1
|
Liu N, Niu M, Luo S, Lv L, Quan X, Wang C, Meng Z, Yuan J, Xu Q, Liu Y. Rosamultin ameliorates radiation injury via promoting DNA injury repair and suppressing oxidative stress in vitro and in vivo. Chem Biol Interact 2024; 393:110938. [PMID: 38484825 DOI: 10.1016/j.cbi.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Radiotherapy remains the preferred treatment option for cancer patients with the advantages of broad indications and significant therapeutic effects. However, ionizing radiation can also damage normal tissues. Unfortunately, there are few anti-radiation damage drugs available on the market for radiotherapy patients. Our previous study showed that rosamultin had antioxidant and hepatoprotective activities. However, its anti-radiation activity has not been evaluated. Irradiating small intestinal epithelial cells and mice with whole-body X-rays radiation were used to evaluate the in vitro and in vivo effects of rosamultin, respectively. Intragastric administration of rosamultin improved survival, limited leukocyte depletion, and reduced damage to the spleen and small intestine in irradiated mice. Rosamultin reversed the downregulation of the apoptotic protein BCL-2 and the upregulation of BAX in irradiated mouse small intestine tissue and in irradiation-induced small intestinal epithelial cells. DNA-PKcs antagonists reversed the promoting DNA repair effects of rosamulin. Detailed mechanistic studies revealed that rosamultin promoted Translin-associated protein X (TRAX) into the nucleus. Knockdown of TRAX reduced the protective effect of rosamultin against DNA damage. In addition, rosamultin reduced irradiation-induced oxidative stress through promoting Nrf2/HO-1 signaling pathway. To sum up, in vitro and in vivo experiments using genetic knockdown and pharmacological activation demonstrated that rosamultin exerts radioprotection via the TRAX/NHEJ and Nrf2/HO pathways.
Collapse
Affiliation(s)
- Ning Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengxin Niu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Saiyan Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lijuan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoxiao Quan
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, 100850, China
| | - Jingquan Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
2
|
Jagadeesan SK, Potter T, Al-Gafari M, Hooshyar M, Hewapathirana CM, Takallou S, Hajikarimlou M, Burnside D, Samanfar B, Moteshareie H, Smith M, Golshani A. Discovery and identification of genes involved in DNA damage repair in yeast. Gene 2022; 831:146549. [PMID: 35569766 DOI: 10.1016/j.gene.2022.146549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
DNA repair defects are common in tumour cells and can lead to misrepair of double-strand breaks (DSBs), posing a significant challenge to cellular integrity. The overall mechanisms of DSB have been known for decades. However, the list of the genes that affect the efficiency of DSB repair continues to grow. Additional factors that play a role in DSB repair pathways have yet to be identified. In this study, we present a computational approach to identify novel gene functions that are involved in DNA damage repair in Saccharomyces cerevisiae. Among the primary candidates, GAL7, YMR130W, and YHI9 were selected for further analysis since they had not previously been identified as being active in DNA repair pathways. Originally, GAL7 was linked to galactose metabolism. YHI9 and YMR130W encode proteins of unknown functions. Laboratory testing of deletion strains gal7Δ, ymr130wΔ, and yhi9Δ implicated all 3 genes in Homologous Recombination (HR) and/or Non-Homologous End Joining (NHEJ) repair pathways, and enhanced sensitivity to DNA damage-inducing drugs suggested involvement in the broader DNA damage repair machinery. A subsequent genetic interaction analysis revealed interconnections of these three genes, most strikingly through SIR2, SIR3 and SIR4 that are involved in chromatin regulation and DNA damage repair network.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Taylor Potter
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Mohsen Hooshyar
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | | | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Daniel Burnside
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada.
| | - Houman Moteshareie
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Myron Smith
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Actin-Related Protein 6 (Arp6) Influences Double-Strand Break Repair in Yeast. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA double-strand breaks (DSBs) are the most deleterious form of DNA damage and are repaired through non-homologous end-joining (NHEJ) or homologous recombination (HR). Repair initiation, regulation and communication with signaling pathways require several histone-modifying and chromatin-remodeling complexes. In budding yeast, this involves three primary complexes: INO80-C, which is primarily associated with HR, SWR1-C, which promotes NHEJ, and RSC-C, which is involved in both pathways as well as the general DNA damage response. Here we identify ARP6 as a factor involved in DSB repair through an RSC-C-related pathway. The loss of ARP6 significantly reduces the NHEJ repair efficiency of linearized plasmids with cohesive ends, impairs the repair of chromosomal breaks, and sensitizes cells to DNA-damaging agents. Genetic interaction analysis indicates that ARP6, MRE11 and RSC-C function within the same pathway, and the overexpression of ARP6 rescues rsc2∆ and mre11∆ sensitivity to DNA-damaging agents. Double mutants of ARP6, and members of the INO80 and SWR1 complexes, cause a significant reduction in repair efficiency, suggesting that ARP6 functions independently of SWR1-C and INO80-C. These findings support a novel role for ARP6 in DSB repair that is independent of the SWR1 chromatin remodeling complex, through an apparent RSC-C and MRE11-associated DNA repair pathway.
Collapse
|
4
|
Jessulat M, Amin S, Hooshyar M, Malty R, Moutaoufik MT, Zilocchi M, Istace Z, Phanse S, Aoki H, Omidi K, Burnside D, Samanfar B, Aly KA, Golshani A, Babu M. The conserved Tpk1 regulates non-homologous end joining double-strand break repair by phosphorylation of Nej1, a homolog of the human XLF. Nucleic Acids Res 2021; 49:8145-8160. [PMID: 34244791 PMCID: PMC8373142 DOI: 10.1093/nar/gkab585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 02/03/2023] Open
Abstract
The yeast cyclic AMP-dependent protein kinase A (PKA) is a ubiquitous serine-threonine kinase, encompassing three catalytic (Tpk1-3) and one regulatory (Bcy1) subunits. Evidence suggests PKA involvement in DNA damage checkpoint response, but how DNA repair pathways are regulated by PKA subunits remains inconclusive. Here, we report that deleting the tpk1 catalytic subunit reduces non-homologous end joining (NHEJ) efficiency, whereas tpk2-3 and bcy1 deletion does not. Epistatic analyses revealed that tpk1, as well as the DNA damage checkpoint kinase (dun1) and NHEJ factor (nej1), co-function in the same pathway, and parallel to the NHEJ factor yku80. Chromatin immunoprecipitation and resection data suggest that tpk1 deletion influences repair protein recruitments and DNA resection. Further, we show that Tpk1 phosphorylation of Nej1 at S298 (a Dun1 phosphosite) is indispensable for NHEJ repair and nuclear targeting of Nej1 and its binding partner Lif1. In mammalian cells, loss of PRKACB (human homolog of Tpk1) also reduced NHEJ efficiency, and similarly, PRKACB was found to phosphorylate XLF (a Nej1 human homolog) at S263, a corresponding residue of the yeast Nej1 S298. Together, our results uncover a new and conserved mechanism for Tpk1 and PRKACB in phosphorylating Nej1 (or XLF), which is critically required for NHEJ repair.
Collapse
Affiliation(s)
- Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Shahreen Amin
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Ramy Malty
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | | | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zoe Istace
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Katayoun Omidi
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Daniel Burnside
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1S5 B6, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
5
|
Zhao S, Chen Y, Chen F, Huang D, Shi H, Lo LJ, Chen J, Peng J. Sas10 controls ribosome biogenesis by stabilizing Mpp10 and delivering the Mpp10-Imp3-Imp4 complex to nucleolus. Nucleic Acids Res 2019; 47:2996-3012. [PMID: 30773582 PMCID: PMC6451133 DOI: 10.1093/nar/gkz105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 01/19/2023] Open
Abstract
Mpp10 forms a complex with Imp3 and Imp4 that serves as a core component of the ribosomal small subunit (SSU) processome. Mpp10 also interacts with the nucleolar protein Sas10/Utp3. However, it remains unknown how the Mpp10-Imp3-Imp4 complex is delivered to the nucleolus and what biological function the Mpp10-Sas10 complex plays. Here, we report that the zebrafish Mpp10 and Sas10 are conserved nucleolar proteins essential for the development of the digestive organs. Mpp10, but not Sas10/Utp3, is a target of the nucleolus-localized Def-Capn3 protein degradation pathway. Sas10 protects Mpp10 from Capn3-mediated cleavage by masking the Capn3-recognition site on Mpp10. Def interacts with Sas10 to form the Def-Sas10-Mpp10 complex to facilitate the Capn3-mediated cleavage of Mpp10. Importantly, we found that Sas10 determines the nucleolar localization of the Mpp10-Imp3-Imp4 complex. In conclusion, Sas10 is essential not only for delivering the Mpp10-Imp3-Imp4 complex to the nucleolus for assembling the SSU processome but also for fine-tuning Mpp10 turnover in the nucleolus during organogenesis.
Collapse
Affiliation(s)
- Shuyi Zhao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yayue Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Delai Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Tomita T, Ieguchi K, Takita M, Tsukahara F, Yamada M, Egly JM, Maru Y. C1D is not directly involved in the repair of UV-damaged DNA but protects cells from oxidative stress by regulating gene expressions in human cell lines. J Biochem 2019; 164:415-426. [PMID: 30165670 DOI: 10.1093/jb/mvy069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/24/2018] [Indexed: 11/14/2022] Open
Abstract
A small nuclear protein, C1D, has roles in various cellular processes, transcription regulation, genome stability surveillance, DNA repair and RNA processing, all of which are required to maintain the host life cycles. In the previous report, C1D directly interacts with XPB, a component of the nucleotide excision repair complex, and C1D knockdown reduced cell survival of 27-1 cells, CHO derivative cells, after UV irradiation. To find out the role of C1D in UV-damaged cells, we used human cell lines with siRNA or shRNA to knockdown C1D. C1D knockdown reduced cell survival rates of LU99 and 786-O after UV irradiation, although C1D knockdown did not affect the efficiency of the nucleotide excision repair. Immunostaining data support that C1D is not directly involved in the DNA repair process in UV-damaged cells. However, H2O2 treatment reduced cell viability in LU99 and 786-O cells. We also found that C1D knockdown upregulated DDIT3 expression in LU99 cells and downregulated APEX1 in 786-O cells, suggesting that C1D functions as a co-repressor/activator. The data accounts for the reduction of cell survival rates upon UV irradiation.
Collapse
Affiliation(s)
- Takeshi Tomita
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Morichika Takita
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Fujiko Tsukahara
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Masayuki Yamada
- Center for Medical Education, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS/INSERM/UdS 1, rue Laurent Fries, BP163 F-67404 Illkirch Cedex, France
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| |
Collapse
|
7
|
Trax: A versatile signaling protein plays key roles in synaptic plasticity and DNA repair. Neurobiol Learn Mem 2018; 159:46-51. [PMID: 30017897 DOI: 10.1016/j.nlm.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 01/23/2023]
Abstract
Translin-associated protein X (TSNAX), also called trax, was first identified as a protein that interacts with translin. Subsequent studies demonstrated that these proteins form a heteromeric RNase complex that mediates degradation of microRNAs, a pivotal finding that has stimulated interest in understanding the role of translin and trax in cell signaling. Recent studies addressing this question have revealed that trax plays key roles in both synaptic plasticity and DNA repair signaling pathways. In the context of synaptic plasticity, trax works together with its partner protein, translin, to degrade a subset of microRNAs. Activation of the translin/trax RNase complex reverses microRNA-mediated translational silencing to trigger dendritic protein synthesis critical for synaptic plasticity. In the context of DNA repair, trax binds to and activates ATM, a central component of the double-stranded DNA repair process. Thus, these studies focus attention on trax as a critical signaling protein that interacts with multiple partners to impact diverse signaling pathways. To stimulate interest in deciphering the multifaceted role of trax in cell signaling, we summarize the current understanding of trax biology and highlight gaps in our knowledge about this protean protein.
Collapse
|
8
|
Omidi K, Jessulat M, Hooshyar M, Burnside D, Schoenrock A, Kazmirchuk T, Hajikarimlou M, Daniel M, Moteshareie H, Bhojoo U, Sanders M, Ramotar D, Dehne F, Samanfar B, Babu M, Golshani A. Uncharacterized ORF HUR1 influences the efficiency of non-homologous end-joining repair in Saccharomyces cerevisiae. Gene 2018; 639:128-136. [DOI: 10.1016/j.gene.2017.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/25/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
9
|
Jackson RA, Wu JS, Chen ES. C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response. Cell Div 2016; 11:2. [PMID: 27030795 PMCID: PMC4812661 DOI: 10.1186/s13008-016-0014-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 12/02/2022] Open
Abstract
Research on the involvement of C1D and its yeast homologues Rrp47 (S. cerevisiae) and Cti1 (S. pombe) in DNA damage repair and RNA processing has remained mutually exclusive, with most studies predominantly concentrating on Rrp47. This review will look to reconcile the functions of these proteins in their involvement with the RNA exosome, in the regulation of chromatin architecture, and in the repair of DNA double-strand breaks, focusing on non-homologous end joining and homologous recombination. We propose that C1D is situated in a central position to maintain genomic stability at highly transcribed gene loci by coordinating these processes through the timely recruitment of relevant regulatory factors. In the event that the damage is beyond repair, C1D induces apoptosis in a p53-dependent manner.
Collapse
Affiliation(s)
- Rebecca A Jackson
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Jocelyn Shumei Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore ; National University Health System (NUHS), Singapore, 119228 Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119228 Singapore
| |
Collapse
|
10
|
The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17:227-39. [PMID: 26726035 DOI: 10.1038/nrm.2015.15] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RNA exosome complex is the most versatile RNA-degradation machine in eukaryotes. The exosome has a central role in several aspects of RNA biogenesis, including RNA maturation and surveillance. Moreover, it is emerging as an important player in regulating the expression levels of specific mRNAs in response to environmental cues and during cell differentiation and development. Although the mechanisms by which RNA is targeted to (or escapes from) the exosome are still not fully understood, general principles have begun to emerge, which we discuss in this Review. In addition, we introduce and discuss novel, previously unappreciated functions of the nuclear exosome, including in transcription regulation and in the maintenance of genome stability.
Collapse
|
11
|
Wang JY, Chen SY, Sun CN, Chien T, Chern Y. A central role of TRAX in the ATM-mediated DNA repair. Oncogene 2015; 35:1657-70. [PMID: 26096928 DOI: 10.1038/onc.2015.228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
DNA repair is critical for the maintenance of genome stability. Upon genotoxic stress, dysregulated DNA repair may induce apoptosis. Translin-associated factor X (TRAX), which was initially identified as a binding partner of Translin, has been implicated in genome stability. However, the exact role of TRAX in DNA repair remains largely unknown. Here, we showed that TRAX participates in the ATM/H2AX-mediated DNA repair machinery by interacting with ATM and stabilizing the MRN complex at double-strand breaks. The exogenous expression of wild-type (WT) TRAX, but not a TRAX variant lacking the nuclear localization signal (NLS), rescued the vulnerability of TRAX-null mouse embryo fibroblasts (MEFs). This finding confirms the importance of the nuclear localization of TRAX in the repair of DNA damage. Compared with WT MEFs, TRAX-null MEFs exhibited impaired DNA repair (for example, reduced phosphorylation of ATM and H2AX) after treatment with ultra violet-C or γ-ray irradiation and a higher incidence of p53-mediated apoptosis. Our findings demonstrate that TRAX is required for MRN complex-ATM-H2AX signaling, which optimizes DNA repair by interacting with the activated ATM and protects cells from genotoxic stress-induced apoptosis.
Collapse
Affiliation(s)
- J-Y Wang
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - S-Y Chen
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - C-N Sun
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - T Chien
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Y Chern
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
12
|
Spindle Checkpoint Factors Bub1 and Bub2 Promote DNA Double-Strand Break Repair by Nonhomologous End Joining. Mol Cell Biol 2015; 35:2448-63. [PMID: 25963654 DOI: 10.1128/mcb.00007-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022] Open
Abstract
The nonhomologous end-joining (NHEJ) pathway is essential for the preservation of genome integrity, as it efficiently repairs DNA double-strand breaks (DSBs). Previous biochemical and genetic investigations have indicated that, despite the importance of this pathway, the entire complement of genes regulating NHEJ remains unknown. To address this, we employed a plasmid-based NHEJ DNA repair screen in budding yeast (Saccharomyces cerevisiae) using 369 putative nonessential DNA repair-related components as queries. Among the newly identified genes associated with NHEJ deficiency upon disruption are two spindle assembly checkpoint kinases, Bub1 and Bub2. Both observation of resulting phenotypes and chromatin immunoprecipitation demonstrated that Bub1 and -2, either alone or in combination with cell cycle regulators, are recruited near the DSB, where phosphorylated Rad53 or H2A accumulates. Large-scale proteomic analysis of Bub kinases phosphorylated in response to DNA damage identified previously unknown kinase substrates on Tel1 S/T-Q sites. Moreover, Bub1 NHEJ function appears to be conserved in mammalian cells. 53BP1, which influences DSB repair by NHEJ, colocalizes with human BUB1 and is recruited to the break sites. Thus, while Bub is not a core component of NHEJ machinery, our data support its dual role in mitotic exit and promotion of NHEJ repair in yeast and mammals.
Collapse
|
13
|
de Souza TA, Soprano AS, de Lira NPV, Quaresma AJC, Pauletti BA, Leme AFP, Benedetti CE. The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U) RNA. PLoS One 2012; 7:e32305. [PMID: 22384209 PMCID: PMC3285215 DOI: 10.1371/journal.pone.0032305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/26/2012] [Indexed: 11/29/2022] Open
Abstract
Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL) effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC), a translin-associated factor X (CsTRAX), a VirE2-interacting protein (CsVIP2), a high mobility group (CsHMG) and two poly(A)-binding proteins (CsPABP1 and 2), interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U) RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Celso Eduardo Benedetti
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
14
|
Sjakste N, Bielskiene K, Bagdoniene L, Labeikyte D, Gutcaits A, Vassetzky Y, Sjakste T. Tightly bound to DNA proteins: Possible universal substrates for intranuclear processes. Gene 2012; 492:54-64. [PMID: 22001404 DOI: 10.1016/j.gene.2011.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 01/05/2023]
Affiliation(s)
- N Sjakste
- Faculty of Medicine, University of Latvia, Šarlotes 1a, LV1001, Riga, Latvia
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The Sas10/C1D domain is found in a small group of eukaryotic proteins that have functions in RNA processing events, translational control and DNA repair mechanisms. The domain is predicted to be alpha-helical in nature and comprises approx. 80 amino acid residues. Whereas the Sas10/C1D domain has yet to be functionally characterized, available results suggest that this domain forms a binding surface for specific interactions with other proteins and can concomitantly interact with RNA or DNA. This property of the Sas10/C1D domain may facilitate this family of proteins to dock other proteins on to nucleic acid substrates.
Collapse
|
16
|
Griese JJ, Witte G, Hopfner KP. Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins. Nucleic Acids Res 2010; 38:3454-65. [PMID: 20139420 PMCID: PMC2879519 DOI: 10.1093/nar/gkq038] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 01/13/2023] Open
Abstract
Structural Maintenance of Chromosomes (SMC) proteins are vital for a wide range of processes including chromosome structure and dynamics, gene regulation and DNA repair. Eukaryotes have three SMC complexes, consisting of heterodimeric pairs of six different SMC proteins along with several specific regulatory subunits. In addition to their other functions, all three SMC complexes play distinct roles in DNA repair. Cohesin (SMC1-SMC3) is involved in DNA double-strand break repair, condensin (SMC2-SMC4) participates in single-strand break (SSB) repair, and the SMC5-SMC6 complex functions in various DNA repair pathways. SMC proteins consist of N- and C-terminal domains that fold back onto each other to create an ATPase 'head' domain, connected to a central 'hinge' domain via long coiled-coils. The hinge domain mediates dimerization of SMC proteins and binds DNA, but it is not clear to what purpose this activity serves. We studied the structure and function of the condensin hinge domain from mouse. While the SMC hinge domain structure is largely conserved from prokaryotes to eukaryotes, its function seems to have diversified throughout the course of evolution. The condensin hinge domain preferentially binds single-stranded DNA. We propose that this activity plays a role in the SSB repair function of the condensin complex.
Collapse
Affiliation(s)
| | | | - Karl-Peter Hopfner
- Department of Biochemistry, Gene Center, Center for Integrated Protein Sciences and Munich Center for Advanced Photonics, Ludwig-Maximilians University Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| |
Collapse
|
17
|
Butler JS, Mitchell P. Rrp6, Rrp47 and Cofactors of the Nuclear Exosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:91-104. [DOI: 10.1007/978-1-4419-7841-7_8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Kvikstad EM, Chiaromonte F, Makova KD. Ride the wavelet: A multiscale analysis of genomic contexts flanking small insertions and deletions. Genome Res 2009; 19:1153-64. [PMID: 19502380 DOI: 10.1101/gr.088922.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have revealed that insertions and deletions (indels) are more different in their formation than previously assumed. What remains enigmatic is how the local DNA sequence context contributes to these differences. To investigate the relative impact of various molecular mechanisms to indel formation, we analyzed sequence contexts of indels in the non protein- or RNA-coding, nonrepetitive (NCNR) portion of the human genome. We considered small (<or=30-bp) indels occurring in the human lineage since its divergence from chimpanzee and used wavelet techniques to study, simultaneously for multiple scales, the spatial patterns of short sequence motifs associated with indel mutagenesis. In particular, we focused on motifs associated with DNA polymerase activity, topoisomerase cleavage, double-strand breaks (DSBs), and their repair. We came to the following conclusions. First, many motifs are characterized by unique enrichment profiles in the vicinity of indels vs. indel-free portions of the genome, verifying the importance of sequence context in indel mutagenesis. Second, only limited similarity in motif frequency profiles is evident flanking insertions vs. deletions, confirming differences in their mutagenesis. Third, substantial similarity in frequency profiles exists between pairs of individual motifs flanking insertions (and separately deletions), suggesting "cooperation" among motifs, and thus molecular mechanisms, during indel formation. Fourth, the wavelet analyses demonstrate that all these patterns are highly dependent on scale (the size of an interval considered). Finally, our results depict a model of indel mutagenesis comprising both replication and recombination (via repair of paused replication forks and site-specific recombination).
Collapse
Affiliation(s)
- Erika M Kvikstad
- Center for Comparative Genomics and Bioinformatics, Penn State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
19
|
Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO J 2007; 26:4996-5006. [PMID: 18007593 PMCID: PMC2080816 DOI: 10.1038/sj.emboj.7601921] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 10/19/2007] [Indexed: 11/10/2022] Open
Abstract
Trf4 is the poly(A) polymerase component of TRAMP4, which stimulates nuclear RNA degradation by the exosome. We report that in Saccharomyces cerevisiae strains lacking Trf4, cryptic transcripts are detected from regions of repressed chromatin at telomeres and the rDNA intergenic spacer region (IGS1-R), and at CEN3. Degradation of the IGS1-R transcript was reduced in strains lacking TRAMP components, the core exosome protein Mtr3 or the nuclear-specific exosome component Rrp6. IGS1-R has potential binding sites for the RNA-binding proteins Nrd1/Nab3, and was stabilized by mutation of Nrd1. IGS1-R passes through the replication fork barrier, a region required for rDNA copy number control. Strains lacking Trf4 showed sporadic changes in rDNA copy number, whereas loss of both Trf4 and either the histone deacetylase Sir2 or the topoisomerase Top1 caused dramatic loss of rDNA repeats. Chromatin immunoprecipitation analyses showed that Trf4 is co-transcriptionally recruited to IGS1-R, consistent with a direct role in rDNA stability. Co-transcriptional RNA binding by Trf4 may link RNA and DNA metabolism and direct immediate IGS1-R degradation by the exosome following transcription termination.
Collapse
|
20
|
Interacting proteins Rtt109 and Vps75 affect the efficiency of non-homologous end-joining in Saccharomyces cerevisiae. Arch Biochem Biophys 2007; 469:157-64. [PMID: 18036332 DOI: 10.1016/j.abb.2007.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/15/2007] [Accepted: 11/03/2007] [Indexed: 11/22/2022]
Abstract
One of the key pathways for DNA double-stranded break (DSB) repair is the non-homologous end-joining (NHEJ) pathway, which directly re-ligates two broken ends of DNA. Using a plasmid repair assay screen, we identified that the deletion strain for RTT109 had a reduced efficiency for NHEJ in yeast. This deletion strain also had a reduced efficiency to repair induced chromosomal DSBs in vivo. Tandem-affinity purification of Rtt109 recovered Vps75 as a physical interacting protein. Deletion of VPS75 was also shown to have an effect on the efficiency of NHEJ in both the plasmid repair and the chromosomal repair assays. In addition, deletion mutants for both RTT109 and VPS75 showed hypersensitivity to different DNA damaging agents. Our genetic interaction analysis supports a role for RTT109 in DNA damage repair. We propose that one function of the Rtt109-Vps75 interacting protein pair is to affect the efficiency of NHEJ in yeast. Vps75 but not Rtt109 also seem to have an effect on the efficiency of DSB repair using homologous recombination.
Collapse
|
21
|
Jaendling A, Ramayah S, Pryce DW, McFarlane RJ. Functional characterisation of the Schizosaccharomyces pombe homologue of the leukaemia-associated translocation breakpoint binding protein translin and its binding partner, TRAX. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:203-13. [PMID: 18062930 DOI: 10.1016/j.bbamcr.2007.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 09/10/2007] [Accepted: 10/25/2007] [Indexed: 11/25/2022]
Abstract
Translin is a conserved protein which associates with the breakpoint junctions of chromosomal translocations linked with the development of some human cancers. It binds to both DNA and RNA and has been implicated in mRNA metabolism and regulation of genome stability. It has a binding partner, translin-associated protein X (TRAX), levels of which are regulated by the translin protein in higher eukaryotes. In this study we find that this regulatory function is conserved in the lower eukaryotes, suggesting that translin and TRAX have important functions which provide a selective advantage to both unicellular and multi-cellular eukaryotes, indicating that this function may not be tissue-specific in nature. However, to date, the biological importance of translin and TRAX remains unclear. Here we systematically investigate proposals that suggest translin and TRAX play roles in controlling mitotic cell proliferation, DNA damage responses, genome stability, meiotic/mitotic recombination and stability of GT-rich repeat sequences. We find no evidence for translin and/or TRAX primary function in these pathways, indicating that the conserved biochemical function of translin is not implicated in primary pathways for regulating genome stability and/or segregation.
Collapse
Affiliation(s)
- Alessa Jaendling
- North West Cancer Research Fund Institute, University of Wales Bangor, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | | | | | | |
Collapse
|
22
|
Stead JA, Costello JL, Livingstone MJ, Mitchell P. The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Nucleic Acids Res 2007; 35:5556-67. [PMID: 17704127 PMCID: PMC2018643 DOI: 10.1093/nar/gkm614] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The exosome complex is a key component of the cellular RNA surveillance machinery and is required for normal 3′ end processing of many stable RNAs. Exosome activity requires additional factors such as the Ski or TRAMP complexes to activate the complex or facilitate substrate binding. Rrp47p promotes the catalytic activity of the exosome component Rrp6p, but its precise function is unknown. Here we show that recombinant Rrp47p is expressed as an apparently hexameric complex that specifically binds structured nucleic acids. Furthermore, pull-down assays demonstrated that Rrp47p interacts directly with the N-terminal region of Rrp6p that contains the functionally uncharacterized PMC2NT domain. Strains expressing a mutant form of Rrp6p lacking the N-terminal region failed to accumulate Rrp47p at normal levels, exhibited a slow growth phenotype characteristic of rrp47-Δ mutants and showed RNA processing defects consistent with loss of Rrp47p function. These findings suggest Rrp47p promotes Rrp6p activity by facilitating binding via the PMC2NT domain to structural elements within RNA. Notably, characterized Rrp6p substrates such as the 5.8S+30 species are predicted to contain helices at their 3′ termini, while others such as intergenic or antisense cryptic unstable transcripts could potentially form extensive double-stranded molecules with overlapping mRNAs.
Collapse
Affiliation(s)
| | | | | | - Phil Mitchell
- *To whom correspondence should be addressed. +44 114 222 2821+44 0114 222 2800
| |
Collapse
|
23
|
Wu X, Zhu L, Guo J, Zhang DY, Lin K. Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations. Nucleic Acids Res 2006; 34:2137-50. [PMID: 16641319 PMCID: PMC1449908 DOI: 10.1093/nar/gkl219] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A map of protein-protein interactions provides valuable insight into the cellular function and machinery of a proteome. By measuring the similarity between two Gene Ontology (GO) terms with a relative specificity semantic relation, here, we proposed a new method of reconstructing a yeast protein-protein interaction map that is solely based on the GO annotations. The method was validated using high-quality interaction datasets for its effectiveness. Based on a Z-score analysis, a positive dataset and a negative dataset for protein-protein interactions were derived. Moreover, a gold standard positive (GSP) dataset with the highest level of confidence that covered 78% of the high-quality interaction dataset and a gold standard negative (GSN) dataset with the lowest level of confidence were derived. In addition, we assessed four high-throughput experimental interaction datasets using the positives and the negatives as well as GSPs and GSNs. Our predicted network reconstructed from GSPs consists of 40,753 interactions among 2259 proteins, and forms 16 connected components. We mapped all of the MIPS complexes except for homodimers onto the predicted network. As a result, approximately 35% of complexes were identified interconnected. For seven complexes, we also identified some nonmember proteins that may be functionally related to the complexes concerned. This analysis is expected to provide a new approach for predicting the protein-protein interaction maps from other completely sequenced genomes with high-quality GO-based annotations.
Collapse
Affiliation(s)
| | | | | | | | - Kui Lin
- To whom correspondence should be addressed. Tel: +86 10 58805045; Fax: +86 10 58807721;
| |
Collapse
|
24
|
Dip R, Naegeli H. More than just strand breaks: the recognition of structural DNA discontinuities by DNA-dependent protein kinase catalytic subunit. FASEB J 2005; 19:704-15. [PMID: 15857885 DOI: 10.1096/fj.04-3041rev] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a trimeric factor originally identified as an enzyme that becomes activated upon incubation with DNA. Genetic defects in either the catalytic subunit (DNA-PK(CS)) or the two Ku components of DNA-PK result in immunodeficiency, radiosensitivity, and premature aging. This combined phenotype is generally attributed to the requirement for DNA-PK in the repair of DNA double strand breaks during various biological processes. However, recent studies revealed that DNA-PK(CS), a member of the growing family of phosphatidylinositol 3-kinases, participates in signal transduction cascades related to apoptotic cell death, telomere maintenance and other pathways of genome surveillance. These manifold functions of DNA-PK(CS) have been associated with an increasing number of protein interaction partners and phosphorylation targets. Here we review the DNA binding properties of DNA-PK(CS) and highlight its ability to interact with an astounding diversity of nucleic acid substrates. This survey indicates that the large catalytic subunit of DNA-PK functions as a sensor of not only broken DNA molecules, but of a wider spectrum of aberrant, unusual, or specialized structures that interrupt the standard double helical conformation of DNA.
Collapse
Affiliation(s)
- Ramiro Dip
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
25
|
Abstract
DNA-PK is a protein complex that consists of a DNA-binding, regulatory subunit [Ku] and a larger approximately 465 kDa catalytic subunit [DNA-PKcs], a serine/threonine protein kinase. The kinase activity of DNA-PKcs resides between residues 3745 and 4013, a PI3 kinase domain. Another recognized domain within this large protein is a leucine zipper (LZ) motif or perhaps more appropriately designated a leucine rich region (LRR) that spans residues 1503-1602. Whereas, DNA-PK's kinase activity has been shown to be absolutely indispensable for its function in non-homologous end joining (NHEJ), little is known about the functional relevance of the LRR. Here we show that DNA-PKcs with point mutations in the LRR can only partially reverse the radiosensitive phenotype and V(D)J recombination deficits of DNA-PKcs deficient cells. Disruption of the LRR motif affects the ability to purify DNA-PKcs via its binding to DNA-cellulose, but does not affect its interaction with Ku or its catalytic activity. These data suggest that the LRR region of DNA-PKcs may contribute to its intrinsic DNA affinity, and moreover, that intrinsic DNA binding is important for optimal function of DNA-PKcs in repairing double strand breaks in living cells.
Collapse
Affiliation(s)
- Shikha Gupta
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine Michigan State UniversityEast Lansing, MI 48824, USA
| | - Katheryn Meek
- To whom correspondence should be addressed. Tel: +1 517 432 9505; Fax: +1 517 353 9004;
| |
Collapse
|
26
|
Zhang N, Kaur R, Lu X, Shen X, Li L, Legerski RJ. The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J Biol Chem 2005; 280:40559-67. [PMID: 16223718 DOI: 10.1074/jbc.m508453200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA interstrand cross-links (ICLs) are perhaps the most formidable lesion encountered by the cellular DNA repair machinery, and the elucidation of the process by which they are removed in eukaryotic cells has proved a daunting task. In particular, the early stages of adduct recognition and uncoupling of the cross-link have remained elusive principally because genetic studies have not been highly revealing. We have developed a biochemical assay in which processing of a DNA substrate containing a site-specific psoralen ICL can be monitored in vitro. Using this assay we have shown previously that the mismatch repair factor MutSbeta, the nucleotide excision repair heterodimer Ercc1-Xpf, and the replication proteins RPA and PCNA are involved in an early stage of psoralen ICL processing. Here, we report the identification of two additional factors required in the ICL repair process, a previously characterized pre-mRNA splicing complex composed of Pso4/Prp19, Cdc5L, Plrg1, and Spf27 (Pso4 complex), and WRN the protein deficient in Werner syndrome. Analysis of the WRN protein indicates that its DNA helicase function, but not its exonuclease activity, is required for ICL processing in vitro. In addition, we show that WRN and the Pso4 complex interact through a direct physical association between WRN and Cdc5L. A putative model for uncoupling of ICLs in mammalian cells is presented.
Collapse
Affiliation(s)
- Nianxiang Zhang
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chai B, Huang J, Cairns BR, Laurent BC. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 2005; 19:1656-61. [PMID: 16024655 PMCID: PMC1176001 DOI: 10.1101/gad.1273105] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The failure of cells to repair damaged DNA can result in genomic instability and cancer. To efficiently repair chromosomal DNA lesions, the repair machinery must gain access to the damaged DNA in the context of chromatin. Here we report that both the RSC and Swi/Snf ATP-dependent chromatin-remodeling complexes play key roles in double-strand break (DSB) repair, specifically by homologous recombination (HR). RSC and Swi/Snf are each recruited to an in vivo DSB site but with distinct kinetics. We show that Swi/Snf is required earlier, at or preceding the strand invasion step of HR, while RSC is required following synapsis for completion of the recombinational repair event.
Collapse
Affiliation(s)
- Bob Chai
- Department of Microbiology and Immunology and Morse Institute for Molecular Genetics, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Efficient repair of DNA double-strand breaks is essential for the maintenance of chromosomal integrity. In higher eukaryotes, non-homologous end-joining (NHEJ) DNA is the primary pathway that repairs these breaks. NHEJ also functions in developing lymphocytes to repair strand breaks that occur during V(D)J recombination, the site-specific recombination process that provides for the assembly of functional antigen-receptor genes. If V(D)J recombination is impaired, B- and T-lymphocyte development is blocked resulting in severe combined immunodeficiency disease. In the last decade, an intensive research effort has focused on NHEJ resulting in a reasonable understanding of how double-strand breaks are resolved. Six distinct gene products have been identified that function in this pathway (Ku70, Ku86, XRCC4, DNA ligase IV, Artemis, and DNA-PKcs). Three of these comprise one complex, the DNA-dependent protein kinase (DNA-PK). This protein complex is central during NHEJ, because DNA-PK initially recognizes and binds to the damaged DNA and then targets the other repair activities to the site of DNA damage. In this review, we discuss recent developments that have provided insight into how DNA-PK functions, once bound to DNA ends.
Collapse
Affiliation(s)
- Katheryn Meek
- College of Veterinary Medicine and Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
29
|
Dip R, Naegeli H. Binding of the DNA-dependent protein kinase catalytic subunit to Holliday junctions. Biochem J 2004; 381:165-74. [PMID: 15035658 PMCID: PMC1133774 DOI: 10.1042/bj20031666] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 03/03/2004] [Accepted: 03/22/2004] [Indexed: 11/17/2022]
Abstract
DNA-PK (DNA-dependent protein kinase) is a double-strand break sensor involved in DNA repair and signal transduction. In the present study, we constructed site-directed cross-linking probes to explore the range of DNA discontinuities that are recognized by DNA-PK(CS) (DNA-PK catalytic subunit). A comparison between different substrate architectures showed that DNA-PK(CS) associates preferentially with the crossover region of synthetic Holliday junctions. This interaction with four-way junctions was preserved when biotin-streptavidin complexes were assembled at the termini to exclude the binding of Ku proteins. The association of DNA-PK(CS) with Holliday junctions was salt-labile even in the presence of Ku proteins, but this interaction could be stabilized when the DNA probes were incubated with the endogenous enzyme in nuclear extracts of human cells. Cross-linking of the endogenous enzyme in cellular extracts also demonstrated that DNA-PK(CS) binds to DNA ends and four-way junctions with similar affinities in the context of a nuclear protein environment. Kinase assays using p53 proteins as a substrate showed that, in association with four-way structures, DNA-PK(CS) adopts an active conformation different from that in the complex with linear DNA. Our results are consistent with a structure-specific, but Ku- and DNA end-independent, recruitment of DNA-PK(CS) to Holliday junction intermediates. This observation suggests an unexpected functional link between the two main pathways that are responsible for the repair of DNA double-strand breaks in mammalian cells.
Collapse
Affiliation(s)
- Ramiro Dip
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, Winterthurerstrasse 260, 8057 Zürich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, Winterthurerstrasse 260, 8057 Zürich, Switzerland
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
30
|
Abstract
Nuclear export of mRNA is a central step in gene expression that shows extensive coupling to transcription and transcript processing. However, little is known about the fate of mRNA and its export under conditions that damage the DNA template and RNA itself. Here we report the discovery of four new factors required for mRNA export through a screen of all annotated nonessential Saccharomyces cerevisiae genes. Two of these factors, mRNA surveillance factor Rrp6 and DNA repair protein Lrp1, are nuclear exosome components that physically interact with one another. We find that Lrp1 mediates specific mRNA degradation upon DNA-damaging UV irradiation as well as general mRNA degradation. Lrp1 requires Rrp6 for genomic localization to genes encoding its mRNA targets, and Rrp6 genomic localization in turn correlates with transcription. Further, Rrp6 and Lrp1 are both required for repair of UV-induced DNA damage. These results demonstrate coupling of mRNA surveillance to mRNA export and suggest specificity of the RNA surveillance machinery for different transcript populations. Broadly, these findings link DNA and RNA surveillance to mRNA export.
Collapse
Affiliation(s)
- Haley Hieronymus
- Department of Systems Biology, Harvard Medical School and the Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
31
|
Cho YS, Chennathukuzhi VM, Handel MA, Eppig J, Hecht NB. The relative levels of translin-associated factor X (TRAX) and testis brain RNA-binding protein determine their nucleocytoplasmic distribution in male germ cells. J Biol Chem 2004; 279:31514-23. [PMID: 15138261 DOI: 10.1074/jbc.m401442200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Testis brain RNA-binding protein (TB-RBP), the mouse orthologue of human translin, is an RNA and single-stranded DNA-binding protein abundant in testis and brain. Translin-associated factor X (TRAX) was identified as a protein that interacts with TB-RBP and is dependent upon TB-RBP for stabilization. Using immunohistochemistry to investigate the subcellular locations of TB-RBP and TRAX during spermatogenesis, both proteins localize in nuclei in meiotic pachytene spermatocytes and in the cytoplasm of subsequent meiotic and post-meiotic cells. An identical subcellular distribution is seen in female germ cells. Western blot analysis of germ cell protein extracts reveals an increased ratio of TRAX to TB-RBP in meiotic pachytene spermatocytes compared with the post-meiotic round and elongated spermatids. Using COS-1 cells and mouse embryonic fibroblasts derived from TB-RBP null mice as model systems to examine the shuttling of TB-RBP and TRAX, we demonstrate that TRAX contains a functional nuclear localization signal and TB-RBP contains a functional nuclear export signal. Coexpression of both proteins in COS-1 cells and TB-RBP-deficient mouse embryonic fibroblasts reveals that the ratio of TRAX to TB-RBP determines their subcellular locations, i.e. increased TRAX to TB-RBP ratios lead to nuclear localizations, whereas TRAX remains in the cytoplasm when TB-RBP levels are elevated. These subcellular distributions require interaction between TB-RBP and TRAX. We propose that the subcellular locations of TB-RBP and TRAX in male germ cells are modulated by the relative ratios of TRAX and TB-RBP.
Collapse
Affiliation(s)
- Yoon Shin Cho
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
32
|
Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C, Krauskopf A, Kupiec M, McEachern MJ. A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 2004; 101:8658-63. [PMID: 15161972 PMCID: PMC423251 DOI: 10.1073/pnas.0401263101] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Telomeres are nucleoprotein structures present at the ends of eukaryotic chromosomes that play a central role in guarding the integrity of the genome by protecting chromosome ends from degradation and fusion. Length regulation is central to telomere function. To broaden our knowledge about the mechanisms that control telomere length, we have carried out a systematic examination of approximately 4,800 haploid deletion mutants of Saccharomyces cerevisiae for telomere-length alterations. By using this screen, we have identified >150 candidate genes not previously known to affect telomere length. In two-thirds of the identified mutants, short telomeres were observed; whereas in one-third, telomeres were lengthened. The genes identified are very diverse in their functions, but certain categories, including DNA and RNA metabolism, chromatin modification, and vacuolar traffic, are overrepresented. Our results greatly enlarge the number of known genes that affect telomere metabolism and will provide insights into how telomere function is linked to many other cellular processes.
Collapse
Affiliation(s)
- Syed H Askree
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen ES, Sutani T, Yanagida M. Cti1/C1D interacts with condensin SMC hinge and supports the DNA repair function of condensin. Proc Natl Acad Sci U S A 2004; 101:8078-83. [PMID: 15148393 PMCID: PMC419560 DOI: 10.1073/pnas.0307976101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Condensin is a conserved five-subunit complex containing two SMC (structural maintenance of chromosomes) and three non-SMC subunits and plays a major role in mitotic chromosome condensation. Condensin also acts in interphase and is required for DNA repair and replication checkpoint control. We attempted to study the function of the condensin in greater detail by means of the isolation of interacting proteins with the two-hybrid system. Using the hinge domain of Cut3/SMC4 as bait, we found one Cut three-interacting (Cti) 14-kDa nuclear protein, Cti1. GST pull-down assay and immunoprecipitation supported physical interaction between Cti1 and condensin. Cti1 is similar to human C1D, which associates tightly with genomic DNA and functions to activate DNA protein kinase. SpC1D is essential for viability. The null mutant could germinate but arrest after replication, indicating that it is required for interphase growth. Importantly, an elevated dosage of spC1D suppressed the temperature, UV irradiation, and hydroxyurea sensitivity of the mutant of Cnd2, a non-SMC subunit of condensin. Upon exposure to hydroxyurea, spC1D accumulated on the nuclear chromatin, and the fraction of spC1D that was chromatin-bound increased. Cti1 is the first example of the protein that interacts with the hinge domain of SMC. Cti1 may have a supporting role for the DNA repair function of condensin.
Collapse
Affiliation(s)
- Ee Sin Chen
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
34
|
Mitchell P, Petfalski E, Houalla R, Podtelejnikov A, Mann M, Tollervey D. Rrp47p is an exosome-associated protein required for the 3' processing of stable RNAs. Mol Cell Biol 2003; 23:6982-92. [PMID: 12972615 PMCID: PMC193929 DOI: 10.1128/mcb.23.19.6982-6992.2003] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 05/23/2003] [Accepted: 07/03/2003] [Indexed: 11/20/2022] Open
Abstract
Related exosome complexes of 3'-->5' exonucleases are present in the nucleus and the cytoplasm. Purification of exosome complexes from whole-cell lysates identified a Mg(2+)-labile factor present in substoichiometric amounts. This protein was identified as the nuclear protein Yhr081p, the homologue of human C1D, which we have designated Rrp47p (for rRNA processing). Immunoprecipitation of epitope-tagged Rrp47p confirmed its interaction with the exosome and revealed its association with Rrp6p, a 3'-->5' exonuclease specific to the nuclear exosome fraction. Northern analyses demonstrated that Rrp47p is required for the exosome-dependent processing of rRNA and small nucleolar RNA (snoRNA) precursors. Rrp47p also participates in the 3' processing of U4 and U5 small nuclear RNAs (snRNAs). The defects in the processing of stable RNAs seen in rrp47-Delta strains closely resemble those of strains lacking Rrp6p. In contrast, Rrp47p is not required for the Rrp6p-dependent degradation of 3'-extended nuclear pre-mRNAs or the cytoplasmic 3'-->5' mRNA decay pathway. We propose that Rrp47p functions as a substrate-specific nuclear cofactor for exosome activity in the processing of stable RNAs.
Collapse
Affiliation(s)
- Philip Mitchell
- Wellcome Trust Centre for Cell Biology, Institute for Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
A method has been developed to identify proteins required for the biogenesis of non-coding RNA in yeast, using a microarray to screen for aberrant patterns of RNA processing in mutant strains, and new proteins involved in the processing of ribosomal and non-coding RNAs have been found. A method has been developed to identify proteins required for the biogenesis of non-coding RNA in yeast, using a microarray to screen for aberrant patterns of RNA processing in mutant strains, and new proteins involved in the processing of ribosomal and non-coding RNAs have been found.
Collapse
Affiliation(s)
- Sander Granneman
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan J Baserga
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
36
|
Chennathukuzhi V, Stein JM, Abel T, Donlon S, Yang S, Miller JP, Allman DM, Simmons RA, Hecht NB. Mice deficient for testis-brain RNA-binding protein exhibit a coordinate loss of TRAX, reduced fertility, altered gene expression in the brain, and behavioral changes. Mol Cell Biol 2003; 23:6419-34. [PMID: 12944470 PMCID: PMC193699 DOI: 10.1128/mcb.23.18.6419-6434.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Testis-brain RNA-binding protein (TB-RBP), the mouse orthologue of the human protein Translin, is a widely expressed and highly conserved protein with proposed functions in chromosomal translocations, mitotic cell division, and mRNA transport and storage. To better define the biological roles of TB-RBP, we generated mice lacking TB-RBP. Matings between heterozygotes gave rise to viable, apparently normal homozygous mutant mice at a normal Mendelian ratio. The TB-RBP-related and -interacting protein Translin-associated factor X was reduced to 50% normal levels in heterozygotes and was absent in TB-RBP-null animals. The null mice were 10 to 30% smaller than their wild-type or heterozygote littermates at birth and remained so to about 6 to 9 months of age, showed normal B- and T-cell development, and accumulated visceral fat. TB-RBP-null male mice were fertile and sired offspring but had abnormal seminiferous tubules and reduced sperm counts. Null female mice were subfertile and had reduced litter sizes. Microarray analysis of total brain RNA from null and wild-type mice revealed an altered gene expression profile with the up-regulation of 14 genes and the down-regulation of 217 genes out of 12,473 probe sets. Numerous neurotransmitter receptors and ion channels, including gamma-aminobutyric acid A receptor alpha1 and glutamate receptor alpha3, were strongly down-regulated. Behavioral abnormalities were also seen. Compared to littermates, the TB-RBP-null mice appeared docile and exhibited reduced Rota-Rod performance.
Collapse
Affiliation(s)
- Vargheese Chennathukuzhi
- Center for Research on Reproduction and Women's Health, School of Medicine, Department of Biology, University of Pennsylvania, 1310 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Peng WT, Robinson MD, Mnaimneh S, Krogan NJ, Cagney G, Morris Q, Davierwala AP, Grigull J, Yang X, Zhang W, Mitsakakis N, Ryan OW, Datta N, Jojic V, Pal C, Canadien V, Richards D, Beattie B, Wu LF, Altschuler SJ, Roweis S, Frey BJ, Emili A, Greenblatt JF, Hughes TR. A panoramic view of yeast noncoding RNA processing. Cell 2003; 113:919-33. [PMID: 12837249 DOI: 10.1016/s0092-8674(03)00466-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Predictive analysis using publicly available yeast functional genomics and proteomics data suggests that many more proteins may be involved in biogenesis of ribonucleoproteins than are currently known. Using a microarray that monitors abundance and processing of noncoding RNAs, we analyzed 468 yeast strains carrying mutations in protein-coding genes, most of which have not previously been associated with RNA or RNP synthesis. Many strains mutated in uncharacterized genes displayed aberrant noncoding RNA profiles. Ten factors involved in noncoding RNA biogenesis were verified by further experimentation, including a protein required for 20S pre-rRNA processing (Tsr2p), a protein associated with the nuclear exosome (Lrp1p), and a factor required for box C/D snoRNA accumulation (Bcd1p). These data present a global view of yeast noncoding RNA processing and confirm that many currently uncharacterized yeast proteins are involved in biogenesis of noncoding RNA.
Collapse
Affiliation(s)
- Wen Tao Peng
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, M5G 1L6, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Current awareness on yeast. Yeast 2003; 20:555-62. [PMID: 12749362 DOI: 10.1002/yea.944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|