1
|
Riazi M, Marcario JK, Samson FK, Kenjale H, Adany I, Staggs V, Ledford E, Marquis J, Narayan O, Cheney PD. Rhesus macaque model of chronic opiate dependence and neuro-AIDS: longitudinal assessment of auditory brainstem responses and visual evoked potentials. J Neuroimmune Pharmacol 2009; 4:260-75. [PMID: 19283490 PMCID: PMC3713620 DOI: 10.1007/s11481-009-9149-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 02/24/2009] [Indexed: 11/30/2022]
Abstract
Our work characterizes the effects of opiate (morphine) dependence on auditory brainstem and visual evoked responses in a rhesus macaque model of neuro-AIDS utilizing a chronic continuous drug delivery paradigm. The goal of this study was to clarify whether morphine is protective, or if it exacerbates simian immunodeficiency virus (SIV)-related systemic and neurological disease. Our model employs a macrophage tropic CD4/CCR5 coreceptor virus, SIV(mac)239 (R71/E17), which crosses the blood-brain barrier shortly after inoculation and closely mimics the natural disease course of human immunodeficiency virus infection. The cohort was divided into three groups: morphine only, SIV only, and SIV + morphine. Evoked potential (EP) abnormalities in subclinically infected macaques were evident as early as 8 weeks postinoculation. Prolongations in EP latencies were observed in SIV-infected macaques across all modalities. Animals with the highest cerebrospinal fluid viral loads and clinical disease showed more abnormalities than those with subclinical disease, confirming our previous work (Raymond et al., J Neurovirol 4:512-520, 1998; J Neurovirol 5:217-231, 1999; AIDS Res Hum Retroviruses 16:1163-1173, 2000). Although some differences were observed in auditory and visual evoked potentials in morphine-treated compared to morphine-untreated SIV-infected animals, the effects were relatively small and not consistent across evoked potential type. However, morphine-treated animals with subclinical disease had a clear tendency toward higher virus loads in peripheral and central nervous system tissues (Marcario et al., J Neuroimmune Pharmacol 3:12-25, 2008) suggesting that if had been possible to follow all animals to end-stage disease, a clearer pattern of evoked potential abnormality might have emerged.
Collapse
Affiliation(s)
- Mariam Riazi
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Joanne K Marcario
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Frank K. Samson
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Himanshu Kenjale
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Istvan Adany
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Vincent Staggs
- Research Design & Analysis Unit of the Schiefelbusch Institute for Lifespan Studies, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Emily Ledford
- Research Design & Analysis Unit of the Schiefelbusch Institute for Lifespan Studies, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Janet Marquis
- Research Design & Analysis Unit of the Schiefelbusch Institute for Lifespan Studies, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Opendra Narayan
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Paul D. Cheney
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| |
Collapse
|
2
|
Effect of morphine on the neuropathogenesis of SIVmac infection in Indian Rhesus Macaques. J Neuroimmune Pharmacol 2007; 3:12-25. [PMID: 18247128 DOI: 10.1007/s11481-007-9085-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Morphine is known to prevent the development of cell-mediated immune (CMI) responses and enhance expression of the CCR5 receptor in monocyte macrophages. We undertook a study to determine the effect of morphine on the neuropathogenesis and immunopathogenesis of simian immunodeficiency virus (SIV) infection in Indian Rhesus Macaques. Hypothetically, the effect of morphine would be to prevent the development of CMI responses to SIV and to enhance the infection in macrophages. Sixteen Rhesus Macaques were divided into three experimental groups: M (morphine only, n = 5), VM (morphine + SIV, n = 6), and V (SIV only, n = 5). Animals in groups M and VM were given 2.5 mg/kg of morphine sulfate, four times daily, for up to 59 weeks. Groups VM and V were inoculated with SIVmacR71/17E 26 weeks after the beginning of morphine administration. Morphine prevented the development of enzyme-linked immunosorbent spot-forming cell CMI responses in contrast to virus control animals, all of which developed CMI. Whereas morphine treatment had no effect on viremia, cerebrospinal fluid viral titers or survival over the time course of the study, the drug was associated with a tendency for greater build-up of virus in the brains of infected animals. Histopathological changes in the brains of animals that developed disease were of a demyelinating type in the VM animals compared to an encephalitic type in the V animals. This difference may have been associated with the immunosuppressive effect of the drug in inhibiting CMI responses.
Collapse
|
3
|
Selemon LD, Begovic A. Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 2007; 151:1-10. [PMID: 17383740 PMCID: PMC2048985 DOI: 10.1016/j.psychres.2006.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 10/29/2006] [Accepted: 11/02/2006] [Indexed: 11/27/2022]
Abstract
Reduction of volume and neuronal number has been found in several association nuclei of the thalamus in schizophrenic subjects. Recent evidence suggests that schizophrenic patients exhibit abnormalities in early visual processing and that many of the observed perceptual deficits are consistent with dysfunction of the magnocellular pathway, i.e. the visual relay from peripheral retinal cells to the two ventrally located magnocellular layers of the lateral geniculate nucleus (LGN). The present study was undertaken to determine whether abnormalities in cell number and volume of the LGN are associated with schizophrenia and whether the structural alterations are restricted to either the magnocellular or parvocellular subdivisions of the LGN. Series of Nissl-stained sections spanning the LGN were obtained from 15 schizophrenic and 15 normal control subjects. The optical disector/fractionator sampling method was used to estimate total neuronal number, total glial number and volume of the magnocellular and parvocellular subdivisions of the LGN. Cell number and volume of the LGN in schizophrenic subjects were not abnormal. Volume of both parvocellular and magnocellular layers of the LGN decreased with age. These findings do not support the hypothesis that early visual processing deficits in schizophrenic subjects are due to reduction of neuronal number in the LGN.
Collapse
Affiliation(s)
- Lynn D Selemon
- Department of Neurobiology, Yale University School of Medicine, PO Box 208001, New Haven, CT 06520-8001, USA.
| | | |
Collapse
|
4
|
Hill MS, Mulcahy ER, Gomez ML, Pacyniak E, Berman NEJ, Stephens EB. APOBEC3G expression is restricted to neurons in the brains of pigtailed macaques. AIDS Res Hum Retroviruses 2006; 22:541-50. [PMID: 16796529 DOI: 10.1089/aid.2006.22.541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Vif protein of human immunodeficiency virus-1 (HIV-1) has been shown to interact with members of the APOBEC family of cytidine deaminases, particularly APOBEC3G/F. In this study, we isolated RNA from 12 regions of the brain from two pigtailed macaques that were exsanguinated and perfused with saline. Our results indicate that APOBEC3G was detected in all regions of the brain analyzed. Immunoblot analysis using lysates prepared from these same regions of the brain and a monoclonal antibody to APOBEC3G confirmed the RT-PCR findings. To determine which cell types express APOBEC3G, immunohistochemical studies were performed using this monoclonal antibody on whole brain sections. Our results clearly show that the pyramidal neurons within the gray matter of cerebral and cerebellar cortices express APOBEC3G. However, APOBEC3G expression in the pyramidal neurons appeared to be nuclear or associated with nuclei. In contrast to our findings in the cerebral cortex, immunohistochemical analysis of the spleen and kidney tissues revealed that APOBEC3G expression in the cells of these tissues was predominantly cytoplasmic. We further investigated the expression of APOBEC3G in astrocytes. Immunohistochemical staining of serial sections was performed using antibodies to glial fibrillary acidic protein (GFAP) and APOBEC3G. As expected, the cortical and cerebellar white matter showed extensive immunostaining of astrocytes with the antibody against GFAP but a lack of reactivity to the antibody to APOBEC3G. Additionally, Immunoblot analysis of lysates prepared from primary human fetal astrocytes revealed a lack of APOBEC3G expression. Taken together, these results indicate that APOBEC3G expression is restricted to neurons in the brain and that astrocytes and microglia probably do not express this protein or express it at levels undetectable by immunohistochemistry. These finding have implications for the brain as a potential reservoir for Vif-defective viruses.
Collapse
Affiliation(s)
- M Sarah Hill
- Department of Anatomy and Cell Biology, 5007 Wahl Hall West, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
5
|
Weimer JM, Custer AW, Benedict JW, Alexander NA, Kingsley E, Federoff HJ, Cooper JD, Pearce DA. Visual deficits in a mouse model of Batten disease are the result of optic nerve degeneration and loss of dorsal lateral geniculate thalamic neurons. Neurobiol Dis 2006; 22:284-93. [PMID: 16412658 PMCID: PMC3651998 DOI: 10.1016/j.nbd.2005.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/14/2005] [Accepted: 11/18/2005] [Indexed: 10/25/2022] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is an autosomal recessive disorder of childhood caused by mutations in CLN3. Although visual deterioration is typically the first clinical sign to manifest in affected children, loss of Cln3 in a mouse model of JNCL does not recapitulate this retinal deterioration. This suggests that either the loss of CLN3 does not directly affect retinal cell survival or that nuclei involved in visual processing are affected prior to retinal degeneration. Having previously demonstrated that Cln3(-/-) mice have decreased optic nerve axonal density, we now demonstrate a decrease in nerve conduction. Examination of retino-recipient regions revealed a decreased number of neurons within the dorsal lateral geniculate nucleus (LGNd). We demonstrate decreased transport of amino acids from the retina to the LGN, suggesting an impediment in communication between the retina and projection nuclei. This study defines a novel path of degeneration within the LGNd, providing a mechanism for causation of JNCL visual deficits.
Collapse
Affiliation(s)
- Jill M. Weimer
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Andrew W. Custer
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jared W. Benedict
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Noreen A. Alexander
- Pediatric Storage Disorders Laboratory, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, De Crespigny Park, King's College London, London SE5 8AF, UK
- Department of Neuroscience, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, De Crespigny Park, King's College London, London SE5 8AF, UK
| | - Evan Kingsley
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Howard J. Federoff
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Neurology, Aab Insitute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, De Crespigny Park, King's College London, London SE5 8AF, UK
- Department of Neuroscience, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, De Crespigny Park, King's College London, London SE5 8AF, UK
| | - David A. Pearce
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Neurology, Aab Insitute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Nesbit CE, Schwartz SA. In vitro and animal models of human immunodeficiency virus infection of the central nervous system. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:515-24. [PMID: 11986254 PMCID: PMC119973 DOI: 10.1128/cdli.9.3.515-524.2002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chadd E Nesbit
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, and Kaleida Health, Buffalo General Hospital, Buffalo, New York 14203, USA
| | | |
Collapse
|
7
|
Sanders VJ, Wiley CA, Hamilton RL. The mechanisms of neuronal damage in retroviral infections of the nervous system. Curr Top Microbiol Immunol 2001; 253:179-201. [PMID: 11417135 DOI: 10.1007/978-3-662-10356-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- V J Sanders
- Department of Neuroscience, University of California, San Diego, La Jolla, CA 92302, USA
| | | | | |
Collapse
|
8
|
Raymond LA, Wallace D, Raghavan R, Marcario JK, Johnson JK, Foresman LL, Joag SV, Narayan O, Berman NE, Cheney PD. Sensory evoked potentials in SIV-infected monkeys with rapidly and slowly progressing disease. AIDS Res Hum Retroviruses 2000; 16:1163-73. [PMID: 10954892 DOI: 10.1089/088922200415018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) infects the central nervous system (CNS) early in the course of disease progression and leads to some form of neurological disease in 40-60% of cases. Both symptomatic and asymptomatic HIV-infected subjects also show abnormalities in evoked potentials. As part of an effort to further validate an animal model of the neurological disease associated with lentiviral infection, we recorded multimodal sensory evoked potentials (EPs) from nine rhesus macaques infected with passaged strains of SIVmac (R71/E17), prior to and at 1 month intervals following inoculation. The latencies of forelimb and hindlimb somatosensory evoked potentials (SEP) and flash visual evoked potentials (VEP) were measured. Within 14 weeks of inoculation, all but two animals had progressed to end-stage disease (rapid progressors). The two animals with slowly progressing disease (AQ15 and AQ94) had postinoculation life spans of 109 and 87 weeks, respectively. No significant changes were observed in evoked potentials recorded during the control period or at any time in the animals with slowly progressing disease. However, all of the monkeys with rapidly progressing disease exhibited increases in latency for at least one evoked potential type. The overall mean increases in somatosensory and visual evoked potential peak latencies for the rapid progressors were 22.4 and 25.3%, respectively. For comparison, the changes in slow progressors were not significant (1.8 and -1.9%, respectively). These results, coupled with our previous finding of slowed motor evoked potentials in the same cohort of macaques (Raymond et al.: J Neurovirol 1999;5:217-231), demonstrate a broad and somewhat variable pattern of viral injury to both sensory and motor system structures, resembling the findings in HIV-infected humans. These results coupled with our earlier work demonstrating cognitive and motor behavioral impairments in the same monkeys support the use of the SIVmac-infected rhesus macaque as a model of AIDS-related neurological disease.
Collapse
Affiliation(s)
- L A Raymond
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McCormick-Davis C, Dalton SB, Hout DR, Singh DK, Berman NE, Yong C, Pinson DM, Foresman L, Stephens EB. A molecular clone of simian-human immunodeficiency virus (DeltavpuSHIV(KU-1bMC33)) with a truncated, non-membrane-bound vpu results in rapid CD4(+) T cell loss and neuro-AIDS in pig-tailed macaques. Virology 2000; 272:112-26. [PMID: 10873754 DOI: 10.1006/viro.2000.0333] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report on the role of vpu in the pathogenesis of a molecularly cloned simian-human immunodeficiency virus (SHIV(KU-1bMC33)), in which the tat, rev, vpu, env, and nef genes derived from the uncloned SHIV(KU-1b) virus were inserted into the genetic background of parental nonpathogenic SHIV-4. A mutant was constructed (DeltavpuSHIV(KU-1bMC33)) in which 42 of 82 amino acids of Vpu were deleted. Phase partitioning studies revealed that the truncated Vpu was not an integral membrane protein, and pulse-chase culture studies revealed that cells inoculated with DeltavpuSHIV(KU-1bMC33) released viral p27 into the culture medium with slightly reduced kinetics compared with cultures inoculated with SHIV(KU-1bMC33). Inoculation of DeltavpuSHIV(KU-1bMC33) into two pig-tailed macaques resulted in a severe decline of CD4(+) T cells and neurological disease in one macaque and a more moderate decline of CD4(+) T cells in the other macaque. These results indicate that a membrane-bound Vpu is not required for the CD4(+) T cell loss and neurological disease in SHIV-inoculated pig-tailed macaques. Furthermore, because the amino acid substitutions in the Tat and Rev were identical to those previously reported for the nonpathogenic SHIV(PPc), our results indicate that amino acid substitutions in the Env and/or Nef were responsible for the observed CD4(+) T cell loss and neurological disease after inoculation with this molecular clone.
Collapse
Affiliation(s)
- C McCormick-Davis
- Departments of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Berman NE, Marcario JK, Yong C, Raghavan R, Raymond LA, Joag SV, Narayan O, Cheney PD. Microglial activation and neurological symptoms in the SIV model of NeuroAIDS: association of MHC-II and MMP-9 expression with behavioral deficits and evoked potential changes. Neurobiol Dis 1999; 6:486-98. [PMID: 10600404 DOI: 10.1006/nbdi.1999.0261] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
HIV-1 causes cognitive and motor deficits and HIV encephalitis (HIVE) in a significant proportion of AIDS patients. Neurological impairment and HIVE are thought to result from release of cytokines and other harmful substances from infected, activated microglia. In this study, the quantitative relationship between microglial activation and neurological impairment was examined in the simian immunodeficiency model of HIVE. Macaque monkeys were infected with a passaged, neurovirulent strain of simian immunodeficiency virus, SIV(mac)239(R71/17E). In concurrent studies, functional impairment was assessed by motor and auditory brainstem evoked potentials and by measurements of cognitive and motor behavioral deficits. Brain tissue was examined by immunohistochemistry using two markers of microglia activation, MHC-II and matrix metalloproteinase-9 (MMP-9). The inoculated animals formed two groups: rapid progressors, which survived 6-14 weeks postinoculation, and slow progressors, which survived 87-109 weeks. In the rapid progressors, two patterns of MHC-II expression were present: (1) a widely disseminated pattern of MHC-II expressing microglia and microglial nodules in cortical gray matter and subcortical white matter, and (2) a more focal pattern in which MHC-II expressing microglia were concentrated into white matter. Animals exhibiting both patterns of microglial activation showed mild to severe changes in cognitive and motor behavior and evoked potentials. All rapid progressors showed expression of MMP-9 in microglia located in subcortical white matter. In the slow progressors MHC-II and MMP-9 staining was similar to uninoculated control macaques, and there was little or no evidence of HIVE. These animals showed behavioral deficits at the end of the disease course, but little changes in evoked potentials. Thus, increases in MHC-II and MMP-9 expression are associated with development of cognitive and motor deficits, alterations in evoked potentials, and rapid disease progression.
Collapse
Affiliation(s)
- N E Berman
- Department of Anatomy and Cell Biology, Marion Merrell Dow Laboratories, Kansas City, KS 66160-7400, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122 ( Pt 4):593-624. [PMID: 10219775 DOI: 10.1093/brain/122.4.593] [Citation(s) in RCA: 1060] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite a hundred years' research, the neuropathology of schizophrenia remains obscure. However, neither can the null hypothesis be sustained--that it is a 'functional' psychosis, a disorder with no structural basis. A number of abnormalities have been identified and confirmed by meta-analysis, including ventricular enlargement and decreased cerebral (cortical and hippocampal) volume. These are characteristic of schizophrenia as a whole, rather than being restricted to a subtype, and are present in first-episode, unmedicated patients. There is considerable evidence for preferential involvement of the temporal lobe and moderate evidence for an alteration in normal cerebral asymmetries. There are several candidates for the histological and molecular correlates of the macroscopic features. The probable proximal explanation for decreased cortical volume is reduced neuropil and neuronal size, rather than a loss of neurons. These morphometric changes are in turn suggestive of alterations in synaptic, dendritic and axonal organization, a view supported by immunocytochemical and ultrastructural findings. Pathology in subcortical structures is not well established, apart from dorsal thalamic nuclei, which are smaller and contain fewer neurons. Other cytoarchitectural features of schizophrenia which are often discussed, notably entorhinal cortex heterotopias and hippocampal neuronal disarray, remain to be confirmed. The phenotype of the affected neuronal and synaptic populations is uncertain. A case can be made for impairment of hippocampal and corticocortical excitatory pathways, but in general the relationship between neurochemical findings (which centre upon dopamine, 5-hydroxytryptamine, glutamate and GABA systems) and the neuropathology of schizophrenia is unclear. Gliosis is not an intrinsic feature; its absence supports, but does not prove, the prevailing hypothesis that schizophrenia is a disorder of prenatal neurodevelopment. The cognitive impairment which frequently accompanies schizophrenia is not due to Alzheimer's disease or any other recognized neurodegenerative disorder. Its basis is unknown. Functional imaging data indicate that the pathophysiology of schizophrenia reflects aberrant activity in, and integration of, the components of distributed circuits involving the prefrontal cortex, hippocampus and certain subcortical structures. It is hypothesized that the neuropathological features represent the anatomical substrate of these functional abnormalities in neural connectivity. Investigation of this proposal is a goal of current neuropathological studies, which must also seek (i) to establish which of the recent histological findings are robust and cardinal, and (ii) to define the relationship of the pathological phenotype with the clinical syndrome, its neurochemistry and its pathogenesis.
Collapse
Affiliation(s)
- P J Harrison
- University Department of Psychiatry, Warneford Hospital, Oxford, UK.
| |
Collapse
|