1
|
Nikraftar S, Ebrahimzadegan R, Majdi M, Mirzaghaderi G. Genome-wide analysis of the C2H2-ZFP gene family in Stevia rebaudiana reveals involvement in abiotic stress response. Sci Rep 2024; 14:6164. [PMID: 38486071 PMCID: PMC10940304 DOI: 10.1038/s41598-024-56624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Stevia (Stevia rebaudiana Bertoni) is a natural sweetener plant that accumulates highly sweet steviol glycosides (SGs) especially in leaves. Stevia is native to humid areas and does not have a high tolerance to drought which is the most serious abiotic stress restricting its production worldwide. C2H2 zinc finger proteins (C2H2-ZFPs) are a group of well-known transcription factors that involves in various developmental, physiological and biochemical activities as well as in response to abiotic stresses. Here we analyzed C2H2-ZFP gene family in stevia and identified a total of 185 putative SrC2H2-ZF proteins from the genome sequence of S. rebaudiana. We further characterized the identified C2H2-ZF domains and their organization, additional domains and motifs and analyzed their physicochemical properties, localization and gene expression patterns. The cis-element analysis suggested multiple roles of SrC2H2-ZFPs in response to light, phytohormone, and abiotic stresses. In silico analysis revealed that the stevia C2H2-ZFP genes are interactively expressed in different tissues and developmental stages and some C2H2-ZFP genes are involved in response to drought stress. This study provides a background for future exploration of the functional, and regulatory aspects of the C2H2-ZFP gene family in S. rebaudiana.
Collapse
Affiliation(s)
- Shahla Nikraftar
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Rahman Ebrahimzadegan
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Mohammad Majdi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| |
Collapse
|
2
|
Qian Z, Shi D, Zhang H, Li Z, Huang L, Yan X, Lin S. Transcription Factors and Their Regulatory Roles in the Male Gametophyte Development of Flowering Plants. Int J Mol Sci 2024; 25:566. [PMID: 38203741 PMCID: PMC10778882 DOI: 10.3390/ijms25010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.
Collapse
Affiliation(s)
- Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Hongxia Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Zhenzhen Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
3
|
Yu S, Zhang Z, Li J, Zhu Y, Yin Y, Zhang X, Dai Y, Zhang A, Li C, Zhu Y, Fan J, Ruan Y, Dong X. Genome-wide identification and characterization of lncRNAs in sunflower endosperm. BMC PLANT BIOLOGY 2022; 22:494. [PMID: 36271333 PMCID: PMC9587605 DOI: 10.1186/s12870-022-03882-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), as important regulators, play important roles in plant growth and development. The expression and epigenetic regulation of lncRNAs remain uncharacterized generally in plant seeds, especially in the transient endosperm of the dicotyledons. RESULTS In this study, we identified 11,840 candidate lncRNAs in 12 day-after-pollination sunflower endosperm by analyzing RNA-seq data. These lncRNAs were evenly distributed in all chromosomes and had specific features that were distinct from mRNAs including tissue-specificity expression, shorter and fewer exons. By GO analysis of protein coding genes showing strong correlation with the lncRNAs, we revealed that these lncRNAs potential function in many biological processes of seed development. Additionally, genome-wide DNA methylation analyses revealed that the level of DNA methylation at the transcription start sites was negatively correlated with gene expression levels in lncRNAs. Finally, 36 imprinted lncRNAs were identified including 32 maternally expressed lncRNAs and four paternally expressed lncRNAs. In CG and CHG context, DNA methylation levels of imprinted lncRNAs in the upstream and gene body regions were slightly lower in the endosperm than that in embryo tissues, which indicated that the maternal demethylation potentially induce the paternally bias expression of imprinted lncRNAs in sunflower endosperm. CONCLUSION Our findings not only identified and characterized lncRNAs on a genome-wide scale in the development of sunflower endosperm, but also provide novel insights into the parental effects and epigenetic regulation of lncRNAs in dicotyledonous seeds.
Collapse
Affiliation(s)
- Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Yanzhe Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China.
| |
Collapse
|
4
|
Puentes-Romero AC, González SA, González-Villanueva E, Figueroa CR, Ruiz-Lara S. AtZAT4, a C 2H 2-Type Zinc Finger Transcription Factor from Arabidopsis thaliana, Is Involved in Pollen and Seed Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151974. [PMID: 35956451 PMCID: PMC9370812 DOI: 10.3390/plants11151974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/01/2023]
Abstract
Pollen plays an essential role in plant fertility by delivering the male gametes to the embryo sac before double fertilization. In several plant species, including Arabidopsis, C2H2-type zinc-finger transcription factors (TFs) have been involved in different stages of pollen development and maturation. ZINC FINGER of Arabidopsis thaliana 4 (AtZAT4) is homologous to such TFs and subcellular localization analysis has revealed that AtZAT4 is located in the nucleus. Moreover, analysis of AtZAT4 expression revealed strong levels of it in flowers and siliques, suggesting a role of the encoded protein in the regulation of genes that are associated with reproductive development. We characterized a T-DNA insertional heterozygous mutant Atzat4 (+/−). The relative gene expression analysis of Atzat4 (+/−) showed significant transcript reductions in flowers and siliques. Furthermore, the Atzat4 (+/−) phenotypic characterization revealed defects in the male germline, showing a reduction in pollen tube germination and elongation. Atzat4 (+/−) presented reduced fertility, characterized by a smaller silique size compared to the wild type (WT), and a lower number of seeds per silique. Additionally, seeds displayed lower viability and germination. Altogether, our data suggest a role for AtZAT4 in fertilization and seed viability, through the regulation of gene expression associated with reproductive development.
Collapse
Affiliation(s)
- A. Carolina Puentes-Romero
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| | - Sebastián A. González
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Enrique González-Villanueva
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Carlos R. Figueroa
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| |
Collapse
|
5
|
Paul S, Duhan JS, Jaiswal S, Angadi UB, Sharma R, Raghav N, Gupta OP, Sheoran S, Sharma P, Singh R, Rai A, Singh GP, Kumar D, Iquebal MA, Tiwari R. RNA-Seq Analysis of Developing Grains of Wheat to Intrigue Into the Complex Molecular Mechanism of the Heat Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:904392. [PMID: 35720556 PMCID: PMC9201344 DOI: 10.3389/fpls.2022.904392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heat stress is one of the significant constraints affecting wheat production worldwide. To ensure food security for ever-increasing world population, improving wheat for heat stress tolerance is needed in the presently drifting climatic conditions. At the molecular level, heat stress tolerance in wheat is governed by a complex interplay of various heat stress-associated genes. We used a comparative transcriptome sequencing approach to study the effect of heat stress (5°C above ambient threshold temperature of 20°C) during grain filling stages in wheat genotype K7903 (Halna). At 7 DPA (days post-anthesis), heat stress treatment was given at four stages: 0, 24, 48, and 120 h. In total, 115,656 wheat genes were identified, including 309 differentially expressed genes (DEGs) involved in many critical processes, such as signal transduction, starch synthetic pathway, antioxidant pathway, and heat stress-responsive conserved and uncharacterized putative genes that play an essential role in maintaining the grain filling rate at the high temperature. A total of 98,412 Simple Sequences Repeats (SSR) were identified from de novo transcriptome assembly of wheat and validated. The miRNA target prediction from differential expressed genes was performed by psRNATarget server against 119 mature miRNA. Further, 107,107 variants including 80,936 Single nucleotide polymorphism (SNPs) and 26,171 insertion/deletion (Indels) were also identified in de novo transcriptome assembly of wheat and wheat genome Ensembl version 31. The present study enriches our understanding of known heat response mechanisms during the grain filling stage supported by discovery of novel transcripts, microsatellite markers, putative miRNA targets, and genetic variant. This enhances gene functions and regulators, paving the way for improved heat tolerance in wheat varieties, making them more suitable for production in the current climate change scenario.
Collapse
Affiliation(s)
- Surinder Paul
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, India
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
- ICAR, National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, India
| | | | - Sarika Jaiswal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa B. Angadi
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ruchika Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Nishu Raghav
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Om Prakash Gupta
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sonia Sheoran
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Rai
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Dinesh Kumar
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
- Department of Biotechnology, Central University of Haryana, Gurgaon, India
| | - Mir Asif Iquebal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
6
|
Wang J, Tang F, Gao C, Gao X, Xu B, Shi F. Comparative transcriptome between male fertile and male sterile alfalfa ( Medicago varia). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1487-1498. [PMID: 34366591 PMCID: PMC8295440 DOI: 10.1007/s12298-021-01026-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Male sterility is an important factor in improving crop quality and yield through heterosis breeding. In this study, we analyzed the transcriptomes of male fertile (MF) and male sterile (MS) alfalfa flower buds using the Illumina HiSeq™ 4000 platform. A total of 54.05 million clean reads were generated and assembled into 65,777 unigenes with an average length of 874 bp. The differentially expressed genes (DEGs) between the MF and MS flowers at three stages of pollen development were identified, and there were 3832, 5678 and 5925 DEGs respectively in stages 1, 2 and 3. GO and KEGG functional enrichment analysis revealed 12, 12, 6 and 12 key branch-point genes involved in circadian rhythm, transcription factors, pollen development and flavonoid biosynthesis. Our findings provide novel insights into the mechanism of male sterility in alfalfa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01026-x.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
- Department of Pharmacy, Baotou Medical College, Baotou, 014040 Inner Mongolia China
| | - Fang Tang
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Cuiping Gao
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Xia Gao
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Bo Xu
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Fengling Shi
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| |
Collapse
|
7
|
Arrey-Salas O, Caris-Maldonado JC, Hernández-Rojas B, Gonzalez E. Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine ( Vitis vinifera L.): Insights into the Roles in the Pollen Development Regulation. Genes (Basel) 2021; 12:302. [PMID: 33672655 PMCID: PMC7924211 DOI: 10.3390/genes12020302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/02/2023] Open
Abstract
Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte development, we performed a genome-wide identification and characterization of genes encoding ZFP (VviZFP family). A total of 98 genes were identified and renamed based on the gene distribution into grapevine genome. The analysis performed indicate significant changes throughout VviZFP genes evolution explained by high heterogeneity in sequence, length, number of ZF and presence of another conserved domains. Moreover, segmental duplication participated in the gene family expansion in grapevine. The VviZFPs were classified based on domain and phylogenetic analysis into three sets and different groups. Heat-map demonstrated differential and tissue-specific expression patterns of these genes and k-means clustering allowed to identify a group of putative orthologs to some ZFPs related to pollen development. In transgenic plants carrying the promVviZFP13::GUS and promVviZFP68::GUS constructs, GUS signals were detectable in the anther and mature pollen grains. Expression profiling of selected VviZFP genes showed differential expression pattern during flower development and provides a basis for deepening in the understanding of VviZFPs role on grapevine reproductive development.
Collapse
Affiliation(s)
- Oscar Arrey-Salas
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| | | | - Bairon Hernández-Rojas
- Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Calle 1 Poniente, 1141, 3462227 Talca, Chile;
| | - Enrique Gonzalez
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile;
| |
Collapse
|
8
|
Lyu T, Hu Z, Liu W, Cao J. Arabidopsis Cys 2/His 2 zinc-finger protein MAZ1 is essential for intine formation and exine pattern. Biochem Biophys Res Commun 2019; 518:299-305. [PMID: 31427085 DOI: 10.1016/j.bbrc.2019.08.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 11/25/2022]
Abstract
Cys2/His2 zinc-finger protein (C2H2-ZFP) is widely involved in the reproductive development of plants, but its role in pollen development is still elusive. Here, we identified a pollen-related C2H2-ZFP gene named as MALE FERTILITY-ASSOCIATED ZINC FINGER PROTEIN 1 (MAZ1), which was first isolated from Arabidopsis thaliana. MAZ1 showed a preferential expression pattern in early anther development. Its mutation resulted in aberrant primexine deposition at the tetrad stage, followed by a defective multiple-layer pattern of exine with irregular baculum and no tectum. Furthermore, microspore development was arrested, and no intine layer was formed. These developmental defects led to fertility reduction and pollen abortion. This study reveals the essential role of MAZ1 in pollen wall development.
Collapse
Affiliation(s)
- Tianqi Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Weimiao Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Gao Y, Zhang L, Zhao S, Yan Y. Comparative analysis of the male inflorescence transcriptome profiles of an ms22 mutant of maize. PLoS One 2018; 13:e0199437. [PMID: 30005064 PMCID: PMC6044530 DOI: 10.1371/journal.pone.0199437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/07/2018] [Indexed: 11/18/2022] Open
Abstract
In modern agricultural production, maize is the most successful crop utilizing heterosis. 712C-ms22 is an important male sterile material in maize. In this study, we performed transcriptome sequencing analysis of the V10 stage of male inflorescence. Through this analysis, 27.63 million raw reads were obtained, and trimming of the raw data revealed 26.63 million clean reads, with an average match rate of 94.64%. Using Tophat software, we matched these clean reads to the maize reference genome. The abundance of 39,622 genes was measured, and 35,399 genes remained after filtering out the non-expressed genes across all the samples. These genes were classified into 19 categories by clusters of orthologous groups of protein annotation. Transcriptome sequencing analysis of the male sterile and fertile 712C-ms22 maize revealed some key DEGs that may be related to metabolic pathways. qRT-PCR analysis validated the gene expression patterns identified by RNA-seq. This analysis revealed some of the essential genes responsible for pollen development and for pollen tube elongation. Our findings provide useful markers of male sterility and new insights into the global mechanisms mediating male sterility in maize.
Collapse
Affiliation(s)
- Yonggang Gao
- Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (YG); (YY)
| | - LiJuan Zhang
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - ShengChao Zhao
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanxin Yan
- Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (YG); (YY)
| |
Collapse
|
10
|
The zinc-finger transcription factor BcMF20 and its orthologs in Cruciferae which are required for pollen development. Biochem Biophys Res Commun 2018; 503:998-1003. [PMID: 29936180 DOI: 10.1016/j.bbrc.2018.06.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 11/21/2022]
Abstract
Brassica campestris Male Fertility 20 (BcMF20) is a typical zinc-finger transcription factor that was previously isolated from flower buds of Chinese cabbage (Brassica campestris ssp. chinensis). By applying expression pattern analysis, it can be known that BcMF20 was specifically and strongly expressed in tapetum and pollen, beginning from the uninucleate stage, and was maintained during the mature-pollen stage. As BcMF20 was highly conserved in Cruciferae, it can be indicated that this zinc-finger transcription factor is important during the growth of Cruciferae. In this study, 12 C2H2-type zinc-finger TFs which shared high homology with BcMF20 were found from NCBI via BLAST. A new molecular phylogenetic tree was constructed by the comparison between BcMF20 and these 12 C2H2-type zinc-finger TFs with NJ method. By analyzing this phylogenetic tree, the evolution of BcMF20 was discussed. Then, antisense RNA technology was applied in the transgenesis of Arabidopsis thaliana to get the deletion mutants of BcMF20, so that its function during the pollen development can be identified. The results showed: BcMF20 are in the same clade with three genes from Arabidopsis. The inhibition of BcMF20 expression led to smaller amounts of and lower rate in germination of pollen and lower rate in fruit setting in certain transgenetic plants. This also led to the complete collapse of pollen grains. By SEM and TEM, pollen morphology and anther development processes were observed. In the middle uninucleate microspore stage, a relatively thin or even no primexine was formed in microspores. This may result in the malformation of the pollen wall and finally cause the deformity of pollens. Above all, it can be indicated that BcMF20 may act as a part of regulation mechanisms of TAZ1 and MS1. Together they play a role in a genetic pathway in the tapetum to act on proliferation of tapetal cells and keep the normal development of pollens.
Collapse
|
11
|
Li SF, Zhang GJ, Zhang XJ, Yuan JH, Deng CL, Gao WJ. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis). BMC PLANT BIOLOGY 2017; 17:143. [PMID: 28830346 PMCID: PMC5567890 DOI: 10.1186/s12870-017-1091-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/14/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. RESULTS De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. CONCLUSIONS Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Guo-Jun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 China
| | - Xue-Jin Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Jin-Hong Yuan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| |
Collapse
|
12
|
Ma X, Liang W, Gu P, Huang Z. Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:129-40. [PMID: 27156137 DOI: 10.1016/j.plaphy.2016.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 05/20/2023]
Abstract
The expression profile chip of the wheat salt-tolerant mutant RH8706-49 was investigated under salt stress in our laboratory. Results revealed a novel gene induced by salt stress with unknown functions. The gene was named as TaZNF (Triticum aestivum predicted Dof zinc finger protein) because it contains the zf-Dof superfamily and was deposited in GenBank (accession no. KF307327). Further analysis showed that TaZNF significantly improved the salt-tolerance of transgenic Arabidopsis. Various physiological indices of the transgenic plant were improved compared with those of the control after salt stress. Non-invasive micro-test (NMT) detection showed that the root tip of transgenic Arabidopsis significantly expressed Na(+) excretion. TaZNF is mainly localized in the nucleus and exhibited transcriptional activity. Hence, this protein was considered a transcription factor. The TaZNF upstream promoter was then cloned and was found to contain three salts, one jasmonic acid methyl ester (MeJA), and several ABA-responsive elements. The GUS staining and quantitative results of different tissues in the full-length promoter in the transgenic plants showed that the promoter was not tissue specific. The promoter activity in the root, leaf, and flower was enhanced after induction by salt stress. Moreover, GUS staining and quantitative measurement of GUS activity showed that the promoter sequence contained the positive regulatory element of salt and MeJA after their respective elements were mutated in the full-length promoter. RNA-Seq result showed that 2727 genes were differentially expressed; most of these genes were involved in the metabolic pathway and biosynthesis of secondary metabolite pathway.
Collapse
Affiliation(s)
- Xiaoli Ma
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China.
| | - Wenji Liang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China; College of Clinical Medicine, North China University of Science and Technology, Tangshan 063000, People's Republic of China.
| | - Peihan Gu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China.
| | - Zhanjing Huang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China.
| |
Collapse
|
13
|
Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics 2015; 16:914. [PMID: 26552448 PMCID: PMC4640349 DOI: 10.1186/s12864-015-2186-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/02/2015] [Indexed: 12/03/2022] Open
Abstract
Background Male sterility is an important mechanism for the production of hybrid seeds in watermelon. Although fruit development has been studied extensively in watermelon, there are no reports on gene expression in floral organs. In this study, RNA-sequencing (RNA-seq) was performed in two near-isogenic watermelon lines (genic male sterile [GMS] line, DAH3615-MS and male fertile line, DAH3615) to identify the differentially expressed genes (DEGs) related to male sterility. Results DEG analysis showed that 1259 genes were significantly associated with male sterility at a FDR P-value of < 0.01. Most of these genes were only expressed in the male fertile line. In addition, 11 functional clusters were identified using DAVID functional classification analysis. Of detected genes in RNA-seq analysis, 19 were successfully validated by qRT-PCR. Conclusions In this study, we carried out a comprehensive floral transcriptome sequence comparison of a male fertile line and its near-isogenic male sterile line in watermelon. This analysis revealed essential genes responsible for stamen development, including pollen development and pollen tube elongation, and allowed their functional classification. These results provided new information on global mechanisms related to male sterility in watermelon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2186-9) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Pollen Morphology and Boron Concentration in Floral Tissues as Factors Triggering Natural and GA-Induced Parthenocarpic Fruit Development in Grapevine. PLoS One 2015; 10:e0139503. [PMID: 26440413 PMCID: PMC4595136 DOI: 10.1371/journal.pone.0139503] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/12/2015] [Indexed: 12/24/2022] Open
Abstract
Parthenocarpic fruit development (PFD) reduces fruit yield and quality in grapevine. Parthenocarpic seedless berries arise from fruit set without effective fertilization due to defective pollen germination. PFD has been associated to micronutrient deficiency but the relation of this phenomenon with pollen polymorphism has not been reported before. In this work, six grapevine cultivars with different tendency for PFD and grown under micronutrient-sufficient conditions were analyzed to determine pollen structure and germination capability as well as PFD rates. Wide variation in non-germinative abnormal pollen was detected either among cultivars as well as for the same cultivar in different growing seasons. A straight correlation with PFD rates was found (R2 = 0.9896), suggesting that natural parthenocarpy is related to defective pollen development. Such relation was not observed when PFD was analyzed in grapevine plants exposed to exogenous gibberellin (GA) or abscissic acid (ABA) applications at pre-anthesis. Increase (GA treatment) or reduction (ABA treatment) in PFD rates without significative changes in abnormal pollen was determined. Although these plants were maintained at sufficient boron (B) condition, a down-regulation of the floral genes VvBOR3 and VvBOR4 together with a reduction of floral B content in GA-treated plants was established. These results suggest that impairment in B mobility to reproductive tissues and restriction of pollen tube growth could be involved in the GA-induced parthenocarpy.
Collapse
|
15
|
Wu W, Cheng Z, Liu M, Yang X, Qiu D. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana. PLoS One 2014; 9:e99352. [PMID: 24901716 PMCID: PMC4047095 DOI: 10.1371/journal.pone.0099352] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/05/2014] [Indexed: 02/02/2023] Open
Abstract
C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS) analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.
Collapse
Affiliation(s)
- Wenxian Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Zhiwei Cheng
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Mengjie Liu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
16
|
Guan Y, Meng X, Khanna R, LaMontagne E, Liu Y, Zhang S. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genet 2014; 10:e1004384. [PMID: 24830428 PMCID: PMC4022456 DOI: 10.1371/journal.pgen.1004384] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 04/01/2014] [Indexed: 01/28/2023] Open
Abstract
Plant male gametogenesis involves complex and dynamic changes in gene expression. At present, little is known about the transcription factors involved in this process and how their activities are regulated. Here, we show that a pollen-specific transcription factor, WRKY34, and its close homolog, WRKY2, are required for male gametogenesis in Arabidopsis thaliana. When overexpressed using LAT52, a strong pollen-specific promoter, epitope-tagged WRKY34 is temporally phosphorylated by MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs, or MPKs), at early stages in pollen development. During pollen maturation, WRKY34 is dephosphorylated and degraded. Native promoter-driven WRKY34-YFP fusion also follows the same expression pattern at the protein level. WRKY34 functions redundantly with WRKY2 in pollen development, germination, and pollen tube growth. Loss of MPK3/MPK6 phosphorylation sites in WRKY34 compromises the function of WRKY34 in vivo. Epistasis interaction analysis confirmed that MPK6 belongs to the same genetic pathway of WRKY34 and WRKY2. Our study demonstrates the importance of temporal post-translational regulation of WRKY transcription factors in the control of developmental phase transitions in plants. Pollen development, or male gametogenesis, is a process by which a haploid uninucleate microspore undergoes cell division and specification to form a mature pollen grain containing two sperm cells. The highly defined cell linage makes pollen development an ideal model to understand the regulation of plant cellular development. Pollen development has multiple phases and involves dynamic changes in gene expression, which highlights the importance of transcription factors and their regulatory pathway(s). In this report, we demonstrate that WRKY34 and WRKY2, two closely related WRKY transcription factors in Arabidopsis, play important roles in pollen development. WRKY34 is phosphorylated by MPK3/MPK6, two functionally redundant mitogen-activated protein kinases (MAPKs or MPKs), at early stages in pollen development. Utilizing a combination of genetic, biochemical, and cytological tools, we determined that this MAPK-WRKY signaling module functions at the early stage of pollen development. Loss of function of this pathway reduces pollen viability, and the surviving pollen has poor germination and reduced pollen tube growth, all of which reduce the transmission rate of the mutant pollen. This study discovers a novel stage-specific signaling pathway in pollen development.
Collapse
Affiliation(s)
- Yuefeng Guan
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiangzong Meng
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Reshma Khanna
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Erica LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zheng M, Tian J, Yang G, Zheng L, Chen G, Chen J, Wang B. Transcriptome sequencing, annotation and expression analysis of Nannochloropsis sp. at different growth phases. Gene 2013; 523:117-21. [DOI: 10.1016/j.gene.2013.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/15/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
|
18
|
Gainza-Cortés F, Pérez-Dïaz R, Pérez-Castro R, Tapia J, Casaretto JA, González S, Peña-Cortés H, Ruiz-Lara S, González E. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L. BMC PLANT BIOLOGY 2012; 12:111. [PMID: 22824090 PMCID: PMC3432002 DOI: 10.1186/1471-2229-12-111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 06/29/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. RESULTS We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. CONCLUSIONS Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for reproductive development.
Collapse
Affiliation(s)
- Felipe Gainza-Cortés
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Fruticultura (CEAF) CONICYT-Regional, GORE-O’Higgins R08I1001, Rengo, Chile
| | - Ricardo Pérez-Dïaz
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | - Ramón Pérez-Castro
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
- Laboratorio de Investigaciones Biomédicas, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Jaime Tapia
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - José A Casaretto
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | - Sebastián González
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | - Hugo Peña-Cortés
- Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Federico Santa María, Valparaíso, Chile
| | - Simón Ruiz-Lara
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | - Enrique González
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| |
Collapse
|
19
|
BcMF20, a putative pollen-specific transcription factor from Brassica campestris ssp. chinensis. Mol Biol Rep 2011; 38:5321-5. [DOI: 10.1007/s11033-011-0682-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 01/10/2011] [Indexed: 01/08/2023]
|
20
|
Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. THE PLANT CELL 2011; 23:534-49. [PMID: 21285328 PMCID: PMC3077786 DOI: 10.1105/tpc.110.081059] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 05/18/2023]
Abstract
The male germline in flowering plants arises through asymmetric division of a haploid microspore. The resulting germ cell undergoes mitotic division and specialization to produce the two sperm cells required for double fertilization. The male germline-specific R2R3 MYB transcription factor DUO1 POLLEN1 (DUO1) plays an essential role in sperm cell specification by activating a germline-specific differentiation program. Here, we show that ectopic expression of DUO1 upregulates a significant number (~63) of germline-specific or enriched genes, including those required for fertilization. We validated 14 previously unknown DUO1 target genes by demonstrating DUO1-dependent promoter activity in the male germline. DUO1 is shown to directly regulate its target promoters through binding to canonical MYB sites, suggesting that the DUO1 target genes validated thus far are likely to be direct targets. This work advances knowledge of the DUO1 regulon that encompasses genes with a range of cellular functions, including transcription, protein fate, signaling, and transport. Thus, the DUO1 regulon has a major role in shaping the germline transcriptome and functions to commit progenitor germ cells to sperm cell differentiation.
Collapse
Affiliation(s)
- Michael Borg
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Lynette Brownfield
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
- Department of Biology and Zurich-Basel Plant Science Centre, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland
| | - Hoda Khatab
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Anna Sidorova
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Melanie Lingaya
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - David Twell
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
21
|
Wang D, Oses-Prieto JA, Li KH, Fernandes JF, Burlingame AL, Walbot V. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:939-51. [PMID: 20626649 PMCID: PMC2974755 DOI: 10.1111/j.1365-313x.2010.04294.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Maize anther ontogeny is complex, with the expression of more than 30,000 genes over 4 days of cell proliferation, cell fate acquisition and the start of meiosis. Although many male-sterile mutants disrupt these key steps, few have been investigated in detail. The terminal phenotypes of Zea mays (maize) male sterile 8 (ms8) are small anthers exhibiting meiotic failure. Here, we document much earlier defects: ms8 epidermal cells are normal in number but fail to elongate, and there are fewer, larger tapetal cells that retain, rather than secrete, their contents. ms8 meiocytes separate early, have extra space between them, occupied by excess callose, and the meiotic dyads abort. Thousands of transcriptome changes occur in ms8, including ectopic activation of genes not expressed in fertile siblings, failure to express some genes, differential expression compared with fertile siblings and about 40% of the differentially expressed transcripts appear precociously. There is a high correlation between mRNA accumulation assessed by microarray hybridization and quantitative real-time reverse transcriptase polymerase chain reaction. Sixty-three differentially expressed proteins were identified after two-dimensional gel electrophoresis followed by liquid chromatography tandem mass spectroscopy, including those involved in metabolism, plasmodesmatal remodeling and cell division. The majority of these were not identified by differential RNA expression, demonstrating the importance of proteomics in defining developmental mutants.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - John F. Fernandes
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - Virginia Walbot
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| |
Collapse
|
22
|
Ugarte CC, Trupkin SA, Ghiglione H, Slafer G, Casal JJ. Low red/far-red ratios delay spike and stem growth in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3151-62. [PMID: 20497971 PMCID: PMC2892155 DOI: 10.1093/jxb/erq140] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 05/22/2023]
Abstract
The responses to low red light/far-red light (R/FR) ratios simulating dense stands were evaluated in wheat (Triticum aestivum L) cultivars released at different times in the 20th century and consequently resulting from an increasingly prolonged breeding and selection history. While tillering responses to the R/FR ratio were unaffected by the cultivars, low R/FR ratios reduced grain yield per plant (primarily grain number and secondarily grain weight per plant) particularly in modern cultivars. Low R/FR ratios delayed spike growth and development, reduced the expression of spike marker genes, accelerated the development of florets already initiated, and reduced the number of fertile florets at anthesis. It is noteworthy that low R/FR ratios did not promote stem or leaf sheath growth and therefore the observed reduction of yield cannot be accounted for as a consequence of divergence of resources towards increased plant stature. It is proposed that the regulation of yield components by the R/FR ratio could help plants to adjust to the limited availability of resources under crop conditions.
Collapse
|
23
|
Skibbe DS, Wang X, Borsuk LA, Ashlock DA, Nettleton D, Schnable PS. Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L. occurs via programmed cell death. J Genet Genomics 2009; 35:603-16. [PMID: 18937917 DOI: 10.1016/s1673-8527(08)60081-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 06/25/2008] [Accepted: 07/10/2008] [Indexed: 01/23/2023]
Abstract
The maize (Zea mays) spikelet consists of two florets, each of which contains three developmentally synchronized anthers. Morphologically, the anthers in the upper and lower florets proceed through apparently similar developmental programs. To test for global differences in gene expression and to identify genes that are coordinately regulated during maize anther development, RNA samples isolated from upper and lower floret anthers at six developmental stages were hybridized to cDNA microarrays. Approximately 9% of the tested genes exhibited statistically significant differences in expression between anthers in the upper and lower florets. This finding indicates that several basic biological processes are differentially regulated between upper and lower floret anthers, including metabolism, protein synthesis and signal transduction. Genes that are coordinately regulated across anther development were identified via cluster analysis. Analysis of these results identified stage-specific, early in development, late in development and bi-phasic expression profiles. Quantitative RT-PCR analysis revealed that four genes whose homologs in other plant species are involved in programmed cell death are up-regulated just prior to the time the tapetum begins to visibly degenerate (i.e., the mid-microspore stage). This finding supports the hypothesis that developmentally normal tapetal degeneration occurs via programmed cell death.
Collapse
Affiliation(s)
- David S Skibbe
- Department of Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
24
|
Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biol 2008; 9:R181. [PMID: 19099579 PMCID: PMC2646285 DOI: 10.1186/gb-2008-9-12-r181] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/17/2008] [Accepted: 12/19/2008] [Indexed: 11/10/2022] Open
Abstract
Background During flowering, central anther cells switch from mitosis to meiosis, ultimately forming pollen containing haploid sperm. Four rings of surrounding somatic cells differentiate to support first meiosis and later pollen dispersal. Synchronous development of many anthers per tassel and within each anther facilitates dissection of carefully staged maize anthers for transcriptome profiling. Results Global gene expression profiles of 7 stages representing 29 days of anther development are analyzed using a 44 K oligonucleotide array querying approximately 80% of maize protein-coding genes. Mature haploid pollen containing just two cell types expresses 10,000 transcripts. Anthers contain 5 major cell types and express >24,000 transcript types: each anther stage expresses approximately 10,000 constitutive and approximately 10,000 or more transcripts restricted to one or a few stages. The lowest complexity is present during meiosis. Large suites of stage-specific and co-expressed genes are identified through Gene Ontology and clustering analyses as functional classes for pre-meiotic, meiotic, and post-meiotic anther development. MADS box and zinc finger transcription factors with constitutive and stage-limited expression are identified. Conclusions We propose that the extensive gene expression of anther cells and pollen represents the key test of maize genome fitness, permitting strong selection against deleterious alleles in diploid anthers and haploid pollen. Because flowering plants show a substantial bias for male-sterile compared to female-sterile mutations, we propose that this fitness test is general. Because both somatic and germinal cells are transcriptionally quiescent during meiosis, we hypothesize that successful completion of meiosis is required to trigger maturation of anther somatic cells.
Collapse
|
25
|
Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. PLANT MOLECULAR BIOLOGY 2007; 65:467-85. [PMID: 17610133 DOI: 10.1007/s11103-007-9199-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 05/27/2007] [Indexed: 05/02/2023]
Abstract
Transcription factors regulate gene expression in response to various external and internal cues by activating or suppressing downstream genes in a pathway. In this study, we provide a complete overview of the genes encoding C(2)H(2) zinc-finger transcription factors in rice, describing the gene structure, gene expression, genome localization, and phylogenetic relationship of each member. The genome of Oryza sativa codes for 189 C(2)H(2) zinc-finger transcription factors, which possess two main types of zinc-fingers (named C and Q). The Q-type zinc fingers contain a conserved motif, QALGGH, and are plant specific, whereas C type zinc fingers are found in other organisms as well. A genome-wide microarray based gene expression analysis involving 14 stages of vegetative and reproductive development along with 3 stress conditions has revealed that C(2)H(2) gene family in indica rice could be involved during all the stages of reproductive development from panicle initiation till seed maturation. A total of 39 genes are up-regulated more than 2-fold, in comparison to vegetative stages, during reproductive development of rice, out of which 18 are specific to panicle development and 12 genes are seed-specific. Twenty-six genes have been found to be up-regulated during three abiotic stresses and of these, 14 genes express specifically during the stress conditions analyzed while 12 are also up-regulated during reproductive development, suggesting that some components of the stress response pathways are also involved in reproduction.
Collapse
Affiliation(s)
- Pinky Agarwal
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Xu S, Wang X, Chen J. Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. PLANT CELL REPORTS 2007; 26:497-506. [PMID: 17024447 DOI: 10.1007/s00299-006-0248-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/12/2006] [Accepted: 09/04/2006] [Indexed: 05/12/2023]
Abstract
Zinc finger proteins (ZFPs) play important roles in growth and development in both animals and plants. Recently, some Arabidopsis genes encoding distinct ZFPs have been identified. However, the physiological role of their homologues with putative zinc finger motif remains unclear. In the present study, a novel gene, ThZF1, was characterized from salt stressed cress (Thellungiella halophila, Shan Dong), encoding a functional transcription factor. ThZF1 contains two conserved C(2)H(2) regions and shares conserved domains, including DNA-binding motif, with Arabidopsis thaliana ZFP family members. The transcript of the ThZF1 gene was induced by salinity and drought. Transient expression analysis of ThZF1-GFP fusion protein revealed that ThZF1 was localized preferentially in nucleus. A gel-shift assay showed that ThZF1 specially bind to the wild-type (WT) EP2 element, a cis-element present in the promoter regions of several target genes regulated by ZFPs. Furthermore, a functional analysis demonstrated that ThZF1 was able to activate HIS marker gene in yeast. Finally, ectopic expression of ThZF1 in Arabidopsis mutant azf2 suggested that ThZF1 may have similar roles as Arabidopsis AZF2 in plant development as well as regulation of downstream gene.
Collapse
Affiliation(s)
- ShouMing Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | |
Collapse
|
27
|
Kapoor S, Takatsuji H. Silencing of an anther-specific zinc-finger gene, MEZ1, causes aberrant meiosis and pollen abortion in petunia. PLANT MOLECULAR BIOLOGY 2006; 61:415-30. [PMID: 16830177 DOI: 10.1007/s11103-006-0020-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/31/2006] [Indexed: 05/08/2023]
Abstract
MEZ1 (MEiosis-associated Zinc-finger protein 1) was first isolated as an anther-specific cDNA from Petunia hybrida. In the present study, we report its functional characterization, including its spatial and temporal expression profiles and phenotypes in MEZ1-silenced plants. MEZ1 transcripts were specifically localized in pollen mother cells during early stages of anther development, and were later distributed in vegetative tissues in anthers. Silencing of MEZ1 by cosuppression resulted in several anomalies during male meiosis that included inability of chromosomes to condense, loss of meiotic synchrony, and premature and apparently uncontrolled cytokinetic events. Consequently, by the end of meiosis 8-10 cells, instead of the normal 4, with varying DNA contents were formed in the MEZ1-silenced meiocytes. Most of these aborted prematurely, and those that matured had a distinctive morphology. MEZ1-silenced plants were female sterile when pollinated with wild-type pollen but they infrequently produced a few seeds upon self-pollination. Resulting T1 plants had increased ploidy levels and exhibited severe anomalies during male meiosis, rendering them completely sterile. We discuss possible role of MEZ1 in the proper progression of plant meiosis.
Collapse
Affiliation(s)
- Sanjay Kapoor
- Developmental Biology Laboratory, Plant Physiology Department, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | | |
Collapse
|
28
|
Jenkins TH, Li J, Scutt CP, Gilmartin PM. Analysis of members of the Silene latifolia Cys2/His2 zinc-finger transcription factor family during dioecious flower development and in a novel stamen-defective mutant ssf1. PLANTA 2005; 220:559-571. [PMID: 15703927 DOI: 10.1007/s00425-004-1365-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 07/09/2004] [Indexed: 05/24/2023]
Abstract
Sex determination in dioecious Silene latifolia Poir. is governed by the inheritance of heteromorphic sex chromosomes. In male plants the Y chromosome influences two aspects of male organogenesis, the continued differentiation of stamen primordia and male fertility, and one aspect of female organogenesis, the arrest of development of the pistil. S. latifolia is susceptible to infection by the parasitic smut fungus Ustilago violacea, which induces stamen development in genetically female plants. Here we describe the identification and characterisation of a novel male mutant, short stamen filaments 1 (ssf1), defective in stamen differentiation. Although several independent studies have identified genes expressed during sex-determination in S. latifolia, analyses suggest that none of these encode regulatory proteins involved in the control of sex determination. We therefore isolated six S. latifolia cDNAs encoding members of a family of transcriptional regulators, the ZPT-type Cys2/His2 zinc-finger proteins that had previously shown to be co-ordinately regulated during stamen development in Petunia x hybrida hort. Vilm.-Andr. We have analysed the genomic organisation of these genes in male and female plants and their expression dynamics in male and female plants, in smut-infected female plants and in the ssf1 mutant. Our studies reveal expression patterns during development of the androecium that suggest a possible role for SlZPT2-1 in filament elongation and SlZPT4-1 in aspects of male fertility during stamen differentiation.
Collapse
Affiliation(s)
- Thomas H Jenkins
- Centre for Plant Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
29
|
Komarnytsky S, Borisjuk N. Functional analysis of promoter elements in plants. GENETIC ENGINEERING 2004; 25:113-41. [PMID: 15260236 DOI: 10.1007/978-1-4615-0073-5_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
- Slavko Komarnytsky
- Biotech Center, Cook College, Rutgers University, 59 Dudley Rd., New Brunswick, NJ 08901-8520, USA
| | | |
Collapse
|
30
|
Schreiber DN, Bantin J, Dresselhaus T. The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. PLANT PHYSIOLOGY 2004; 134:1069-79. [PMID: 15001699 PMCID: PMC389931 DOI: 10.1104/pp.103.030577] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 08/22/2003] [Accepted: 12/12/2003] [Indexed: 05/19/2023]
Abstract
The maize (Zea mays) late pollen gene ZmMADS2 belongs to the MIKC type of MADS box transcription factor genes. Here, we report that ZmMADS2, which forms a homodimer in yeast (Saccharomyces cerevisiae), is required for anther dehiscence and pollen maturation. Development of anthers and pollen was arrested at 1 d before dehiscence in transgenic plants expressing the ZmMADS2-cDNA in antisense orientation. Temporal and spatial expression analyses showed high amounts of ZmMADS2 transcripts in endothecium and connective tissues of the anther at 1 d before dehiscence and in mature pollen after dehiscence. Transient transformation of maize and tobacco (Nicotiana tabacum) pollen with the luciferase reporter gene under the control of different ZmMADS2 promoter deletion constructs demonstrated the functionality and tissue specificity of the promoter. Transgenic maize plants expressing a ZmMADS2-green fluorescent protein fusion protein under control of the ZmMADS2 promoter were used to monitor protein localization during anther maturation and pollen tube growth. High amounts of the fusion protein accumulate in degenerating nuclei of endothecial and connective cells of the anther. A possible function of ZmMADS2 during anther dehiscence and pollen maturation and during pollen tube growth is discussed.
Collapse
Affiliation(s)
- Daniela N Schreiber
- Biocenter Klein Flottbek, Applied Plant Molecular Biology II, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | | | | |
Collapse
|
31
|
Dinkins R, Pflipsen C, Thompson A, Collins GB. Ectopic expression of an Arabidopsis single zinc finger gene in tobacco results in dwarf plants. PLANT & CELL PHYSIOLOGY 2002; 43:743-50. [PMID: 12154136 DOI: 10.1093/pcp/pcf086] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A survey of the Arabidopsis thaliana databases revealed that single C2H2 zinc finger protein genes comprise a large gene family (approximately 30 genes). No known phenotype has been associated with any of these genes except SUPERMAN. One of these genes, designated AtZFP10 (A. thaliana single zinc finger protein), was isolated by RT-PCR in the present study. The AtZFP10 gene was expressed at low levels in the flowers, axillary meristems and siliques, and at very low levels in the stems in Arabidopsis. Overexpression of the AtZFP10 gene driven by a constitutive promoter resulted in abnormal Arabidopsis plants and only one plant was recovered. Tobacco plants overexpressing the AtZFP10 gene displayed dwarfing, abnormal leaf phenotypes and early flowering that correlated with the level of expression of the AtZFP10 gene. No differences were observed in cell size between the AtZFP10 transgenic plants and the wild-type plants. Application of exogenous GA3 did not restore the wild-type phenotype, but it did reduce the dwarfing phenotype. Deletion of the leucine-rich region at the carboxyl terminus of the AtZFP10 gene resulted in transgenic plants that were not phenotypically different from wild-type plants suggesting a role for the leucine-rich region as essential for normal function.
Collapse
Affiliation(s)
- Randy Dinkins
- Department of Agronomy, N212 Agriculture Science Center Building North, University of Kentucky, Lexington, KY 40546-0091, USA.
| | | | | | | |
Collapse
|
32
|
Yoshioka K, Fukushima S, Yamazaki T, Yoshida M, Takatsuji H. The plant zinc finger protein ZPT2-2 has a unique mode of DNA interaction. J Biol Chem 2001; 276:35802-7. [PMID: 11454859 DOI: 10.1074/jbc.m104079200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ZPT2-2 is a DNA-binding protein of petunia that contains two canonical TFIIIA-type zinc finger motifs separated by a long linker. We previously reported that ZPT2-2 bound to two separate AGT core sites, with each zinc finger making contact with each core site. Here we present our further characterization of ZPT2-2 by using selected and amplified binding sequence imprinting and surface plasmon resonance analyses; together, these assays revealed some unusual features of the interaction between ZPT2-2 and DNA. These experiments allowed us to conclude that 1) the optimal binding sequence for the N-terminal zinc finger is AGC(T), and that of the C-terminal one is CAGT; 2) multiple arrangements of the two core sites accommodate binding; and 3) the spacing between the two core sites affects the binding affinity. In light of these observations, we propose a new model for the DNA-ZPT2-2 interaction. Further, consistent with this model, a high affinity binding site for ZPT2-2 was found in the promoter region of the ZPT2-2 gene. This site may serve as a cis-element for the autoregulation of ZPT2-2 gene expression.
Collapse
Affiliation(s)
- K Yoshioka
- Department of Biological Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba, Japan
| | | | | | | | | |
Collapse
|
33
|
Yang S, Sweetman JP, Amirsadeghi S, Barghchi M, Huttly AK, Chung WI, Twell D. Novel anther-specific myb genes from tobacco as putative regulators of phenylalanine ammonia-lyase expression. PLANT PHYSIOLOGY 2001; 126:1738-53. [PMID: 11500571 PMCID: PMC117172 DOI: 10.1104/pp.126.4.1738] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2001] [Revised: 04/10/2001] [Accepted: 05/16/2001] [Indexed: 05/20/2023]
Abstract
Two cDNA clones (NtmybAS1 and NtmybAS2) encoding MYB-related proteins with strong sequence similarity to petunia (Petunia hybrida) PhMYB3 were isolated from a tobacco (Nicotiana tabacum cv Samsun) pollen cDNA library. Northern blot and in situ hybridization revealed that NtmybAS transcripts are specifically expressed in both sporophytic and gametophytic tissues of the anther including tapetum, stomium, vascular tissue, and developing pollen. Random binding site selection assays revealed that NtMYBAS1 bound to DNA sequences closely resembling consensus MYB binding sites MBSI and MBSIIG, with a higher affinity for MBSI. Transient expression analyses of the N-terminal MYB domain demonstrated the presence of functional nuclear localization signals, and full-length NtMYBAS1 was able to activate two different phenylalanine ammonia-lyase promoters (PALA and gPAL1) in tobacco leaf protoplasts. Similar analysis of truncated NtmybAS1 cDNAs identified an essential, C-terminal trans-activation domain. Further in situ hybridization analyses demonstrated strict co-expression of NtmybAS and gPAL1 in the tapetum and stomium. Despite abundant expression of NtmybAS transcripts in mature pollen, gPAL1 transcripts were not detectable in pollen. Our data demonstrate that NtMYBAS1 is a functional anther-specific transcription factor, which is likely to be a positive regulator of gPAL1 expression and phenylpropanoid synthesis in sporophytic, but not in gametophytic, tissues of the anther.
Collapse
Affiliation(s)
- S Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Kusong-dong, Yusong-gu, Taejon, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Tsuchimoto S, Mayama T, van der Krol A, Ohtsubo E. The whorl-specific action of a petunia class B floral homeotic gene. Genes Cells 2000; 5:89-99. [PMID: 10672040 DOI: 10.1046/j.1365-2443.2000.00308.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND GREEN PETAL (GP) is thought to be a petunia class B floral homeotic gene, because the gp mutant flower displays a severe homeotic conversion of petals into sepals in the second whorl. However, since the third whorl stamens remain unaffected in the gp null mutant, gp is different from class B mutants in Arabidopsis and Antirrhinum, which also show a conversion of the third whorl stamens into the carpelloid tissue. BLIND (BL) is thought to be a petunia class A floral homeotic gene, because the bl mutant flower displays homeotic conversions of sepals into the stigmatoid tissue in the first whorl and of the corolla limb into antheroid structures in the second whorl. RESULTS A double mutant line homozygous for both bl and gp mutations was constructed. The bl gp double mutant flower displays homeotic conversions of sepals into the stigmatoid tissue in the first whorl and of the corolla limb into antheroid structures with stigmatoid tips in the second whorl. In the third and fourth whorls of the mutant flower, organs remained unchanged. In the gp flower, a petunia B-type gene FBP1 is expressed strongly in the third whorl organs, but much more weakly in the second whorl organs. In the bl gp flower, FBP1 was found to be expressed strongly in the second whorl organs as well as in the third whorl organs. CONCLUSIONS Petunia has a class B gene other than GP that determines organ identities, both in the second and third whorls of the double mutant flower, and the action of the postulated class B gene (here called PhBX) is prevented by the BL gene in the second whorl of the gp flower. PhBX appears to be a gene that specifically interacts with the FBP1 gene, and is involved in the up-regulation of FBP1.
Collapse
Affiliation(s)
- S Tsuchimoto
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | | | |
Collapse
|