1
|
Casey A, Dolan L. Genes encoding cytochrome P450 monooxygenases and glutathione S-transferases associated with herbicide resistance evolved before the origin of land plants. PLoS One 2023; 18:e0273594. [PMID: 36800395 PMCID: PMC9937507 DOI: 10.1371/journal.pone.0273594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Cytochrome P450 (CYP) monooxygenases and glutathione S-transferases (GST) are enzymes that catalyse chemical modifications of a range of organic compounds. Herbicide resistance has been associated with higher levels of CYP and GST gene expression in some herbicide-resistant weed populations compared to sensitive populations of the same species. By comparing the protein sequences of 9 representative species of the Archaeplastida-the lineage which includes red algae, glaucophyte algae, chlorophyte algae, and streptophytes-and generating phylogenetic trees, we identified the CYP and GST proteins that existed in the common ancestor of the Archaeplastida. All CYP clans and all but one land plant GST classes present in land plants evolved before the divergence of streptophyte algae and land plants from their last common ancestor. We also demonstrate that there are more genes encoding CYP and GST proteins in land plants than in algae. The larger numbers of genes among land plants largely results from gene duplications in CYP clans 71, 72, and 85 and in the GST phi and tau classes [1,2]. Enzymes that either metabolise herbicides or confer herbicide resistance belong to CYP clans 71 and 72 and the GST phi and tau classes. Most CYP proteins that have been shown to confer herbicide resistance are members of the CYP81 family from clan 71. These results demonstrate that the clan and class diversity in extant plant CYP and GST proteins had evolved before the divergence of land plants and streptophyte algae from a last common ancestor estimated to be between 515 and 474 million years ago. Then, early in embryophyte evolution during the Palaeozoic, gene duplication in four of the twelve CYP clans, and in two of the fourteen GST classes, led to the large numbers of CYP and GST proteins found in extant land plants. It is among the genes of CYP clans 71 and 72 and GST classes phi and tau that alleles conferring herbicide resistance evolved in the last fifty years.
Collapse
Affiliation(s)
- Alexandra Casey
- Gregor Mendel Institute, Vienna, Austria
- Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Liam Dolan
- Gregor Mendel Institute, Vienna, Austria
- Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
2
|
Villard C, Munakata R, Kitajima S, van Velzen R, Schranz ME, Larbat R, Hehn A. A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution. THE NEW PHYTOLOGIST 2021; 231:1923-1939. [PMID: 33978969 DOI: 10.1111/nph.17458] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Furanocoumarins are phytoalexins often cited as an example to illustrate the arms race between plants and herbivorous insects. They are distributed in a limited number of phylogenetically distant plant lineages, but synthesized through a similar pathway, which raised the question of a unique or multiple emergence in higher plants. The furanocoumarin pathway was investigated in the fig tree (Ficus carica, Moraceae). Transcriptomic and metabolomic approaches led to the identification of CYP76F112, a cytochrome P450 catalyzing an original reaction. CYP76F112 emergence was inquired using phylogenetics combined with in silico modeling and site-directed mutagenesis. CYP76F112 was found to convert demethylsuberosin into marmesin with a very high affinity. This atypical cyclization reaction represents a key step within the polyphenol biosynthesis pathway. CYP76F112 evolutionary patterns suggests that the marmesin synthase activity appeared recently in the Moraceae family, through a lineage-specific expansion and diversification. The characterization of CYP76F112 as the first known marmesin synthase opens new prospects for the use of the furanocoumarin pathway. It also supports the multiple acquisition of furanocoumarin in angiosperms by convergent evolution, and opens new perspectives regarding the ability of cytochromes P450 to evolve new functions related to plant adaptation to their environment.
Collapse
Affiliation(s)
- Cloé Villard
- LAE, Université de Lorraine-INRAE, Nancy, 54000, France
| | - Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
- The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Robin van Velzen
- Biosystematics Group, Wageningen University and Research Center, Wageningen, 6708 PB, the Netherlands
| | - Michael Eric Schranz
- Biosystematics Group, Wageningen University and Research Center, Wageningen, 6708 PB, the Netherlands
| | - Romain Larbat
- LAE, Université de Lorraine-INRAE, Nancy, 54000, France
| | - Alain Hehn
- LAE, Université de Lorraine-INRAE, Nancy, 54000, France
| |
Collapse
|
3
|
Abdollahi F, Alebrahim MT, Ngov C, Lallemand E, Zheng Y, Villette C, Zumsteg J, André F, Navrot N, Werck-Reichhart D, Miesch L. Innate promiscuity of the CYP706 family of P450 enzymes provides a suitable context for the evolution of dinitroaniline resistance in weed. THE NEW PHYTOLOGIST 2021; 229:3253-3268. [PMID: 33253456 DOI: 10.1111/nph.17126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/24/2020] [Indexed: 05/24/2023]
Abstract
Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
Collapse
Affiliation(s)
- Fatemeh Abdollahi
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences & Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
- Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, CNRS, Université de Strasbourg, Strasbourg, 67081, France
| | - Mohammad Taghi Alebrahim
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences & Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Chheng Ngov
- Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, CNRS, Université de Strasbourg, Strasbourg, 67081, France
| | - Etienne Lallemand
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Yongxiang Zheng
- Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, CNRS, Université de Strasbourg, Strasbourg, 67081, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France
| | - François André
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Nicolas Navrot
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67084, France
| | - Laurence Miesch
- Equipe de Synthèse Organique et Phytochimie, Institut de Chimie, CNRS, Université de Strasbourg, Strasbourg, 67081, France
| |
Collapse
|
4
|
Aioub AAA, Zuo Y, Li Y, Qie X, Zhang X, Essmat N, Wu W, Hu Z. Transcriptome analysis of Plantago major as a phytoremediator to identify some genes related to cypermethrin detoxification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5101-5115. [PMID: 32954451 DOI: 10.1007/s11356-020-10774-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Cypermethrin (CYP) is a toxic manmade chemical compound belonging to pyrethroid insecticides contaminating the environment. Plantago major (PM) has numerous excellent advantages like high biomass yield and great stress tolerance, which make it able to increase the efficacy of phytoremediation. So far, no study has directly or indirectly made a transcriptome analysis (RNA-seq) of PM under CYP stress. The aim of this study is to identify the genes in PM related to CYP detoxification (10 μg mL-1) and compared with control. In this study, BGISEQ-500 high-throughput sequencing technology independently developed by BGI was used to sequence the transcriptome of P. major. Six libraries were constructed including (CK_1, CK_2, and CK_3) and (CYP_1, CYP_2, and CYP_3) were sequenced for transcripts involved in CYP detoxification. Our data showed that de novo assembly generated 138,806 unigenes with an average length of 1129 bp. Analyzing the annotation results of the KEGG database between the samples revealed 37,177 differentially expressed genes (DEGs), 18,062 down- and 19,115 upregulated under CYP treatment compared with control. A set of 107 genes of cytochrome P450 (Cyt P450), 43 genes of glutathione S-transferases (GST), 25 genes of glycosyltransferases (GTs), 113 genes from ABC transporters, 21 genes from multidrug and toxin efflux (MATE), 11 genes from oligopeptide transporter (OPT), and 3 genes of metallothioneins (MT) were upregulated notably. By using quantitative real-time PCR (qRT-PCR), the results of gene expression for 12 randomly selected DEGs were confirmed, showing the different patterns of response to CYP in PM tissues. Furthermore, the enzyme activity of Cyt P450 and GST in PM under CYP stress was significantly increased in roots and leaves than in control. This study introduces a clue to understand the metabolic pathways of plants used in phytoremediation by identifying the highly expressed genes related to phytoremediation which would be utilized to enhance pesticide detoxification and reduce pollution problem.
Collapse
Affiliation(s)
- Ahmed A A Aioub
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Yayun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Provincial Key Laboratory for Botanical Pesticide R & D of Shaanxi, Yangling, 712100, Shaanxi, China
| | - Yankai Li
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Provincial Key Laboratory for Botanical Pesticide R & D of Shaanxi, Yangling, 712100, Shaanxi, China
| | - Xingtao Qie
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Provincial Key Laboratory for Botanical Pesticide R & D of Shaanxi, Yangling, 712100, Shaanxi, China
| | - Xianxia Zhang
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Provincial Key Laboratory for Botanical Pesticide R & D of Shaanxi, Yangling, 712100, Shaanxi, China
| | - Nariman Essmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Wenjun Wu
- Provincial Key Laboratory for Botanical Pesticide R & D of Shaanxi, Yangling, 712100, Shaanxi, China
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Provincial Key Laboratory for Botanical Pesticide R & D of Shaanxi, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Diaz-Chavez ML, Moniodis J, Madilao LL, Jancsik S, Keeling CI, Barbour EL, Ghisalberti EL, Plummer JA, Jones CG, Bohlmann J. Biosynthesis of Sandalwood Oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol. PLoS One 2013; 8:e75053. [PMID: 24324844 PMCID: PMC3854609 DOI: 10.1371/journal.pone.0075053] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/07/2013] [Indexed: 11/26/2022] Open
Abstract
Sandalwood oil is one of the world’s most highly prized essential oils, appearing in many high-end perfumes and fragrances. Extracted from the mature heartwood of several Santalum species, sandalwood oil is comprised mainly of sesquiterpene olefins and alcohols. Four sesquiterpenols, α-, β-, and epi-β-santalol and α-exo-bergamotol, make up approximately 90% of the oil of Santalum album. These compounds are the hydroxylated analogues of α-, β-, and epi-β-santalene and α-exo-bergamotene. By mining a transcriptome database of S. album for candidate cytochrome P450 genes, we cloned and characterized cDNAs encoding a small family of ten cytochrome P450-dependent monooxygenases annotated as SaCYP76F37v1, SaCYP76F37v2, SaCYP76F38v1, SaCYP76F38v2, SaCYP76F39v1, SaCYP76F39v2, SaCYP76F40, SaCYP76F41, SaCYP76F42, and SaCYP76F43. Nine of these genes were functionally characterized using in vitro assays and yeast in vivo assays to encode santalene/bergamotene oxidases and bergamotene oxidases. These results provide a foundation for production of sandalwood oil for the fragrance industry by means of metabolic engineering, as demonstrated with proof-of-concept formation of santalols and bergamotol in engineered yeast cells, simultaneously addressing conservation challenges by reducing pressure on supply of sandalwood from native forests.
Collapse
Affiliation(s)
- Maria L. Diaz-Chavez
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessie Moniodis
- School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, Australia
| | - Lufiani L. Madilao
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sharon Jancsik
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher I. Keeling
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth L. Barbour
- School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Emilio L. Ghisalberti
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, Australia
| | - Julie A. Plummer
- School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Christopher G. Jones
- School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
6
|
Mouhamad R, Ghanem I, AlOrfi M, Ibrahim K, Ali N, Al-Daoude A. Phytoremediation of trichloroethylene and dichlorodiphenyltrichloroethane-polluted water using transgenic Sesbania grandiflora and Arabidopsis thaliana plants harboring rabbit cytochrome p450 2E1. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:656-668. [PMID: 22908634 DOI: 10.1080/15226514.2011.619232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sesbania grandiflora (L.) pers (Fabaceae) and Arabidopsis thaliana (L.) (Brassicaceae) were genetically engineered to constitutively express the rabbit cytochrome p450 2E1 enzyme aiming at increasing their activity toward trichloroethylene (TCE) and dichlorodiphenyltrichloroethane (DDT) removal Successful generation of Sesbania and Arabidopsis transgenic plants was verified using p450 2E1 specific PCR and confirmed by western blot analysis. Gas chromatography (GC) analysis revealed that small cuttings of Sesbania and third generation (F3) Arabidopsis transgenic plants exposed to TCE and DDT in small hydroponics' vessels accumulated more TCE and DDT compared to plants transformed with the empty vector. Furthermore, both transgenic plants were more effective in breaking down TCE and DDT with a 2-fold increase in TCE metabolism. Two independent Arabidopsis lines showed that DDT was metabolized about 4-fold higher than that detected in non transformed plants. Similarly, S. grandiflora cuttings removed 51 to 90% of the added DDT compared with only 3% removal in controls transformed with the null vector. Notably, stability of rabbit cytochrome p450 2E1 was confirmed using third generation Arabidopsis plants that displayed higher potential for the removal of two important pollutants, TCE and DDT compared with the controls.
Collapse
Affiliation(s)
- Raghad Mouhamad
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission, Damascus, Syria
| | | | | | | | | | | |
Collapse
|
7
|
Phongdara A, Nakkaew A, Nualkaew S. Isolation of the detoxification enzyme EgP450 from an oil palm EST library. PHARMACEUTICAL BIOLOGY 2012; 50:120-127. [PMID: 22196587 DOI: 10.3109/13880209.2011.631019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Sequencing of cDNA clones from plant tissue to generate expressed sequence tags (ESTs) is an effective tool for gene discovery. Together with powerful bioinformatics tools, EST sequences allow the prediction of functions of putative bioactive compounds that can later be confirmed. OBJECTIVE To isolate a detoxification enzyme from an EST library from the oil palm (Elaeis guineensis Jacq. Arecaceae). METHODS In total, 750 clones from an oil palm cDNA library were randomly sequenced and analyzed. A clone homologous to cytochrome P450 monooxygenases (P450) was selected from the list of highly expressed genes. The full-length cDNA of P450 from E. guineensis (EgP450) was generated and transformed into a bacterial host to produce recombinant protein. A 3D model of EgP450 was generated and used in a molecular docking analysis to screen for target herbicide substrates. Finally, the detoxification activity of EgP450 was confirmed by an herbicide tolerance test with rice seedlings. RESULTS AND DISCUSSION The full-length EgP450 has an open reading frame (ORF) of 1515 bp that encodes a protein of 505 amino acids. Docking analysis showed that EgP450 bound to phenylurea-like herbicides such as isoproturon, chlortoluron and fluometuron. The herbicide tolerance test demonstrated that the presence of EgP450 protected the rice seedlings from the killing action of the phytotoxic agent isoproturon. CONCLUSIONS The gene EgP450 was detected in the roots and stems of oil palm tissues, and its recombinant product was shown to protect rice seedlings from exogenous herbicides of the phenylurea family.
Collapse
Affiliation(s)
- Amornrat Phongdara
- Center for Genomics and Bioinformatics Research, Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand.
| | | | | |
Collapse
|
8
|
Kumar S, Jin M, Weemhoff JL. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes. ACTA ACUST UNITED AC 2012; 3. [PMID: 25298920 PMCID: PMC4186655 DOI: 10.4172/2157-7463.1000127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation.
Collapse
Affiliation(s)
| | - Mengyao Jin
- School of Pharmacy, University of Missouri, USA
| | | |
Collapse
|
9
|
Choi KY, Park HY, Kim BG. Characterization of bi-functional CYP154 from Nocardia farcinica IFM10152 in the O-dealkylation and ortho-hydroxylation of formononetin. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P. Biochemical biomarkers in algae and marine pollution: a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 71:1-15. [PMID: 18599121 DOI: 10.1016/j.ecoenv.2008.05.009] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 03/11/2008] [Accepted: 05/09/2008] [Indexed: 05/09/2023]
Abstract
Environmental pollution by organic compounds and metals became extensive as mining and industrial activities increased in the 19th century and have intensified since then. Environmental pollutants originating from diverse anthropogenic sources have been known to possess adverse values capable of degrading the ecological integrity of marine environment. The consequences of anthropogenic contamination of marine environments have been ignored or poorly characterized with the possible exception of coastal and estuarine waters close to sewage outlets. Monitoring the impact of pollutants on aquatic life forms is challenging due to the differential sensitivities of organisms to a given pollutant, and the inability to assess the long-term effects of persistent pollutants on the ecosystem as they are bio-accumulated at higher trophic levels. Marine microalgae are particularly promising indicator species for organic and inorganic pollutants since they are typically the most abundant life forms in aquatic environments and occupy the base of the food chain. We review the effects of pollutants on the cellular biochemistry of microalgae and the biochemical mechanisms that microalgae use to detoxify or modify pollutants. In addition, we evaluate the potential uses of microalgae as bioindicator species as an early sentinel in polluted sites.
Collapse
Affiliation(s)
- Moacir A Torres
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Pan G, Zhang X, Liu K, Zhang J, Wu X, Zhu J, Tu J. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. PLANT MOLECULAR BIOLOGY 2006; 61:933-43. [PMID: 16927205 DOI: 10.1007/s11103-006-0058-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/29/2006] [Indexed: 05/11/2023]
Abstract
Development of hybrid rice has greatly contributed to increased yields during the past three decades. Two bentazon-lethal mutants 8077S and Norin8m are being utilized in developing new hybrid rice systems. When the male sterile lines are developed in such a mutant background, the problem of F1 seed contamination by self-seeds from the sterile lines can be solved by spraying bentazon at seedling stage. We first determined the sensitivity of the mutant plants to bentazon. Both mutants showed symptoms to bentazon starting from 100 mg/l, which was about 60-fold, lower than the sensitivity threshold of their wild-type controls. In addition, both mutants were sensitive to sulfonylurea-type herbicides. The locus for the mutant phenotype is bel for 8077S and bsl for Norin8m. Tests showed that the two loci are allelic to each other. The two genes were cloned by map-based cloning. Interestingly, both mutant alleles had a single-base deletion, which was confirmed by PCR-RFLP. The two loci are renamed bel ( a ) (for bel) and bel ( b ) (for bsl). The wild-type Bel gene encodes a novel cytochrome P450 monooxgenase, named CYP81A6. Analysis of the mutant protein sequence also revealed the reason for bel ( a ) being slightly tolerant than bel ( b ). Introduction of the wild-type Bel gene rescued the bentazon- and sulfonylurea-sensitive phenotype of bel ( a ) mutant. On the other hand, expression of antisense Bel in W6154S induced a mutant phenotype. Based on these results we conclude that the novel cytochrome P450 monooxygenase CYP81A6 encoded by Bel confers resistance to two different classes of herbicides.
Collapse
Affiliation(s)
- Gang Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Zeng RS, Zeng RSL, Niu G, Wen Z, Schuler MA, Berenbaum MR. Toxicity of aflatoxin B1 to Helicoverpa zea and bioactivation by cytochrome P450 monooxygenases. J Chem Ecol 2006; 32:1459-71. [PMID: 16830213 DOI: 10.1007/s10886-006-9062-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 02/13/2006] [Accepted: 02/18/2006] [Indexed: 11/28/2022]
Abstract
Infestation of corn (Zea mays) by corn earworm (Helicoverpa zea) predisposes the plant to infection by Aspergillus fungi and concomitant contamination with the carcinogenic mycotoxin aflatoxin B1 (AFB1). Although effects of ingesting AFB1 are well documented in livestock and humans, the effects on insects that naturally encounter this mycotoxin are not as well defined. Toxicity of AFB1 to different stages of H. zea (first, third, and fifth instars) was evaluated with artificial diets containing varying concentrations. Although not acutely toxic at low concentrations (1-20 ng/g), AFB1 had significant chronic effects, including protracted development, increased mortality, decreased pupation rate, and reduced pupal weight. Sensitivity varied with developmental stage; whereas intermediate concentrations (200 ng/g) caused complete mortality in first instars, this same concentration had no detectable adverse effects on larvae encountering AFB1 in fifth instar. Fifth instars consuming AFB1 at higher concentrations (1 microg/g), however, displayed morphological deformities at pupation. That cytochrome P450 monooxygenases (P450s) are involved in the bioactivation of aflatoxin in this species is evidenced by the effects of piperonyl butoxide (PBO), a known P450 inhibitor, on toxicity; whereas no fourth instars pupated in the presence of 1 mug/g AFB1 in the diet, the presence of 0.1% PBO increased the pupation rate to 71.7%. Pupation rates of both fourth and fifth instars on diets containing 1 mug/g AFB1 also increased significantly in the presence of PBO. Effects of phenobarbital, a P450 inducer, on AFB1 toxicity were less dramatic than those of PBO. Collectively, these findings indicate that, as in many other vertebrates and invertebrates, toxicity of AFB1 to H. zea results from P450-mediated metabolic bioactivation.
Collapse
Affiliation(s)
- Ren Sen Zeng
- Department of Entomology, University of Illinois, Urbana, 61801, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Wen-Sheng X, Xiang-Jing W, Tian-Rui R, Su-Qin C. Purification of recombinant wheat cytochrome P450 monooxygenase expressed in yeast and its properties. Protein Expr Purif 2006; 45:54-9. [PMID: 16122941 DOI: 10.1016/j.pep.2005.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/13/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
To investigate the properties of wheat cytochrome P450 and the characteristics of herbicide metabolism by cytochrome P450 in vitro, deeply understand the mechanisms of herbicide selectivity, recombinant wheat cytochrome P450 monooxygenase (CYP71Cv1) heterologously expressed in yeast was purified by DE-52 cellulose chromatography and fast protein liquid chromatography (FPLC) with Mono-Q column. The degree of purification was 1366-fold. The specific activity of purified cytochrome P450 reached to 512 nmol min-1 mg-1 protein with herbicide chlorsulfuron as substrate. The purified cytochrome P450 exhibited one band in sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, and the molecular mass was 52.5 kDa. Kinetic parameter was determined in vitro. The Km values for chlorsulfuron and triasulfuron were 57 (+/-15) and 38 (+/-16) microM, respectively; and Vmax for chlorsulfuron and triasulfuron were 4.1 (+/-0.7) and 2.7 (+/-0.5) nmol min-1 mg-1protein in vitro, respectively.
Collapse
Affiliation(s)
- Xiang Wen-Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100080, China
| | | | | | | |
Collapse
|
14
|
Baerson SR, Sánchez-Moreiras A, Pedrol-Bonjoch N, Schulz M, Kagan IA, Agarwal AK, Reigosa MJ, Duke SO. Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J Biol Chem 2005; 280:21867-81. [PMID: 15824099 DOI: 10.1074/jbc.m500694200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Benzoxazolin-2(3H)-one (BOA) is an allelochemical most commonly associated with monocot species, formed from the O-glucoside of 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one by a two-step degradation process. The capacity of Arabidopsis to detoxify exogenously supplied BOA was analyzed by quantification of the major known metabolites BOA-6-OH, BOA-6-O-glucoside, and glucoside carbamate, revealing that detoxification occurs predominantly through O-glucosylation of the intermediate BOA-6-OH, most likely requiring the sequential action of as-yet-unidentified cytochrome P450 and UDP-glucosyltransferase activities. Transcriptional profiling experiments were also performed with Arabidopsis seedlings exposed to BOA concentrations, representing I(50) and I(80) levels based on root elongation inhibition assays. One of the largest functional categories observed for BOA-responsive genes corresponded to protein families known to participate in cell rescue and defense, with the majority of these genes potentially associated with chemical detoxification pathways. Further experiments using a subset of these genes revealed that many are also transcriptionally induced by a variety of structurally diverse xenobiotic compounds, suggesting they comprise components of a coordinately regulated, broad specificity xenobiotic defense response. The data significantly expand upon previous studies examining plant transcriptional responses to allelochemicals and other environmental toxins and provide novel insights into xenobiotic detoxification mechanisms in plants.
Collapse
Affiliation(s)
- Scott R Baerson
- Agricultural Research Service, Natural Products Utilization Research Unit, United States Department of Agriculture, PO Box 8048, University, MS 38677, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xiang WS, Wang XJ, Ren TR, Ju XL. Expression of a wheat cytochrome P450 monooxygenase in yeast and its inhibition by glyphosate. PEST MANAGEMENT SCIENCE 2005; 61:402-6. [PMID: 15627243 DOI: 10.1002/ps.969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 08/17/2004] [Indexed: 05/24/2023]
Abstract
Glyphosate is a non-selective herbicide which acts by inhibiting 5-enolpyruvylshikimate-3-phosphate synthase. Wheat cytochrome P450 monooxygenase specifically catalyzes the metabolism of some sulfonylurea herbicides such as chlorsulfuron and triasulfuron. Here we report that glyphosate is an inhibitor of a wheat cytochrome (CYP71C6v1), the cDNA of which was amplified by RT-PCR and heterologously expressed in yeast. The microsomal fractions derived from this strain had a Soret peak at 502 nm in the reduced carbon monoxide difference spectrum, which is a typical spectral characteristic. The addition of glyphosate to the microsomal protein resulted in a Type II spectrum indicative of binding via the nitrogen group to haem of cytochrome P450 as a sixth ligand. A spectral dissociation constant, K(s) of 70 micromol litre(-1) was observed and an IC50 of 11 micromol litre(-1) was found for glyphosate inhibition of CYP71C6v1 P450 activity.
Collapse
Affiliation(s)
- Wen-Sheng Xiang
- State Key Laboratory for Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100080, China
| | | | | | | |
Collapse
|
16
|
Matsuzaki F, Wariishi H. Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 2004; 324:387-93. [PMID: 15465031 DOI: 10.1016/j.bbrc.2004.09.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Indexed: 11/24/2022]
Abstract
The functional diversity of cytochrome P450s (P450s) of the white-rot basidiomycete, Phanerochaete chrysosporium, was studied. A series of compounds known to be P450 substrates of other organisms were utilized for metabolic studies of P. chrysosporium. Metabolic conversions of benzoic acid, camphor, 1,8-cineol, cinnamic acid, p-coumaric acid, coumarin, cumene, 1,12-dodecanediol, 1-dodecanol, 4-ethoxybenzoic acid, and 7-ethoxycoumarin were observed with P. chrysosporium for the first time. 1-Dodecanol was hydroxylated at seven different positions to form 1,12-, 1,11-, 1,10-, 1,9-, 1,8-, 1,7-, and 1,6-dodecandiols. The effect of piperonyl butoxide, a P450 inhibitor, on the fungal conversion of 1-dodecanol was also investigated, indicating that hydroxylation reactions of 1-dodecanol were inhibited by piperonyl butoxide in a concentration-dependent manner. With 11 substrates, 23 hydroxylation reactions and 2 deethylation reactions were determined and 6 products were new with the position of hydroxyl group incorporated. In conclusion, fungal P450s were shown to have diverse and unique functions.
Collapse
Affiliation(s)
- Fumiko Matsuzaki
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | |
Collapse
|
17
|
Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K. Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. PLANT MOLECULAR BIOLOGY 2004; 55:327-42. [PMID: 15604685 DOI: 10.1007/s11103-004-0685-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
From Arabidopsis full-length cDNA libraries, we collected ca. 7000 (7K) independent full-length cDNAs to prepare a cDNA microarray. The 7K cDNA collection contains 49 cytochrome P450 genes. In this study, expression patterns of these cytochrome P450 genes were analyzed by a full-length cDNA microarray under various treatments, such as hormones (salicylic acid, jasmonic acid, ethylene, abscisic acid), pathogen-inoculation ( Alternaria brassicicola , Alternaria alternata ), paraquat, rose bengal, UV stress (UV-C), heavy metal stress (CuSO4), mechanical wounding, drought, high salinity and low temperature. Expression of 29 cytochrome P450 genes among them was induced by various treatments. Inoculation with A. brassicicola and A. alternata as biotic stresses increased transcript levels of 12 and 5 genes in Arabidopsis plants, respectively. In addition, some of the genes were also expressed by abiotic stresses. This suggests crosstalk between abiotic and biotic stresses. The promoter sequences and cis -acting elements of each gene were studied on the basis of full-length cDNA sequences. Most cytochrome P450 genes induced by both abiotic and biotic stresses contained the recognition sites of MYB and MYC, ACGT-core sequence, TGA-box and W-box for WRKY transcription factors in their promoters. These cis -acting elements are known to participate in the regulation of plant defense. The response of each gene to multiple stresses is strictly regulated.
Collapse
Affiliation(s)
- Yoshihiro Narusaka
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei-shi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Plant systems utilize a diverse array of cytochrome P450 monooxygenases (P450s) in their biosynthetic and detoxicative pathways. Those P450s in biosynthetic pathways play critical roles in the synthesis of lignins, UV protectants, pigments, defense compounds, fatty acids, hormones, and signaling molecules. Those in catabolic pathways participate in the breakdown of endogenous compounds and toxic compounds encountered in the environment. Because of their roles in this wide diversity of metabolic processes, plant P450 proteins and transcripts can serve as downstream reporters for many different biochemical pathways responding to chemical, developmental, and environmental cues. This review focuses initially on defining P450 biochemistries, nomenclature systems, and the relationships between genes in the extended P450 superfamily that exists in all plant species. Subsequently, it focuses on outlining the many approaches being used to assign function to individual P450 proteins and gene loci. The examples of assigned P450 activities that are spread throughout this review highlight the importance of understanding and utilizing P450 sequences as markers for linking biochemical pathway responses to physiological processes.
Collapse
Affiliation(s)
- Mary A Schuler
- Department of Cell & Structural Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA.
| | | |
Collapse
|
19
|
Didierjean L, Gondet L, Perkins R, Lau SMC, Schaller H, O'Keefe DP, Werck-Reichhart D. Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. PLANT PHYSIOLOGY 2002; 130:179-89. [PMID: 12226498 PMCID: PMC166551 DOI: 10.1104/pp.005801] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2002] [Accepted: 05/26/2002] [Indexed: 05/17/2023]
Abstract
The Jerusalem artichoke (Helianthus tuberosus) xenobiotic inducible cytochrome P450, CYP76B1, catalyzes rapid oxidative dealkylation of various phenylurea herbicides to yield nonphytotoxic metabolites. We have found that increased herbicide metabolism and tolerance can be achieved by ectopic constitutive expression of CYP76B1 in tobacco (Nicotiana tabacum) and Arabidopsis. Transformation with CYP76B1 conferred on tobacco and Arabidopsis a 20-fold increase in tolerance to linuron, a compound detoxified by a single dealkylation, and a 10-fold increase in tolerance to isoproturon or chlortoluron, which need successive catalytic steps for detoxification. Two constructs for expression of translational fusions of CYP76B1 with P450 reductase were prepared to test if they would yield even greater herbicide tolerance. Plants expressing these constructs had lower herbicide tolerance than CYP76B1 alone, which is apparently a consequence of reduced stability of the fusion proteins. In all cases, increased herbicide tolerance results from more extensive metabolism, as demonstrated with exogenously fed phenylurea. Beside increased herbicide tolerance, expression of CYP76B1 has no other visible phenotype in the transgenic plants. Our data indicate that CYP76B1 can function as a selectable marker for plant transformation, allowing efficient selection in vitro and in soil-grown plants. Plants expressing CYP76B1 may also be a potential tool for phytoremediation of contaminated sites.
Collapse
Affiliation(s)
- Luc Didierjean
- E.I. DuPont de Nemours and Company, Central Research and Development, DuPont Experimental Station, Wilmington, Delaware 19880-0328, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Stiborová M, Schmeiser HH, Frei E. Oxidation of xenobiotics by plant microsomes, a reconstituted cytochrome P450 system and peroxidase: a comparative study. PHYTOCHEMISTRY 2000; 54:353-362. [PMID: 10897475 DOI: 10.1016/s0031-9422(00)00123-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The microsomal fraction from tulip bulbs (Tulipa fosteriana, L.) contains cytochrome P450 (CYP3, EC 1.14.14.1) and peroxidase (EC 1.11.1.7.) enzymes catalyzing the NADPH--and hydrogen peroxide--dependent oxidation of the xenobiotic substrates, N-nitrosodimethylamine (NDMA), N-nitrosomethylaniline (NMA), aminopyrine and 1-phenylazo 2-hydroxynaphthalene (Sudan I), respectively. Oxidation of these model xenobiotics has also been assessed in a reconstituted electron-transport chain with a partially purified CYP fraction, phospholipid and isolated tulip NADPH:CYP reductase (EC 1.6.2.4.). Peroxidase isolated from tulip bulbs (isoenzyme C) oxidizes these xenobiotics, too. Values of kinetic parameters (Km, Vmax), requirements for cofactors (NADPH, hydrogen peroxide), the effect of inhibitors and identification of products formed from the xenobiotics by the microsomal fraction, partially purified CYP and peroxidase C were determined. These data were used to estimate the participation of the CYP preparation and peroxidase C in oxidation of two out of the four studied xenobiotics (NMA, Sudan I) in tulip microsomes. Using such detailed study, we found that the CYP-dependent enzyme system is responsible for the oxidation of these xenobiotics in the microsomal fraction of tulip bulbs. The results demonstrate the progress in resolving the role of plant CYP and peroxidase enzymes in oxidation of xenobiotics.
Collapse
Affiliation(s)
- M Stiborová
- Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
21
|
Abstract
Significant advances have been made concerning the biosynthesis, regulation and genetic manipulation of plant natural products. These include insights into the structural biology of isoprenoid cyclization and polyketide condensation reactions, a better understanding of the molecular biology of plant cytochrome P450s and O-methyltransferases, and new information on the effects of natural products on human health.
Collapse
Affiliation(s)
- R A Dixon
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA.
| |
Collapse
|
22
|
Sandermann H. Plant Metabolism of Organic Xenobiotics. Status and Prospects of the ‘Green Liver’ Concept. PLANT BIOTECHNOLOGY AND IN VITRO BIOLOGY IN THE 21ST CENTURY 1999. [DOI: 10.1007/978-94-011-4661-6_74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
Godiard L, Sauviac L, Dalbin N, Liaubet L, Callard D, Czernic P, Marco Y. CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death. FEBS Lett 1998; 438:245-9. [PMID: 9827554 DOI: 10.1016/s0014-5793(98)01309-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The characterisation of an Arabidopsis thaliana cytochrome P450-encoding cDNA clone, B72, preferentially expressed during the hypersensitive response (HR) provoked by the bacterial pathogen Pseudomonas syringae pathovar maculicola, is reported. The B72 cDNA clone corresponded to the CYP76C2 gene, which belongs to a small multigene family comprising four genes. HR-triggering bacteria harbouring different avirulence genes induced the accumulation of transcripts of this P450 gene. CYP76C2 gene expression was moreover associated with various processes leading to cell death such as leaf senescence, ageing of cell cultures, wounding as well as with treatment with the necrotising heavy metal salt, lead nitrate.
Collapse
Affiliation(s)
- L Godiard
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR CNRS/INRA 215, Castanet Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Robineau T, Batard Y, Nedelkina S, Cabello-Hurtado F, LeRet M, Sorokine O, Didierjean L, Werck-Reichhart D. The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics. PLANT PHYSIOLOGY 1998; 118:1049-56. [PMID: 9808750 PMCID: PMC34778 DOI: 10.1104/pp.118.3.1049] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/1998] [Accepted: 07/27/1998] [Indexed: 05/21/2023]
Abstract
Cytochrome P450s (P450s) constitute one of the major classes of enzymes that are responsible for detoxification of exogenous molecules both in animals and plants. On the basis of its inducibility by exogenous chemicals, we recently isolated a new plant P450, CYP76B1, from Jerusalem artichoke (Helianthus tuberosus) and showed that it was capable of dealkylating a model xenobiotic compound, 7-ethoxycoumarin. In the present paper we show that CYP76B1 is more strongly induced by foreign compounds than other P450s isolated from the same plant, and metabolizes with high efficiency a wide range of xenobiotics, including alkoxycoumarins, alkoxyresorufins, and several herbicides of the class of phenylureas. CYP76B1 catalyzes the double N-dealkylation of phenylureas with turnover rates comparable to those reported for physiological substrates and produces nonphytotoxic compounds. Potential uses for CYP76B1 thus include control of herbicide tolerance and selectivity, as well as soil and groundwater bioremediation.
Collapse
Affiliation(s)
- T Robineau
- Departement d'Enzymologie Cellulaire et Moleculaire, Institut de Biologie Moleculaire des Plantes, Centre National de la Recherche Scientifique Unite Propre de Recherche 406, 28 rue Goethe, F-67000 Strasbourg, France (T.R., Y.B., F.C.-H., M.L
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Schalk M, Cabello-Hurtado F, Pierrel MA, Atanossova R, Saindrenan P, Werck-Reichhart D. Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: A new tool to control the flux of metabolites in the phenylpropanoid pathway. PLANT PHYSIOLOGY 1998; 118:209-18. [PMID: 9733540 PMCID: PMC34858 DOI: 10.1104/pp.118.1.209] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/1998] [Accepted: 05/21/1998] [Indexed: 05/20/2023]
Abstract
Piperonylic acid (PA) is a natural molecule bearing a methylenedioxy function that closely mimics the structure of trans-cinnamic acid. The CYP73A subfamily of plant P450s catalyzes trans-cinnamic acid 4-hydroxylation, the second step of the general phenylpropanoid pathway. We show that when incubated in vitro with yeast-expressed CYP73A1, PA behaves as a potent mechanism-based and quasi-irreversible inactivator of trans-cinnamate 4-hydroxylase. Inactivation requires NADPH, is time dependent and saturable (KI = 17 &mgr;M, kinact = 0.064 min-1), and results from the formation of a stable metabolite-P450 complex absorbing at 427 nm. The formation of this complex is reversible with substrate or other strong ligands of the enzyme. In plant microsomes PA seems to selectively inactivate the CYP73A P450 subpopulation. It does not form detectable complexes with other recombinant plant P450 enzymes. In vivo PA induces a sharp decrease in 4-coumaric acid concomitant to cinnamic acid accumulation in an elicited tobacco (Nicotiana tabacum) cell suspension. It also strongly decreases the formation of scopoletin in tobacco leaves infected with tobacco mosaic virus.
Collapse
Affiliation(s)
- M Schalk
- Departement d'Enzymologie Cellulaire et Moleculaire (M.S., F.C.-H., D.W.-R.)
| | | | | | | | | | | |
Collapse
|