1
|
Matzner M, Launhardt L, Barth O, Humbeck K, Goss R, Heilmann I. Inter-Organellar Effects of Defective ER-Localized Linolenic Acid Formation on Thylakoid Lipid Composition, Non-Photochemical Quenching of Chlorophyll Fluorescence and Xanthophyll Cycle Activity in the Arabidopsis fad3 Mutant. PLANT & CELL PHYSIOLOGY 2024; 65:958-974. [PMID: 37991227 DOI: 10.1093/pcp/pcad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) is the main lipid constituent of thylakoids and a structural component of photosystems and photosynthesis-related proteo-lipid complexes in green tissues. Previously reported changes in MGDG abundance upon stress treatments are hypothesized to reflect mobilization of MGDG-based polyunsaturated lipid intermediates to maintain extraplastidial membrane integrity. While exchange of lipid intermediates between compartmental membranes is well documented, physiological consequences of mobilizing an essential thylakoid lipid, such as MGDG, for an alternative purpose are not well understood. Arabidopsis seedlings exposed to mild (50 mM) salt treatment displayed significantly increased abundance of both MGDG and the extraplastidial lipid, phosphatidylcholine (PC). Interestingly, similar increases in MGDG and PC were observed in Arabidopsis fad3 mutant seedlings defective in endoplasmic reticulum (ER)-localized linolenic acid formation, in which compensatory plastid-to-ER-directed mobilization of linolenic acid-containing intermediates takes place. The postulated (salt) or evident (fad3) plastid-ER exchange of intermediates concurred with altered thylakoid function according to parameters of photosynthetic performance. While salt treatment of wild-type seedlings inhibited photosynthetic parameters in a dose-dependent manner, interestingly, untreated fad3 mutants did not show overall reduced photosynthetic quantum yield. By contrast, we observed a reduction specifically of non-photochemical quenching (NPQ) under high light, representing only part of observed salt effects. The decreased NPQ in the fad3 mutant was accompanied by reduced activity of the xanthophyll cycle, leading to a reduced concentration of the NPQ-effective pigment zeaxanthin. The findings suggest that altered ER-located fatty acid unsaturation and ensuing inter-organellar compensation impacts on the function of specific thylakoid enzymes, rather than globally affecting thylakoid function.
Collapse
Affiliation(s)
- Monique Matzner
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Science Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| | - Larissa Launhardt
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Science Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| | - Olaf Barth
- Department of Plant Physiology, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale) 06120, Germany
| | - Klaus Humbeck
- Department of Plant Physiology, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale) 06120, Germany
| | - Reimund Goss
- Department of Plant Physiology, Institute of Biology, University of Leipzig, Johannisallee 23, Leipzig 04103, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Science Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| |
Collapse
|
2
|
Liu Y, Zhang D, Xu Y, Yi Y. How the xerophytic moss Pogonatum inflexum tolerates desiccation. PLANT CELL REPORTS 2024; 43:39. [PMID: 38231303 DOI: 10.1007/s00299-023-03128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
KEY MESSAGE Desiccation-tolerant process of xerophytic moss Pogonatum inflexum were identified through de novo transcriptome assembly , morphological structure and physiology analysis. Pogonatum inflexum (Lindb.) Lac. is a typical xerophytic moss and have been widely used in gardening and micro-landscape. However, the mechanisms underlying desiccation tolerance are still unclear. In this study, morphological, physiological and trancriptomic analyses of P. inflexum to tolerate desiccation were carried out. Our results indicate that P. inflexum increase osmoregulation substances, shut down photosynthesis, and alter the content of membrane lipid fatty acids in response to desiccation, and the genes involved in these biological processes were changes in expression after desiccation. 12 h is the threshold for P. inflexum to tolerate desiccation and its photosynthesis has not been damaged within 12 h of desiccation and can still recover after rewater. We also proved that the gametocyte of P. inflexum has the ability to absorb and transport water, and contains lignin-synthesis genes in response to tolerant desiccation. Our findings not only explain the mechanisms of P. inflexum during desiccation, but also provide some attractive candidate genes for genetic breeding.
Collapse
Affiliation(s)
- Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Daqing Zhang
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yongmei Xu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yanjun Yi
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
3
|
Wallis JG, Bengtsson JD, Browse J. Molecular Approaches Reduce Saturates and Eliminate trans Fats in Food Oils. FRONTIERS IN PLANT SCIENCE 2022; 13:908608. [PMID: 35720592 PMCID: PMC9205222 DOI: 10.3389/fpls.2022.908608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 05/29/2023]
Abstract
Vegetable oils composed of triacylglycerols (TAG) are a major source of calories in human diets. However, the fatty acid compositions of these oils are not ideal for human nutrition and the needs of the food industry. Saturated fatty acids contribute to health problems, while polyunsaturated fatty acids (PUFA) can become rancid upon storage or processing. In this review, we first summarize the pathways of fatty acid metabolism and TAG synthesis and detail the problems with the oil compositions of major crops. Then we describe how transgenic expression of desaturases and downregulation of the plastid FatB thioesterase have provided the means to lower oil saturates. The traditional solution to PUFA rancidity uses industrial chemistry to reduce PUFA content by partial hydrogenation, but this results in the production of trans fats that are even more unhealthy than saturated fats. We detail the discoveries in the biochemistry and molecular genetics of oil synthesis that provided the knowledge and tools to lower oil PUFA content by blocking their synthesis during seed development. Finally, we describe the successes in breeding and biotechnology that are giving us new, high-oleic, low PUFA varieties of soybean, canola and other oilseed crops.
Collapse
Affiliation(s)
| | | | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
4
|
Voronkov AS, Ivanova TV, Kumachova TK. The features of the fatty acid composition of Pyrus L. total lipids are determined by mountain ecosystem conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:350-363. [PMID: 34959055 DOI: 10.1016/j.plaphy.2021.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The composition of fatty acids (FAs) of total lipids of pericarp, seeds, and leaves of Pyrus caucasica Fed. and Pyrus communis L. growing in mountain ecosystems at different altitudes (300, 700 and 1200 m) was studied. It was found that the greatest differences in the relative content of FAs within a species, depending on the altitudes above sea level, were characteristic of the outer tissues of the pericarp (peel) and leaves, which were in direct contact with the external environment. Pericarp parenchyma to a lesser extent, and seeds practically did not differ in FA composition at different heights. At altitudes with increased UV radiation, conjugated octadecadienoates: rumenic acid (9,11-18:2) and 10,12-18:2 were registered in the pericarp and leaf of Purys L., the functions of which in plants were practically not studied. The wild P. caucasica at all growing altitudes was characterized by more very-long-chain FAs (VLCFAs) than the P. communis cultivar. At 700 m, most likely when exposed to fungal infections, the relative number of VLCFAs increased significantly, and new species of individual odd-chaine FAs appeared in their composition in both representatives. It was especially worth noting the appearance in peel and leaf melissic acid (30:0), which was rarely recorded in the plant. A characteristic feature of only P. communis at an altitude of 700 m was the large number of unsaturated individual VLCFAs. Based on the data obtained, a scheme of possible pathways for VLCFA biosynthesis in P. communis were proposed.
Collapse
Affiliation(s)
- Alexander S Voronkov
- K. A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St, Moscow, 127276, Russia.
| | - Tatiana V Ivanova
- K. A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| | - Tamara K Kumachova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya St, Moscow, 127550, Russia
| |
Collapse
|
5
|
Laureano G, Cavaco AR, Matos AR, Figueiredo A. Fatty Acid Desaturases: Uncovering Their Involvement in Grapevine Defence against Downy Mildew. Int J Mol Sci 2021; 22:ijms22115473. [PMID: 34067363 PMCID: PMC8196838 DOI: 10.3390/ijms22115473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Grapevine downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most severe and devastating diseases in viticulture. Unravelling the grapevine defence mechanisms is crucial to develop sustainable disease control measures. Here we provide new insights concerning fatty acid's (FA) desaturation, a fundamental process in lipid remodelling and signalling. Previously, we have provided evidence that lipid signalling is essential in the establishment of the incompatible interaction between grapevine and Plasmopara viticola. In the first hours after pathogen challenge, jasmonic acid (JA) accumulation, activation of its biosynthetic pathway and an accumulation of its precursor, the polyunsaturated α-linolenic acid (C18:3), were observed in the leaves of the tolerant genotype, Regent. This work was aimed at a better comprehension of the desaturation processes occurring after inoculation. We characterised, for the first time in Vitis vinifera, the gene family of the FA desaturases and evaluated their involvement in Regent response to Plasmopara viticola. Upon pathogen challenge, an up-regulation of the expression of plastidial FA desaturases genes was observed, resulting in a higher content of polyunsaturated fatty acids (PUFAs) of chloroplast lipids. This study highlights FA desaturases as key players in membrane remodelling and signalling in grapevine defence towards biotrophic pathogens.
Collapse
|
6
|
Arico D, Legris M, Castro L, Garcia CF, Laino A, Casal JJ, Mazzella MA. Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:2554-2566. [PMID: 31069808 DOI: 10.1111/pce.13575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 05/06/2023]
Abstract
Due to the preeminence of reductionist approaches, understanding of plant responses to combined stresses is limited. We speculated that light-quality signals of neighbouring vegetation might increase susceptibility to heat shocks because shade reduces tissue temperature and hence the likeness of heat shocks. In contrast, plants of Arabidopsis thaliana grown under low-red/far-red ratios typical of shade were less damaged by heat stress than plants grown under simulated sunlight. Neighbour signals reduce the activity of phytochrome B (phyB), increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs). The phyB mutant showed high tolerance to heat stress even under simulated sunlight, and a pif multiple mutant showed low tolerance under simulated shade. phyB and red/far-red ratio had no effects on seedlings acclimated with nonstressful warm temperatures before the heat shock. The phyB mutant showed reduced expression of several fatty acid desaturase (FAD) genes and less proportion of fully unsaturated fatty acids and electrolyte leakage of membranes exposed to heat shocks. Red-light-activated phyB also reduced thermotolerance of dark-grown seedlings but not via changes in FADs expression and membrane stability. We propose that the reduced photosynthetic capacity linked to thermotolerant membranes would be less costly under shade, where the light input limits photosynthesis.
Collapse
Affiliation(s)
- Denise Arico
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, 1428, Argentina
| | - Martina Legris
- Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Fundación Instituto Leloir (FIL), Buenos Aires, 1405, Argentina
| | - Luciana Castro
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, 1428, Argentina
| | - Carlos Fernando Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner" (INIBIOLP), CCT-La Plata CONICET-UNLP, La Plata, 1900, Argentina
| | - Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner" (INIBIOLP), CCT-La Plata CONICET-UNLP, La Plata, 1900, Argentina
| | - Jorge José Casal
- Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Fundación Instituto Leloir (FIL), Buenos Aires, 1405, Argentina
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Buenos Aires, 1417, Argentina
| | - Maria Agustina Mazzella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, 1428, Argentina
| |
Collapse
|
7
|
Liang J, Wen F, Liu J. Transcriptomic and lipidomic analysis of an EPA-containing Nannochloropsis sp. PJ12 in response to nitrogen deprivation. Sci Rep 2019; 9:4540. [PMID: 30872742 PMCID: PMC6418175 DOI: 10.1038/s41598-019-41169-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/01/2019] [Indexed: 12/30/2022] Open
Abstract
To understand genes involved in neutral lipid accumulation upon nitrogen deprivation (ND) in a novel isolate of Nannochloropsis sp. PJ12, we performed comparative transcriptomic and lipidomic analyses of cells under ND and NR (nitrogen replete) conditions. Transcriptomic profiling indicated that, while enzymes involved in TCA cycle in PJ12 under ND condition were upregulated compared to that under NR condition, those involved in Calvin cycle and glycolysis under ND condition were downregulated. Furthermore, we showed that enzymes involved in fatty acid synthesis and glycerolipid synthesis were downregulated but not β-oxidation. Lipidomic profiling indicated that, while the level of neutral lipids in ND cells was increased compared to that of NR cells, level of photosynthetic membrane-lipids DGDG and PG was decreased. Taken together, our analysis indicated that TAG accumulation is attributed to the modification of membrane lipids derived primarily from “prokaryotic” pathway and secondarily from “eukaryotic” pathway based on the 16:X or 18:X fatty acid at the sn2 position of the glycerol backbone. We propose that two-phase (NR-ND) growth is ideal for biomass and biofuel production because ND reduces cell growth rate due to the loss of photosynthetic membrane and decreased quantum yield.
Collapse
Affiliation(s)
- Jibei Liang
- Ocean College, Zhejiang University, Zhoushan, ZJ316000, China
| | - Fang Wen
- Ocean College, Zhejiang University, Zhoushan, ZJ316000, China
| | - Jianhua Liu
- Ocean College, Zhejiang University, Zhoushan, ZJ316000, China. .,Ocean Research Center of Zhoushan, Zhoushan, ZJ316021, China.
| |
Collapse
|
8
|
Nan X, Huihui Z, Haixiu Z, Yining W, Jinbo L, Li X, Zepeng Y, Wenxu Z, Yi Q, Guangyu S. The Response of Photosynthetic Functions of F 1 Cutting Seedlings From Physocarpus amurensis Maxim (♀) × Physocarpus opulifolius "Diabolo" (♂) and the Parental Seedlings to Salt Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:714. [PMID: 29915607 PMCID: PMC5994425 DOI: 10.3389/fpls.2018.00714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/11/2018] [Indexed: 05/03/2023]
Abstract
This paper selected clonal cutting seedlings from the F1 hybrid varieties of Physocarpus amurensis Maxim (♀) × P. opulifolius "Diabolo" (♂) as research material to study the response of the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of P. amurensis hybrids and their parental leaves to NaCl stress (with concentrations of 0, 50, 100, and 200 mmol⋅L-1). The results showed that under salt stress, the stomatal conductance (Gs), transpiration rate (Tr), and net photosynthetic rate (Pn) of the three kinds of P. amurensis all significantly decreased. When the NaCl concentration was below 100 mmol⋅L-1, the intercellular CO2 concentration (Ci) of leaves of the three samples declined with the increase of salt concentration; however, when the concentration increased to 200 mmol⋅L-1, Ci did not decrease significantly, especially when the Ci of P. opulifolius "Diabolo" presented a slight increase. This indicated that the decline of photosynthetic carbon assimilation capacity induced by salt stress was the consequence of interaction between stomatal factors and non-stomatal factors, and the stomatal factors played an important role when the salt concentration was below 200 mmol⋅L-1. Compared with P. amurensis, the photosynthetic gas exchange capability of P. opulifolius "Diabolo" leaves was more sensitive to salt stress, and the limitation of non-stomatal factors was relatively evident. However, the photosynthetic capacity of hybrid P. amurensis leaves with the desired purple color was improved compared with P. amurensis. Under salt stress, the PSII activity of the three kinds of P. amurensis leaves declined, the electron transfer was inhibited, and obvious signs of photoinhibition were present. The PSII activity of P. opulifolius "Diabolo" leaves was more sensitive to salt stress than that in P. amurensis. Under salt stress, the NPQ of P. opulifolius "Diabolo" leaves decreased greatly, while under high salt concentrations the degree of photoinhibition in P. amurensis and hybrid P. amurensis were reduced due to a relatively high NPQ. With the increase of salt concentration, the Vk of P. amurensis and hybrid P. amurensis leaves presented a decreasing trend. However, the Vk of P. opulifolius "Diabolo" leaves increased slightly. This suggested that the effects of salt stress on the oxygen-evolving complex (OEC) of the three P. amurensis sample types were relatively limited and only the OEC of P.s opulifolius "Diabolo" leaves were slightly sensitive to salt stress. The VJ of all leaves from the three P. amurensis types increased under salt stress, and the VJ increased significantly when the salt concentration increased to 200 mmol⋅L-1, indicating that salt stress obviously impeded the electron transfer chain from QA to QB on the PSII receptor side. Moreover, high salt concentrations caused thylakoid membrane dissociation. The electron transfer and degree of damage to the thylakoid membrane of P. opulifolius "Diabolo" leaves were obviously higher than that of P. amurensis. However, the electron transfer capacity on the PSII receptor side as well as the degree of damage of the thylakoid membrane of hybrid P. amurensis leaves was obviously lower than those of P. opulifolius "Diabolo." The salt tolerance of photosynthetic functions of hybrid P. amurensis (♀) × P. opulifolius "Diabolo" (♂) leaves was improved compared with that of parental P. opulifolius "Diabolo," and the hybrid shows obvious hybrid vigor for photosynthesis.
Collapse
Affiliation(s)
- Xu Nan
- Natural Resources and Ecology Institute, Heilongjiang Academy of Sciences, Harbin, China
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhang Huihui
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Zhong Haixiu
- Natural Resources and Ecology Institute, Heilongjiang Academy of Sciences, Harbin, China
| | - Wu Yining
- Natural Resources and Ecology Institute, Heilongjiang Academy of Sciences, Harbin, China
| | - Li Jinbo
- Natural Resources and Ecology Institute, Heilongjiang Academy of Sciences, Harbin, China
| | - Xin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Yin Zepeng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhu Wenxu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Qu Yi
- Natural Resources and Ecology Institute, Heilongjiang Academy of Sciences, Harbin, China
| | - Sun Guangyu
- College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
9
|
Lunn D, Smith GA, Wallis JG, Browse J. Development Defects of Hydroxy-Fatty Acid-Accumulating Seeds Are Reduced by Castor Acyltransferases. PLANT PHYSIOLOGY 2018; 177:553-564. [PMID: 29678860 PMCID: PMC6001331 DOI: 10.1104/pp.17.01805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/02/2018] [Indexed: 05/05/2023]
Abstract
Researchers have long endeavored to produce modified fatty acids in easily managed crop plants where they are not natively found. An important step toward this goal has been the biosynthesis of these valuable products in model oilseeds. The successful production of such fatty acids has revealed barriers to the broad application of this technology, including low seed oil and low proportion of the introduced fatty acid and reduced seed vigor. Here, we analyze the impact of producing hydroxy-fatty acids on seedling development. We show that germinating seeds of a hydroxy-fatty acid-accumulating Arabidopsis (Arabidopsis thaliana) line produce chlorotic cotyledons and suffer reduced photosynthetic capacity. These seedlings retain hydroxy-fatty acids in polar lipids, including chloroplast lipids, and exhibit decreased fatty acid synthesis. Triacylglycerol mobilization in seedling development also is reduced, especially for lipids that include hydroxy-fatty acid moieties. These developmental defects are ameliorated by increased flux of hydroxy-fatty acids into seed triacylglycerol created through the expression of either castor (Ricinus communis) acyltransferase enzyme ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE2 or PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1A. Such expression increases both the level of total stored triacylglycerol and the rate at which it is mobilized, fueling fatty acid synthesis and restoring photosynthetic capacity. Our results suggest that further improvements in seedling development may require the specific mobilization of triacylglycerol-containing hydroxy-fatty acids. Understanding the defects in early development caused by the accumulation of modified fatty acids and providing mechanisms to circumvent these defects are vital steps in the development of tailored oil crops.
Collapse
Affiliation(s)
- Daniel Lunn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Gracen A Smith
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
10
|
Widomska J, Zareba M, Subczynski WK. Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain? Foods 2016; 5. [PMID: 27030822 PMCID: PMC4809277 DOI: 10.3390/foods5010007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Epidemiological studies demonstrate that a high dietary intake of carotenoids may offer protection against age-related macular degeneration, cancer and cardiovascular and neurodegenerative diseases. Humans cannot synthesize carotenoids and depend on their dietary intake. Major carotenoids that have been found in human plasma can be divided into two groups, carotenes (nonpolar molecules, such as β-carotene, α-carotene or lycopene) and xanthophylls (polar carotenoids that include an oxygen atom in their structure, such as lutein, zeaxanthin and β-cryptoxanthin). Only two dietary carotenoids, namely lutein and zeaxanthin (macular xanthophylls), are selectively accumulated in the human retina. A third carotenoid, meso-zeaxanthin, is formed directly in the human retina from lutein. Additionally, xanthophylls account for about 70% of total carotenoids in all brain regions. Some specific properties of these polar carotenoids must explain why they, among other available carotenoids, were selected during evolution to protect the retina and brain. It is also likely that the selective uptake and deposition of macular xanthophylls in the retina and brain are enhanced by specific xanthophyll-binding proteins. We hypothesize that the high membrane solubility and preferential transmembrane orientation of macular xanthophylls distinguish them from other dietary carotenoids, enhance their chemical and physical stability in retina and brain membranes and maximize their protective action in these organs. Most importantly, xanthophylls are selectively concentrated in the most vulnerable regions of lipid bilayer membranes enriched in polyunsaturated lipids. This localization is ideal if macular xanthophylls are to act as lipid-soluble antioxidants, which is the most accepted mechanism through which lutein and zeaxanthin protect neural tissue against degenerative diseases.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, 20-090 Lublin, Poland
- Correspondence: ; Tel.: +48-81-479-7169
| | - Mariusz Zareba
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | | |
Collapse
|
11
|
Zhang C. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana. Genome Integr 2015; 6:2. [PMID: 27330736 PMCID: PMC4911903 DOI: 10.4103/2041-9414.155953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 01/03/2023] Open
Abstract
The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
12
|
Mechri B, Attia F, Tekaya M, Cheheb H, Hammami M. Colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Glomus sp. modified the glycolipids biosynthesis and resulted in accumulation of unsaturated fatty acids. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1217-1220. [PMID: 25014256 DOI: 10.1016/j.jplph.2014.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
The influence of arbuscular mycorrhizal (AM) fungi colonization on photosynthesis, mineral nutrition, the amount of phospholipids and glycolipids in the leaves of olive (Olea europaea L.) trees was investigated. After six months of growth, the rate of photosynthesis, carboxylation efficiency, transpiration and stomatal conductance in mycorrhizal (M) plants was significantly higher than that of non-mycorrhizal (NM) plants. The inoculation treatment increased the foliar P and Mg but not N. The amount of glycolipids in the leaves of M plants was significantly higher than that of NM plants. However, the amount of phospholipids in the leaves of M plants was not significantly different to that in the leaves of NM plants. Also, we observed a significant increase in the level of α-linolenic acid (C18:3ω3) in glycolipids of M plants. This work supports the view that increased glycolipids level in the leaves of M plants could be involved, at least in part, in the beneficial effects of mycorrhizal colonization on photosynthesis performance of olive trees. To our knowledge, this is the first report on the effect of AM fungi on the amount of glycolipids in the leaves of mycorrhizal plants.
Collapse
Affiliation(s)
- Beligh Mechri
- Laboratoire de Biochimie, USCR Spectrométrie de Masse, LR-NAFS/LR12ES05 Nutrition-aliments fonctionnels et santé vasculaire, Faculté de Médecine, université de Monastir, 5019 Monastir, Tunisia.
| | - Faouzi Attia
- Equipe Recherches Agronomiques, Agronutrition, 3 avenue de l'Orchidée, Parc Activestre, Carbonne 31390, France
| | - Meriem Tekaya
- Laboratoire de Biochimie, USCR Spectrométrie de Masse, LR-NAFS/LR12ES05 Nutrition-aliments fonctionnels et santé vasculaire, Faculté de Médecine, université de Monastir, 5019 Monastir, Tunisia
| | - Hechmi Cheheb
- Institut de l'Olivier, Unité Spécialisée de Sousse, Rue Ibn Khaldoun, B.P.: 14, 4061 Sousse, Tunisia
| | - Mohamed Hammami
- Laboratoire de Biochimie, USCR Spectrométrie de Masse, LR-NAFS/LR12ES05 Nutrition-aliments fonctionnels et santé vasculaire, Faculté de Médecine, université de Monastir, 5019 Monastir, Tunisia
| |
Collapse
|
13
|
Radovanovic N, Thambugala D, Duguid S, Loewen E, Cloutier S. Functional Characterization of Flax Fatty Acid Desaturase FAD2 and FAD3 Isoforms Expressed in Yeast Reveals a Broad Diversity in Activity. Mol Biotechnol 2014; 56:609-20. [DOI: 10.1007/s12033-014-9737-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Rajwade AV, Kadoo NY, Borikar SP, Harsulkar AM, Ghorpade PB, Gupta VS. Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α-linolenic acid content. PHYTOCHEMISTRY 2014; 98:41-53. [PMID: 24380374 DOI: 10.1016/j.phytochem.2013.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/15/2013] [Accepted: 12/03/2013] [Indexed: 05/24/2023]
Abstract
Linseed or flax (Linum usitatissimum L.) varieties differ markedly in their seed α-linolenic acid (ALA) levels. Fatty acid desaturases play a key role in accumulating ALA in seed. We performed fatty acid (FA) profiling of various seed developmental stages of ten Indian linseed varieties including one mutant variety. Depending on their ALA contents, these varieties were grouped under high ALA and low ALA groups. Transcript profiling of six microsomal desaturase genes (SAD1, SAD2, FAD2, FAD2-2, FAD3A and FAD3B), which act sequentially in the fatty acid desaturation pathway, was performed using real-time PCR. We observed gene specific as well as temporal expression pattern for all the desaturases and their differential expression profiles corresponded well with the variation in FA accumulation in the two groups. Our study points to efficient conversion of intermediate FAs [stearic (SA), oleic (OA) and linoleic acids (LA)] to the final product, ALA, due to efficient action of all the desaturases in high ALA group. While in the low ALA group, even though the initial conversion up to OA was efficient, later conversions up to ALA seemed to be inefficient, leading to higher accumulation of OA and LA instead of ALA. We sequenced the six desaturase genes from the ten varieties and observed that variation in the amino acid (AA) sequences of desaturases was not responsible for differential ALA accumulation, except in the mutant variety TL23 with very low (<2%) ALA content. In TL23, a point mutation in the FAD3A gene resulted into a premature stop codon generating a truncated protein with 291 AA.
Collapse
Affiliation(s)
- Ashwini V Rajwade
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Narendra Y Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Sanjay P Borikar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Abhay M Harsulkar
- Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411 043, India.
| | | | - Vidya S Gupta
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411 008, India.
| |
Collapse
|
15
|
Luo PG, Deng KJ, Hu XY, Li LQ, Li X, Chen JB, Zhang HY, Tang ZX, Zhang Y, Sun QX, Tan FQ, Ren ZL. Chloroplast ultrastructure regeneration with protection of photosystem II is responsible for the functional 'stay-green' trait in wheat. PLANT, CELL & ENVIRONMENT 2013; 36:683-96. [PMID: 22943368 DOI: 10.1111/pce.12006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CN17 is a functional stay-green wheat variety that exhibits delayed leaf senescence and enhanced photosynthetic competence. To better understand these valuable traits, levels of chlorophyll a and b, soluble proteins, unsaturated fatty acids, and other components of CN17 were assayed. In addition, chloroplast ultrastructure, chloroplast number, and differences in gene expression between CN17 and a control variety, MY11, were examined. By 21 d post-anthesis (DPA), CN17 leaves exhibited a significantly higher maximal photochemical efficiency for photosystem II (PSII) (F(v) /F(m) ) and a significantly higher efficiency of excitation capture by open PSII reaction centres (F(v) '/F(m) '). In addition, chlorophyll degradation in CN17 was delayed by approximately 14 d, and was not blocked as observed in cosmetic stay-green phenotypes. The soluble protein content (Ps) of CN17 was higher than MY11 at all timepoints assayed, and the ratio of unsaturated to saturated fatty acids was significantly higher. CN17 also exhibited isolated granal lamellae associated with vesicles and diminished peroxidation, and between 35 and 42 DPA, a sharp decrease in chloroplast number was detected. Taken together, these results strongly support the hypothesis that chloroplast ultrastructure regeneration is responsible for the functional stay-green trait of CN17, and gene expression data provide insight into the mechanistic details.
Collapse
Affiliation(s)
- P G Luo
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Banik M, Duguid S, Cloutier S. Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation. Genome 2011; 54:471-83. [PMID: 21627464 DOI: 10.1139/g11-013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. α-Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes.
Collapse
Affiliation(s)
- Mitali Banik
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, MB R3T 2M9, Canada
| | | | | |
Collapse
|
17
|
Fan J, Xu C. Genetic analysis of Arabidopsis mutants impaired in plastid lipid import reveals a role of membrane lipids in chloroplast division. PLANT SIGNALING & BEHAVIOR 2011; 6:458-60. [PMID: 21358271 PMCID: PMC3142439 DOI: 10.4161/psb.6.3.14715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showed that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed. :
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | | |
Collapse
|
18
|
Kang J, Snapp AR, Lu C. Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:223-9. [PMID: 21215650 DOI: 10.1016/j.plaphy.2010.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 05/20/2023]
Abstract
Camelina sativa is a re-emerging low-input oilseed crop that may provide economical vegetable oils for industrial applications. It is desirable to increase the monounsaturated oleic acid (cis-9-octadecenoic acid, 18:1), and to decrease polyunsaturated fatty acids (PUFA), linoleic (cis, cis-9,12-octadecadienoic acid, 18:2) and α-linolenic (all-cis-9,12,15-octadecatrienoic acid, 18:3) acids, in camelina oils to improve oxidative stability. 18:1 desaturation is mainly controlled by the microsomal oleate desaturase (FAD2; EC 1.3.1.35) encoded by the FAD2 gene. Three FAD2 genes, designated CsFAD2-1 to 3, were identified in camelina. Functional expression of these genes in yeast confirmed that they all encode microsomal oleate desaturases. Although the three CsFAD2 genes share very high sequence similarity, they showed different expression patterns. Expression of CsFAD2-1 was detected in all tissues examined, including developing seed, flower, as well as in vegetable tissues such as leaf, root, and stem. Transcripts of CsFAD2-2 and CsFAD2-3 were mainly detected in developing seeds, suggesting their major roles in storage oil desaturation in seed. The introns of the three CsFAD2 genes, which showed greater sequence variations, may provide additional resources for designing molecular markers in breeding. Furthermore, the roles of CsFAD2 in PUFA synthesis were demonstrated by mutant analysis and by antisense gene expression in camelina seed.
Collapse
Affiliation(s)
- Jinling Kang
- Department of Plant Sciences and Plant Pathology, 119 Plant Bioscience Building, Montana State University, Bozeman, MT 59717-3150, USA
| | | | | |
Collapse
|
19
|
Xu C, Moellering ER, Muthan B, Fan J, Benning C. Lipid transport mediated by Arabidopsis TGD proteins is unidirectional from the endoplasmic reticulum to the plastid. PLANT & CELL PHYSIOLOGY 2010; 51:1019-28. [PMID: 20410050 DOI: 10.1093/pcp/pcq053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The transfer of lipids between the endoplasmic reticulum (ER) and the plastid in Arabidopsis involves the TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins. Lipid exchange is thought to be bidirectional based on the presence of specific lipid molecular species in Arabidopsis mutants impaired in the desaturation of fatty acids of membrane lipids in the ER and plastid. However, it was unclear whether TGD proteins were required for lipid trafficking in both directions. This question was addressed through the analysis of double mutants of tgd1-1 or tgd4-3 in genetic mutant backgrounds leading to a defect in lipid fatty acid desaturation either in the ER (fad2) or the plastid (fad6). The fad6 tgd1-1 and fad6 tgd4-3 double mutants showed drastic reductions in the relative levels of polyunsaturated fatty acids and of galactolipids. The growth of these plants and the development of photosynthetic membrane systems were severely compromised, suggesting a disruption in the import of polyunsaturated fatty acid-containing lipid species from the ER. Furthermore, a forward-genetic screen in the tgd1-2 dgd1 mutant background led to the isolation of a new fad6-2 allele with a marked reduction in the amount of digalactosyldiacylglycerol. In contrast, the introduction of fad2, affecting fatty acid desaturation of lipids in the ER, into the two tgd mutant backgrounds did not further decrease the level of fatty acid desaturation in lipids of extraplastidic membranes. These results suggest that the role of TGD proteins is limited to plastid lipid import, but does not extend to lipid export from the plastid to extraplastidic membranes.
Collapse
Affiliation(s)
- Changcheng Xu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
20
|
Zheng Z, Xu X, Crosley RA, Greenwalt SA, Sun Y, Blakeslee B, Wang L, Ni W, Sopko MS, Yao C, Yau K, Burton S, Zhuang M, McCaskill DG, Gachotte D, Thompson M, Greene TW. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. PLANT PHYSIOLOGY 2010; 153:99-113. [PMID: 20200070 PMCID: PMC2862418 DOI: 10.1104/pp.109.150789] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/01/2010] [Indexed: 05/18/2023]
Abstract
In higher plants, three subfamilies of sucrose nonfermenting-1 (Snf1)-related protein kinases have evolved. While the Snf1-related protein kinase 1 (SnRK1) subfamily has been shown to share pivotal roles with the orthologous yeast Snf1 and mammalian AMP-activated protein kinase in modulating energy and metabolic homeostasis, the functional significance of the two plant-specific subfamilies SnRK2 and SnRK3 in these critical processes is poorly understood. We show here that SnRK2.6, previously identified as crucial in the control of stomatal aperture by abscisic acid (ABA), has a broad expression pattern and participates in the regulation of plant primary metabolism. Inactivation of this gene reduced oil synthesis in Arabidopsis (Arabidopsis thaliana) seeds, whereas its overexpression increased Suc synthesis and fatty acid desaturation in the leaves. Notably, the metabolic alterations in the SnRK2.6 overexpressors were accompanied by amelioration of those physiological processes that require high levels of carbon and energy input, such as plant growth and seed production. However, the mechanisms underlying these functionalities could not be solely attributed to the role of SnRK2.6 as a positive regulator of ABA signaling, although we demonstrate that this kinase confers ABA hypersensitivity during seedling growth. Collectively, our results suggest that SnRK2.6 mediates hormonal and metabolic regulation of plant growth and development and that, besides the SnRK1 kinases, SnRK2.6 is also implicated in the regulation of metabolic homeostasis in plants.
Collapse
Affiliation(s)
- Zhifu Zheng
- Dow AgroSciences LLC, Indianapolis, Indiana 46268, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moellering ER, Miller R, Benning C. Molecular Genetics of Lipid Metabolism in the Model Green Alga Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-90-481-2863-1_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
22
|
Le Guedard M, Schraauwers B, Larrieu I, Bessoule JJ. Development of a biomarker for metal bioavailability: the lettuce fatty acid composition. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2008; 27:1147-51. [PMID: 18419182 DOI: 10.1897/07-277.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 11/21/2007] [Indexed: 05/26/2023]
Abstract
Because Lactuca sativa L. is a plant widely used in ecotoxicological analyses, a study was developed to determine whether the fatty acid composition of lettuce leaves could be used as an additional biomarker of soil contamination by metals such as Pb, Cu, Zn, and Cd. Unlike seed germination or seedling growth, the fatty acid composition of lettuce leaves differed significantly between uncontaminated and field metal-contaminated soils. Hence, this lipid biomarker might provide an early indication of a plant's exposure to metals and the potential bioavailability of metals, and could facilitate or strengthen the diagnosis of soil contamination. Not only is the experimental protocol cheap, rapid, and easy, but the values of the lipid biomarker are highly reproducible when seedlings are grown at the same light intensity. In addition, the values of the biomarker did not vary greatly when 14- to 18-day-old plants were analyzed and when slight differences were introduced in the experimental conditions used to determine the leaf fatty acid composition.
Collapse
Affiliation(s)
- Marina Le Guedard
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique, Université Victor Segalen, Bordeaux, France
| | | | | | | |
Collapse
|
23
|
Barkan L, Vijayan P, Carlsson AS, Mekhedov S, Browse J. A suppressor of fab1 challenges hypotheses on the role of thylakoid unsaturation in photosynthetic function. PLANT PHYSIOLOGY 2006; 141:1012-20. [PMID: 16698898 PMCID: PMC1489891 DOI: 10.1104/pp.106.080481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Leaf membrane lipids of the Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis 1 (fab1) mutant contain a 35% to 40% increase in the predominant saturated fatty acid 16:0, relative to wild type. This increase in membrane saturation is associated with loss of photosynthetic function and death of mutant plants at low temperatures. We have initiated a suppressor screen for mutations that allow survival of fab1 plants at 2 degrees C. Five suppressor mutants identified in this screen all rescued the collapse of photosynthetic function observed in fab1 plants. While fab1 plants died after 5 to 7 weeks at 2 degrees C, the suppressors remained viable after 16 weeks in the cold, as judged by their ability to resume growth following a return to 22 degrees C and to subsequently produce viable seed. Three of the suppressors had changes in leaf fatty acid composition when compared to fab1, indicating that one mechanism of suppression may involve compensating changes in thylakoid lipid composition. Surprisingly, the suppressor phenotype in one line, S31, was associated with a further substantial increase in lipid saturation. The overall leaf fatty acid composition of S31 plants contained 31% 16:0 compared with 23% in fab1 and 17% in wild type. Biochemical and genetic analysis showed that S31 plants contain a new allele of fatty acid desaturation 5 (fad5), fad5-2, and are therefore partially deficient in activity of the chloroplast 16:0 Delta7 desaturase. A double mutant produced by crossing fab1 to the original fad5-1 allele also remained alive at 2 degrees C, indicating that the fad5-2 mutation is the suppressor in the S31 (fab1 fad5-2) line. Based on the biophysical characteristics of saturated and unsaturated fatty acids, the increased 16:0 in fab1 fad5-2 plants would be expected to exacerbate, rather than ameliorate, low-temperature damage. We propose instead that a change in shape of the major thylakoid lipid, monogalactosyldiacylglycerol, mediated by the fad5-2 mutation, may compensate for changes in lipid structure resulting from the original fab1 mutation. Our identification of mutants that suppress the low-temperature phenotype of fab1 provides new tools to understand the relationship between thylakoid lipid structure and photosynthetic function.
Collapse
Affiliation(s)
- Lenore Barkan
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | | | | | |
Collapse
|
24
|
Martz F, Kiviniemi S, Palva TE, Sutinen ML. Contribution of omega-3 fatty acid desaturase and 3-ketoacyl-ACP synthase II (KASII) genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:897-909. [PMID: 16473891 DOI: 10.1093/jxb/erj075] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Temperate and boreal tree species respond to low positive temperatures (LT) or a shortening of the photoperiod (SD) by inducing cold acclimation. One of the metabolic consequences of cold acclimation is an increase in fatty acid (FA) desaturation in membrane lipids, which allows functional membrane fluidity to be maintained at LT. The molecular mechanisms of FA desaturation were investigated in leaves of birch seedlings (Betula pendula) during cold acclimation. Four genes involved in FA biosynthesis were isolated: a 3-ketoacyl-ACP synthase II gene (BpKASII) involved in the elongation of palmitoyl-ACP to stearoyl-ACP, and three omega-3 FA desaturase genes (BpFAD3, BpFAD7, and BpFAD8) involved in the desaturation of linoleic acid (18:2) to alpha-linolenic acid (18:3). BpFAD7 was the main omega-3 FAD gene expressed in birch leaves, and it was down-regulated by LT under SD conditions. LT induced the expression of BpFAD3 and BpFAD8 and a synchronous increase in 18:3 occurred in glycerolipids. Changes in the photoperiod did not affect the LT-induced increase in 18:3 in chloroplast lipids (MGDG, DGDG, PG), but it modulated the LT response detected in extra-chloroplastic lipids (PC, PE, PI, PS). A decrease in the proportion of the 16-carbon FAs in lipids occurred at LT, possibly in relation to the regulation of BpKASII expression at LT. These results suggest that LT affects the whole FA biosynthesis pathway. They support a co-ordinated action of microsomal (BpFAD3) and chloroplast enzymes (BpFAD7, BpFAD8) in determining the level of 18:3 in extra-chloroplastic membranes, and they highlight the importance of dynamic lipid trafficking.
Collapse
Affiliation(s)
- Françoise Martz
- Finnish Forest Research Institute, Rovaniemi Research Station, PO Box 16, FIN-96301 Rovaniemi, Finland.
| | | | | | | |
Collapse
|
25
|
Abstract
Fatty acid desaturases introduce a double bond in a specific position of long-chain fatty acids, and are conserved across kingdoms. Degree of unsaturation of fatty acids affects physical properties of membrane phospholipids and stored triglycerides. In addition, metabolites of polyunsaturated fatty acids are used as signaling molecules in many organisms. Three desaturases, Delta9, Delta6, and Delta5, are present in humans. Delta-9 catalyzes synthesis of monounsaturated fatty acids. Oleic acid, a main product of Delta9 desaturase, is the major fatty acid in mammalian adipose triglycerides, and is also used for phospholipid and cholesteryl ester synthesis. Delta-6 and Delta5 desaturases are required for the synthesis of highly unsaturated fatty acids (HUFAs), which are mainly esterified into phospholipids and contribute to maintaining membrane fluidity. While HUFAs may be required for cold tolerance in plants and fish, the primary role of HUFAs in mammals is cell signaling. Arachidonic acid is required as substrates for eicosanoid synthesis, while docosahexaenoic acid is required in visual and neuronal functions. Desaturases in mammals are regulated at the transcriptional level. Reflecting overlapping functions, three desaturases share a common mechanism of a feedback regulation to maintain products in membrane phospholipids. At the same time, regulation of Delta9 desaturase differs from Delta6 and Delta5 desaturases because its products are incorporated into more diverse lipid groups. Combinations of multiple transcription factors achieve this sophisticated differential regulation.
Collapse
Affiliation(s)
- Manabu T Nakamura
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
26
|
Yamaryo Y, Kanai D, Awai K, Shimojima M, Masuda T, Shimada H, Takamiya KI, Ohta H. Light and cytokinin play a co-operative role in MGDG synthesis in greening cucumber cotyledons. PLANT & CELL PHYSIOLOGY 2003; 44:844-55. [PMID: 12941877 DOI: 10.1093/pcp/pcg110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The current research investigated the regulation of monogalactosyldiacylglycerol (MGDG) biosynthesis, catalyzed by MGDG synthase (MGD) (UDP-galactose:1,2-diacylglycerol 3-beta-D-galactosyltransferase; EC 2.4.1.46), during chloroplast development in cucumbers (Cucumis sativus L. cv. Aonagajibai). In etiolated seedlings, white light induced a transient increase in MGD mRNA, followed by a subsequent increase in enzyme activity. MGDG, digalactosyldiacylglycerol (DGDG), and linolenic acid (18 : 3) of both MGDG and DGDG accumulated in a light-dependent manner. Early light-dependent induction of MGD protein was also identified in isolated chloroplasts. When cotyledons were detached from seedlings, these light-induced changes diminished. However, when a synthetic cytokinin, benzyladenine, was added to the detached cotyledons, a transient increase in MGD mRNA and a linear increase in the enzyme activity were induced even in the dark. Galactolipids subsequently accumulated to some extent and 18 : 3 content also increased. MGDG fully accumulated in detached cotyledons with co-treatment of light and a cytokinin. Red light (>600 nm) and far-red light (>700 nm) both induced an increase in MGD mRNA and enzyme activity but far-red light did not induce an accumulation of MGDG. These results suggest that (1). galactolipid biosynthesis is regulated by the cooperation of light and a cytokinin; (2). the accumulation of MGDG requires cytokinin in addition to light; (3). a red light (600-700 nm) dependent factor is necessary for the maximal galactolipid accumulation in addition to increase in MGD transcript and activity.
Collapse
Affiliation(s)
- Yoshiki Yamaryo
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Branen JK, Shintani DK, Engeseth NJ. Expression of antisense acyl carrier protein-4 reduces lipid content in Arabidopsis leaf tissue. PLANT PHYSIOLOGY 2003; 132:748-56. [PMID: 12805604 PMCID: PMC167014 DOI: 10.1104/pp.102.018622] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Revised: 12/08/2002] [Accepted: 12/08/2002] [Indexed: 05/18/2023]
Abstract
Arabidopsis plants were transformed with acyl carrier protein (ACP)-4 in antisense conformation driven by the cauliflower mosaic virus 35S promoter. It was hypothesized that reduction of ACP4 in leaf tissue would result in a reduction in lipid biosynthesis and, in addition, affect fatty acid composition and leaf physiology. Several transgenic lines have been generated with reduced ACP4 protein in leaf tissue. Dramatic reductions in ACP4 resulted in a reduction of leaf lipid content (22%-60%) based on fresh leaf weight and a bleached appearance and reduced photosynthetic efficiency. In addition, a decrease in 16:3 as a percentage of the total fatty acid composition was noted. There were no changes in leaf lipid class distribution; however, there was a decrease in the relative amount of 16:3 in monogalactosyldiacylglycerol. These results suggest that ACP4 plays a major role in the biosynthesis of fatty acids for chloroplast membrane development. Alterations in the ACP isoform profile of Arabidopsis leaf also appear to alter the flow of fatty acids between the prokaryotic and eukaryotic pathways for assembly of galactolipids. However, it has not yet been determined if the changes in fatty acid composition are due to changes in the profile of ACP isoforms, or if they are actually a reaction to a reduction in fatty acid precursors.
Collapse
Affiliation(s)
- Jill K Branen
- Department of Food Science and Human Nutrition, University of Illinois, 259 Edward R. Madigan Library, 1201 West Gregory Drive, Urbana 61801, USA
| | | | | |
Collapse
|
28
|
Abstract
Polyunsaturated fatty acids have crucial roles in membrane biology and signaling processes in most living organisms. However, it is only recently that molecular genetic approaches have allowed detailed studies of the enzymes involved in their synthesis. New evidence has revealed a range of pathways in different organisms. These include a complex sequence for synthesis of docosahexaenoic acid (22:6) in mammals and a polyketide synthase pathway in marine microbes.
Collapse
Affiliation(s)
- James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | |
Collapse
|
29
|
Vijayan P, Browse J. Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. PLANT PHYSIOLOGY 2002; 129:876-85. [PMID: 12068126 PMCID: PMC161708 DOI: 10.1104/pp.004341] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2002] [Accepted: 03/10/2002] [Indexed: 05/18/2023]
Abstract
Thylakoid lipid composition in higher plants is characterized by a high level of fatty acid unsaturation. We have screened four mutants of Arabidopsis that have reduced levels of fatty acid unsaturation. Three of the mutant lines tested, fad5, fad6, and the fad3-2 fad7-2 fad8 triple mutant, were more susceptible to photoinhibition than wild-type Arabidopsis, whereas one mutant, fab1, was indistinguishable from wild type. The fad3-2 fad7-2 fad8 triple mutant, which contains no trienoic fatty acids in its thylakoid membranes, was most susceptible to photoinhibition. Detailed investigation of photoinhibition in the triple mutant revealed that the rate of photoinactivation of PSII was the same in wild-type and mutant plants. However, the recovery of photoinactivated PSII was slower in fad3-2 fad7-2 fad8, relative to wild type, at all temperatures below 27 degrees C. These results indicate that trienoic fatty acids of thylakoid membrane lipids are required for low-temperature recovery from photoinhibition in Arabidopsis.
Collapse
Affiliation(s)
- Perumal Vijayan
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
30
|
Abstract
Polyunsaturated acyl lipids constitute approximately 50% of the hydrophobic membrane barriers that delineate the compartments of cells. The composition of these lipids is critically important for many membrane functions and, thus, for proper growth and development of all living organisms. In the model plant Arabidopsis, the isolation of mutants with altered lipid compositions has facilitated biochemical and molecular approaches to understanding lipid metabolism and membrane biogenesis. Just as importantly, the availability of a series of plant lines with specific changes in membrane lipids have provided a new resource to study the structural and adaptive roles of lipids. Now, the sequencing of the Arabidopsis genome, and the development of reverse-genetics approaches provide the tools needed to make additional discoveries about the relationships between lipid structure and membrane function in plant cells.
Collapse
Affiliation(s)
- James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
31
|
Watts JL, Browse J. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2002; 99:5854-9. [PMID: 11972048 PMCID: PMC122866 DOI: 10.1073/pnas.092064799] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important membrane components and precursors of signaling molecules. To investigate the roles of these fatty acids in growth, development, and neurological function in an animal system, we isolated Caenorhabditis elegans mutants deficient in PUFA synthesis by direct analysis of fatty acid composition. C. elegans possesses all the desaturase and elongase activities to synthesize arachidonic acid and eicosapentaenoic acid from saturated fatty acid precursors. In our screen we identified mutants with defects in each fatty acid desaturation and elongation step of the PUFA biosynthetic pathway. The fatty acid compositions of the mutants reveal the substrate preferences of the desaturase and elongase enzymes and clearly demarcate the steps of this pathway. The mutants show that C. elegans does not require n3 or Delta5-unsaturated PUFAs for normal development under laboratory conditions. However, mutants with more severe PUFA deficiencies display growth and neurological defects. The mutants provide tools for investigating the roles of PUFAs in membrane biology and cell function in this animal model.
Collapse
Affiliation(s)
- Jennifer L Watts
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
32
|
|
33
|
Chapter 4 Lipid metabolism in plants. BIOCHEMISTRY OF LIPIDS, LIPOPROTEINS AND MEMBRANES, 4TH EDITION 2002. [DOI: 10.1016/s0167-7306(02)36006-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 2001; 293:290-3. [PMID: 11452122 DOI: 10.1126/science.1059593] [Citation(s) in RCA: 474] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential membrane components in higher eukaryotes and are the precursors of many lipid-derived signaling molecules. Here, pathways for PUFA synthesis are described that do not require desaturation and elongation of saturated fatty acids. These pathways are catalyzed by polyketide synthases (PKSs) that are distinct from previously recognized PKSs in both structure and mechanism. Generation of cis double bonds probably involves position-specific isomerases; such enzymes might be useful in the production of new families of antibiotics. It is likely that PUFA synthesis in cold marine ecosystems is accomplished in part by these PKS enzymes.
Collapse
Affiliation(s)
- J G Metz
- Omega Tech, 4909 Nautilus Court North, Boulder, CO 80301-3242, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|