1
|
Ahangari N, Munoz DG, Coulombe J, Gray DA, Engle EC, Cheng L, Woulfe J. Nuclear IMPDH Filaments in Human Gliomas. J Neuropathol Exp Neurol 2021; 80:944-954. [PMID: 34498062 PMCID: PMC8560559 DOI: 10.1093/jnen/nlab090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The analysis of nuclear morphology plays an important role in glioma diagnosis and grading. We previously described intranuclear rods (rods) labeled with the SDL.3D10 monoclonal antibody against class III beta-tubulin (TUBB3) in human ependymomas. In a cohort of adult diffuse gliomas, we identified nuclear rods in 71.1% of IDH mutant lower-grade gliomas and 13.7% of IDH wild-type glioblastomas (GBMs). The presence of nuclear rods was associated with significantly longer postoperative survival in younger (≤65) GBM patients. Consistent with this, nuclear rods were mutually exclusive with Ki67 staining and their prevalence in cell nuclei inversely correlated with the Ki67 proliferation index. In addition, rod-containing nuclei showed a relative depletion of lamin B1, suggesting a possible association with senescence. To gain insight into their functional significance, we addressed their antigenic properties. Using a TUBB3-null mouse model, we demonstrate that the SDL.3D10 antibody does not bind TUBB3 in rods but recognizes an unknown antigen. In the present study, we show that rods show immunoreactivity for the nucleotide synthesizing enzymes inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthetase. By analogy with the IMPDH filaments that have been described previously, we postulate that rods regulate the activity of nucleotide-synthesizing enzymes in the nucleus by sequestration, with important implications for glioma behavior.
Collapse
Affiliation(s)
- Narges Ahangari
- From the Department of Pathology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - David G Munoz
- From the Department of Pathology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Josee Coulombe
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Douglas A Gray
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Elizabeth C Engle
- Departments of Neurology and Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Long Cheng
- Departments of Neurology and Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John Woulfe
- Center for Cancer Therapeutics and Neurosciences, Ottawa Hospital Research Institute and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Zhou YY, El Hallani S, Balaa F, Mohammad W, Gray DA, Woulfe J. Depletion of Beta Cell Intranuclear Rodlets in Human Type II Diabetes. Endocr Pathol 2017; 28:282-286. [PMID: 28770422 DOI: 10.1007/s12022-017-9499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intranuclear rodlets (INRs) are rod-shaped intranuclear bodies of unknown function present in the nuclei of pancreatic beta cells. Previous studies have demonstrated a significant depletion of INRs from beta cells in mouse models of type II diabetes, suggesting that they may have pathological significance. The objective of the present study was to determine whether beta cell INRs show quantitative alterations in human type II diabetes. In sections of non-neoplastic pancreas from 23 diabetic patients and 23 controls who had undergone complete or partial pancreatectomy, we detected a significant reduction in the proportion of INRs in insulin-immunoreactive beta cells. In addition, we showed that beta cell INRs are immunoreactive for the RNA-binding protein HuR. The results of this study confirm and extend our previous study and implicate this enigmatic nuclear structure in the cellular pathophysiological mechanisms underlying the development of type II diabetes in humans.
Collapse
Affiliation(s)
- Yi Yuan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Soufiane El Hallani
- Department of Pathology, Stanford University, 300 Pasteur Drive, Palo Alto, CA, USA
| | - Fady Balaa
- Department of Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Waleed Mohammad
- Department of Surgery, Jaber Al-Ahmed Armed Forces Hospital, Kuwait City, Kuwait
| | - Douglas A Gray
- Department of Biochemistry, The Ottawa Hospital Research Institute, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Pathology and Laboratory Medicine, Ottawa Hospital Research Institute, Centre for Neurosciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Fernández‐Nogales M, Santos‐Galindo M, Merchán‐Rubira J, Hoozemans JJM, Rábano A, Ferrer I, Avila J, Hernández F, Lucas JJ. Tau-positive nuclear indentations in P301S tauopathy mice. Brain Pathol 2017; 27:314-322. [PMID: 27338164 PMCID: PMC8029483 DOI: 10.1111/bpa.12407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022] Open
Abstract
Increased incidence of neuronal nuclear indentations is a well-known feature of the striatum of Huntington's disease (HD) brains and, in Alzheimer's disease (AD), neuronal nuclear indentations have recently been reported to correlate with neurotoxicity caused by improper cytoskeletal/nucleoskeletal coupling. Initial detection of rod-shaped tau immunostaining in nuclei of cortical and striatal neurons of HD brains and in hippocampal neurons of early Braak stage AD led us to coin the term "tau nuclear rods (TNRs)." Although TNRs traverse nuclear space, they in fact occupy narrow cytoplasmic extensions that fill indentations of the nuclear envelope and we will here refer to this histological hallmark as Tau-immunopositive nuclear indentations (TNIs). We reasoned that TNI formation is likely secondary to tau alterations as TNI detection in HD correlates with an increase in total tau, particularly of the isoforms with four tubulin binding repeats (4R-tau). Here we analyze transgenic mice that overexpress human 4R-tau with a frontotemporal lobar degeneration-tau point mutation (P301S mice) to explore whether tau alteration is sufficient for TNI formation. Immunohistochemistry with various tau antibodies, immunoelectron microscopy and double tau-immunofluorescence/DAPI-nuclear counterstaining confirmed that excess 4R-tau in P301S mice is sufficient for the detection of abundant TNIs that fill nuclear indentations. Interestingly, this does not correlate with an increase in the number of nuclear indentations, thus suggesting that excess total tau or an isoform imbalance in favor of 4R-tau facilitates tau detection inside preexisting nuclear indentations but does not induce formation of the latter. In summary, here we demonstrate that tau alteration is sufficient for TNI detection and our results suggest that the neuropathological finding of TNIs becomes a possible indicator of increased total tau and/or increased 4R/3R-tau ratio in the affected neurons apart from being an efficient way to monitor pathology-associated nuclear indentations.
Collapse
Affiliation(s)
- Marta Fernández‐Nogales
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - María Santos‐Galindo
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - Jesús Merchán‐Rubira
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - Jeroen J. M. Hoozemans
- Department of PathologyVU University Medical Center, Neuroscience Campus Amsterdam1007 MB Amsterdamthe Netherlands
| | - Alberto Rábano
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
- Departamento de Neuropatología y Banco de TejidosFundación CIENMadridSpain
| | - Isidro Ferrer
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
- Institute of Neuropathology; IDIBELL‐University Hospital BellvitgeUniversity of Barcelona; Hospitalet de LlobregatBarcelona08908Spain
| | - Jesús Avila
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - Félix Hernández
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - José J. Lucas
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| |
Collapse
|
4
|
Noble JW, Hunter DV, Roskelley CD, Chan EKL, Mills J. Loukoumasomes Are Distinct Subcellular Structures from Rods and Rings and Are Structurally Associated with MAP2 and the Nuclear Envelope in Retinal Cells. PLoS One 2016; 11:e0165162. [PMID: 27798680 PMCID: PMC5087950 DOI: 10.1371/journal.pone.0165162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
“Rods and rings” (RR) and loukoumasomes are similarly shaped, subcellular macromolecular structures with as yet unknown function. RR, so named because of their shape, are formed in response to inhibition in the GTP or CTP synthetic pathways and are highly enriched in the two key enzymes of the nucleotide synthetic pathway. Loukoumasomes also occur as linear and toroidal bodies and were initially inferred to be the same as RR, largely due to their shared shape and size and the fact that it was unclear if they shared the same subcomponents. In human retinoblastoma tissue and cells we have observed toroidal, perinuclear, macromolecular structures of similar size and antigenicity to those previously reported in neurons (neuronal-loukoumasomes). To further characterize the subcomponents of the retinal-loukoumasomes, confocal analysis following immunocytochemical staining for alpha-tubulin, beta-III tubulin and detyrosinated tubulin was performed. These studies indicate that retinal-loukoumasomes are enriched for beta-III tubulin and other tubulins associated with microtubules. Immunofluorescence together with the in situ proximity ligation assay (PLA), confirmed that beta-III tubulin colocalized with detyrosinated tubulin within loukoumasomes. Our results indicate that these tissues contain only loukoumasomes because these macromolecular structures are immunoreactive with an anti-tubulin antibody but are not recognized by the prototype anti-RR/inosine monophosphate dehydrogenase (IMPDH) antibody (It2006). To further compare the RR and retinal-loukoumasomes, retinoblastoma cells were exposed to the IMPDH-inhibitor ribavirin, a drug known to induce the formation of RR. In contrast to RR, the production of retinal-loukoumasomes was unaffected. Coimmunostaining of Y79 cells for beta-III tubulin and IMPDH indicate that these cells, when treated with ribavirin, can contain both retinal-loukoumasomes and RR and that these structures are antigenically distinct. Subcellular fractionation studies indicate that ribavirin increased the RR subcomponent, IMPDH, in the nuclear fraction of Y79 cells from 21.3 ± 5.8% (0 mM ribavirin) to 122.8 ± 7.9% (1 mM ribavirin) while the subcellular localization of the retinal-loukoumasome subcomponent tubulin went unaltered. Further characterization of retinal-loukoumasomes in retinoblastoma cells reveals that they are intimately associated with lamin folds within the nuclear envelope. Using immunofluorescence and the in situ PLA in this cell type, we have observed colocalization of beta-III tubulin with MAP2. As MAP2 is a microtubule-associated protein implicated in microtubule crosslinking, this supports a role for microtubule crosslinkers in the formation of retinal-loukoumasomes. Together, these results suggest that loukoumasomes and RR are distinct subcellular macromolecular structures, formed by different cellular processes and that there are other loukoumasome-like structures within retinal tissues and cells.
Collapse
Affiliation(s)
- Jake W. Noble
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Diana V. Hunter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin D. Roskelley
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward K. L. Chan
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Julia Mills
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
5
|
Milman P, Woulfe J. Novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. J Comp Neurol 2014; 521:3832-46. [PMID: 23749422 DOI: 10.1002/cne.23381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/11/2012] [Accepted: 05/23/2013] [Indexed: 11/11/2022]
Abstract
Intranuclear rodlets (INRs), also known as rodlets of Roncoroni, are poorly understood intranuclear bodies originally identified within neuronal nuclei on the basis of their unique morphology. The mechanisms of their formation, their biochemical composition and their physiological significance remain unknown. Using double immunofluorescence staining of mouse brain sections, we identified a novel variant of INR that is immunoreactive for the 40 kDa huntingtin associated protein (Hap40) and ubiquitin, and provide evidence for the existence of additional INR subtypes sharing ubiquitin immunoreactivity as a common feature. We describe a selective association of these INRs with melanin concentrating hormone (MCH) and tyrosine hydroxylase immunoreactive neurons of the hypothalamus and the locus coeruleus, respectively. We also demonstrate for the first time that biochemically distinct INR subtypes can coexist within a single nucleus where they engage in nonrandom spatial interactions. Our findings highlight the biochemical diversity and cell type-specific expression of these enigmatic intranuclear structures.
Collapse
Affiliation(s)
- Pavel Milman
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
6
|
Mori F, Tanji K, Toyoshima Y, Sasaki H, Yoshida M, Kakita A, Takahashi H, Wakabayashi K. Valosin-containing protein immunoreactivity in tauopathies, synucleinopathies, polyglutamine diseases and intranuclear inclusion body disease. Neuropathology 2013; 33:637-44. [DOI: 10.1111/neup.12050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/20/2013] [Accepted: 05/27/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Fumiaki Mori
- Department of Neuropathology; Institute of Brain Science; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Kunikazu Tanji
- Department of Neuropathology; Institute of Brain Science; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | | | - Hidenao Sasaki
- Department of Neurology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Mari Yoshida
- Department of Neuropathology; Aichi Medical University; Nagakute Japan
| | - Akiyoshi Kakita
- Department of Pathological Neuroscience; Center for Bioresource-Based Researches; Brain Research Institute; University of Niigata; Niigata Japan
| | | | - Koichi Wakabayashi
- Department of Neuropathology; Institute of Brain Science; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| |
Collapse
|
7
|
Giunti P, Houlden H, Gardner-Thorpe C, Worth PF, Johnson J, Hilton DA, Revesz T, Davis MB, Wood NW. Spinocerebellar ataxia type 11. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:521-34. [PMID: 21827911 DOI: 10.1016/b978-0-444-51892-7.00033-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- P Giunti
- Department of Molecular Neuroscience, Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Intranuclear rodlets (INRs) are structures present within the nuclei of human insulin-secreting beta cells of the endocrine pancreas. Their physiological significance, and whether they are altered in disease, is unknown. In the present study, the proportion of pancreatic beta cells containing INRs was examined in mouse models of type II diabetes and in a model with improved beta cell function. To gain insights into the molecular regulators of INR formation, mice with a conditional adult beta cell-specific knockout of the serine/threonine protein kinase Lkb1 (Lkb1 adult beta cell knockout (LABKO) mice) were studied. To investigate INR changes in a pathophysiological context, beta cell INRs were examined in two models of human metabolic syndrome: (1) mice maintained on a high-fat diet and (2) leptin-deficient ob/ob mice. The proportion of beta cells containing INRs was significantly reduced in LABKO mice. This reduction was not mediated by two key downstream effectors of Lkb1, mTor and Mark2. High-fat diet regimen reduced beta cell INR frequency by more than 40%, and leptin-deficient ob/ob mice exhibited a dramatically (19-fold) reduced INR frequency relative to wild-type mice. Taken together, our results support the view that INR formation in pancreatic beta cells is a dynamic and regulated process. The substantial depletion of beta cell INRs in LABKO and diabetic mice suggests their relationship to beta cell function and potential involvement in diabetes pathogenesis.
Collapse
Affiliation(s)
- Pavel Milman
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Kohta R, Kotake Y, Hosoya T, Hiramatsu T, Otsubo Y, Koyama H, Hirokane Y, Yokoyama Y, Ikeshoji H, Oofusa K, Suzuki M, Ohta S. 1-Benzyl-1,2,3,4-tetrahydroisoquinoline binds with tubulin β, a substrate of parkin, and reduces its polyubiquitination. J Neurochem 2010; 114:1291-301. [DOI: 10.1111/j.1471-4159.2010.06576.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Protocatechuic acid promotes cell proliferation and reduces basal apoptosis in cultured neural stem cells. Toxicol In Vitro 2009; 23:201-8. [DOI: 10.1016/j.tiv.2008.11.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 07/23/2008] [Accepted: 11/20/2008] [Indexed: 12/22/2022]
|
11
|
Woulfe J. Nuclear bodies in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2195-206. [PMID: 18539152 DOI: 10.1016/j.bbamcr.2008.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/31/2008] [Accepted: 05/08/2008] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a relentlessly progressive loss of the functional and structural integrity of the central nervous system. In many cases, these diseases arise sporadically and the causes are unknown. The abnormal aggregation of protein within the cytoplasm or the nucleus of brain cells represents a unifying pathological feature of these diseases. There is increasing evidence for nuclear dysfunction in neurodegenerative diseases. How this relates to protein aggregation in the context of "cause and effect" remains to be determined in most cases. Co-ordinated nuclear function is predicated on the activity of distinct nuclear subdomains, or nuclear bodies, each responsible for a specific function. If nuclear dysfunction represents an important etiopathological feature in neurodegenerative disease, then this should be reflected by functional and/or morphological alterations in this nuclear compartmentalization. For most neurodegenerative diseases, evidence for nuclear dysfunction, with attendant consequences for nuclear architecture, is only beginning to emerge. In this review, I will discuss neurodegenerative diseases in the context of nuclear dysfunction and, more specifically, alterations in nuclear bodies. Although research in this field is in its infancy, identifying alterations in the nucleus in neurodegenerative disease has potentially profound implications for elucidating the pathogenesis of these disorders.
Collapse
Affiliation(s)
- John Woulfe
- Department of Pathology, The Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, Ontario, Canada K1Y 4E9.
| |
Collapse
|
12
|
Villagra NT, Bengoechea R, Vaqué JP, Llorca J, Berciano MT, Lafarga M. Nuclear compartmentalization and dynamics of the poly(A)-binding protein nuclear 1 (PABPN1) inclusions in supraoptic neurons under physiological and osmotic stress conditions. Mol Cell Neurosci 2008; 37:622-33. [DOI: 10.1016/j.mcn.2007.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/14/2007] [Accepted: 12/06/2007] [Indexed: 11/26/2022] Open
|
13
|
Neuropathology of Hereditary Forms of Frontotemporal Dementia and Parkinsonism. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:393-414. [DOI: 10.1016/s0072-9752(07)01237-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Abstract
OBJECTIVES Intranuclear rodlets (INRs) are rod-shaped intranuclear inclusions that we have described in neurons of the human brain. We recently identified these structures in pancreatic islet cells. The objectives of this study are to describe the light microscopic features and cellular pattern of distribution of INRs in human pancreatic islet cells. METHODS Double immunofluorescence staining was performed on 5 human pancreatic tissue samples for the detection of class III beta tubulin (C3T) to detect INRs and for promyelocytic leukemia (PML) protein to examine the relationship between PML and INRs. RESULTS Intranuclear rodlets were detected in 22.99% of pancreatic B cells compared with only 3.11%, 1.80%, and 1.60% of A, D, and PP cells, respectively. Twenty-four percent of C3T-immunoreactive INRs showed partial or complete immunoreactivity for PML. Promyelocytic leukemia staining within the nuclei of B cells was confined to INRs and was not present in the typical PML bodies present in other cell types. Spatially, PML and C3T staining of islet cell INRs appeared to be mutually exclusive within individual INRs. CONCLUSIONS Intranuclear rodlets are present within the nuclei of pancreatic islet cells, where they reside predominantly but not exclusively in B cells. Immunoreactivity of B-cell INRs for PML suggests that the functional significance of INRs may be related to that of PML and/or PML bodies. Conversely, the exclusive localization of PML staining to INRs in B cells indicates that PML's function in B cells is selectively associated with INRs. The mutually exclusive pattern of PML and C3T staining suggests dynamic interactions between these 2 proteins in B-cell INRs. In light of evidence for the involvement of INRs and of PML bodies in disease, it will be of interest to investigate these structures in animal models of diabetes and in human diabetes.
Collapse
Affiliation(s)
- Wendy Prichett
- Centre for Cancer Therapeutics, The Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Laggner U, Pipp I, Budka H, Hainfellner JA, Preusser M. Immunohistochemical detection of class III ?-tubulin in primary brain tumours: variable expression in most tumour types limits utility as a differential diagnostic marker. Histopathology 2007; 50:949-52. [PMID: 17543088 DOI: 10.1111/j.1365-2559.2007.02696.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Woulfe JM. Abnormalities of the nucleus and nuclear inclusions in neurodegenerative disease: a work in progress. Neuropathol Appl Neurobiol 2007; 33:2-42. [PMID: 17239006 DOI: 10.1111/j.1365-2990.2006.00819.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized pathologically by the abnormal accumulation of pathogenic protein species within the cell. Several neurodegenerative diseases feature intranuclear protein aggregation in the form of intranuclear inclusion bodies. Studies of these intranuclear inclusions are providing important clues regarding the cellular pathophysiology of these diseases, as exemplified by recent progress in defining the genetic basis of a subset of frontotemporal dementia cases. The precise role of intranuclear inclusion bodies in disease pathogenesis is currently a focus of debate. The present review provides an overview of the diverse family of neurodegenerative diseases in which nuclear inclusions form part of the neuropathological spectrum. In addition, current pathogenetic concepts relevant to these diseases will be reviewed and arguments for and against a protective role for intranuclear inclusions will be presented. The relationship of pathological intranuclear inclusions to functional intranuclear bodies will also be discussed. Finally, by analogy with pathological intranuclear inclusions, I will speculate on the possibility that intranuclear protein aggregation may represent a constitutive cellular protective mechanism occurring in neurons under physiological conditions.
Collapse
Affiliation(s)
- J M Woulfe
- Department of Pathology, The Ottawa Hospital, University of Ottawa, and Cancer Research Program, The Ottawa Health Research Institute, Ottawa, Canada.
| |
Collapse
|
17
|
Woulfe JM, Prichett-Pejic W, Rippstein P, Munoz DG. Promyelocytic leukaemia-immunoreactive neuronal intranuclear rodlets in the human brain. Neuropathol Appl Neurobiol 2007; 33:56-66. [PMID: 17239008 DOI: 10.1111/j.1365-2990.2006.00789.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In a previous study, we demonstrated immunoreactivity of a subset of neuronal intranuclear rodlets (INRs) in the human substantia nigra for promyelocytic leukaemia (PML) protein, the signature protein of PML bodies. In the present study, we extend these observations and describe the ultrastructural features, immunohistochemical staining characteristics, and topographical pattern of distribution of PML-immunoreactive intranuclear rodlets (PML-INRs). Consistent with a purported role for PML bodies in nuclear proteolysis and/or transcriptional regulation, PML-INRs are immunoreactive for components of the ubiquitin-proteasome system, the transcriptional regulator CREB-binding protein, acetylated histone H4, and the eukaryotic translation initiation factor eIF4E. Immunoelectron microscopy reveals that they all possess a filamentous core and, in some, this is surrounded by a granular shell. We further demonstrate that a proportion of INRs in extranigral sites also show partial immunoreactivity for PML. These observations indicate an intimate association between two neuronal nuclear bodies, PML bodies and INRs. Because both of these structures have been implicated in neurodegenerative disease, PML-INRs may provide a tool with which to study changes in nuclear substructure in disease.
Collapse
Affiliation(s)
- J M Woulfe
- Cancer Research Program, The Ottawa Health Research Institute, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
18
|
Woulfe JM, Hammond R, Richardson B, Sooriabalan D, Parks W, Rippstein P, Munoz DG. Reduction of neuronal intranuclear rodlets immunoreactive for tubulin and glucocorticoid receptor in Alzheimer's disease. Brain Pathol 2006; 12:300-7. [PMID: 12146798 PMCID: PMC8095929 DOI: 10.1111/j.1750-3639.2002.tb00444.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neuronal intranuclear rodlets were described in normal brain over a century ago, but their functional significance and pathological relevance is unknown. Here, we show co-localization of tubulin and glucocorticoid receptor-like immunoreactivity in these intranuclear inclusions in human brain. In addition, we provide evidence for a massive reduction in their areal density in Alzheimer's disease brain, but not in another common neurodegenerative condition, dementia with Lewy bodies. The marked reduction of these inclusions in Alzheimer's disease may support the concept of a role for stress hormones in Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- John M Woulfe
- Department of Pathology and Laboratory Medicine, The University of Ottawa, The Ottawa Hospital, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
Mielke JG, Comas T, Woulfe J, Monette R, Chakravarthy B, Mealing GAR. Cytoskeletal, synaptic, and nuclear protein changes associated with rat interface organotypic hippocampal slice culture development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:275-86. [PMID: 16271399 DOI: 10.1016/j.devbrainres.2005.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 09/27/2005] [Accepted: 09/29/2005] [Indexed: 11/27/2022]
Abstract
Although organotypic hippocampal slice cultures (OHSCs) are used to study function within the hippocampus, the effect of maintenance in vitro upon protein expression is not fully understood. Therefore, we examined developmental changes in cultures prepared from P8 rats and maintained on porous membranes between medium and atmosphere. Between 7 and 28 days following explantation, altered hippocampal morphology could not be detected despite a significant decrease in both MAP-2c and a mid-range tau isoform by 21 DIV. During the same period, lower GFAP expression was observed, and GFAP labeling suggested a migration of astrocytes to the slice-atmosphere interface. In contrast, levels of the synaptic proteins synaptophysin and PSD-95 were significantly increased, but GAP-43 was not. The preservation of myelinated axons and synapses, along with glial and endothelial cells, was confirmed by ultrastructural analysis. Furthermore, intranuclear inclusion bodies, which are associated with normal aging in vivo, were detected in the CA1 pyramidal layer in cultures older than 14 DIV. When OHSCs were maintained for approximately 3, 4, and 10 weeks, a rise and then fall in the expression of synaptophysin and, especially, PSD-95 were found, and the biphasic trend paralleled by significant changes in Schaffer collateral-evoked excitatory post-synaptic potentials from CA1 neurons. Our data not only describe changes in cytoskeletal, synaptic, and nuclear proteins related to the maintenance of interface OHSCs, but also emphasize the potential of the model for the study of age-related phenomena within the hippocampus.
Collapse
Affiliation(s)
- John G Mielke
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Rd., Building M-54, Ottawa, Ontario, Canada K1A 0R6.
| | | | | | | | | | | |
Collapse
|
20
|
Lamba W, Prichett W, Munoz D, Park DS, Woulfe JM. MPTP induces intranuclear rodlet formation in midbrain dopaminergic neurons. Brain Res 2005; 1066:86-91. [PMID: 16325158 DOI: 10.1016/j.brainres.2005.10.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/04/2005] [Accepted: 10/11/2005] [Indexed: 11/19/2022]
Abstract
Neuronal intranuclear rodlets (INRs; rodlets of Roncoroni) have been known to neuroanatomists since the turn of the century. However, the functional and/or pathological significance of these structures has remained enigmatic. We recently demonstrated that these structures are immunoreactive for class III beta tubulin and for glucocorticoid receptor. Moreover, they are markedly reduced in the temporal cortex of patients with Alzheimer's disease relative to age-matched controls and those with dementia with Lewy bodies, thereby implicating these structures in neurodegenerative disease pathogenesis. The present report represents an experimental pilot study to investigate the possible involvement of INRs in Parkinson's disease (PD). Specifically, we demonstrate significantly increased INRs in dopaminergic neurons in the substantia nigra pars compacta and ventral tegmental area in mice treated with the selective catecholaminergic neurotoxin MPTP, relative to saline-treated controls. We have hypothesized that INRs represent an intranuclear sequestrum of monomeric beta-tubulin and that their alteration in neurodegeneration may reflect disrupted or abnormal microtubule dynamics. We propose that the increased formation of INRs is related to the demonstrated ability of MPTP to cause microtubule disruption. Because tubulin has also been implicated in the pathogenesis of human PD, it is possible that the results of this study will have important implications for this most common neurodegenerative movement disorder.
Collapse
|
21
|
Mani S, Huang H, Sundarababu S, Liu W, Kalpana G, Smith AB, Horwitz SB. Activation of the steroid and xenobiotic receptor (human pregnane X receptor) by nontaxane microtubule-stabilizing agents. Clin Cancer Res 2005; 11:6359-69. [PMID: 16144941 DOI: 10.1158/1078-0432.ccr-05-0252] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Because induction of drug efflux transporters is one of the major underlying mechanisms of drug resistance in cancer chemotherapy, and human pregnane X receptor (hPXR) is one of the principal "xenobiotic" receptors whose activation induces transporter and drug-metabolizing enzyme gene transcription, it would be ideal to develop chemotherapy drugs that do not activate hPXR. This report describes studies undertaken to explore the characteristics of hPXR stimulation and mechanisms of drug-receptor interactions in vitro with new anti-tubulin drugs. EXPERIMENTAL DESIGN In vitro transient transcription, glutathione S-transferase pull-down assays, and mammalian one-hybrid and two-hybrid systems were used to explore drug-receptor interactions. Loss of righting reflex was used to assess effects of drugs on PXR activity in vivo. RESULTS The current study showed that paclitaxel, discodermolide, and an analogue of epothilone B, BMS-247550, induced CYP3A4 protein expression in HepG2 hepatoma cells. Transient transcription assays of a luciferase reporter in the presence and absence of a GAL4-steroid and xenobiotic receptor (SXR) plasmid in HepG2 cells showed that these drugs activate hPXR. This was not true for the inactive analogue of paclitaxel, baccatin III, or for an analogue of epothilone A, analogue 5, none of which stabilizes microtubules. To determine the mechanisms by which paclitaxel, discodermolide, and BMS-247550 activate hPXR, a mammalian two-hybrid assay was done using VP16SRC-1 (coactivator) and GAL4-SXR. SRC-1 preferentially augmented the effects of these drugs on hPXR. Expression of SMRT (corepressor) but not NCoR suppressed the drug-induced activation of SXR by approximately 50%, indicating a selectivity in corepressor interaction with hPXR. These drugs resulted in shortened duration of loss of righting reflex in vivo, indicating drug-induced activation of PXR in mice. CONCLUSION These findings suggest that activation of hPXR with selective displacement of corepressors is an important mechanism by which microtubule-stabilizing drugs induce drug-metabolizing enzymes both in vitro and in vivo.
Collapse
MESH Headings
- Alkanes/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents, Phytogenic/pharmacology
- Aryl Hydrocarbon Hydroxylases/metabolism
- Blotting, Northern
- Carbamates/pharmacology
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/metabolism
- DNA-Binding Proteins/metabolism
- Epothilones/pharmacology
- Glutathione Transferase/metabolism
- Histone Acetyltransferases
- Humans
- Immunoblotting
- Lactones/pharmacology
- Mice
- Mice, Inbred C57BL
- Nuclear Proteins/metabolism
- Nuclear Receptor Co-Repressor 1
- Nuclear Receptor Co-Repressor 2
- Nuclear Receptor Coactivator 1
- Oxidoreductases, N-Demethylating/metabolism
- Paclitaxel/pharmacology
- Plasmids
- Pregnane X Receptor
- Pyrones
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Reflex, Abnormal
- Repressor Proteins/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcriptional Activation
- Two-Hybrid System Techniques
- Xenobiotics
Collapse
Affiliation(s)
- Sridhar Mani
- Albert Einstein Cancer Center and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Woulfe J, Gray D, Prichett-Pejic W, Munoz DG, Chretien M. Intranuclear Rodlets in the Substantia Nigra: Interactions with Marinesco Bodies, Ubiquitin, and Promyelocytic Leukemia Protein. J Neuropathol Exp Neurol 2004; 63:1200-7. [PMID: 15581187 DOI: 10.1093/jnen/63.11.1200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is growing appreciation that the nucleus is organized into an array of discrete structural domains, each subserving a specific function. These functional nuclear bodies are to be distinguished from pathological intranuclear inclusions which have been described in a variety of neurodegenerative diseases. Marinesco bodies (MBs) are eosinophilic ubiquitinated intranuclear inclusions found in pigmented neurons of the human substantia nigra and locus coeruleus. Traditionally considered non-pathological entities, more recent studies have indicated that MBs are associated with the age-associated degenerative changes in the substantia nigra and striatal loss of dopaminergic terminals. In the present morphological study of the human substantia nigra, we demonstrate colocalization, contiguity, and focally shared immunoreactivity between MBs and neuronal intranuclear rodlets (INRs). The latter nuclear structures of uncertain function are markedly decreased in the cortex of Alzheimer's disease, but not dementia with Lewy bodies. In addition, we demonstrate an interaction between INRs and promyelocytic leukemia (PML) protein, the signature protein of PML nuclear bodies. These results suggest that structures which subserve the functional compartmentalization of the neuronal nucleus may be relevant to elucidating cellular mechanisms of age-related motor dysfunction.
Collapse
Affiliation(s)
- John Woulfe
- The Ottawa Hospital, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
23
|
Wharton SB, McDermott CJ, Grierson AJ, Wood JD, Gelsthorpe C, Ince PG, Shaw PJ. The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene. J Neuropathol Exp Neurol 2004; 62:1166-77. [PMID: 14656074 DOI: 10.1093/jnen/62.11.1166] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hereditary spastic paraparesis (HSP) is a genetically heterogeneous disorder, the most common cause of which is mutation of the spastin gene. Recent evidence suggests a role for spastin in microtubule dynamics, but the distribution of the protein within the CNS is unknown. The core neuropathology of HSP is distal degeneration of the lateral corticospinal tract and of fasciculus gracilis, but there are few neuropathological studies of cases with a defined mutation. We aimed to determine the distribution of spastin expression in the human CNS and to investigate the cellular pathology of the motor system in HSP due to mutation of the spastin gene. Using an antibody to spastin, we have carried out immunohistochemistry on postmortem brain. We have demonstrated that spastin is a neuronal protein. It is widely expressed in the CNS so that the selectivity of the degeneration in HSP is not due to the normal cellular distribution of the protein. We have identified mutation of the spastin gene in 3 autopsy cases of HSP. Distal degeneration of long tracts in the spinal cord, consistent with a dying back axonopathy, was accompanied by a microglial reaction. The presence of novel hyaline inclusions in anterior horn cells and an alteration in immunostaining for cytoskeletal proteins and mitochondria indicates that long tract degeneration is accompanied by cytopathology in the motor system and may support a role for derangement of cytoskeletal function. All 3 cases also demonstrated evidence of tau pathology outside the motor system, suggesting that the neuropathology is not confined to the motor system in spastin-related HSP.
Collapse
Affiliation(s)
- Stephen B Wharton
- Academic Unit of Pathology, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
24
|
Dvorak Z, Modriansky M, Pichard-Garcia L, Balaguer P, Vilarem MJ, Ulrichová J, Maurel P, Pascussi JM. Colchicine down-regulates cytochrome P450 2B6, 2C8, 2C9, and 3A4 in human hepatocytes by affecting their glucocorticoid receptor-mediated regulation. Mol Pharmacol 2003; 64:160-9. [PMID: 12815172 DOI: 10.1124/mol.64.1.160] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The xenobiotic-mediated induction of three major human liver cytochrome P450 genes, CYP2B6, CYP2C9, and CYP3A4, is known to be regulated by the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). CAR and PXR are regulated, at least in part, by the glucocorticoid receptor (GR) and the hypothesis of a signal transduction cascade GR-[CAR/PXR]-P450 has been proposed. This study was aimed at testing this hypothesis in primary human hepatocytes by using the tubulin network disrupting agent colchicine. Colchicine (COL) decreased both basal and rifampicin- and phenobarbital-inducible expression of CYP2B6, CYP2C8/9, and CYP3A4. A parallel down-regulation of mRNA expression of CAR, PXR, and tyrosine aminotransferase, a prototypic gene directly regulated by GR, was observed. COL affected neither the level of GR mRNA nor ligand binding to GR. To evaluate the effect of colchicine on GR-mediated gene transactivation, HeLa cells stably or transiently transfected with a GR-responsive element-dependent luciferase reporter gene were used. COL decreased the dexamethasone-induced luciferase expression in stably transfected cell line by 50%, whereas GR transactivation in transiently transfected cells was not affected by COL. In contrast, ligand-dependent GR translocation in the human embryonic kidney 293 cell line transiently transfected with GFP-GR was inhibited by COL. We conclude that alteration of the signal transduction mediated through the GR-[CAR/PXR]-P450 cascade by colchicine is responsible for the down-regulation of CYP2C9 and CYP3A4, implicating cytoskeleton as necessary for correct functioning of this cascade under physiological conditions.
Collapse
Affiliation(s)
- Zdenek Dvorak
- Institute of Medical Chemistry and Biochemistry, Medical Faculty, Palacký University Olomouc, Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Krauss SW, Heald R, Lee G, Nunomura W, Gimm JA, Mohandas N, Chasis JA. Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro. J Biol Chem 2002; 277:44339-46. [PMID: 12171917 DOI: 10.1074/jbc.m204135200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.
Collapse
Affiliation(s)
- Sharon Wald Krauss
- Department of Subcellular Structure, Life Sciences Division, University of California, Lawrence Berkeley National Laboratory, 94720, USA.
| | | | | | | | | | | | | |
Collapse
|