1
|
Luo C, Gu H, Pan D, Zhao Y, Zheng A, Zhu H, Zhang C, Li C, Zhang J, Chen C, Xu L, Pan J, Shen X, Wang Y. Pseudomonas aeruginosa T6SS secretes an oxygen-binding hemerythrin to facilitate competitive growth under microaerobic conditions. Microbiol Res 2025; 293:128052. [PMID: 39813750 DOI: 10.1016/j.micres.2025.128052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
Pseudomonas aeruginosa is a prominent respiratory pathogen in cystic fibrosis (CF) patients, thriving in the hypoxic airway mucus. Previous studies have established the role of the oxygen-binding hemerythrin, Mhr, in enhancing P. aeruginosa's fitness under microaerobic conditions. However, the specific mechanisms by which Mhr operates remain unclear. This study uniquely identifies Mhr as an effector of the H2-Type VI Secretion System (H2-T6SS) and elucidates its role in the transport and interaction mechanisms that confer a growth advantage under microaerobic conditions. Our findings demonstrate that mhr expression is directly regulated by Anr and Dnr. Western blot analysis confirms that Mhr is secreted extracellularly via the H2-T6SS. The oxygen-binding Mhr re-enters P. aeruginosa through the OprG porin. Then, Mhr interacts with cbb3-type cytochrome c oxidase (cbb3-CcO) subunits CcoP1/CcoP2, significantly impacting intracellular NADH/NAD+ levels. These insights suggest that the T6SS-mediated secretion and transport of Mhr represent a novel mechanism by which P. aeruginosa acquires and delivers oxygen, potentially enhancing microaerobic respiration, energy production, and growth under microaerobic conditions.
Collapse
Affiliation(s)
- Chunhui Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huawei Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Damin Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixin Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anqi Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhang
- College of Life Sciences, Tarim University, Alar,Xinjiang 843300, China
| | - Can Chen
- Institute of Food and Drug Inspection, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junfeng Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Ricardi MM, Tribelli PM, Costa CS, Pezzoni M. Global transcriptional response of Pseudomonas aeruginosa to UVA radiation. Photochem Photobiol Sci 2024; 23:2029-2044. [PMID: 39470974 DOI: 10.1007/s43630-024-00649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/04/2024] [Indexed: 11/01/2024]
Abstract
Ultraviolet A (UVA) radiation is the major fraction of UV radiation reaching the Earth's surface. Its harmful effects on microorganisms, due mainly to oxidative damage, have been exploited for development of natural solar and commercial UVA-based disinfection methods. In this work, the global transcriptional response of Pseudomonas aeruginosa exposed to ultraviolet A (UVA) radiation was analyzed. To conduct this study, we analyzed the whole transcriptome of the PAO1 strain grown to logarithmic phase under sublethal doses of UVA or in the dark. We found that a total of 298 genes responded to UVA with a change of at least two-fold (5.36% of the total P. aeruginosa genome), and showed equal amount of induced and repressed genes. An important fraction of the induced genes were involved in the response to DNA damage and included induction of SOS, prophage and pyocins genes. The results presented in this study suggest that one of the main UVA targets are proteins carrying [Fe-S] clusters since several genes involved in the processes of synthesis, trafficking and assembly of these structures were upregulated. The management of intracellular iron levels also seems to be a robust response to this stress factor. The strong induction of genes involved in denitrification suggest that this pathway and/or reactive nitrogen species such as nitric oxide could have a role in the response to this radiation. Regarding the down-regulated genes, we found many involved in the biosynthesis of PQS, a quorum-sensing signal molecule with a possible role as endogenous photosensitizer.
Collapse
Affiliation(s)
- Martiniano M Ricardi
- IFIByNE (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula M Tribelli
- IQUIBICEN (CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina.
| |
Collapse
|
3
|
Bisht K, Elmassry MM, Mahmud HA, Bhattacharjee S, Deonarine A, Black C, Francisco MJS, Hamood AN, Wakeman CA. Malonate is relevant to the lung environment and induces genome-wide stress responses in Pseudomonas aeruginosa. RESEARCH SQUARE 2024:rs.3.rs-4870062. [PMID: 39315254 PMCID: PMC11419262 DOI: 10.21203/rs.3.rs-4870062/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Versatility in carbon source utilization is a major contributor to niche adaptation in Pseudomonas aeruginosa. Malonate is among the abundant carbon sources in the lung airways, yet it is understudied. Recently, we characterized how malonate impacts quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa. Herein, we show that malonate as a carbon source supports more robust growth in comparison to glycerol in several cystic fibrosis isolates of P. aeruginosa. Furthermore, we show phenotypic responses to malonate were conserved among clinical strains, i.e., formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin. Moreover, we explored transcriptional adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate versus glycerol as a sole carbon source using transcriptomics. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. We identified several genes that were required for optimal growth of P. aeruginosa in malonate. Our findings reveal important remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to the accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation.
Collapse
|
4
|
Duncan RP, Moustafa DA, Lewin GR, Diggle FL, Bomberger JM, Whiteley M, Goldberg JB. Improvement of a mouse infection model to capture Pseudomonas aeruginosa chronic physiology in cystic fibrosis. Proc Natl Acad Sci U S A 2024; 121:e2406234121. [PMID: 39102545 PMCID: PMC11331117 DOI: 10.1073/pnas.2406234121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Laboratory models are central to microbiology research, advancing the understanding of bacterial physiology by mimicking natural environments, from soil to the human microbiome. When studying host-bacteria interactions, animal models enable investigators to examine bacterial dynamics associated with a host, and in the case of human infections, animal models are necessary to translate basic research into clinical treatments. Efforts toward improving animal infection models are typically based on reproducing host genotypes/phenotypes and disease manifestations, leaving a gap in how well the physiology of microbes reflects their behavior in a human host. Understanding bacterial physiology is vital because it dictates host response and bacterial interactions with antimicrobials. Thus, our goal was to develop an animal model that accurately recapitulates bacterial physiology in human infection. The system we chose to model was a chronic Pseudomonas aeruginosa respiratory infection in cystic fibrosis (CF). To accomplish this goal, we leveraged a framework that we recently developed to evaluate model accuracy by calculating the percentage of bacterial genes that are expressed similarly in a model to how they are expressed in their infection environment. We combined two complementary models of P. aeruginosa infection-an in vitro synthetic CF sputum model (SCFM2) and a mouse acute pneumonia model. This combined model captured the chronic physiology of P. aeruginosa in CF better than the standard mouse infection model, showing the power of a data-driven approach to refining animal models. In addition, the results of this work challenge the assumption that a chronic infection model requires long-term colonization.
Collapse
Affiliation(s)
- Rebecca P. Duncan
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA30322
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30322
| | - Dina A. Moustafa
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA30322
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30322
| | - Gina R. Lewin
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30322
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30322
| | - Frances L. Diggle
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30322
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30322
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Marvin Whiteley
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30322
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30322
| | - Joanna B. Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA30322
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30322
| |
Collapse
|
5
|
Bisht K, Elmassry MM, Al Mahmud H, Bhattacharjee S, Deonarine A, Black C, San Francisco MJ, Hamood AN, Wakeman CA. Global stress response in Pseudomonas aeruginosa upon malonate utilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586813. [PMID: 38585990 PMCID: PMC10996706 DOI: 10.1101/2024.03.26.586813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Versatility in carbon source utilization assists Pseudomonas aeruginosa in its adaptation to various niches. Recently, we characterized the role of malonate, an understudied carbon source, in quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa . These results indicate that global responses to malonate metabolism remain to be uncovered. We leveraged a publicly available metabolomic dataset on human airway and found malonate to be as abundant as glycerol, a common airway metabolite and carbon source for P. aeruginosa . Here, we explored and compared adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate or glycerol as a sole carbon source using transcriptomics and phenotypic assays. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. Some induced genes were required for optimal growth of P. aeruginosa in malonate. To assess the conservation of malonate-associated responses among P. aeruginosa strains, we compared our findings in strain PA14 with other lab strains and cystic fibrosis isolates of P. aeruginosa . Most strains grew on malonate as a sole carbon source as efficiently as or better than glycerol. While not all responses to malonate were conserved among strains, formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin were the most frequently observed phenotypes. Our findings reveal global remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation. Importance Pseudomonas aeruginosa is a notorious pathogen that causes local and systemic infections in immunocompromised individuals. Different carbon sources can uniquely modulate metabolic and virulence pathways in P. aeruginosa , highlighting the importance of the environment that the pathogen occupies. In this work, we used a combination of transcriptomic analysis and phenotypic assays to determine how malonate utilization impacts P. aeruginosa, as recent evidence indicates this carbon source may be relevant to certain niches associated within the human host. We found that malonate utilization can induce global stress responses, alter metabolic circuits, and influence various phenotypes of P. aeruginosa that could influence host colonization. Investigating the metabolism of malonate provides insight into P. aeruginosa adaptations to specific niches where this substrate is abundant, and how it can be leveraged in the development of much-needed antimicrobial agents or identification of new therapeutic targets of this difficult-to-eradicate pathogen.
Collapse
|
6
|
Smiley MK, Sekaran DC, Forouhar F, Wolin E, Jovanovic M, Price-Whelan A, Dietrich LEP. MpaR-driven expression of an orphan terminal oxidase subunit supports Pseudomonas aeruginosa biofilm respiration and development during cyanogenesis. mBio 2024; 15:e0292623. [PMID: 38112469 PMCID: PMC10790758 DOI: 10.1128/mbio.02926-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Cyanide is an inhibitor of heme-copper oxidases, which are required for aerobic respiration in all eukaryotes and many prokaryotes. This fast-acting poison can arise from diverse sources, but mechanisms by which bacteria sense it are poorly understood. We investigated the regulatory response to cyanide in the pathogenic bacterium Pseudomonas aeruginosa, which produces cyanide as a virulence factor. Although P. aeruginosa has the capacity to produce a cyanide-resistant oxidase, it relies primarily on heme-copper oxidases and even makes additional heme-copper oxidase proteins specifically under cyanide-producing conditions. We found that the protein MpaR controls expression of cyanide-inducible genes in P. aeruginosa and elucidated the molecular details of this regulation. MpaR contains a DNA-binding domain and a domain predicted to bind pyridoxal phosphate (vitamin B6), a compound that is known to react spontaneously with cyanide. These observations provide insight into the understudied phenomenon of cyanide-dependent regulation of gene expression in bacteria.
Collapse
Affiliation(s)
- Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Doran C. Sekaran
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Farhad Forouhar
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
Bergmann L, Balzer Le S, Hageskal G, Preuss L, Han Y, Astafyeva Y, Loevenich S, Emmann S, Perez-Garcia P, Indenbirken D, Katzowitsch E, Thümmler F, Alawi M, Wentzel A, Streit WR, Krohn I. New dienelactone hydrolase from microalgae bacterial community-Antibiofilm activity against fish pathogens and potential applications for aquaculture. Sci Rep 2024; 14:377. [PMID: 38172513 PMCID: PMC10764354 DOI: 10.1038/s41598-023-50734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Biofilms are resistant to many traditional antibiotics, which has led to search for new antimicrobials from different and unique sources. To harness the potential of aquatic microbial resources, we analyzed the meta-omics datasets of microalgae-bacteria communities and mined them for potential antimicrobial and quorum quenching enzymes. One of the most interesting candidates (Dlh3), a dienelactone hydrolase, is a α/β-protein with predicted eight α-helices and eight β-sheets. When it was applied to one of the major fish pathogens, Edwardsiella anguillarum, the biofilm development was reproducibly inhibited by up to 54.5%. The transcriptome dataset in presence of Dlh3 showed an upregulation in functions related to self-defense like active genes for export mechanisms and transport systems. The most interesting point regarding the biotechnological potential for aquaculture applications of Dlh3 are clear evidence of biofilm inhibition and that health and division of a relevant fish cell model (CHSE-214) was not impaired by the enzyme.
Collapse
Affiliation(s)
- Lutgardis Bergmann
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Simone Balzer Le
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Lena Preuss
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yuchen Han
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yekaterina Astafyeva
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Simon Loevenich
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Sarah Emmann
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Pablo Perez-Garcia
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | | | - Elena Katzowitsch
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Fritz Thümmler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| |
Collapse
|
8
|
Alio I, Moll R, Hoffmann T, Mamat U, Schaible UE, Pappenfort K, Alawi M, Schie M, Thünauer R, Stamm J, Rohde H, Streit WR. Stenotrophomonas maltophilia affects the gene expression profiles of the major pathogens Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro multispecies biofilm model. Microbiol Spectr 2023; 11:e0085923. [PMID: 37819084 PMCID: PMC10714729 DOI: 10.1128/spectrum.00859-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In the past, studies have focused on bacterial pathogenicity in mono-species infections, in part ignoring the clinical relevance of diseases caused by more than one pathogen (i.e., polymicrobial infections). However, it is now common knowledge that multiple bacteria species are often involved in the course of an infection. For treatment of such infections, it is absolutely important to understand the dynamics of species interactions at possible infection sites and the molecular mechanisms behind these interactions. Here, we studied the impact of Stenotrophomonas maltophilia on its commensals Pseudomonas aeruginosa and Staphylococcus aureus in multispecies biofilms. We analyzed the 3D structural architectures of dual- and triple-species biofilms, niche formation within the biofilms, and the interspecies interactions on a molecular level. RNAseq data identified key genes involved in multispecies biofilm formation and interaction as potential drug targets for the clinical combat of multispecies infection with these major pathogens.
Collapse
Affiliation(s)
- Ifey Alio
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Raphael Moll
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Tim Hoffmann
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Ulrich E. Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center,Leibniz Research Alliance Infection , Borstel Gemany, Borstel, Germany
| | - Kai Pappenfort
- Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Malik Alawi
- Bioinformatics Core, UKE Hamburg, Hamburg, Germany
| | - Marcel Schie
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Roland Thünauer
- LIV, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Johanna Stamm
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, UKE, Eppendorf, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Smiley MK, Sekaran DC, Price-Whelan A, Dietrich LE. Cyanide-dependent control of terminal oxidase hybridization by Pseudomonas aeruginosa MpaR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543164. [PMID: 37398129 PMCID: PMC10312525 DOI: 10.1101/2023.05.31.543164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Pseudomonas aeruginosa is a common, biofilm-forming pathogen that exhibits complex pathways of redox metabolism. It produces four different types of terminal oxidases for aerobic respiration, and for one of these-the cbb3-type terminal oxidases-it has the capacity to produce at least 16 isoforms encoded by partially redundant operons. It also produces small-molecule virulence factors that interact with the respiratory chain, including the poison cyanide. Previous studies had indicated a role for cyanide in activating expression of an "orphan" terminal oxidase subunit gene called ccoN4 and that the product contributes to P. aeruginosa cyanide resistance, fitness in biofilms, and virulence-but the mechanisms underlying this process had not been elucidated. Here, we show that the regulatory protein MpaR, which is predicted to be a pyridoxal phosphate-binding transcription factor and is encoded just upstream of ccoN4, controls ccoN4 expression in response to endogenous cyanide. Paradoxically, we find that cyanide production is required to support CcoN4's contribution to respiration in biofilms. We identify a palindromic motif required for cyanide- and MpaR-dependent expression of ccoN4 and co-expressed, adjacent loci. We also characterize the regulatory logic of this region of the chromosome. Finally, we identify residues in the putative cofactor-binding pocket of MpaR that are required for ccoN4 expression. Together, our findings illustrate a novel scenario in which the respiratory toxin cyanide acts as a signal to control gene expression in a bacterium that produces the compound endogenously.
Collapse
Affiliation(s)
- Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Doran C. Sekaran
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10025
| |
Collapse
|
10
|
Scherhag A, Räschle M, Unbehend N, Venn B, Glueck D, Mühlhaus T, Keller S, Pérez Patallo E, Zehner S, Frankenberg-Dinkel N. Characterization of a soluble library of the Pseudomonas aeruginosa PAO1 membrane proteome with emphasis on c-di-GMP turnover enzymes. MICROLIFE 2023; 4:uqad028. [PMID: 37441524 PMCID: PMC10335732 DOI: 10.1093/femsml/uqad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
Studies of protein-protein interactions in membranes are very important to fully understand the biological function of a cell. The extraction of proteins from the native membrane environment is a critical step in the preparation of membrane proteins that might affect the stability of protein complexes. In this work, we used the amphiphilic diisobutylene/maleic acid copolymer to extract the membrane proteome of the opportunistic pathogen Pseudomonas aeruginosa, thereby creating a soluble membrane-protein library within a native-like lipid-bilayer environment. Size fractionation of nanodisc-embedded proteins and subsequent mass spectrometry enabled the identification of 3358 proteins. The native membrane-protein library showed a very good overall coverage compared to previous proteome data. The pattern of size fractionation indicated that protein complexes were preserved in the library. More than 20 previously described complexes, e.g. the SecYEG and Pili complexes, were identified and analyzed for coelution. Although the mass-spectrometric dataset alone did not reveal new protein complexes, combining pulldown assays with mass spectrometry was successful in identifying new protein interactions in the native membrane-protein library. Thus, we identified several candidate proteins for interactions with the membrane phosphodiesterase NbdA, a member of the c-di-GMP network. We confirmed the candidate proteins CzcR, PA4200, SadC, and PilB as novel interaction partners of NbdA using the bacterial adenylate cyclase two-hybrid assay. Taken together, this work demonstrates the usefulness of the native membrane-protein library of P. aeruginosa for the investigation of protein interactions and membrane-protein complexes. Data are available via ProteomeXchange with identifiers PXD039702 and PXD039700.
Collapse
Affiliation(s)
- Anna Scherhag
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Markus Räschle
- Department of Molecular Genetics, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Niklas Unbehend
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Benedikt Venn
- Department of Computational Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - David Glueck
- Department of Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Department of Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Timo Mühlhaus
- Department of Computational Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Sandro Keller
- Department of Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Department of Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Eugenio Pérez Patallo
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | | | - Nicole Frankenberg-Dinkel
- Corresponding author. RPTU Kaiserslautern-Landau, Microbiology, Kaiserslautern 67655, Germany. E-mail:
| |
Collapse
|
11
|
Ciancio Casalini L, Piazza A, Masotti F, Garavaglia BS, Ottado J, Gottig N. Manganese oxidation counteracts the deleterious effect of low temperatures on biofilm formation in Pseudomonas sp. MOB-449. Front Mol Biosci 2022; 9:1015582. [DOI: 10.3389/fmolb.2022.1015582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mn removal from groundwater by biological sand filter technology is negatively impacted by low temperatures in winter periods. Therefore, the need to study Mn(II)-oxidizing bacteria (MOB) having the potential to oxidize Mn(II) and form biofilms at low temperatures is imperative. These MOB can have potential as inocula for sand filter bioaugmentation strategies to optimize Mn removal during winter periods. We previously showed that a Pseudomonas sp. MOB-449 (MOB-449), isolated from a Mn biofilter, oxidizes Mn(II) in a biofilm-dependent way at low temperatures. In this work, MOB-449 Mn(II) oxidation and growth capacities were evaluated under planktonic and biofilm conditions at different temperatures. At 18°C, MOB-449 showed enhanced biofilm formation due to the addition of Mn(II) to the medium correlating with Mn(II) oxidation, compared to biofilms grown in control medium. Moreover, this enhancement on biofilm formation due to the addition of Mn(II) was only observed at 18°C. At this temperature, Mn(II) oxidation in membrane fractions collected from biofilms was induced by uncoupling oxidative phosphorylation from the electron transport chain with 2,4-Dinitrophenol. In Pseudomonas, a role for c-type cytochrome in Mn(II) oxidation has been demonstrated. Accordingly, transcriptional profiles of all terminal oxidases genes found in MOB-449 showed an induction of cytochrome c terminal oxidases expression mediated by Mn(II) oxidation at 18°C. Finally, heme peroxidase activity assays and MS analysis revealed that PetC, a cytochrome c5, and also CcmE, involved in the cytochrome c biogenesis machinery, are induced at 18°C only in the presence of Mn(II). These results present evidence supporting that cytochromes c and also the cytochrome c terminal oxidases are activated at low temperatures in the presence of Mn(II). Overall, this work demonstrate that in MOB-449 Mn(II) oxidation is activated at low temperatures to gain energy, suggesting that this process is important for survival under adverse environmental conditions and contributing to the understanding of the physiological role of bacterial Mn(II) oxidation.
Collapse
|
12
|
Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 2022; 20:593-607. [PMID: 35149841 DOI: 10.1038/s41579-022-00692-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism. In this Review, we discuss examples of gradient formation and physiological differentiation in microbial assemblages growing in diverse settings. We highlight consequences of physiological heterogeneity in microbial assemblages, including division of labour and increased resistance to stress. Our impressions of microbial behaviour in various ecosystems are not complete without complementary maps of the chemical and physical geographies that influence cellular activities. A holistic view, incorporating these geographies and the genetically encoded functions that operate within them, will be essential for understanding microbial assemblages in their many roles and potential applications.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Espinoza-Vergara J, Molina P, Walter M, Gulppi M, Vejar N, Melo F, Urzua M, Muñoz H, Zagal JH, Zhou X, Azocar MI, Paez MA. Effect of pH on the Electrochemical Behavior of Hydrogen Peroxide in the Presence of Pseudomonas aeruginosa. Front Bioeng Biotechnol 2021; 9:749057. [PMID: 34938720 PMCID: PMC8685425 DOI: 10.3389/fbioe.2021.749057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The influence of pH on the electrochemical behavior of hydrogen peroxide in the presence of Pseudomonas aeruginosa was investigated using electrochemical techniques. Cyclic and square wave voltammetry were used to monitor the enzymatic activity. A modified cobalt phthalocyanine (CoPc) carbon electrode (OPG), a known catalyst for reducing O2 to H2O2, was used to detect species resulting from the enzyme activity. The electrolyte was a sterilized aqueous medium containing Mueller-Hinton (MH) broth. The open-circuit potential (OCP) of the Pseudomonas aeruginosa culture in MH decreased rapidly with time, reaching a stable state after 4 h. Peculiarities in the E / I response were observed in voltammograms conducted in less than 4 h of exposure to the culture medium. Such particular E/I responses are due to the catalase's enzymatic action related to the conversion of hydrogen peroxide to oxygen, confirming the authors' previous findings related to the behavior of other catalase-positive microorganisms. The enzymatic activity exhibits maximum activity at pH 7.5, assessed by the potential at which oxygen is reduced to hydrogen peroxide. At higher or lower pHs, the oxygen reduction reaction (ORR) occurs at higher overpotentials, i.e., at more negative potentials. In addition, and to assess the influence of bacterial adhesion on the electrochemical behavior, measurements of the bacterial-substrate metal interaction were performed at different pH using atomic force microscopy.
Collapse
Affiliation(s)
- Javier Espinoza-Vergara
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Corrosion and Protection Center, Department of Materials, University of Manchester, Manchester, England, United Kingdom
| | - Paulo Molina
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mariana Walter
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Miguel Gulppi
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Nelson Vejar
- Chilean Air Force, Aerospace Sciences Research and Development Centre (CIDCA), San Bernardo, Santiago, Chile
| | - Francisco Melo
- Departamento de Física, Facultad de Ciencias, Universidad de Santiago de Santiago de Chile, Avenida Ecuador, Santiago, Chile
| | - Marcela Urzua
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Hugo Muñoz
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - José H Zagal
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Xiaorong Zhou
- Corrosion and Protection Center, Department of Materials, University of Manchester, Manchester, England, United Kingdom
| | - Manuel I Azocar
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Maritza A Paez
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
14
|
The aerobic respiratory chain of Pseudomonas aeruginosa cultured in artificial urine media: Role of NQR and terminal oxidases. PLoS One 2020; 15:e0231965. [PMID: 32324772 PMCID: PMC7179901 DOI: 10.1371/journal.pone.0231965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative γ-proteobacterium that forms part of the normal human microbiota and it is also an opportunistic pathogen, responsible for 30% of all nosocomial urinary tract infections. P. aeruginosa carries a highly branched respiratory chain that allows the colonization of many environments, such as the urinary tract, catheters and other medical devices. P. aeruginosa respiratory chain contains three different NADH dehydrogenases (complex I, NQR and NDH-2), whose physiologic roles have not been elucidated, and up to five terminal oxidases: three cytochrome c oxidases (COx), a cytochrome bo3 oxidase (CYO) and a cyanide-insensitive cytochrome bd-like oxidase (CIO). In this work, we studied the composition of the respiratory chain of P. aeruginosa cells cultured in Luria Broth (LB) and modified artificial urine media (mAUM), to understand the metabolic adaptations of this microorganism to the growth in urine. Our results show that the COx oxidases play major roles in mAUM, while P. aeruginosa relies on CYO when growing in LB medium. Moreover, our data demonstrate that the proton-pumping NQR complex is the main NADH dehydrogenase in both LB and mAUM. This enzyme is resistant to HQNO, an inhibitory molecule produced by P. aeruginosa, and may provide an advantage against the natural antibacterial agents produced by this organism. This work offers a clear picture of the composition of this pathogen’s aerobic respiratory chain and the main roles that NQR and terminal oxidases play in urine, which is essential to understand its physiology and could be used to develop new antibiotics against this notorious multidrug-resistant microorganism.
Collapse
|
15
|
Schinner S, Engelhardt F, Preusse M, Thöming JG, Tomasch J, Häussler S. Genetic determinants of Pseudomonas aeruginosa fitness during biofilm growth. Biofilm 2020; 2:100023. [PMID: 33447809 PMCID: PMC7798452 DOI: 10.1016/j.bioflm.2020.100023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa is an environmental bacterium and an opportunistic human pathogen. It is also a well-established model organism to study bacterial adaptation to stressful conditions, such as those encountered during an infection process in the human host. Advancing knowledge on P. aeruginosa adaptation to biofilm growth conditions is bound to reveal novel strategies and targets for the treatment of chronic biofilm-associated infections. Here, we generated transposon insertion libraries in three P. aeruginosa strain backgrounds and determined the relative frequency of each insertion following biofilm growth using transposon sequencing. We demonstrate that in general the SOS response, several tRNA modifying enzymes as well as adaptation to microaerophilic growth conditions play a key role in bacterial survival under biofilm growth conditions. On the other hand, presence of genes involved in motility and PQS signaling were less important during biofilm growth. Several mutants exhibiting transposon insertions in genes detected in our screen were validated for their biofilm growth capabilities and biofilm specific transcriptional responses using independently generated transposon mutants. Our results provide new insights into P. aeruginosa adaptation to biofilm growth conditions. The detection of previously unknown determinants of biofilm survival supports the use of transposon insertion sequencing as a global genomic technology for understanding the establishment of difficult to treat biofilm-associated infections.
Collapse
Affiliation(s)
- Silvia Schinner
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Florian Engelhardt
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Janne Gesine Thöming
- Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources. mBio 2020; 11:mBio.02684-19. [PMID: 32184246 PMCID: PMC7078475 DOI: 10.1128/mbio.02684-19] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer (“fluxomic”) analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed (“fluxed”) through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell’s electron transfer pathways. Having access to this “blueprint” is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents. Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized “EDEMP cycle” (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each.
Collapse
|
17
|
Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14. J Bacteriol 2020; 202:JB.00700-19. [PMID: 31767778 DOI: 10.1128/jb.00700-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular electron transfer (EET), the reduction of compounds that shuttle electrons to distal oxidants, can support bacterial survival when preferred oxidants are not directly accessible. EET has been shown to contribute to virulence in some pathogenic organisms and is required for current generation in mediator-based fuel cells. In several species, components of the electron transport chain (ETC) have been implicated in electron shuttle reduction, raising the question of how shuttling-based metabolism is integrated with primary routes of metabolic electron flow. The clinically relevant bacterium Pseudomonas aeruginosa can utilize carbon sources (i.e., electron donors) covering a broad range of reducing potentials and possesses a branched ETC that can be modulated to optimize respiratory efficiency. It also produces electron shuttles called phenazines that facilitate intracellular redox balancing, increasing the complexity of its metabolic potential. In this study, we investigated the reciprocal influence of respiratory metabolism and phenazine-associated physiology in P. aeruginosa PA14. We found that phenazine production affects respiratory activity and terminal oxidase gene expression and that carbon source identity influences the mechanisms enabling phenazine reduction. Furthermore, we found that growth in biofilms, a condition for which phenazine metabolism is critical to normal development and redox balancing, affects the composition of the P. aeruginosa phenazine pool. Together, these findings can aid interpretation of P. aeruginosa behavior during host infection and provide inroads to understanding the cross talk between primary metabolism and shuttling-based physiology in the diverse bacteria that carry out EET.IMPORTANCE The clinically relevant pathogen Pseudomonas aeruginosa uses diverse organic compounds as electron donors and possesses multiple enzymes that transfer electrons from central metabolism to O2 These pathways support a balanced intracellular redox state and produce cellular energy. P. aeruginosa also reduces secondary metabolites called phenazines to promote redox homeostasis and virulence. In this study, we examined the reciprocal relationship between these primary and secondary routes of electron flow. We found that phenazines affect respiratory function and that the complement of phenazines produced is strongly affected by growth in assemblages called biofilms. These results provide a more nuanced understanding of P. aeruginosa redox metabolism and may inform strategies for treating persistent infections caused by this bacterium.
Collapse
|
18
|
Caprari S, Brandi V, Pasquadibisceglie A, Polticelli F. Uncovering the structure and function of Pseudomonas aeruginosa periplasmic proteins by an in silico approach. J Biomol Struct Dyn 2019; 38:4508-4520. [PMID: 31631799 DOI: 10.1080/07391102.2019.1683468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen highly relevant from a biomedical viewpoint. It is one of the main causes of infection in hospitalized patients and a major cause of mortality of cystic fibrosis patients. This is also due to its ability to develop resistance to antibiotics by various mechanisms. Therefore, it is urgent and desirable to identify novel targets for the development of new antibacterial drugs against Pseudomonas aeruginosa. In this work this problem was tackled by an in silico approach aimed at providing a reliable structural model and functional annotation for the Pseudomonas aeruginosa periplasmic proteins for which these data are not available yet. A total of 83 protein sequences were analyzed, and the corresponding structural models were built, leading to the identification of 32 periplasmic 'substrate-binding proteins', 14 enzymes and 4 proteins with different functions, including lipids and metals binding. The most interesting cases were found within the 'enzymes' group with the identification of a lipase, which can be regarded as a virulence factor, a protease involved in the assembly of β-barrel membrane proteins and a l,d-transpeptidase, which could contribute to confer resistance to β-lactam antibiotics to the bacterium.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Silvia Caprari
- Department of Sciences, Roma Tre University, Rome, Italy
| | | | | | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Rome, Italy.,National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
| |
Collapse
|
19
|
Gong X, Garcia-Robledo E, Lund MB, Lehner P, Borisov SM, Klimant I, Revsbech NP, Schramm A. Gene expression of terminal oxidases in two marine bacterial strains exposed to nanomolar oxygen concentrations. FEMS Microbiol Ecol 2019; 94:4983120. [PMID: 29688454 DOI: 10.1093/femsec/fiy072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/18/2018] [Indexed: 11/12/2022] Open
Abstract
The final step of aerobic respiration is carried out by a terminal oxidase transporting electrons to oxygen (O2). Prokaryotes harbor diverse terminal oxidases that differ in phylogenetic origin, structure, biochemical function, and affinity for O2. Here we report on the expression of high-affinity (cytochrome cbb3 oxidase), low-affinity (cytochrome aa3 oxidase), and putative low-affinity (cyanide-insensitive oxidase (CIO)) terminal oxidases in the marine bacteria Idiomarina loihiensis L2-TR and Marinobacter daepoensis SW-156 upon transition to very low O2 concentrations (<200 nM), measured by RT-qPCR. In both strains, high-affinity cytochrome cbb3 oxidase showed the highest expression levels and was significantly up-regulated upon transition to low O2 concentrations. Low-affinity cytochrome aa3 oxidase showed very low transcription levels throughout the incubation. Surprisingly, however, it was also up-regulated upon transition to low O2 concentrations. In contrast, putative low-affinity CIO had much lower expression levels and markedly different regulation patterns between the two strains. These results demonstrate that exposure to low O2 concentrations regulates the gene expression of different types of terminal oxidases, but also that the type and magnitude of transcriptional response is species-dependent. Therefore, in situ transcriptome data cannot, without detailed knowledge of the transcriptional regulation of the species involved, be translated into relative respiratory activity.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, PR China.,Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| | - Emilio Garcia-Robledo
- Section for Microbiology, Department of Bioscience, Aarhus University, Denmark.,Department of Biology, University of Cadiz, Spain
| | - Marie Braad Lund
- Section for Microbiology, Department of Bioscience, Aarhus University, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Denmark
| | - Philipp Lehner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria
| | - Ingo Klimant
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria
| | | | - Andreas Schramm
- Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| |
Collapse
|
20
|
Transcriptional Responses of Pseudomonas aeruginosa to Potable Water and Freshwater. Appl Environ Microbiol 2018; 84:AEM.02350-17. [PMID: 29305509 DOI: 10.1128/aem.02350-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/01/2018] [Indexed: 02/03/2023] Open
Abstract
Many Pseudomonas aeruginosa infections are derived from residential, recreational, or surface water sources; thus, these environments represent an important preinfection niche. To better understand P. aeruginosa biology in these environments, we quantified transcriptional changes by microarray after exposure to diluted LB, diluted R2B, potable tap water, and freshwater from a eutrophic pond. Quantitative reverse transcription-PCR (qRT-PCR) confirmed the conservation of these responses in other water sources, and competition experiments were used to test the importance of three implicated metabolic pathways. The global transcriptional responses in potable water and freshwater showed strong induction of genes involved in metabolism of the head groups and acyl tails of phospholipids, as well as nucleotide metabolism, with commensurate decreased transcript expression of genes encoding their synthetic pathways. These data suggest that phospholipids and nucleotides are part of the nutritional milieu of these two environments. A unique response in municipal-delivered potable water was to the metals in the piping system, particularly copper. To identify potential nutrient sources used by P. aeruginosa in these environments, we used competition assays between the wild-type and deletion mutant strains in three pathways induced under these conditions. For phospholipid head-group metabolism, ethanolamine utilization (eutB) was important for competition in potable water, while choline oxidation (betBA) was important for competition in freshwater. Nucleotide utilization, particularly pyrimidine metabolism (dht), showed a trend toward importance in freshwater but was not statistically significant. These findings provide new insights into the P. aeruginosa response to potable water and freshwater and led to the identification of potentially important nutrient sources in these environments.IMPORTANCE Much of our knowledge about Pseudomonas aeruginosa comes from the infection niche, and much less is known about its lifestyle in the environment. P. aeruginosa is an adaptable bacterium capable of growing in many environments but is particularly common in potable water systems and freshwater. We used the transcriptional responses of P. aeruginosa to these environments to identify important nutrient sources specific to either of these two environments. Additionally, these environments could provide experimental situations to understand gene function for the large number of transcripts with unknown functions induced under these conditions.
Collapse
|
21
|
Ha S, Shin B, Park W. Lack of glyoxylate shunt dysregulates iron homeostasis in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2018; 164:587-599. [PMID: 29465342 DOI: 10.1099/mic.0.000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aceA and glcB genes, encoding isocitrate lyase (ICL) and malate synthase, respectively, are not in an operon in many bacteria, including Pseudomonas aeruginosa, unlike in Escherichia coli. Here, we show that expression of aceA in P. aeruginosa is specifically upregulated under H2O2-induced oxidative stress and under iron-limiting conditions. In contrast, the addition of exogenous redox active compounds or antibiotics increases the expression of glcB. The transcriptional start sites of aceA under iron-limiting conditions and in the presence of iron were found to be identical by 5' RACE. Interestingly, the enzymatic activities of ICL and isocitrate dehydrogenase had opposite responses under different iron conditions, suggesting that the glyoxylate shunt (GS) might be important under iron-limiting conditions. Remarkably, the intracellular iron concentration was lower while the iron demand was higher in the GS-activated cells growing on acetate compared to cells growing on glucose. Absence of GS dysregulated iron homeostasis led to changes in the cellular iron pool, with higher intracellular chelatable iron levels. In addition, GS mutants were found to have higher cytochrome c oxidase activity on iron-supplemented agar plates of minimal media, which promoted the growth of the GS mutants. However, deletion of the GS genes resulted in higher sensitivity to a high concentration of H2O2, presumably due to iron-mediated killing. In conclusion, the GS system appears to be tightly linked to iron homeostasis in the promotion of P. aeruginosa survival under oxidative stress.
Collapse
Affiliation(s)
- Sunhee Ha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
22
|
Jo J, Cortez KL, Cornell WC, Price-Whelan A, Dietrich LEP. An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence. eLife 2017; 6:e30205. [PMID: 29160206 PMCID: PMC5697931 DOI: 10.7554/elife.30205] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/22/2017] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is a common challenge faced by bacteria during associations with hosts due in part to the formation of densely packed communities (biofilms). cbb3-type cytochrome c oxidases, which catalyze the terminal step in respiration and have a high affinity for oxygen, have been linked to bacterial pathogenesis. The pseudomonads are unusual in that they often contain multiple full and partial (i.e. 'orphan') operons for cbb3-type oxidases and oxidase subunits. Here, we describe a unique role for the orphan catalytic subunit CcoN4 in colony biofilm development and respiration in the opportunistic pathogen Pseudomonas aeruginosa PA14. We also show that CcoN4 contributes to the reduction of phenazines, antibiotics that support redox balancing for cells in biofilms, and to virulence in a Caenorhabditis elegans model of infection. These results highlight the relevance of the colony biofilm model to pathogenicity and underscore the potential of cbb3-type oxidases as therapeutic targets.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Krista L Cortez
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | | | - Alexa Price-Whelan
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Lars EP Dietrich
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| |
Collapse
|
23
|
Kamath KS, Krisp C, Chick J, Pascovici D, Gygi SP, Molloy MP. Pseudomonas aeruginosa Proteome under Hypoxic Stress Conditions Mimicking the Cystic Fibrosis Lung. J Proteome Res 2017; 16:3917-3928. [DOI: 10.1021/acs.jproteome.7b00561] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Karthik Shantharam Kamath
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney 2109, Australia
- Australian
Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia
| | - Christoph Krisp
- Australian
Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia
| | - Joel Chick
- Department
of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Dana Pascovici
- Australian
Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia
| | - Steven P Gygi
- Department
of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mark P Molloy
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney 2109, Australia
- Australian
Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
24
|
Quintana J, Novoa-Aponte L, Argüello JM. Copper homeostasis networks in the bacterium Pseudomonas aeruginosa. J Biol Chem 2017; 292:15691-15704. [PMID: 28760827 DOI: 10.1074/jbc.m117.804492] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/21/2017] [Indexed: 11/06/2022] Open
Abstract
Bacterial copper (Cu+) homeostasis enables both precise metallation of diverse cuproproteins and control of variable metal levels. To this end, protein networks mobilize Cu+ to cellular targets with remarkable specificity. However, the understanding of these processes is rather fragmented. Here, we use genome-wide transcriptomic analysis by RNA-Seq to characterize the response of Pseudomonas aeruginosa to external 0.5 mm CuSO4, a condition that did not generate pleiotropic effects. Pre-steady-state (5-min) and steady-state (2-h) Cu+ fluxes resulted in distinct transcriptome landscapes. Cells quickly responded to Cu2+ stress by slowing down metabolism. This was restored once steady state was reached. Specific Cu+ homeostasis genes were strongly regulated in both conditions. Our system-wide analysis revealed induction of three Cu+ efflux systems (a P1B-ATPase, a porin, and a resistance-nodulation-division (RND) system) and of a putative Cu+-binding periplasmic chaperone and the unusual presence of two cytoplasmic CopZ proteins. Both CopZ chaperones could bind Cu+ with high affinity. Importantly, novel transmembrane transporters probably mediating Cu+ influx were among those largely repressed upon Cu+ stress. Compartmental Cu+ levels appear independently controlled; the cytoplasmic Cu+ sensor CueR controls cytoplasmic chaperones and plasma membrane transporters, whereas CopR/S responds to periplasmic Cu+ Analysis of ΔcopR and ΔcueR mutant strains revealed a CopR regulon composed of genes involved in periplasmic Cu+ homeostasis and its putative DNA recognition sequence. In conclusion, our study establishes a system-wide model of a network of sensors/regulators, soluble chaperones, and influx/efflux transporters that control the Cu+ levels in P. aeruginosa compartments.
Collapse
Affiliation(s)
- Julia Quintana
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Lorena Novoa-Aponte
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - José M Argüello
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| |
Collapse
|
25
|
Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps. mBio 2017; 8:mBio.00500-17. [PMID: 28743808 PMCID: PMC5527304 DOI: 10.1128/mbio.00500-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H+ accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic “reaccommodation” might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been proposed in the belief that they will reduce the persistence and spread of resistance among bacterial pathogens. Unfortunately, trials testing this possibility have frequently failed, indicating that resistant microorganisms are not always outcompeted by susceptible ones. Indeed, some mutations do not result in a fitness cost, and in case they do, the cost may be compensated for by a secondary mutation. Here we describe an alternative nonmutational mechanism for compensating for fitness costs, which consists of the metabolic rewiring of resistant mutants. Deciphering the mechanisms involved in the compensation of fitness costs of antibiotic-resistant mutants may help in the development of drugs that will reduce the persistence of resistance by increasing said costs.
Collapse
|
26
|
Sandri F, Fedi S, Cappelletti M, Calabrese FM, Turner RJ, Zannoni D. Biphenyl Modulates the Expression and Function of Respiratory Oxidases in the Polychlorinated-Biphenyls Degrader Pseudomonas pseudoalcaligenes KF707. Front Microbiol 2017; 8:1223. [PMID: 28713350 PMCID: PMC5492768 DOI: 10.3389/fmicb.2017.01223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas pseudoalcaligenes KF707 is a soil bacterium which is known for its capacity to aerobically degrade harmful organic compounds such as polychlorinated biphenyls (PCBs) using biphenyl as co-metabolite. Here we provide the first genetic and functional analysis of the KF707 respiratory terminal oxidases in cells grown with two different carbon sources: glucose and biphenyl. We identified five terminal oxidases in KF707: two c(c)aa3 type oxidases (Caa3 and Ccaa3), two cbb3 type oxidases (Cbb31 and Cbb32), and one bd type cyanide-insensitive quinol oxidase (CIO). While the activity and expression of both Cbb31 and Cbb32 oxidases was prevalent in glucose grown cells as compared to the other oxidases, the activity and expression of the Caa3 oxidase increased considerably only when biphenyl was used as carbon source in contrast to the Cbb32 oxidase which was repressed. Further, the respiratory activity and expression of CIO was up-regulated in a Cbb31 deletion strain as compared to W.T. whereas the CIO up-regulation was not present in Cbb32 and C(c)aa3 deletion mutants. These results, together, reveal that both function and expression of cbb3 and caa3 type oxidases in KF707 are modulated by biphenyl which is the co-metabolite needed for the activation of the PCBs-degradation pathway.
Collapse
Affiliation(s)
- Federica Sandri
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Francesco M Calabrese
- Department of Biosciences, Biotechnology and Pharmacological Sciences, University of Bari "Aldo Moro"Bari, Italy.,Department of Biology, University of Bari "Aldo Moro"Bari, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| |
Collapse
|
27
|
Jensen PØ, Kolpen M, Kragh KN, Kühl M. Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response. APMIS 2017; 125:276-288. [PMID: 28407427 DOI: 10.1111/apm.12668] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/14/2023]
Abstract
In vitro studies of Pseudomonas aeruginosa and other pathogenic bacteria in biofilm aggregates have yielded detailed insight into their potential growth modes and metabolic flexibility under exposure to gradients of substrate and electron acceptor. However, the growth pattern of P. aeruginosa in chronic lung infections of cystic fibrosis (CF) patients is very different from what is observed in vitro, for example, in biofilms grown in flow chambers. Dense in vitro biofilms of P. aeruginosa exhibit rapid O2 depletion within <50-100 μm due to their own aerobic metabolism. In contrast, in vivo investigations show that P. aeruginosa persists in the chronically infected CF lung as relatively small cell aggregates that are surrounded by numerous PMNs, where the activity of PMNs is the major cause of O2 depletion rendering the P. aeruginosa aggregates anoxic. High levels of nitrate and nitrite enable P. aeruginosa to persist fueled by denitrification in the PMN-surrounded biofilm aggregates. This configuration creates a potentially long-term stable ecological niche for P. aeruginosa in the CF lung, which is largely governed by slow growth and anaerobic metabolism and enables persistence and resilience of this pathogen even under the recurring aggressive antimicrobial treatments of CF patients. As similar slow growth of other CF pathogens has recently been observed in endobronchial secretions, there is now a clear need for better in vitro models that simulate such in vivo growth patterns and anoxic microenvironments in order to help unravel the efficiency of existing or new antimicrobials targeting anaerobic metabolism in P. aeruginosa and other CF pathogens. We also advocate that host immune responses such as PMN-driven O2 depletion play a central role in the formation of anoxic microniches governing bacterial persistence in other chronic infections such as chronic wounds.
Collapse
Affiliation(s)
- Peter Ø Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper N Kragh
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.,Climate Change Cluster, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
28
|
Hijazi S, Visca P, Frangipani E. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes. Front Cell Infect Microbiol 2017; 7:12. [PMID: 28184354 PMCID: PMC5266731 DOI: 10.3389/fcimb.2017.00012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.
Collapse
Affiliation(s)
- Sarah Hijazi
- Department of Science, Roma Tre University Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University Rome, Italy
| | | |
Collapse
|
29
|
Schalk IJ, Cunrath O. An overview of the biological metal uptake pathways in Pseudomonas aeruginosa. Environ Microbiol 2016; 18:3227-3246. [PMID: 27632589 DOI: 10.1111/1462-2920.13525] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Biological metal ions, including Co, Cu, Fe, Mg, Mn, Mo, Ni and Zn ions, are necessary for the survival and the growth of all microorganisms. Their biological functions are linked to their particular chemical properties: they play a role in structuring macromolecules and/or act as co-factors catalyzing diverse biochemical reactions. These metal ions are also essential for microbial pathogens during infection: they are involved in bacterial metabolism and various virulence factor functions. Therefore, during infection, bacteria need to acquire biological metal ions from the host such that there is competition for these ions between the bacterium and the host. Evidence is increasingly emerging of "nutritional immunity" against pathogens in the hosts; this includes strategies making access to metals difficult for infecting bacteria. It is clear that biological metals play key roles during infection and in the battle between the pathogens and the host. Here, we summarize current knowledge about the strategies used by Pseudomonas aeruginosa to access the various biological metals it requires. P. aeruginosa is a medically significant Gram-negative bacterial opportunistic pathogen that can cause severe chronic lung infections in cystic fibrosis patients and that is responsible for nosocomial infections worldwide.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France.
| | - Olivier Cunrath
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France
| |
Collapse
|
30
|
Identification and Characterization of the Novel Subunit CcoM in the cbb3₃Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell. mBio 2016; 7:e01921-15. [PMID: 26814183 PMCID: PMC4742706 DOI: 10.1128/mbio.01921-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c oxidases (CcOs), members of the heme-copper containing oxidase (HCO) superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO) form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs. In Pseudomonas stutzeri, two cbb3 operons are organized in a tandem repeat. The atomic structure of the first cbb3 isoform (Cbb3-1) was determined at 3.2 Å resolution in 2010 (S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, and H. Michel, Science 329:327–330, 2010, http://dx.doi.org/10.1126/science.1187303). Unexpectedly, the electron density map of Cbb3-1 revealed the presence of an additional transmembrane helix (TMH) which could not be assigned to any known protein. We now identified this TMH as the previously uncharacterized protein PstZoBell_05036, using a customized matrix-assisted laser desorption ionization (MALDI)–tandem mass spectrometry setup. The amino acid sequence matches the electron density of the unassigned TMH. Consequently, the protein was renamed CcoM. In order to identify the function of this new subunit in the cbb3 complex, we generated and analyzed a CcoM knockout strain. The results of the biochemical and biophysical characterization indicate that CcoM may be involved in CcO complex assembly or stabilization. In addition, we found that CcoM plays a role in anaerobic respiration, as the ΔCcoM strain displayed altered growth rates under anaerobic denitrifying conditions. The respiratory chain has recently moved into the focus for drug development against prokaryotic human pathogens, in particular, for multiresistant strains (P. Murima, J. D. McKinney, and K. Pethe, Chem Biol 21:1423–1432, 2014, http://dx.doi.org/10.1016/j.chembiol.2014.08.020). cbb3-CcO is an essential enzyme for many different pathogenic bacterial species, e.g., Helicobacter pylori, Vibrio cholerae, and Pseudomonas aeruginosa, and represents a promising drug target. In order to develop compounds targeting these proteins, a detailed understanding of the molecular architecture and function is required. Here we identified and characterized a novel subunit, CcoM, in the cbb3-CcO complex and thereby completed the crystal structure of the Cbb3 oxidase from Pseudomonas stutzeri, a bacterium closely related to the human pathogen Pseudomonas aeruginosa.
Collapse
|
31
|
Wang Z, Liu L, Guo F, Zhang T. Deciphering Cyanide-Degrading Potential of Bacterial Community Associated with the Coking Wastewater Treatment Plant with a Novel Draft Genome. MICROBIAL ECOLOGY 2015; 70:701-709. [PMID: 25910603 DOI: 10.1007/s00248-015-0611-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Biotreatment processes fed with coking wastewater often encounter insufficient removal of pollutants, such as ammonia, phenols, and polycyclic aromatic hydrocarbons (PAHs), especially for cyanides. However, only a limited number of bacterial species in pure cultures have been confirmed to metabolize cyanides, which hinders the improvement of these processes. In this study, a microbial community of activated sludge enriched in a coking wastewater treatment plant was analyzed using 454 pyrosequencing and Illumina sequencing to characterize the potential cyanide-degrading bacteria. According to the classification of these pyro-tags, targeting V3/V4 regions of 16S rRNA gene, half of them were assigned to the family Xanthomonadaceae, implying that Xanthomonadaceae bacteria are well-adapted to coking wastewater. A nearly complete draft genome of the dominant bacterium was reconstructed from metagenome of this community to explore cyanide metabolism based on analysis of the genome. The assembled 16S rRNA gene from this draft genome showed that this bacterium was a novel species of Thermomonas within Xanthomonadaceae, which was further verified by comparative genomics. The annotation using KEGG and Pfam identified genes related to cyanide metabolism, including genes responsible for the iron-harvesting system, cyanide-insensitive terminal oxidase, cyanide hydrolase/nitrilase, and thiosulfate:cyanide transferase. Phylogenetic analysis showed that these genes had homologs in previously identified genomes of bacteria within Xanthomonadaceae and even presented similar gene cassettes, thus implying an inherent cyanide-decomposing potential. The findings of this study expand our knowledge about the bacterial degradation of cyanide compounds and will be helpful in the remediation of cyanides contamination.
Collapse
Affiliation(s)
- Zhiping Wang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Liu
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Feng Guo
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong.
| |
Collapse
|
32
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
33
|
An aerobic exercise: defining the roles of Pseudomonas aeruginosa terminal oxidases. J Bacteriol 2014; 196:4203-5. [PMID: 25266389 DOI: 10.1128/jb.02336-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa encodes a large and diverse complement of aerobic terminal oxidases, which is thought to contribute to its ability to thrive in settings with low oxygen availability. In this issue, Arai et al. (J. Bacteriol. 196:4206-4215, 2014, doi:http://dx.doi.org/10.1128/JB.02176-14) present a thorough characterization of these five complexes, enabling a more detailed understanding of aerobic respiration in this organism.
Collapse
|
34
|
cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1. J Bacteriol 2014; 196:3881-9. [PMID: 25182494 DOI: 10.1128/jb.01978-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
For bacteria, many studies have focused on the role of respiratory enzymes in energy conservation; however, their effect on cell behavior is poorly understood. Pseudomonas aeruginosa can perform both aerobic respiration and denitrification. Previous studies demonstrated that cbb3-type cytochrome c oxidases that support aerobic respiration are more highly expressed in P. aeruginosa under anoxic conditions than are other aerobic respiratory enzymes. However, little is known about their role under such conditions. In this study, it was shown that cbb3 oxidases of P. aeruginosa PAO1 alter anaerobic growth, the denitrification process, and cell morphology under anoxic conditions. Furthermore, biofilm formation was promoted by the cbb3 oxidases under anoxic conditions. cbb3 oxidases led to the accumulation of nitric oxide (NO), which is produced during denitrification. Cell elongation induced by NO accumulation was reported to be required for robust biofilm formation of P. aeruginosa PAO1 under anoxic conditions. Our data show that cbb3 oxidases promote cell elongation by inducing NO accumulation during the denitrification process, which further leads to robust biofilms. Our findings show that cbb3 oxidases, which have been well studied as aerobic respiratory enzymes, are also involved in denitrification and influence the lifestyle of P. aeruginosa PAO1 under anoxic conditions.
Collapse
|
35
|
Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa. J Bacteriol 2014; 196:4206-15. [PMID: 25182500 DOI: 10.1128/jb.02176-14] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo(3)-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb(3)-type cytochrome c oxidases (cbb(3)-1and cbb(3)-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb(3)-1 and cbb(3)-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb(3)-1 and cbb(3)-2 are high-affinity enzymes. Although cbb(3)-1 and cbb(3)-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb(3)-1 and cbb(3)-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb(3)-1 and cbb(3)-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa.
Collapse
|
36
|
Marker genes for the metabolic adaptation of Pseudomonas aeruginosa to the hypoxic cystic fibrosis lung environment. Int J Med Microbiol 2014; 304:1050-61. [PMID: 25130702 DOI: 10.1016/j.ijmm.2014.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/13/2014] [Accepted: 07/21/2014] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistence in the inflamed and ever fluctuating CF lungs results in the selection of a variety of changes in P. aeruginosa physiology. Accumulating evidence suggests that especially metabolic changes support the survival and growth of P. aeruginosa within the hypoxic and nutritious CF mucus. To investigate if metabolic adaptations we described for hypermutable P. aeruginosa from late CF lung disease (Hoboth et al., 2009. J. Infect. Dis., pp. 118-130) may represent specific changes in response to the selective conditions within the oxygen-restricted CF mucus, we determined the expression of a set of genes during aerobic and hypoxic growth in LB and the artificial sputum medium ASM. We further focused on the regulation of the two isocitrate dehydrogenases Icd and Idh. Interestingly, both isoenzymes may replace each other under aerobic and hypoxic conditions. The NADPH- and RpoS-dependent Icd seems to be the leading isoenzyme under prolonged oxygen limitation and stationary growth phase. LacZ reporter analysis revealed that oxygen-restriction increased the expression levels of azu, cbb3-1, cbb3-2, ccpR, icd, idh and oprF gene, whereas himD and nuoA are increasingly expressed only during hypoxic growth in ASM. Overexpression of the anaerobic regulator Anr improved the expression of azu, ccpR, cbb3-2 and icd. In summary, expression of azu, cbb3-1, cbb3-2, ccpR, icd, idh, oprF, himD, and nuoA appeared to be beneficial for the growth of P. aeruginosa under hypoxic conditions indicating these genes may represent marker genes for the metabolic adaptation to the CF lung environment.
Collapse
|
37
|
Okkotsu Y, Little AS, Schurr MJ. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 2014; 4:82. [PMID: 24999454 PMCID: PMC4064291 DOI: 10.3389/fcimb.2014.00082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections.
Collapse
Affiliation(s)
- Yuta Okkotsu
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Alexander S Little
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Michael J Schurr
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
38
|
Metabolic compensation of fitness costs associated with overexpression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58:3904-13. [PMID: 24777101 DOI: 10.1128/aac.00121-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The acquisition of antibiotic resistance has been associated with a possible nonspecific, metabolic burden that is reflected in decreased fitness among resistant bacteria. We have recently demonstrated that overexpression of the MexEF-OprN multidrug efflux pump does not produce a metabolic burden when measured by classical competitions tests but rather leads to a number of changes in the organism's physiology. One of these changes is the untimely activation of the nitrate respiratory chain under aerobic conditions. MexEF-OprN is a proton/substrate antiporter. Overexpression of this element should result in a constant influx of protons, which may lead to cytoplasmic acidification. Acidification was not observed in aerobiosis, a situation in which the MexEF-overproducing mutant increases oxygen consumption. This enhanced oxygen uptake serves to eliminate intracellular proton accumulation, preventing the cytoplasmic acidification that was observed exclusively under anaerobic conditions, a situation in which the fitness of the MexEF-OprN-overproducing mutant decreases. Finally, we determined that the early activation of the nitrate respiratory chain under aerobic conditions plays a role in preventing a deleterious effect associated with the overexpression of MexEF-OprN. Our results show that metabolic rewiring may assist in overcoming the potential fitness cost associated with the acquisition of antibiotic resistance. Furthermore, the capability to metabolically compensate for this effect is habitat dependent, as demonstrated by our results under anaerobic conditions. The development of drugs that prevent metabolic compensation of fitness costs may help to reduce the persistence and dissemination of antibiotic resistance.
Collapse
|
39
|
Rusmini R, Vecchietti D, Macchi R, Vidal-Aroca F, Bertoni G. A shotgun antisense approach to the identification of novel essential genes in Pseudomonas aeruginosa. BMC Microbiol 2014; 14:24. [PMID: 24499134 PMCID: PMC3922391 DOI: 10.1186/1471-2180-14-24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/23/2014] [Indexed: 12/29/2022] Open
Abstract
Background Antibiotics in current use target a surprisingly small number of cellular functions: cell wall, DNA, RNA, and protein biosynthesis. Targeting of novel essential pathways is expected to play an important role in the discovery of new antibacterial agents against bacterial pathogens, such as Pseudomonas aeruginosa, that are difficult to control because of their ability to develop resistance, often multiple, to all current classes of clinical antibiotics. Results We aimed to identify novel essential genes in P. aeruginosa by shotgun antisense screening. This technique was developed in Staphylococcus aureus and, following a period of limited success in Gram-negative bacteria, has recently been used effectively in Escherichia coli. To also target low expressed essential genes, we included some variant steps that were expected to overcome the non-stringent regulation of the promoter carried by the expression vector used for the shotgun antisense libraries. Our antisense screenings identified 33 growth-impairing single-locus genomic inserts that allowed us to generate a list of 28 “essential-for-growth” genes: five were “classical” essential genes involved in DNA replication, transcription, translation, and cell division; seven were already reported as essential in other bacteria; and 16 were “novel” essential genes with no homologs reported to have an essential role in other bacterial species. Interestingly, the essential genes in our panel were suggested to take part in a broader range of cellular functions than those currently targeted by extant antibiotics, namely protein secretion, biosynthesis of cofactors, prosthetic groups and carriers, energy metabolism, central intermediary metabolism, transport of small molecules, translation, post-translational modification, non-ribosomal peptide synthesis, lipopolysaccharide synthesis/modification, and transcription regulation. This study also identified 43 growth-impairing inserts carrying multiple loci targeting 105 genes, of which 25 have homologs reported as essential in other bacteria. Finally, four multigenic growth-impairing inserts belonged to operons that have never been reported to play an essential role. Conclusions For the first time in P. aeruginosa, we applied regulated antisense RNA expression and showed the feasibility of this technology for the identification of novel essential genes.
Collapse
Affiliation(s)
| | | | | | | | - Giovanni Bertoni
- Department of Life Sciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
40
|
Buschmann S, Richers S, Ermler U, Michel H. A decade of crystallization drops: crystallization of the cbb3 cytochrome c oxidase from Pseudomonas stutzeri. Protein Sci 2014; 23:411-22. [PMID: 24488923 DOI: 10.1002/pro.2423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 11/11/2022]
Abstract
The cbb3 cytochrome c oxidases are distant members of the superfamily of heme copper oxidases. These terminal oxidases couple O2 reduction with proton transport across the plasma membrane and, as a part of the respiratory chain, contribute to the generation of an electrochemical proton gradient. Compared with other structurally characterized members of the heme copper oxidases, the recently determined cbb3 oxidase structure at 3.2 Å resolution revealed significant differences in the electron supply system, the proton conducting pathways and the coupling of O2 reduction to proton translocation. In this paper, we present a detailed report on the key steps for structure determination. Improvement of the protein quality was achieved by optimization of the number of lipids attached to the protein as well as the separation of two cbb3 oxidase isoenzymes. The exchange of n-dodecyl-β-D-maltoside for a precisely defined mixture of two α-maltosides and decanoylsucrose as well as the choice of the crystallization method had a most profound impact on crystal quality. This report highlights problems frequently encountered in membrane protein crystallization and offers meaningful approaches to improve crystal quality.
Collapse
Affiliation(s)
- Sabine Buschmann
- Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Max-von-Laue-Str.3, D-60438, Germany
| | | | | | | |
Collapse
|
41
|
Sevilla E, Alvarez-Ortega C, Krell T, Rojo F. The Pseudomonas putida HskA hybrid sensor kinase responds to redox signals and contributes to the adaptation of the electron transport chain composition in response to oxygen availability. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:825-834. [PMID: 24249291 DOI: 10.1111/1758-2229.12083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023]
Abstract
Pseudomonas putida has a branched aerobic electron transport that includes five terminal oxidases, each of which has different properties. The relative expression of each oxidase is carefully regulated to assemble the most suitable electron transport chain for the prevailing conditions. The HskA hybrid sensor kinase participates in this control, but the signals to which HskA responds were unknown. Here, the influence of HskA on the mRNA abundance of genes coding for all terminal oxidases and for the bc1 complex was analysed in cells growing under controlled aerobic, semiaerobic or microaerobic conditions. The results indicate that the influence of HskA on the expression of each terminal oxidase and the bc1 complex varies depending on oxygen availability. This effect was more pronounced under aerobic or semiaerobic conditions, but decreased under microaerobic conditions. The expression of hskA was regulated by oxygen availability. We show that HskA autophosphorylation is inhibited by ubiquinone but not by ubiquinol, its reduced derivative. This suggests that HskA could sense the oxidation state of the respiratory ubiquinones, which may be a key factor in HskA activity. Inactivation of hskA reduced growth rate and oxygen consumption, stressing the importance of HskA for the assembly of an efficient electron transport chain.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Biochemical and biophysical characterization of the two isoforms of cbb3-type cytochrome c oxidase from Pseudomonas stutzeri. J Bacteriol 2013; 196:472-82. [PMID: 24214947 DOI: 10.1128/jb.01072-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cbb3-type cytochrome c oxidases (cbb3-CcOs) are members of the heme-copper oxidase superfamily that couple the reduction of oxygen to translocation of protons across the membrane. The cbb3-CcOs are present only in bacteria and play a primary role in microaerobic respiration, being essential for nitrogen-fixing endosymbionts and for some human pathogens. As frequently observed in Pseudomonads, Pseudomonas stutzeri contains two independent ccoNO(Q)P operons encoding the two cbb3 isoforms, Cbb3-1 and Cbb3-2. While the crystal structure of Cbb3-1 from P. stutzeri was determined recently and cbb3-CcOs from other organisms were characterized functionally, less emphasis has been placed on the isoform-specific differences between the cbb3-CcOs. In this work, both isoforms were homologously expressed in P. stutzeri strains from which the genomic version of the respective operon was deleted. We purified both cbb3 isoforms separately by affinity chromatography and increased the yield of Cbb3-2 to a similar level as Cbb3-1 by replacing its native promoter. Mass spectrometry, UV-visible (UV-Vis) spectroscopy, differential scanning calorimetry, as well as oxygen reductase and catalase activity measurements were employed to characterize both cbb3 isoforms. Differences were found concerning the thermal stability and the presence of subunit CcoQ. However, no significant differences between the two isoforms were observed otherwise. Interestingly, a surprisingly high turnover of at least 2,000 electrons s(-1) and a high Michaelis-Menten constant (Km ~ 3.6 mM) using ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD) as the electron donor were characteristic for both P. stutzeri cbb3-CcOs. Our work provides the basis for further mutagenesis studies of each of the two cbb3 isoforms specifically.
Collapse
|
43
|
Pessi G, Braunwalder R, Grunau A, Omasits U, Ahrens CH, Eberl L. Response of Burkholderia cenocepacia H111 to micro-oxia. PLoS One 2013; 8:e72939. [PMID: 24023794 PMCID: PMC3759415 DOI: 10.1371/journal.pone.0072939] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/15/2013] [Indexed: 12/20/2022] Open
Abstract
B. cenocepacia is an opportunistic human pathogen that is particularly problematic for patients suffering from cystic fibrosis (CF). In the CF lung bacteria grow to high densities within the viscous mucus that is limited in oxygen. Pseudomonas aeruginosa, the dominant pathogen in CF patients, is known to grow and survive under oxygen-limited to anaerobic conditions by using micro-oxic respiration, denitrification and fermentative pathways. In contrast, inspection of the genome sequences of available B. cenocepacia strains suggested that B. cenocepacia is an obligate aerobic and non-fermenting bacterium. In accordance with the bioinformatics analysis we observed that B. cenocepacia H111 is able to grow with as little as 0.1% O2 but not under strictly anoxic conditions. Phenotypic analyses revealed that H111 produced larger amounts of biofilm, pellicle and proteases under micro-oxic conditions (0.5%–5% O2, i.e. conditions that mimic those encountered in CF lung infection), and was more resistant to several antibiotics. RNA-Seq and shotgun proteomics analyses of cultures of B. cenocepacia H111 grown under micro-oxic and aerobic conditions showed up-regulation of genes involved in the synthesis of the exopolysaccharide (EPS) cepacian as well as several proteases, two isocitrate lyases and other genes potentially important for life in micro-oxia. Data deposition: RNA-Seq raw data files are accessible through the GEO Series accession number GSE48585. MS data have been deposited in the ProteomeXchange database (PXD000270).
Collapse
Affiliation(s)
- Gabriella Pessi
- Department of Microbiology, University of Zurich, Zürich, Switzerland
- * E-mail:
| | | | - Alexander Grunau
- Department of Microbiology, University of Zurich, Zürich, Switzerland
| | - Ulrich Omasits
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Christian H. Ahrens
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Leo Eberl
- Department of Microbiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
44
|
Raimunda D, Padilla-Benavides T, Vogt S, Boutigny S, Tomkinson KN, Finney LA, Argüello JM. Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa. Metallomics 2013; 5:144-51. [PMID: 23354150 DOI: 10.1039/c2mt20191g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, has two transmembrane Cu(+) transport ATPases, CopA1 and CopA2. Both proteins export cytoplasmic Cu(+) into the periplasm and mutation of either gene leads to attenuation of virulence. CopA1 is required for maintaining cytoplasmic copper levels, while CopA2 provides copper for cytochrome c oxidase assembly. We hypothesized that transported Cu(+) ions would be directed to their destination via specific periplasmic partners and disruption of transport should affect the periplasmic copper homeostasis. Supporting this, mutation of either ATPase gene led to large increments in periplasmic cuproprotein levels. Toward identifying the proteins participating in this cellular response the periplasmic metalloproteome was resolved in non-denaturing bidimensional gel electrophoresis, followed by X-ray fluorescence visualization and identification by mass-spectrometry. A single spot containing the electron shuttle protein azurin was responsible for the observed increments in cuproprotein contents. In agreement, lack of either Cu(+)-ATPase induced an increase in azu transcription. This is associated with an increase in the expression of anr and rpoS oxidative stress response regulators, rather than cueR, a copper sensing regulator. We propose that azurin overexpression and accumulation in the periplasm is part of the cellular response to cytoplasmic oxidative stress in P. aeruginosa.
Collapse
Affiliation(s)
- Daniel Raimunda
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Kidarsa TA, Shaffer BT, Goebel NC, Roberts DP, Buyer JS, Johnson A, Kobayashi DY, Zabriskie TM, Paulsen I, Loper JE. Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS. Environ Microbiol 2013; 15:716-35. [PMID: 23297839 DOI: 10.1111/1462-2920.12066] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/20/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Gene expression profiles of the biological control strain Pseudomonas protegens Pf-5 inhabiting pea seed surfaces were revealed using a whole-genome oligonucleotide microarray. We identified genes expressed by Pf-5 under the control of two global regulators (GacA and RpoS) known to influence biological control and secondary metabolism. Transcript levels of 897 genes, including many with unknown functions as well as those for biofilm formation, cyclic diguanylate (c-di-GMP) signalling, iron homeostasis and secondary metabolism, were influenced by one or both regulators, providing evidence for expression of these genes by Pf-5 on seed surfaces. Comparison of the GacA and RpoS transcriptomes defined for Pf-5 grown on seed versus in broth culture overlapped, but most genes were regulated by GacA or RpoS under only one condition, likely due to differing levels of expression in the two conditions. We quantified secondary metabolites produced by Pf-5 and gacA and rpoS mutants on seed and in culture, and found that production profiles corresponded generally with biosynthetic gene expression profiles. Future studies evaluating biological control mechanisms can now focus on genes expressed by Pf-5 on seed surfaces, the habitat where the bacterium interacts with seed-infecting pathogens to suppress seedling diseases.
Collapse
Affiliation(s)
- Teresa A Kidarsa
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chung JCS, Rzhepishevska O, Ramstedt M, Welch M. Type III secretion system expression in oxygen-limited Pseudomonas aeruginosa cultures is stimulated by isocitrate lyase activity. Open Biol 2013; 3:120131. [PMID: 23363478 PMCID: PMC3603453 DOI: 10.1098/rsob.120131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and a common cause of chronic infections in individuals with cystic fibrosis (CF). Oxygen limitation was recently reported to regulate the expression of a major virulence determinant in P. aeruginosa, the type III secretion system (T3SS). Here, we show that expression of the T3SS in oxygen-limited growth conditions is strongly dependent on the glyoxylate shunt enzyme, isocitrate lyase (ICL; encoded by aceA), which was previously shown to be highly expressed in CF isolates. ICL-dependent regulation of the T3SS did not alter the expression level of the master transcriptional regulator, ExsA, but did affect expression of the T3 structural proteins, effectors and regulators (ExsC, ExsD and ExsE). An aceA mutant displayed enhanced biofilm formation during anaerobic growth, which suggested that AceA-dependent modulation of type III secretion might impinge upon the RetS/LadS signalling pathways. Indeed, our data suggest that RetS is able to mediate some of its effects through AceA, as expression of aceA in trans partially restored T3SS expression in a retS mutant. Our findings indicate that AceA is a key player in the metabolic regulation of T3SS expression during oxygen-limited growth of P. aeruginosa. To the best of our knowledge, this is the first demonstration that the T3SS can be regulated by factors that do not affect ExsA expression levels.
Collapse
Affiliation(s)
- Jade C S Chung
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | |
Collapse
|
47
|
Petrova OE, Schurr JR, Schurr MJ, Sauer K. Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation. Mol Microbiol 2012; 86:819-35. [PMID: 22931250 DOI: 10.1111/mmi.12018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2012] [Indexed: 12/30/2022]
Abstract
A hallmark of the biofilm architecture is the presence of microcolonies. However, little is known about the underlying mechanisms governing microcolony formation. In the pathogen Pseudomonas aeruginosa, microcolony formation is dependent on the two-component regulator MifR, with mifR mutant biofilms exhibiting an overall thin structure lacking microcolonies, and overexpression of mifR resulting in hyper-microcolony formation. Using global transcriptomic and proteomic approaches, we demonstrate that microcolony formation is associated with stressful, oxygen-limiting but electron-rich conditions, as indicated by the activation of stress response mechanisms and anaerobic and fermentative processes, in particular pyruvate fermentation. Inactivation of genes involved in pyruvate utilization including uspK, acnA and ldhA abrogated microcolony formation in a manner similar to mifR inactivation. Moreover, depletion of pyruvate from the growth medium impaired biofilm and microcolony formation, while addition of pyruvate significantly increased microcolony formation. Addition of pyruvate to or expression of mifR in lactate dehydrogenase (ldhA) mutant biofilms did not restore microcolony formation, while addition of pyruvate partly restored microcolony formation in mifR mutant biofilms. In contrast, expression of ldhA in mifR::Mar fully restored microcolony formation by this mutant strain. Our findings indicate the fermentative utilization of pyruvate to be a microcolony-specific adaptation of the P. aeruginosa biofilm environment.
Collapse
Affiliation(s)
- Olga E Petrova
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | | | | | | |
Collapse
|
48
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
49
|
Social Behaviours under Anaerobic Conditions in Pseudomonas aeruginosa. Int J Microbiol 2012; 2012:405191. [PMID: 22518142 PMCID: PMC3299288 DOI: 10.1155/2012/405191] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/03/2011] [Accepted: 10/20/2011] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is well adapted to grow in anaerobic environments in the presence of nitrogen oxides by generating energy through denitrification. Environmental cues, such as oxygen and nitrogen oxide concentrations, are important in regulating the gene expression involved in this process. Recent data indicate that P. aeruginosa also employs cell-to-cell communication signals to control the denitrifying activity. The regulation of denitrification by these signalling molecules may control nitric oxide production. Nitric oxide, in turn, functions as a signalling molecule by activating certain regulatory proteins. Moreover, under denitrifying conditions, drastic changes in cell physiology and cell morphology are induced that significantly impact group behaviours, such as biofilm formation.
Collapse
|
50
|
Fonseca P, Moreno R, Rojo F. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:329-339. [PMID: 23761279 DOI: 10.1111/j.1758-2229.2010.00229.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In its natural habitats (soil, water and rhizosphere), Pseudomonas putida can suffer frequent and long-term changes in temperature that affect its growth and survival. Pseudomonas putida KT2440, a well-characterized model strain, grows optimally at 30°C but can proliferate at temperatures as low as 4°C. However, little information is available on the physiological changes that occur when P. putida grows at low temperatures. To investigate this area, the transcriptome and proteome profiles of cells exponentially growing in a complex medium at 10°C were compared with those of cells exponentially growing at 30°C. Low temperature modified the expression of at least 266 genes (some 5% of the genome). Many of the genes showing differential expression were involved in energy metabolism or in the transport and binding of substrates, although genes implicated in other cellular functions were also affected. Several changes seemed directed towards neutralizing problems created by low temperature, such as increased protein misfolding, the increased stability of DNA/RNA secondary structures, reduced membrane fluidity and a reduced growth rate. The present results improve our understanding of the P. putida lifestyle at low temperature, which may be relevant for its applications in bioremediation and in promotion of plant growth.
Collapse
Affiliation(s)
- Pilar Fonseca
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|