
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Paulina Jacek
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Nina Buettner
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Kirstin Fritz
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ina Biazruchka
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Robin Köhler
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Julian Pietsch
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
4
|
Sano K, Kobayashi H, Chuta H, Matsuyoshi N, Kato Y, Ogasawara H. CsgI (YccT) Is a Novel Inhibitor of Curli Fimbriae Formation in Escherichia coli Preventing CsgA Polymerization and Curli Gene Expression. Int J Mol Sci 2023; 24:ijms24054357. [PMID: 36901788 PMCID: PMC10002515 DOI: 10.3390/ijms24054357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Curli fimbriae are amyloids-found in bacteria (Escherichia coli)-that are involved in solid-surface adhesion and bacterial aggregation during biofilm formation. The curli protein CsgA is coded by a csgBAC operon gene, and the transcription factor CsgD is essential to induce its curli protein expression. However, the complete mechanism underlying curli fimbriae formation requires elucidation. Herein, we noted that curli fimbriae formation was inhibited by yccT-i.e., a gene that encodes a periplasmic protein of unknown function regulated by CsgD. Furthermore, curli fimbriae formation was strongly repressed by CsgD overexpression caused by a multicopy plasmid in BW25113-the non-cellulose-producing strain. YccT deficiency prevented these CsgD effects. YccT overexpression led to intracellular YccT accumulation and reduced CsgA expression. These effects were addressed by deleting the N-terminal signal peptide of YccT. Localization, gene expression, and phenotypic analyses revealed that YccT-dependent inhibition of curli fimbriae formation and curli protein expression was mediated by the two-component regulatory system EnvZ/OmpR. Purified YccT inhibited CsgA polymerization; however, no intracytoplasmic interaction between YccT and CsgA was detected. Thus, YccT-renamed CsgI (curli synthesis inhibitor)-is a novel inhibitor of curli fimbriae formation and has a dual role as an OmpR phosphorylation modulator and CsgA polymerization inhibitor.
Collapse
Affiliation(s)
- Kotaro Sano
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hiroaki Kobayashi
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hirotaka Chuta
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Nozomi Matsuyoshi
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Yuki Kato
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hiroshi Ogasawara
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Renaissance Center for Applied Microbiology, Shinshu University, Nagano-shi, Nagano 380-8553, Japan
- Correspondence: ; Tel.: +81-268-21-5803
| |
Collapse
|
5
|
Kao S, Serfecz J, Sudhakar A, Likosky K, Romiyo V, Tursi S, Tükel Ç, Wilson JW. Salmonella enterica serovar Typhimurium STM1266 encodes a regulator of curli biofilm formation: the brfS gene. FEMS Microbiol Lett 2023; 370:fnad012. [PMID: 36792064 DOI: 10.1093/femsle/fnad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The major biofilm pathway in Salmonella enterica serovar Typhimurium involves specific growth conditions that induce the csgA gene whose product forms surface curli fibers that mediate biofilm formation. We have found that the previously uncharacterized STM1266 gene in S. Typhimurium plays a role in regulating biofilm formation via the curli pathway. S. Typhimurium ΔSTM1266 strains display a biofilm defect, and overexpression of STM1266 results in enhanced biofilm formation. STM1266 deletion resulted in lowered csgA expression using promoter-reporter β-galactosidase assays, and csgA and csgD deletions abrogate the effects of STM1266 overexpression on biofilm formation while deletion of bcsA (encoding an essential enzyme for cellulose formation) has no effect. In a mouse infection model, the ΔSTM1266 strain displayed results similar to those seen for previously reported ΔcsgA strains. The STM1266 gene is predicted to encode a DNA-binding transcriptional regulator of the MerR family and is homologous to the Escherichia coli BluR regulator protein. We respectfully propose to ascribe the name brfS (biofilm regulator for Salmonella Typhimurium) to the STM1266 gene.
Collapse
Affiliation(s)
- Sarina Kao
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Jacquelyn Serfecz
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Architha Sudhakar
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Keely Likosky
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Vineeth Romiyo
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Sarah Tursi
- Center for Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Çağla Tükel
- Center for Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, PA 19122, USA
| | - James W Wilson
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
6
|
Charles Vegdahl A, Schaffner DW. Curli Production Influences Cross-contamination by Escherichia coli O157:H7 When Washing Fresh-cut Romaine Lettuce. J Food Prot 2023; 86:100023. [PMID: 36916579 DOI: 10.1016/j.jfp.2022.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Escherichia coli O157:H7 expresses extracellular proteins called curli that are essential for surface colonization. Transfer rates of E. coli O157:H7 0018+ (curli+), and 0018- (curli-) from inoculated to noninoculated lettuce pieces during washing were quantified in this study. Romaine lettuce pieces were inoculated with ∼6 log CFU on just the surface, just the cut edges, or both surface and cut edges. Samples were dried for 2 h in a biosafety cabinet and then washed with ten (10) noninoculated lettuce pieces in 500 mL of water for 30 s. The curli- strain was more readily removed (3 log reduction) compared to the curli+ (1 log reduction) when only the lettuce surface was inoculated (p > 0.05). The same was true when only the lettuce piece edge was inoculated (p > 0.05), although the magnitude of the reduction was less. There was no significant difference in reduction of curli+ strain between any of the surfaces. There was a significant difference (p < 0.05) in reduction of the curli- strains when comparing the leaf surface (more removal) to the cut leaf edge (less removal). The curli+ strain always showed significantly (p < 0.05) more transfer to noninoculated leaves regardless of the inoculation location. The curli+ strain transferred about -1 log percent (∼0.1%) to noninoculated pieces, while the curli- strain transferred about -2 log percent (∼0.01%) CFU to the noninoculated pieces. Mean log percent transfer was not significantly different within the curli+ or curli- experiments (p > 0.05). When the leaf surface was inoculated, there was about 2 log percent (i.e., close to 100% transfer) into the wash water for both the curli+ and curli- strains. When only the cut edges or surface and edge were inoculated, observed mean transfer rates were lower but not significantly different (p > 0.05). Further research is needed to more fully understand the factors that influence bacterial cross-contamination during the washing of fresh produce.
Collapse
Affiliation(s)
- Ann Charles Vegdahl
- Cornell University, Department of Food Science, Geneva, NY 14456, USA; Rutgers University, Department of Food Science, New Brunswick, NJ 08901, USA.
| | - Donald W Schaffner
- Rutgers University, Department of Food Science, New Brunswick, NJ 08901, USA
| |
Collapse
|
7
|
Fang Y, Wu W, Zhao Y, Liu H, Li Z, Li X, Zhang M, Qin Y. Transcriptomic and metabolomic investigation of molecular inactivation mechanisms in Escherichia coli triggered by graphene quantum dots. CHEMOSPHERE 2023; 311:137051. [PMID: 36334733 DOI: 10.1016/j.chemosphere.2022.137051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Graphene quantum dots (GQDs), a novel broad-spectrum antibacterial agent, are considered potential candidates in the field of biomedical and food safety due to their outstanding antimicrobial properties and excellent biocompatibility. To uncover the molecular regulatory mechanisms underlying the phenotypes, the overall regulation of genes and metabolites in Escherichia coli (E. coli) after GQDs stimulation was investigated by RNA-sequencing and LC-MS. Gene transcription and metabolite expression related to a series of crucial biomolecular processes were influenced by the GQDs stimulation, including biofilm formation, bacterial secretion system, sulfur metabolism and nitrogen metabolism, etc. This study could provide profound insights into the GQDs stress response in E. coli, which would be useful for the development and application of GQDs in food safety.
Collapse
Affiliation(s)
- Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Yan Zhao
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Haoqiang Liu
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Zongda Li
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Xinbo Li
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China.
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi, 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830017, China.
| |
Collapse
|
8
|
Ukuku DO, Mukhopadhyay S, Olanya OM, Niemira BA. Strength of Salmonella attachment on apple and tomato surfaces: Effect of antimicrobial treatments on population reduction and inactivation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Walker AC, Bhargava R, Dove AS, Brust AS, Owji AA, Czyż DM. Bacteria-Derived Protein Aggregates Contribute to the Disruption of Host Proteostasis. Int J Mol Sci 2022; 23:4807. [PMID: 35563197 PMCID: PMC9103901 DOI: 10.3390/ijms23094807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Neurodegenerative protein conformational diseases are characterized by the misfolding and aggregation of metastable proteins encoded within the host genome. The host is also home to thousands of proteins encoded within exogenous genomes harbored by bacteria, fungi, and viruses. Yet, their contributions to host protein-folding homeostasis, or proteostasis, remain elusive. Recent studies, including our previous work, suggest that bacterial products contribute to the toxic aggregation of endogenous host proteins. We refer to these products as bacteria-derived protein aggregates (BDPAs). Furthermore, antibiotics were recently associated with an increased risk for neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis-possibly by virtue of altering the composition of the human gut microbiota. Other studies have shown a negative correlation between disease progression and antibiotic administration, supporting their protective effect against neurodegenerative diseases. These contradicting studies emphasize the complexity of the human gut microbiota, the gut-brain axis, and the effect of antibiotics. Here, we further our understanding of bacteria's effect on host protein folding using the model Caenorhabditis elegans. We employed genetic and chemical methods to demonstrate that the proteotoxic effect of bacteria on host protein folding correlates with the presence of BDPAs. Furthermore, the abundance and proteotoxicity of BDPAs are influenced by gentamicin, an aminoglycoside antibiotic that induces protein misfolding, and by butyrate, a short-chain fatty acid that we previously found to affect host protein aggregation and the associated toxicity. Collectively, these results increase our understanding of host-bacteria interactions in the context of protein conformational diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel M. Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (A.C.W.); (R.B.); (A.S.D.); (A.S.B.); (A.A.O.)
| |
Collapse
|
10
|
Biofilm control by interfering with c-di-GMP metabolism and signaling. Biotechnol Adv 2022; 56:107915. [PMID: 35101567 DOI: 10.1016/j.biotechadv.2022.107915] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/28/2021] [Accepted: 01/23/2022] [Indexed: 01/30/2023]
Abstract
Biofilm formation and biofilm-induced biodeterioration of surfaces have deeply affected the life of our community. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a small nucleic acid signal molecule in bacteria, which functions as a second messenger mediating a wide range of bacterial processes, such as cell motility, biofilm formation, virulence expression, and cell cycle progression. C-di-GMP regulated phenotypes are triggered by a variety of determinants, such as metabolic cues and stress factors that affect c-di-GMP synthesis, the transduction and conduction of signals by specific effectors, and their actions on terminal targets. Therefore, understanding of the regulatory mechanisms of c-di-GMP would greatly benefit the control of the relevant bacterial processes, particularly for the development of anti-biofilm technologies. Here, we discuss the regulatory determinants of c-di-GMP signaling, identify the corresponding chemical inhibitors as anti-biofilm agents, and shed light on further perspectives in the metabolic regulation of c-di-GMP through chemical and biological approaches. This Review will advance the development of anti-biofilm policies applied in the industries of medicine, environment and engineering.
Collapse
|
11
|
Echarren ML, Figueroa NR, Vitor-Horen L, Pucciarelli MG, García-Del Portillo F, Soncini FC. Balance between bacterial extracellular matrix production and intramacrophage proliferation by a Salmonella-specific SPI-2 encoded transcription factor. Mol Microbiol 2021; 116:1022-1032. [PMID: 34342063 DOI: 10.1111/mmi.14789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/27/2022]
Abstract
Biosynthesis and secretion of a complex extracellular matrix (EM) is a hallmark of Salmonella biofilm formation, impacting on its relationship with both the environment and the host. Cellulose is a major component of Salmonella EM. It is considered an anti-virulence factor because it interferes with Salmonella proliferation inside macrophages and virulence in mice. Its synthesis is stimulated by CsgD, the master regulator of biofilm formation in enterobacteria, which in turn is under the control of MlrA, a MerR-like transcription factor. In this work we identified a SPI-2 encoded Salmonella-specific transcription factor homolog to MlrA, MlrB, that represses transcription of its downstream gene, orf319, and of csgD inside host cells. MlrB is induced in laboratory media mimicking intracellular conditions and inside macrophages, and it is required for intramacrophage proliferation. An increased csgD expression is observed in the absence of MlrB inside host cells. Interestingly, inactivation of the CsgD-controlled cellulose synthase-coding gene restored intramacrophage proliferation to rates comparable to wild type bacteria in the absence of MlrB. These data indicate that MlrB represses CsgD expression inside host cells and suggest that this repression lowers the activation of the cellulose synthase. Our findings provide a novel link between biofilm formation and Salmonella virulence.
Collapse
Affiliation(s)
- María Laura Echarren
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Nicolás R Figueroa
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Luisina Vitor-Horen
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - M Graciela Pucciarelli
- Departmento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular 'Severo Ochoa' (CBMSO)-CSIC, 28049, Madrid, Spain.,Laboratorio de Patógenos Bacterianos Intracelulares. Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratorio de Patógenos Bacterianos Intracelulares. Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| |
Collapse
|
12
|
Vasicek EM, O'Neal L, Parsek MR, Fitch J, White P, Gunn JS. L-Arabinose Transport and Metabolism in Salmonella Influences Biofilm Formation. Front Cell Infect Microbiol 2021; 11:698146. [PMID: 34368016 PMCID: PMC8341724 DOI: 10.3389/fcimb.2021.698146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
L-arabinose inducible promoters are commonly used in gene expression analysis. However, nutrient source and availability also play a role in biofilm formation; therefore, L-arabinose metabolism could impact biofilm development. In this study we examined the impact of L-arabinose on Salmonella enterica serovar Typhimurium (S. Typhimurium) biofilm formation. Using mutants impaired for the transport and metabolism of L-arabinose, we showed that L-arabinose metabolism negatively impacts S. Typhimurium biofilm formation in vitro. When L-arabinose metabolism is abrogated, biofilm formation returned to baseline levels. However, without the ability to import extracellular L-arabinose, biofilm formation significantly increased. Using RNA-Seq we identified several gene families involved in these different phenotypes including curli expression, amino acid synthesis, and L-arabinose metabolism. Several individual candidate genes were tested for their involvement in the L-arabinose-mediated biofilm phenotypes, but most played no significant role. Interestingly, in the presence of L-arabinose the diguanylate cyclase gene adrA was downregulated in wild type S. Typhimurium. Meanwhile cyaA, encoding an adenylate cyclase, was downregulated in an L-arabinose transport mutant. Using an IPTG-inducible plasmid to deplete c-di-GMP via vieA expression, we were able to abolish the increased biofilm phenotype seen in the transport mutant. However, the mechanism by which the L-arabinose import mutant forms significantly larger biofilms remains to be determined. Regardless, these data suggest that L-arabinose metabolism influences intracellular c-di-GMP levels and therefore biofilm formation. These findings are important when considering the use of an L-arabinose inducible promoter in biofilm conditions.
Collapse
Affiliation(s)
- Erin M Vasicek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Lindsey O'Neal
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - James Fitch
- The Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Peter White
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,The Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
13
|
Chen S, Feng Z, Sun H, Zhang R, Qin T, Peng D. Biofilm-Formation-Related Genes csgD and bcsA Promote the Vertical Transmission of Salmonella Enteritidis in Chicken. Front Vet Sci 2021; 7:625049. [PMID: 33521095 PMCID: PMC7840958 DOI: 10.3389/fvets.2020.625049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
The contamination of Salmonella Enteritidis in eggs and chicken meat via vertical transmission has become a worldwide public health concern. Biofilm formation by S. Enteritidis further enhances its antibacterial resistance. However, whether genes related to biofilm formation affect the level of vertical transmission is still unclear. Here, S. Enteritidis mutants ΔcsgD, ΔcsgA, ΔbcsA, and ΔadrA were constructed from wild type strain C50041 (WT), and their biofilm-forming ability was determined by Crystal violet staining assay. Then the median lethal dose (LD50) assay was performed to determine the effects of the selected genes on virulence. The bacterial load in eggs produced by infected laying hens via the intraperitoneal pathway or crop gavage was determined for evaluation of the vertical transmission. Crystal violet staining assay revealed that S. Enteritidis mutants ΔcsgD, ΔcsgA, and ΔbcsA, but not ΔadrA, impaired biofilm formation compared with WT strain. Furthermore, the LD50 in SPF chickens showed that both the ΔcsgD and ΔbcsA mutants were less virulent compared with WT strain. Among the intraperitoneally infected laying hens, the WT strain-infected group had the highest percentage of bacteria-positive eggs (24.7%), followed by the ΔadrA group (16%), ΔcsgA group (9.9%), ΔbcsA group (4.5%), and ΔcsgD group (2.1%). Similarly, among the crop gavage chickens, the WT strain group also had the highest infection percentage in eggs (10.4%), followed by the ΔcsgA group (8.5%), ΔadrA group (7.5%), ΔbcsA group (1.9%), and ΔcsgD group (1.0%). Our results indicate that the genes csgD and bcsA help vertical transmission of S. Enteritidis in chickens.
Collapse
Affiliation(s)
- Sujuan Chen
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Zheng Feng
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hualu Sun
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruonan Zhang
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Qin
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| | - Daxin Peng
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China.,Jiangsu Research Center of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China
| |
Collapse
|
14
|
Hierarchical Model for the Role of J-Domain Proteins in Distinct Cellular Functions. J Mol Biol 2020; 433:166750. [PMID: 33310019 DOI: 10.1016/j.jmb.2020.166750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/28/2023]
Abstract
In Escherichia coli, the major bacterial Hsp70 system consists of DnaK, three J-domain proteins (JDPs: DnaJ, CbpA, and DjlA), and nucleotide exchange factor GrpE. JDPs determine substrate specificity for the Hsp70 system; however, knowledge on their specific role in bacterial cellular functions is limited. In this study, we demonstrated the role of JDPs in bacterial survival during heat stress and the DnaK-regulated formation of curli-extracellular amyloid fibers involved in biofilm formation. Genetic analysis demonstrate that only DnaJ is essential for survival at high temperature. On the other hand, either DnaJ or CbpA, but not DjlA, is sufficient to activate DnaK in curli production. Additionally, several DnaK mutants with reduced activity are able to complement the loss of curli production in E. coli ΔdnaK, whereas they do not recover the growth defect of the mutant strain at high temperature. Biochemical analyses reveal that DnaJ and CbpA are involved in the expression of the master regulator CsgD through the solubilization of MlrA, a DNA-binding transcriptional activator for the csgD promoter. Furthermore, DnaJ and CbpA also keep CsgA in a translocation-competent state by preventing its aggregation in the cytoplasm. Our findings support a hierarchical model wherein the role of JDPs in the Hsp70 system differs according to individual cellular functions.
Collapse
|
15
|
Escherichia coli Serotype O157:H7 PA20R2R Complete Genome Sequence. Microbiol Resour Announc 2020; 9:9/50/e01143-20. [PMID: 33303666 PMCID: PMC7729414 DOI: 10.1128/mra.01143-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli serotype O157:H7 strain 20R2R is a derivative of clinical isolate PA20. Prophage excision from the coding region of a PA20 transcription factor restored RpoS-dependent biofilm formation in 20R2R, providing a model for O157:H7 stress adaptation when transitioning between clinical and environmental settings. We report here the complete 20R2R genome sequence. Escherichia coli serotype O157:H7 strain 20R2R is a derivative of clinical isolate PA20. Prophage excision from the coding region of a PA20 transcription factor restored RpoS-dependent biofilm formation in 20R2R, providing a model for O157:H7 stress adaptation when transitioning between clinical and environmental settings. We report here the complete 20R2R genome sequence.
Collapse
|
16
|
Feng Z, El Hag M, Qin T, Du Y, Chen S, Peng D. Residue L193P Mutant of RpoS Affects Its Activity During Biofilm Formation in Salmonella Pullorum. Front Vet Sci 2020; 7:571361. [PMID: 33251260 PMCID: PMC7674402 DOI: 10.3389/fvets.2020.571361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
The role of alternative sigma factor RpoS in regulating biofilm formation may differ in various Salmonella Pullorum strains. In this study, the biofilm-forming ability of two Salmonella Pullorum strains S6702 and S11923-3 were compared. The biofilm forming ability of S11923-3 was much stronger than that of S6702. After knocking out the rpoS gene, S11923-3ΔrpoS had significantly reduced biofilm while S6702ΔrpoS demonstrated similar biofilm compared with each parent strain. The analysis of RpoS sequences indicated two amino acid substitutions (L193P and R293C) between S6702 and S11923-3 RpoS. A complementation study confirmed that the expression of S11923-3 RpoS rather than S6702 RpoS could restore the biofilm-forming ability of ΔrpoS strains and the L193P mutation contributed to the restoration of the biofilm-forming ability. Further study indicated that RpoS with the L193P mutant had significantly improved expression level and binding activity to RNAP and csgD gene promoter, which increased the efficacy of the csgD gene promoter and biofilm-forming ability. Therefore, the L193P mutation of RpoS is critical for stronger biofilm formation of Salmonella Pullorum.
Collapse
Affiliation(s)
- Zheng Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture and Agricultural-Products, Yangzhou University, Yangzhou, China
| | - Muhanad El Hag
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture and Agricultural-Products, Yangzhou University, Yangzhou, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture and Agricultural-Products, Yangzhou University, Yangzhou, China
| | - Yinping Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture and Agricultural-Products, Yangzhou University, Yangzhou, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture and Agricultural-Products, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, China.,Joint Laboratory Safety of International Cooperation of Agriculture and Agricultural-Products, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Andreozzi E, Uhlich GA. PchE Regulation of Escherichia coli O157:H7 Flagella, Controlling the Transition to Host Cell Attachment. Int J Mol Sci 2020; 21:ijms21134592. [PMID: 32605187 PMCID: PMC7369912 DOI: 10.3390/ijms21134592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins and intimate adhesion controlled by the locus of enterocyte effacement are major enterohemorrhagic Escherichia coli (EHEC) virulence factors. Curli fimbriae also contribute to cell adhesion and are essential biofilm components. The transcriptional regulator PchE represses the expression of curli and their adhesion to HEp-2 cells. Past studies indicate that pchE also represses additional adhesins that contribute to HEp-2 cell attachment. In this study, we tested for pchE regulation of several tissue adhesins and their regulators. Three adhesin-encoding genes (eae, lpfA1, fliC) and four master regulators (csgD, stpA, ler, flhDC) were controlled by pchE. pchE over-expression strongly up-regulated fliC but the marked flagella induction reduced the attachment of O157:H7 clinical isolate PA20 to HEp-2 cells, indicating that flagella were blocking cell attachments rather than functioning as an adhesin. Chemotaxis, motor, structural, and regulatory genes in the flagellar operons were all increased by pchE expression, as was PA20 motility. This study identifies new members in the pchE regulon and shows that pchE stimulates flagellar motility while repressing cell adhesion, likely to support EHEC movement to the intestinal surface early in infection. However, induced or inappropriate pchE-dependent flagellar expression could block cell attachments later during disease progression.
Collapse
|
18
|
Sokaribo AS, Hansen EG, McCarthy M, Desin TS, Waldner LL, MacKenzie KD, Mutwiri G, Herman NJ, Herman DJ, Wang Y, White AP. Metabolic Activation of CsgD in the Regulation of Salmonella Biofilms. Microorganisms 2020; 8:E964. [PMID: 32604994 PMCID: PMC7409106 DOI: 10.3390/microorganisms8070964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 12/31/2022] Open
Abstract
Among human food-borne pathogens, gastroenteritis-causing Salmonella strains have the most real-world impact. Like all pathogens, their success relies on efficient transmission. Biofilm formation, a specialized physiology characterized by multicellular aggregation and persistence, is proposed to play an important role in the Salmonella transmission cycle. In this manuscript, we used luciferase reporters to examine the expression of csgD, which encodes the master biofilm regulator. We observed that the CsgD-regulated biofilm system responds differently to regulatory inputs once it is activated. Notably, the CsgD system became unresponsive to repression by Cpx and H-NS in high osmolarity conditions and less responsive to the addition of amino acids. Temperature-mediated regulation of csgD on agar was altered by intracellular levels of RpoS and cyclic-di-GMP. In contrast, the addition of glucose repressed CsgD biofilms seemingly independent of other signals. Understanding the fine-tuned regulation of csgD can help us to piece together how regulation occurs in natural environments, knowing that all Salmonella strains face strong selection pressures both within and outside their hosts. Ultimately, we can use this information to better control Salmonella and develop strategies to break the transmission cycle.
Collapse
Affiliation(s)
- Akosiererem S. Sokaribo
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.S.S.); (E.G.H.); (M.M.); (L.L.W.); (G.M.J.); (N.J.H.); (D.J.H.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Elizabeth G. Hansen
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.S.S.); (E.G.H.); (M.M.); (L.L.W.); (G.M.J.); (N.J.H.); (D.J.H.)
| | - Madeline McCarthy
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.S.S.); (E.G.H.); (M.M.); (L.L.W.); (G.M.J.); (N.J.H.); (D.J.H.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Taseen S. Desin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
- Basic Sciences Department, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Landon L. Waldner
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.S.S.); (E.G.H.); (M.M.); (L.L.W.); (G.M.J.); (N.J.H.); (D.J.H.)
| | - Keith D. MacKenzie
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada;
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| | - George Mutwiri
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.S.S.); (E.G.H.); (M.M.); (L.L.W.); (G.M.J.); (N.J.H.); (D.J.H.)
| | - Nancy J. Herman
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.S.S.); (E.G.H.); (M.M.); (L.L.W.); (G.M.J.); (N.J.H.); (D.J.H.)
| | - Dakoda J. Herman
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.S.S.); (E.G.H.); (M.M.); (L.L.W.); (G.M.J.); (N.J.H.); (D.J.H.)
| | - Yejun Wang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shenzhen University Health Science, Shenzhen 518060, China;
| | - Aaron P. White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (A.S.S.); (E.G.H.); (M.M.); (L.L.W.); (G.M.J.); (N.J.H.); (D.J.H.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| |
Collapse
|
19
|
Barth SA, Weber M, Schaufler K, Berens C, Geue L, Menge C. Metabolic Traits of Bovine Shiga Toxin-Producing Escherichia Coli (STEC) Strains with Different Colonization Properties. Toxins (Basel) 2020; 12:toxins12060414. [PMID: 32580365 PMCID: PMC7354573 DOI: 10.3390/toxins12060414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Cattle harbor Shiga toxin-producing Escherichia coli (STEC) in their intestinal tract, thereby providing these microorganisms with an ecological niche, but without this colonization leading to any clinical signs. In a preceding study, genotypic characterization of bovine STEC isolates unveiled that their ability to colonize cattle persistently (STECper) or only sporadically (STECspo) is more closely associated with the overall composition of the accessory rather than the core genome. However, the colonization pattern could not be unequivocally linked to the possession of classical virulence genes. This study aimed at assessing, therefore, if the presence of certain phenotypic traits in the strains determines their colonization pattern and if these can be traced back to distinctive genetic features. STECspo strains produced significantly more biofilm than STECper when incubated at lower temperatures. Key substrates, the metabolism of which showed a significant association with colonization type, were glyoxylic acid and L-rhamnose, which were utilized by STECspo, but not or only by some STECper. Genomic sequences of the respective glc and rha operons contained mutations and frameshifts in uptake and/or regulatory genes, particularly in STECper. These findings suggest that STECspo conserved features leveraging survival in the environment, whereas the acquisition of a persistent colonization phenotype in the cattle reservoir was accompanied by the loss of metabolic properties and genomic mutations in the underlying genetic pathways.
Collapse
Affiliation(s)
- Stefanie A. Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
- Correspondence: ; Tel.: +49-3641-804-2270; Fax: +49-3641-804-2482
| | - Michael Weber
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Katharina Schaufler
- Free University Berlin, Institute of Microbiology and Epizootics, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany;
- University of Greifswald, Pharmaceutical Microbiology, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Lutz Geue
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| |
Collapse
|
20
|
Hengge R. Linking bacterial growth, survival, and multicellularity - small signaling molecules as triggers and drivers. Curr Opin Microbiol 2020; 55:57-66. [PMID: 32244175 DOI: 10.1016/j.mib.2020.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 02/05/2023]
Abstract
An overarching theme of cellular regulation in bacteria arises from the trade-off between growth and stress resilience. In addition, the formation of biofilms contributes to stress survival, since these dense multicellular aggregates, in which cells are embedded in an extracellular matrix of self-produced polymers, represent a self-constructed protective and homeostatic 'niche'. As shown here for the model bacterium Escherichia coli, the inverse coordination of bacterial growth with survival and the transition to multicellularity is achieved by a highly integrated regulatory network with several sigma subunits of RNA polymerase and a small number of transcriptional hubs as central players. By conveying information about the actual (micro)environments, nucleotide second messengers such as cAMP, (p)ppGpp, and in particular c-di-GMP are the key triggers and drivers that promote either growth or stress resistance and organized multicellularity in a world of limited resources.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
21
|
Qvortrup K, Hultqvist LD, Nilsson M, Jakobsen TH, Jansen CU, Uhd J, Andersen JB, Nielsen TE, Givskov M, Tolker-Nielsen T. Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation. Front Chem 2019; 7:742. [PMID: 31737611 PMCID: PMC6838868 DOI: 10.3389/fchem.2019.00742] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/17/2019] [Indexed: 01/12/2023] Open
Abstract
Microbial biofilms are the cause of persistent infections associated with various medical implants and distinct body sites such as the urinary tract, lungs, and wounds. Compared with their free living counterparts, bacteria in biofilms display a highly increased resistance to immune system activities and antibiotic treatment. Therefore, biofilm infections are difficult or impossible to treat with our current armory of antibiotics. The challenges associated with biofilm infections have urged researchers to pursue a better understanding of the molecular mechanisms that are involved in the formation and dispersal of biofilms, and this has led to the identification of several steps that could be targeted in order to eradicate these challenging infections. Here we describe mechanisms that are involved in the regulation of biofilm development in Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii, and provide examples of chemical compounds that have been developed to specifically inhibit these processes. These compounds include (i) pilicides and curlicides which inhibit the initial steps of biofilm formation by E. coli; (ii) compounds that interfere with c-di-GMP signaling in P. aeruginosa and E. coli; and (iii) compounds that inhibit quorum-sensing in P. aeruginosa and A. baumannii. In cases where compound series have a defined molecular target, we focus on elucidating structure activity relationship (SAR) trends within the particular compound series.
Collapse
Affiliation(s)
- Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Louise Dahl Hultqvist
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Nilsson
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesper Uhd
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Jens Bo Andersen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Michael Givskov
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Abstract
In 1989, Normark and coworkers reported on fibrous surface structures called curli on strains of Escherichia coli that were suspected of causing bovine mastitis. Subsequent work by many groups has revealed an elegant and highly regulated curli biogenesis pathway also referred to as the type VIII secretion system. Curli biogenesis is governed by two divergently transcribed operons, csgBAC and csgDEFG. The csgBAC operon encodes the structural subunits of curli, CsgA and CsgB, along with a chaperone-like protein, CsgC. The csgDEFG operon encodes the accessory proteins required for efficient transcription, secretion, and assembly of the curli fiber. CsgA and CsgB are secreted as largely unstructured proteins and transition to β-rich structures that aggregate into regular fibers at the cell surface. Since both of these proteins have been shown to be amyloidogenic in nature, the correct spatiotemporal synthesis of the curli fiber is of paramount importance for proper functioning and viability. Gram-negative bacteria have evolved an elegant machinery for the safe handling, secretion, and extracellular assembly of these amyloidogenic proteins.
Collapse
|
23
|
Ariafar MN, Iğci N, Akçelik M, Akçelik N. Investigation of the effect of different environmental conditions on biofilm structure of Salmonella enterica serotype Virchow via FTIR spectroscopy. Arch Microbiol 2019; 201:1233-1248. [PMID: 31197408 DOI: 10.1007/s00203-019-01681-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
This study aims to describe the content of polymeric matrix components under different incubation temperatures and pH levels. Optimal biofilm production of 15 S. Virchow isolates occurred following the incubation in LB-NaCl for 72 h, at pH 6.6 and 20 °C. The expression of csgA, csgD, adrA and bcsA genes at 20 °C, 25 °C and 30 °C in S. Virchow DMC18 was analyzed, and it was discovered that the maximum production of cellulose and curli fimbriae occurred at 20 °C. The physical characteristics of pellicle structure of S. Virchow DMC18 was determined as rigid at 20 °C, while becoming fragile at higher temperatures. FTIR analyses confirmed the obtained molecular findings. The intensities of the 16 different peaks originating from carbohydrate, protein, and nucleic acid in the spectra of biofilm samples significantly diminished (p < 0.05) with the increasing temperature. The highest intensities of lipids and carbohydrates were observed at 20 °C indicating the changes in cell surface properties.
Collapse
Affiliation(s)
| | - Nasit Iğci
- Department of Molecular Biology and Genetics, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Mustafa Akçelik
- Biology Department, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey.
| |
Collapse
|
24
|
Kim SI, Yoon H. Roles of YcfR in Biofilm Formation in Salmonella Typhimurium ATCC 14028. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:708-716. [PMID: 30566029 DOI: 10.1094/mpmi-06-18-0166-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An increasing number of foodborne diseases are currently attributable to farm produce contaminated with enteric pathogens such as Salmonella enterica. Recent studies have shown that a variety of enteric pathogens are able to colonize plant surfaces by forming biofilms and thereby persist for long periods, which can subsequently lead to human infections. Therefore, biofilm formation by enteric pathogens on plants poses a risk to human health. Here, we deciphered the roles of YcfR in biofilm formation by Salmonella enterica. YcfR is a putative outer membrane protein associated with bacterial stress responses. The lack of YcfR facilitated the formation of multicellular aggregates on cabbage leaves as well as glass surfaces while reducing bacterial motility. ycfR deletion caused extensive structural alterations in the outer membrane, primarily in lipopolysaccharides, outer membrane proteins, cellulose, and curli fimbria, thereby increasing cell surface hydrophobicity. However, the absence of YcfR rendered Salmonella susceptible to stressful treatments, despite the increased multicellular aggregation. These results suggest that YcfR is an essential constituent of Salmonella outer membrane architecture and its absence may cause multifaceted structural changes, thereby compromising bacterial envelope integrity. In this context, YcfR may be further exploited as a potential target for controlling Salmonella persistence on plants.
Collapse
Affiliation(s)
- Seul I Kim
- 1 Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; and
| | - Hyunjin Yoon
- 2 Department of Applied Chemistry and Biological Engineering, Ajou University
| |
Collapse
|
25
|
Serra DO, Hengge R. A c-di-GMP-Based Switch Controls Local Heterogeneity of Extracellular Matrix Synthesis which Is Crucial for Integrity and Morphogenesis of Escherichia coli Macrocolony Biofilms. J Mol Biol 2019; 431:4775-4793. [PMID: 30954572 DOI: 10.1016/j.jmb.2019.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
The extracellular matrix in macrocolony biofilms of Escherichia coli is arranged in a complex large-scale architecture, with homogenic matrix production close to the surface, whereas zones further below display pronounced local heterogeneity of matrix production, which results in distinct three-dimensional architectural structures. Combining genetics, cryosectioning and fluorescence microscopy of macrocolony biofilms, we demonstrate here in situ that this local matrix heterogeneity is generated by a c-di-GMP-dependent molecular switch characterized by several nested positive and negative feedback loops. In this switch, the trigger phosphodiesterase PdeR is the key component for establishing local heterogeneity in the activation of the transcription factor MlrA, which in turn activates expression of the major matrix regulator CsgD. Upon its release of direct inhibition by PdeR, the second switch component, the diguanylate cyclase DgcM, activates MlrA by direct interaction. Antagonistically acting PdeH and DgcE provide for a PdeR-sensed c-di-GMP input into this switch and-via their spatially differentially controlled expression-generate the long-range vertical asymmetry of the matrix architecture. Using flow cytometry, we show heterogeneity of CsgD expression to also occur in spatially unstructured planktonic cultures, where it is controlled by the same c-di-GMP circuitry as in macrocolony biofilms. Quantification by flow cytometry also showed CsgDON subpopulations with distinct CsgD expression levels and revealed an additional fine-tuning feedback within the PdeR/DgcM-mediated switch that depends on c-di-GMP synthesis by DgcM. Finally, local heterogeneity of matrix production was found to be crucial for the tissue-like elasticity that allows for large-scale wrinkling and folding of macrocolony biofilms.
Collapse
Affiliation(s)
- Diego O Serra
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
26
|
|
27
|
Andreozzi E, Gunther NW, Reichenberger ER, Rotundo L, Cottrell BJ, Nuñez A, Uhlich GA. Pch Genes Control Biofilm and Cell Adhesion in a Clinical Serotype O157:H7 Isolate. Front Microbiol 2018; 9:2829. [PMID: 30532745 PMCID: PMC6265319 DOI: 10.3389/fmicb.2018.02829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
In a previous study, induction of the Escherichia coli serotype O157:H7 SOS response decreased csgD expression in the clinical isolate PA20 at 30°C but strongly induced genes in the horizontally transferred-DNA regions (HTR), including many known virulence regulators. To determine the role of HTR regulators in the control of csgD and curli, specific regulators were plasmid-expressed in the wild-type and mutant strains of PA20 and its biofilm-forming derivative, 20R2R. At 30°C, plasmid over-expression of the O157:H7 group 3 perC homolog, pchE, strongly repressed PA20 csgD transcription (>7-fold) while the group 1 homologs, pchA and pchB, resulted in smaller reductions (<2.5-fold). However, SOS induction decreased rather than increased pchE expression (>6-fold) making group 1 pch, which are enhanced by the SOS response, the likely SOS-induced csgD repressors. Plasmid-based pchE over-expression also reduced 20R2R biofilm formation (>6-fold) and the curli-dependent, Congo red affinity of both PA20 and 20R2R. However, to properly appreciate the regulatory direction, expression patterns, and environmental consequences of these and other CsgD-controlled functions, a better understanding of natural pchE regulation will be required. The effects of HTR regulators on PA20 and 20R2R adhesion to HEp-2 cell at host temperature were also studied. Under conditions where prophage genes were not induced, curli, rather than espA, contributed to host cell adhesion in strain 20R2R. High levels of pchE expression in trans reduced curli-dependent cell adherence (>2-fold) to both 20R2R and the clinical isolate PA20, providing a host-adapting adhesion control mechanism. Expression of pchE was also repressed by induction of the SOS response at 37°C, providing a mechanism by which curli expression might complement EspA-dependent intimate adhesion initiated by the group1 pch homologs. This study has increased our understanding of the O157 pch genes at both host and environment temperatures, identifying pchE as a strong regulator of csgD and CsgD-dependent properties.
Collapse
Affiliation(s)
- Elisa Andreozzi
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Nereus W Gunther
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Erin R Reichenberger
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Luca Rotundo
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Bryan J Cottrell
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Alberto Nuñez
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Gaylen A Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| |
Collapse
|
28
|
Nhu NTK, Phan MD, Peters KM, Lo AW, Forde BM, Min Chong T, Yin WF, Chan KG, Chromek M, Brauner A, Chapman MR, Beatson SA, Schembri MA. Discovery of New Genes Involved in Curli Production by a Uropathogenic Escherichia coli Strain from the Highly Virulent O45:K1:H7 Lineage. mBio 2018; 9:e01462-18. [PMID: 30131362 PMCID: PMC6106082 DOI: 10.1128/mbio.01462-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Teik Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Milan Chromek
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Pediatrics, CLINTEC, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Matthew R Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Sulfamethoxazole - Trimethoprim represses csgD but maintains virulence genes at 30°C in a clinical Escherichia coli O157:H7 isolate. PLoS One 2018; 13:e0196271. [PMID: 29718957 PMCID: PMC5931665 DOI: 10.1371/journal.pone.0196271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
The high frequency of prophage insertions in the mlrA gene of clinical serotype O157:H7 isolates renders such strains deficient in csgD-dependent biofilm formation but prophage induction may restore certain mlrA properties. In this study we used transcriptomics to study the effect of high and low sulfamethoxazole–trimethoprim (SMX-TM) concentrations on prophage induction, biofilm regulation, and virulence gene expression in strain PA20 under environmental conditions following 5-hour and 12-hour exposures in broth or on agar. SMX-TM at a sub-lethal concentration induced strong RecA expression resulting in concentration- and time-dependent major transcriptional shifts with emphasis on up-regulation of genes within horizontally-transferred chromosomal regions (HTR). Neither high or low levels of SMX-TM stimulated csgD expression at either time point, but both levels resulted in slight repression. Full expression of Ler-dependent genes paralleled expression of group 1 pch homologues in the presence of high glrA. Finally, stx2 expression, which is strongly dependent on prophage induction, was enhanced at 12 hours but repressed at five hours, in spite of early SOS initiation by the high SMX-TM concentration. Our findings indicate that, similar to host conditions, exposure to environmental conditions increased the expression of virulence genes in a clinical isolate but genes involved in the protective biofilm response were repressed.
Collapse
|
30
|
Paytubi S, Cansado C, Madrid C, Balsalobre C. Nutrient Composition Promotes Switching between Pellicle and Bottom Biofilm in Salmonella. Front Microbiol 2017; 8:2160. [PMID: 29163440 PMCID: PMC5673991 DOI: 10.3389/fmicb.2017.02160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/20/2017] [Indexed: 11/24/2022] Open
Abstract
Salmonella is one of the most frequently reported causes of foodborne illness worldwide. Non-typhoidal serovars cause gastroenteritis in humans. Salmonella can grow on surfaces forming biofilms, contributing to its persistence since biofilms are difficult to eradicate due to the high resistance to antimicrobials and disinfectants. It has been described that there are two crucial biofilm promoting factors in Salmonella: curli and cellulose. The expression of both factors is coordinately regulated by the transcriptional regulator CsgD. Most biofilm studies of Salmonella have been performed by growing bacteria in low osmolarity rich medium and low temperature (25°C). In such conditions, the biofilm is formed at the air–liquid interface (pellicle biofilm). Remarkably, when Salmonella grow in minimal medium, biofilm formation switches from the air–liquid interface to the solid–liquid interface (bottom biofilm). In this report, the switching between pellicle and bottom biofilm has been characterized. Our data indicate that curli, but not cellulose, is crucial for the formation of both kinds of biofilms. In minimal medium, conditions promoting formation of bottom biofilm, a high transcriptional expression of csgD and consequently of the genes involved in the synthesis of curli and cellulose was detected. The nutritional status of the cells seems to be pivotal for the spatial distribution of the biofilms formed. When bacteria is growing in minimal medium the addition of amino acids downregulates the expression of csgB and causes the switch between bottom and pellicle biofilm. The crosstalk between general metabolism and biofilm formation is also highlighted by the fact that the metabolic sensor cAMP modulates the type of biofilm generated by Salmonella. Moreover, cAMP regulates transcriptional expression of csgD and stimulates pellicle biofilm formation, suggesting that the physiological conditions define the type of biofilm formed by Salmonella. The consequences of the switching between pellicle and bottom biofilm during either infection or survival in natural environments remain undercover.
Collapse
Affiliation(s)
- Sonia Paytubi
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Cintia Cansado
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Cristina Madrid
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Carlos Balsalobre
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Cimdins A, Simm R, Li F, Lüthje P, Thorell K, Sjöling Å, Brauner A, Römling U. Alterations of c-di-GMP turnover proteins modulate semi-constitutive rdar biofilm formation in commensal and uropathogenic Escherichia coli. Microbiologyopen 2017; 6. [PMID: 28913868 PMCID: PMC5635171 DOI: 10.1002/mbo3.508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/25/2023] Open
Abstract
Agar plate‐based biofilm of enterobacteria like Escherichia coli is characterized by expression of the extracellular matrix components amyloid curli and cellulose exopolysaccharide, which can be visually enhanced upon addition of the dye Congo Red, resulting in a red, dry, and rough (rdar) colony morphology. Expression of the rdar morphotype depends on the transcriptional regulator CsgD and occurs predominantly at ambient temperature in model strains. In contrast, commensal and pathogenic isolates frequently express the csgD‐dependent rdar morphotype semi‐constitutively, also at human host body temperature. To unravel the molecular basis of temperature‐independent rdar morphotype expression, biofilm components and c‐di‐GMP turnover proteins of seven commensal and uropathogenic E. coli isolates were analyzed. A diversity within the c‐di‐GMP signaling network was uncovered which suggests alteration of activity of the trigger phosphodiesterase YciR to contribute to (up)regulation of csgD expression and consequently semi‐constitutive rdar morphotype development.
Collapse
Affiliation(s)
- Annika Cimdins
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Roger Simm
- Norwegian Veterinary Institute, Oslo, Norway
| | - Fengyang Li
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petra Lüthje
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Kaplan M, Kale H, Karaman K, Unlukara A. Influence of different irrigation and nitrogen levels on crude oil and fatty acid composition of maize ( Zea mays L.). GRASAS Y ACEITES 2017. [DOI: 10.3989/gya.0222171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effect of irrigation and nitrogen fertilizer levels on the crude oil and fatty acid composition of maize cultivars was studied. Three levels of irrigation (50, 75 and 100% of field capacity) and nitrogen (100, 200 and 300 kg·ha-1) were used for treatment groups. After harvest, the crude oils were extracted and fatty acid profiles were determined by Gas Chromatography system. The study was repeated for two years and the interaction effects of fertilizer and irrigation were determined. Our results show that the crude oil content was affected positively by the fertilizer and the irrigation applications. As expected, the most abundant fatty acid was linoleic and the harvest year did not alter it. The highest linoleic acid content value was obtained with a 50% field capacity and 300 kg·ha-1 fertilizer treatment combination. In addition, fatty acid contents varied with the changing of interaction effects except for myristic and palmitic acid. Oleic acid was the second abundant fatty acid in the oil samples and the lowest oleic acid value was obtained with a 50% field capacity and 300 kg·ha-1 fertilizer treatment combination. Oleic acid content tended to increase with 75% field capacity but 100% field capacity treatment decreased in it.
Collapse
|
33
|
Analysis of Spleen-Induced Fimbria Production in Recombinant Attenuated Salmonella enterica Serovar Typhimurium Vaccine Strains. mBio 2017; 8:mBio.01189-17. [PMID: 28830946 PMCID: PMC5565968 DOI: 10.1128/mbio.01189-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica serovar Typhimurium genome encodes 13 fimbrial operons. Most of the fimbriae encoded by these operons are not produced under laboratory conditions but are likely to be synthesized in vivo. We used an in vivo expression technology (IVET) strategy to identify four fimbrial operons, agf, saf, sti, and stc that are expressed in the spleen. When any three of these operons were deleted, the strain retained wild-type virulence. However, when all four operons were deleted, the resulting strain was completely attenuated, indicating that these four fimbriae play functionally redundant roles critical for virulence. In mice, oral doses of as low as 1 × 105 CFU of the strain with four fimbrial operons deleted provided 100% protection against challenge with 1 × 109 CFU of wild-type S. Typhimurium. We also examined the possible effect of these fimbriae on the ability of a Salmonella vaccine strain to deliver a guest antigen. We modified one of our established attenuated vaccine strains, χ9088, to delete three fimbrial operons while the fourth operon was constitutively expressed. Each derivative was modified to express the Streptococcus pneumoniae antigen PspA. Strains that constitutively expressed saf or stc elicited a strong Th1 response with significantly greater levels of anti-PspA serum IgG and greater protective efficacy than strains carrying saf or stc deletions. The isogenic strain in which all four operons were deleted generated the lowest anti-PspA levels and did not protect against challenge with virulent S. pneumoniae. Our results indicate that these fimbriae play important roles, as yet not understood, in Salmonella virulence and immunogenicity. Salmonella enterica is the leading cause of bacterial food-borne infection in the United States. S. Typhimurium is capable of producing up to 13 distinct surface structures called fimbriae that presumably mediate its adherence to surfaces. The roles of most of these fimbriae in disease are unknown. Identifying fimbriae produced during infection will provide important insights into how these bacterial structures contribute to disease and potentially induce protective immunity to Salmonella infection. We identified four fimbriae that are produced during infection. Deletion of all four of these fimbriae results in a significant reduction in virulence. We explored ways in which the expression of these fimbriae may be exploited for use in recombinant Salmonella vaccine strains and found that production of Saf and Stc fimbriae are important for generating a strong immune response against a vectored antigen. This work provides new insight into the role of fimbriae in disease and their potential for improving the efficacy of Salmonella-based vaccines.
Collapse
|
34
|
Geue L, Menge C, Eichhorn I, Semmler T, Wieler LH, Pickard D, Berens C, Barth SA. Evidence for Contemporary Switching of the O-Antigen Gene Cluster between Shiga Toxin-Producing Escherichia coli Strains Colonizing Cattle. Front Microbiol 2017; 8:424. [PMID: 28377748 PMCID: PMC5359238 DOI: 10.3389/fmicb.2017.00424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) comprise a group of zoonotic enteric pathogens with ruminants, especially cattle, as the main reservoir. O-antigens are instrumental for host colonization and bacterial niche adaptation. They are highly immunogenic and, therefore, targeted by the adaptive immune system. The O-antigen is one of the most diverse bacterial cell constituents and variation not only exists between different bacterial species, but also between individual isolates/strains within a single species. We recently identified STEC persistently infecting cattle and belonging to the different serotypes O156:H25 (n = 21) and O182:H25 (n = 15) that were of the MLST sequence types ST300 or ST688. These STs differ by a single nucleotide in purA only. Fitness-, virulence-associated genome regions, and CRISPR/CAS (clustered regularly interspaced short palindromic repeats/CRISPR associated sequence) arrays of these STEC O156:H25 and O182:H25 isolates were highly similar, and identical genomic integration sites for the stx converting bacteriophages and the core LEE, identical Shiga toxin converting bacteriophage genes for stx1a, identical complete LEE loci, and identical sets of chemotaxis and flagellar genes were identified. In contrast to this genomic similarity, the nucleotide sequences of the O-antigen gene cluster (O-AGC) regions between galF and gnd and very few flanking genes differed fundamentally and were specific for the respective serotype. Sporadic aEPEC O156:H8 isolates (n = 5) were isolated in temporal and spatial proximity. While the O-AGC and the corresponding 5' and 3' flanking regions of these aEPEC isolates were identical to the respective region in the STEC O156:H25 isolates, the core genome, the virulence associated genome regions and the CRISPR/CAS elements differed profoundly. Our cumulative epidemiological and molecular data suggests a recent switch of the O-AGC between isolates with O156:H8 strains having served as DNA donors. Such O-antigen switches can affect the evaluation of a strain's pathogenic and virulence potential, suggesting that NGS methods might lead to a more reliable risk assessment.
Collapse
Affiliation(s)
- Lutz Geue
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular PathogenesisJena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular PathogenesisJena, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Free University BerlinBerlin, Germany
| | - Torsten Semmler
- Institute of Microbiology and Epizootics, Free University BerlinBerlin, Germany
- Robert Koch InstituteBerlin, Germany
| | - Lothar H. Wieler
- Institute of Microbiology and Epizootics, Free University BerlinBerlin, Germany
- Robert Koch InstituteBerlin, Germany
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Pathogen GenomicsCambridge, UK
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular PathogenesisJena, Germany
| | - Stefanie A. Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular PathogenesisJena, Germany
| |
Collapse
|
35
|
Ahmad I, Cimdins A, Beske T, Römling U. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. BMC Microbiol 2017; 17:27. [PMID: 28148244 PMCID: PMC5289004 DOI: 10.1186/s12866-017-0934-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/17/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The secondary messenger cyclic di-GMP promotes biofilm formation by up regulating the expression of csgD, encoding the major regulator of rdar biofilm formation in Salmonella typhimurium. The GGDEF/EAL domain proteins regulate the c-di-GMP turnover. There are twenty- two GGDEF/EAL domain proteins in the genome of S. typhimurium. In this study, we dissect the role of individual GGDEF/EAL proteins for csgD expression and rdar biofilm development. RESULTS Among twelve GGDEF domains, two proteins upregulate and among fifteen EAL domains, four proteins down regulate csgD expression. We identified two additional GGDEF proteins required to promote optimal csgD expression. With the exception of the EAL domain of STM1703, solely, diguanylate cyclase and phosphodiesterase activities are required to regulate csgD mediated rdar biofilm formation. Identification of corresponding phosphodiesterases and diguanylate cyclases interacting in the csgD regulatory network indicates various levels of regulation by c-di-GMP. The phosphodiesterase STM1703 represses transcription of csgD via a distinct promoter upstream region. CONCLUSION The enzymatic activity and the protein scaffold of GGDEF/EAL domain proteins regulate csgD expression. Thereby, c-di-GMP adjusts csgD expression at multiple levels presumably using a multitude of input signals.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Present Address: Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Annika Cimdins
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Timo Beske
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Present Address: Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Besharova O, Suchanek VM, Hartmann R, Drescher K, Sourjik V. Diversification of Gene Expression during Formation of Static Submerged Biofilms by Escherichia coli. Front Microbiol 2016; 7:1568. [PMID: 27761132 PMCID: PMC5050211 DOI: 10.3389/fmicb.2016.01568] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022] Open
Abstract
Many bacteria primarily exist in nature as structured multicellular communities, so called biofilms. Biofilm formation is a highly regulated process that includes the transition from the motile planktonic to sessile biofilm lifestyle. Cellular differentiation within a biofilm is a commonly accepted concept but it remains largely unclear when, where and how exactly such differentiation arises. Here we used fluorescent transcriptional reporters to quantitatively analyze spatio-temporal expression patterns of several groups of genes during the formation of submerged Escherichia coli biofilms in an open static system. We first confirm that formation of such submerged biofilms as well as pellicles at the liquid-air interface requires the major matrix component, curli, and flagella-mediated motility. We further demonstrate that in this system, diversification of gene expression leads to emergence of at least three distinct subpopulations of E. coli, which differ in their levels of curli and flagella expression, and in the activity of the stationary phase sigma factor σS. Our study reveals mutually exclusive expression of curli fibers and flagella at the single cell level, with high curli levels being confined to dense cell aggregates/microcolonies and flagella expression showing an opposite expression pattern. Interestingly, despite the known σS-dependence of curli induction, there was only a partial correlation between the σS activity and curli expression, with subpopulations of cells having high σS activity but low curli expression and vice versa. Finally, consistent with different physiology of the observed subpopulations, we show striking differences between the growth rates of cells within and outside of aggregates.
Collapse
Affiliation(s)
- Olga Besharova
- Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)Marburg, Germany
| | - Verena M. Suchanek
- Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)Marburg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH AllianceHeidelberg, Germany
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)Marburg, Germany
| |
Collapse
|
37
|
Ukuku DO, Mukhopadhyay S, Geveke D, Olanya M, Niemira B. Effect of Hydrogen Peroxide in Combination with Minimal Thermal Treatment for Reducing Bacterial Populations on Cantaloupe Rind Surfaces and Transfer to Fresh-Cut Pieces. J Food Prot 2016; 79:1316-24. [PMID: 27497118 DOI: 10.4315/0362-028x.jfp-16-046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Surface structure and biochemical characteristics of bacteria and produce play a major role in how and where bacteria attach, complicating decontamination treatments. Whole cantaloupe rind surfaces were inoculated with Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes at 10(7) CFU/ml. Average population size of Salmonella, Escherichia coli O157:H7, and L. monocytogenes recovered after surface inoculation was 4.8 ± 0.12, 5.1 ± 0.14, and 3.6 ± 0.13 log CFU/cm(2), respectively. Inoculated melons were stored at 5 and 22°C for 7 days before washing treatment interventions. Intervention treatments used were (i) water (H2O) at 22°C, (ii) H2O at 80°C, (iii) 3% hydrogen peroxide (H2O2) at 22°C, and (iv) a combination of 3% H2O2 and H2O at 80°C for 300 s. The strength of pathogen attachment (SR value) at days 0, 3, and 7 of storage was determined, and then the efficacy of the intervention treatments to detach, kill, and reduce transfer of bacteria to fresh-cut pieces during fresh-cut preparation was investigated. Populations of E. coli O157:H7 attached to the rind surface at significantly higher levels (P < 0.05) than Salmonella and L. monocytogenes, but Salmonella exhibited the strongest attachment (SR value) at all days tested. Washing with 3% H2O2 alone led to significant reduction (P < 0.05) of bacteria and caused some changes in bacterial cell morphology. A combination treatment with H2O and 3% H2O2 at 8°C led to an average 4-log reduction of bacterial pathogens, and no bacterial pathogens were detected in fresh-cut pieces prepared from this combination treatment, including enriched fresh-cut samples. The results of this study indicate that the microbial safety of fresh-cut pieces from treated cantaloupes was improved at day 6 of storage at 5°C and day 3 of storage at 10°C.
Collapse
Affiliation(s)
- Dike O Ukuku
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA.
| | - Sudarsan Mukhopadhyay
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - David Geveke
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Modesto Olanya
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Brendan Niemira
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| |
Collapse
|
38
|
Coexpression of Escherichia coli obgE, Encoding the Evolutionarily Conserved Obg GTPase, with Ribosomal Proteins L21 and L27. J Bacteriol 2016; 198:1857-1867. [PMID: 27137500 DOI: 10.1128/jb.00159-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Multiple essential small GTPases are involved in the assembly of the ribosome or in the control of its activity. Among them, ObgE (CgtA) has been shown recently to act as a ribosome antiassociation factor that binds to ppGpp, a regulator whose best-known target is RNA polymerase. The present study was aimed at elucidating the expression of obgE in Escherichia coli We show that obgE is cotranscribed with ribosomal protein genes rplU and rpmA and with a gene of unknown function, yhbE We show here that about 75% of the transcripts terminate before obgE, because there is a transcriptional terminator between rpmA and yhbE As expected for ribosomal protein operons, expression was highest during exponential growth, decreased during entry into stationary phase, and became almost undetectable thereafter. Expression of the operon was derepressed in mutants lacking ppGpp or DksA. However, regulation by these factors appears to occur post-transcription initiation, since no effects of ppGpp and DksA on rplU promoter activity were observed in vitro IMPORTANCE The conserved and essential ObgE GTPase binds to the ribosome and affects its assembly. ObgE has also been reported to impact chromosome segregation, cell division, resistance to DNA damage, and, perhaps most interestingly, persister formation and antibiotic tolerance. However, it is unclear whether these effects are related to its role in ribosome formation. Despite its importance, no studies on ObgE expression have been reported. We demonstrate here that obgE is expressed from an operon encoding two ribosomal proteins, that the operon's expression varies with the growth phase, and that it is dependent on the transcription regulators ppGpp and DksA. Our results thus demonstrate that obgE expression is coupled to ribosomal gene expression.
Collapse
|
39
|
Uhlich GA, Chen CY, Cottrell BJ, Hofmann CS, Yan X, Nguyen L. Stx1prophage excision inEscherichia colistrain PA20 confers strong curli and biofilm formation by restoring nativemlrA. FEMS Microbiol Lett 2016; 363:fnw123. [DOI: 10.1093/femsle/fnw123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 01/01/2023] Open
|
40
|
de Paiva JB, da Silva LPM, Casas MRT, Conceição RA, Nakazato G, de Pace F, Sperandio V, da Silveira WD. In vivoinfluence ofin vitroup-regulated genes in the virulence of an APEC strain associated with swollen head syndrome. Avian Pathol 2016; 45:94-105. [DOI: 10.1080/03079457.2015.1125995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Chen CY, Nguyen LHT, Cottrell BJ, Irwin PL, Uhlich GA. Multiple mechanisms responsible for strong Congo-red-binding variants of Escherichia coli O157:H7 strains. Pathog Dis 2015; 74:ftv123. [PMID: 26702633 DOI: 10.1093/femspd/ftv123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/12/2022] Open
Abstract
High variability in the expression of csgD-dependent, biofilm-forming and adhesive properties is common among Shiga toxin-producing Escherichia coli. Although many strains of serotype O157:H7 form little biofilm, conversion to stronger biofilm phenotypes has been observed. In this study, we screened different strains of serotype O157:H7 for the emergence of strong Congo-red (CR) affinity/biofilm-forming properties and investigated the underlying genetic mechanisms. Two major mechanisms which conferred stronger biofilm phenotypes were identified: mutations (insertion, deletion, single nucleotide change) in rcsB region and stx-prophage excision from the mlrA site. Restoration of the native mlrA gene (due to prophage excision) resulted in strong biofilm properties to all variants. Whereas RcsB mutants showed weaker CR affinity and biofilm properties, it provided more possibilities for phenotypic presentations through heterogenic sequence mutations.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Ly-Huong T Nguyen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Bryan J Cottrell
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Peter L Irwin
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Gaylen A Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| |
Collapse
|
42
|
Augimeri RV, Varley AJ, Strap JL. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria. Front Microbiol 2015; 6:1282. [PMID: 26635751 PMCID: PMC4646962 DOI: 10.3389/fmicb.2015.01282] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/31/2015] [Indexed: 01/21/2023] Open
Abstract
Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3'→5')-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles.
Collapse
Affiliation(s)
| | | | - Janice L. Strap
- Molecular Microbial Biochemistry Laboratory, Faculty of Science, University of Ontario Institute of TechnologyOshawa, ON, Canada
| |
Collapse
|
43
|
Cayrol B, Fortas E, Martret C, Cech G, Kloska A, Caulet S, Barbet M, Trépout S, Marco S, Taghbalout A, Busi F, Wegrzyn G, Arluison V. Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA. Integr Biol (Camb) 2015; 7:128-41. [PMID: 25407044 DOI: 10.1039/c4ib00102h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bacterial actin-homolog MreB is a key player in bacterial cell-wall biosynthesis and is required for the maintenance of the rod-like morphology of Escherichia coli. However, how MreB cellular levels are adjusted to growth conditions is poorly understood. Here, we show that DsrA, an E. coli small noncoding RNA (sRNA), is involved in the post-transcriptional regulation of mreB. DsrA is required for the downregulation of MreB cellular concentration during environmentally induced slow growth-rates, mainly growth at low temperature and during the stationary phase. DsrA interacts in an Hfq-dependent manner with the 5' region of mreB mRNA, which contains signals for translation initiation and thereby affects mreB translation and stability. Moreover, as DsrA is also involved in the regulation of two transcriptional regulators, σ(S) and the nucleoid associated protein H-NS, which negatively regulate mreB transcription, it also indirectly contributes to mreB transcriptional down-regulation. By using quantitative analyses, our results evidence the complexity of this regulation and the tangled interplay between transcriptional and post-transcriptional control. As transcription factors and sRNA-mediated post-transcriptional regulators use different timescales, we propose that the sRNA pathway helps to adapt to changes in temperature, but also indirectly mediates long-term regulation of MreB concentration. The tight regulation and fine-tuning of mreB gene expression in response to cellular stresses is discussed in regard to the effect of the MreB protein on cell elongation.
Collapse
Affiliation(s)
- Bastien Cayrol
- Laboratoire Léon Brillouin, CEA - Centre de Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fuentes DN, Calderón PF, Acuña LG, Rodas PI, Paredes-Sabja D, Fuentes JA, Gil F, Calderón IL. Motility modulation by the small non-coding RNA SroC inSalmonellaTyphimurium. FEMS Microbiol Lett 2015; 362:fnv135. [DOI: 10.1093/femsle/fnv135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
|
45
|
Simm R, Ahmad I, Rhen M, Le Guyon S, Römling U. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 2015; 9:1261-82. [PMID: 25437188 DOI: 10.2217/fmb.14.88] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In animals, plants and the environment, Salmonella enterica serovar Typhimurium forms the red dry and rough (rdar) biofilm characterized by extracellular matrix components curli and cellulose. With complex expression control by at least ten transcription factors, the bistably expressed orphan response regulator CsgD directs rdar morphotype development. CsgD expression is an integral part of the Hfq regulon and the complex cyclic diguanosine monophosphate signaling network partially controlled by the global RNA-binding protein CsrA. Cell wall turnover and the periplasmic redox status regulate csgD expression on a post-transcriptional level by unknown mechanisms. Furthermore, phosphorylation of CsgD is a potential inactivation and degradation signal in biofilm dissolution. Including complex incoherent feed-forward loops, regulation of biofilm formation versus motility and virulence is of recognized complexity.
Collapse
Affiliation(s)
- Roger Simm
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | | | | | | | |
Collapse
|
46
|
The functional landscape bound to the transcription factors of Escherichia coli K-12. Comput Biol Chem 2015; 58:93-103. [PMID: 26094112 DOI: 10.1016/j.compbiolchem.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 05/31/2015] [Accepted: 06/03/2015] [Indexed: 01/05/2023]
Abstract
Motivated by the experimental evidences accumulated in the last ten years and based on information deposited in RegulonDB, literature look up, and sequence analysis, we analyze the repertoire of 304 DNA-binding Transcription factors (TFs) in Escherichia coli K-12. These regulators were grouped in 78 evolutionary families and are regulating almost half of the total genes in this bacterium. In structural terms, 60% of TFs are composed by two-domains, 30% are monodomain, and 10% three- and four-structural domains. As previously noticed, the most abundant DNA-binding domain corresponds to the winged helix-turn-helix, with few alternative DNA-binding structures, resembling the hypothesis of successful protein structures with the emergence of new ones at low scales. In summary, we identified and described the characteristics associated to the DNA-binding TF in E. coli K-12. We also identified twelve functional modules based on a co-regulated gene matrix. Finally, diverse regulons were predicted based on direct associations between the TFs and potential regulated genes. This analysis should increase our knowledge about the gene regulation in the bacterium E. coli K-12, and provide more additional clues for comprehensive modelling of transcriptional regulatory networks in other bacteria.
Collapse
|
47
|
Rossi E, Motta S, Mauri P, Landini P. Sulfate assimilation pathway intermediate phosphoadenosine 59-phosphosulfate acts as a signal molecule affecting production of curli fibres in Escherichia coli. MICROBIOLOGY-SGM 2015; 160:1832-1844. [PMID: 24934621 DOI: 10.1099/mic.0.079699-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The enterobacterium Escherichia coli can utilize a variety of molecules as sulfur sources, including cysteine, sulfate, thiosulfate and organosulfonates. An intermediate of the sulfate assimilation pathway, adenosine 59-phosphosulfate (APS), also acts as a signal molecule regulating the utilization of different sulfur sources. In this work, we show that inactivation of the cysH gene, leading to accumulation of phosphoadenosine 59-phosphosulfate (PAPS), also an intermediate of the sulfate assimilation pathway, results in increased surface adhesion and cell aggregation by activating the expression of the curli-encoding csgBAC operon. In contrast, curli production was unaffected by the inactivation of any other gene belonging to the sulfate assimilation pathway. Overexpression of the cysH gene downregulated csgBAC transcription, further suggesting a link between intracellular PAPS levels and curli gene expression. In addition to curli components, the Flu, OmpX and Slp proteins were also found in increased amounts in the outer membrane compartment of the cysH mutant; deletion of the corresponding genes suggested that these proteins also contribute to surface adhesion and cell surface properties in this strain. Our results indicate that, similar to APS, PAPS also acts as a signal molecule, albeit with a distinct mechanism and role: whilst APS regulates organosulfonate utilization, PAPS would couple availability of sulfur sources to remodulation of the cell surface, as part of a more global effect on cell physiology.
Collapse
Affiliation(s)
- Elio Rossi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Sara Motta
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Pierluigi Mauri
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| |
Collapse
|
48
|
Shimizu T, Hirai S, Yokoyama E, Ichimura K, Noda M. An evolutionary analysis of nitric oxide reductase gene norV in enterohemorrhagic Escherichia coli O157. INFECTION GENETICS AND EVOLUTION 2015; 33:176-81. [PMID: 25936496 DOI: 10.1016/j.meegid.2015.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022]
Abstract
A novel virulence gene, norV, that encodes nitric oxide (NO) reductase, was examined to investigate the emergence of enterohemorrhagic Escherichia coli (EHEC) O157 subgroup C clusters 2 and 3 from subgroup C cluster 1. Deletion of norV occurred at a point between cluster 1 and cluster 2 just after or at the same time that an stx2 bacteriophage, which retains Shiga toxin 2 gene, was inserted into wrbA, which encodes a novel multimeric flavodoxin-like protein, in EHEC O157. Sensitivity of NO to anaerobic growth was correlated with the deletion of norV in all EHEC O157 individuals tested. The C467A mutation of fimH, which encodes minor component of type 1 fimbriae, occurred within cluster 1, not as a transition from cluster 1 to cluster 2, indicating that there is a cluster 1 minority branch that leads to cluster 2. These data refine the evolutionary history of an emerging EHEC O157.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | - Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chiba 260-8715, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chiba 260-8715, Japan
| | - Kimitoshi Ichimura
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan
| |
Collapse
|
49
|
Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition. Infect Immun 2015; 83:1749-64. [PMID: 25667270 DOI: 10.1128/iai.02810-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.
Collapse
|
50
|
Abstract
Adhesins are a group of proteins in enterohemorrhagic Escherichia coli (EHEC) that are involved in the attachment or colonization of this pathogen to abiotic (plastic or steel) and biological surfaces, such as those found in bovine and human intestines. This review provides the most up-to-date information on these essential adhesion factors, summarizing important historical discoveries and analyzing the current and future state of this research. In doing so, the proteins intimin and Tir are discussed in depth, especially regarding their role in the development of attaching and effacing lesions and in EHEC virulence. Further, a series of fimbrial proteins (Lpf1, Lpf2, curli, ECP, F9, ELF, Sfp, HCP, and type 1 fimbriae) are also described, emphasizing their various contributions to adherence and colonization of different surfaces and their potential use as genetic markers in detection and classification of different EHEC serotypes. This review also discusses the role of several autotransporter proteins (EhaA-D, EspP, Saa and Sab, and Cah), as well as other proteins associated with adherence, such as flagella, EibG, Iha, and OmpA. While these proteins have all been studied to varying degrees, all of the adhesins summarized in this chapter have been linked to different stages of the EHEC life cycle, making them good targets for the development of more effective diagnostics and therapeutics.
Collapse
Affiliation(s)
- Brian D. McWilliams
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555. USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555. USA
- Department of Pathology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, 77555. USA
| |
Collapse
|