1
|
Lee LR, Guillotin B, Rahni R, Hutchison C, Desvoyes B, Gutierrez C, Birnbaum KD. Glutathione accelerates the cell cycle and cellular reprogramming in plant regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569014. [PMID: 38168452 PMCID: PMC10760015 DOI: 10.1101/2023.11.28.569014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The plasticity of plant cells underlies their wide capacity to regenerate, with increasing evidence in plants and animals implicating cell cycle dynamics in cellular reprogramming. To investigate the cell cycle during cellular reprogramming, we developed a comprehensive set of cell cycle phase markers in the Arabidopsis root. Using single-cell RNA-seq profiles and live imaging during regeneration, we found that a subset of cells near an ablation injury dramatically increases division rate by truncating G1. Cells in G1 undergo a transient nuclear peak of glutathione (GSH) prior to coordinated entry into S phase followed by rapid divisions and cellular reprogramming. A symplastic block of the ground tissue impairs regeneration, which is rescued by exogenous GSH. We propose a model in which GSH from the outer tissues is released upon injury licensing an exit from G1 near the wound to induce rapid cell division and reprogramming.
Collapse
Affiliation(s)
- Laura R Lee
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Bruno Guillotin
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Ramin Rahni
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | - Chanel Hutchison
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| | | | | | - Kenneth D Birnbaum
- New York University, Center for Genomics and Systems Biology, Department of Biology, NY, New York, 10003, USA
| |
Collapse
|
2
|
Chen Y, Ince YÇ, Kawamura A, Favero DS, Suzuki T, Sugimoto K. ELONGATED HYPOCOTYL5-mediated light signaling promotes shoot regeneration in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024:kiae474. [PMID: 39315875 DOI: 10.1093/plphys/kiae474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
Injured plant somatic tissues regenerate themselves by establishing shoot or root meristems. In Arabidopsis (Arabidopsis thaliana), a two-step culture system ensures regeneration by first promoting the acquisition of pluripotency and subsequently specifying the fate of new meristems. Although previous studies have reported the importance of phytohormones auxin and cytokinin in determining the fate of new meristems, whether and how environmental factors influence this process remains elusive. In this study, we investigated the impact of light signals on shoot regeneration using Arabidopsis hypocotyls as explants. We found that light signals promote shoot regeneration while inhibiting root formation. ELONGATED HYPOCOTYL 5 (HY5), the pivotal transcriptional factor in light signaling, plays a central role in this process by mediating the expression of key genes controlling the fate of new meristems. Specifically, HY5 directly represses root development genes and activates shoot meristem genes, leading to the establishment of shoot progenitor from pluripotent callus. We further demonstrated that the early activation of photosynthesis is critical for shoot initiation, and this is transcriptionally regulated downstream of HY5-dependent pathways. In conclusion, we uncovered the intricate molecular mechanisms by which light signals control the establishment of new meristems through the regulatory network governed by HY5, thus highlighting the influence of light signals on plant developmental plasticity.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yetkin Çaka Ince
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ayako Kawamura
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - David S Favero
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Keiko Sugimoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
3
|
Develtere W, Decaestecker W, Rombaut D, Anders C, Clicque E, Vuylsteke M, Jacobs TB. Continual improvement of CRISPR-induced multiplex mutagenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1158-1172. [PMID: 38713824 DOI: 10.1111/tpj.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
CRISPR/Cas9 is currently the most powerful tool to generate mutations in plant genomes and more efficient tools are needed as the scale of experiments increases. In the model plant Arabidopsis, the choice of the promoter driving Cas9 expression is critical to generate germline mutations. Several optimal promoters have been reported. However, it is unclear which promoter is ideal as they have not been thoroughly tested side by side. Furthermore, most plant vectors still use one of the two Cas9 nuclear localization sequence (NLS) configurations initially reported. We genotyped more than 6000 Arabidopsis T2 plants to test seven promoters and six types of NLSs across 14 targets to systematically improve the generation of single and multiplex inheritable mutations. We found that the RPS5A promoter and bipartite NLS were individually the most efficient components. When combined, 99% of T2 plants contained at least one knockout (KO) mutation and 84% contained 4- to 7-plex KOs, the highest multiplexing KO rate in Arabidopsis to date. These optimizations will be useful to generate higher-order KOs in the germline of Arabidopsis and will likely be applicable to other CRISPR systems as well.
Collapse
Affiliation(s)
- Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Debbie Rombaut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Elke Clicque
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | | | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| |
Collapse
|
4
|
Imamichi T, Kusumoto N, Aoyama H, Takamatsu S, Honda Y, Muraoka S, Hagiwara-Komoda Y, Chiba Y, Onouchi H, Yamashita Y, Naito S. Phylogeny-linked occurrence of ribosome stalling on the mRNAs of Arabidopsis unfolded protein response factor bZIP60 orthologs in divergent plant species. Nucleic Acids Res 2024; 52:4276-4294. [PMID: 38366760 PMCID: PMC11077094 DOI: 10.1093/nar/gkae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
The bZIP60, XBP1 and HAC1 mRNAs encode transcription factors that mediate the unfolded protein response (UPR) in plants, animals and yeasts, respectively. Upon UPR, these mRNAs undergo unconventional cytoplasmic splicing on the endoplasmic reticulum (ER) to produce active transcription factors. Although cytoplasmic splicing is conserved, the ER targeting mechanism differs between XBP1 and HAC1. The ER targeting of HAC1 mRNA occurs before translation, whereas that of XBP1 mRNA involves a ribosome-nascent chain complex that is stalled when a hydrophobic peptide emerges from the ribosome; the corresponding mechanism is unknown for bZIP60. Here, we analyzed ribosome stalling on bZIP60 orthologs of plants. Using a cell-free translation system, we detected nascent peptide-mediated ribosome stalling during the translation elongation of the mRNAs of Arabidopsis, rice and Physcomitrium (moss) orthologs, and the termination-step stalling in the Selaginella (lycopod) ortholog, all of which occurred ∼50 amino acids downstream of a hydrophobic region. Transfection experiments showed that ribosome stalling contributes to cytoplasmic splicing in bZIP60u orthologs of Arabidopsis and Selaginella. In contrast, ribosome stalling was undetectable for liverwort, Klebsormidium (basal land plant), and green algae orthologs. This study highlights the evolutionary diversity of ribosome stalling and its contribution to ER targeting in plants.
Collapse
Affiliation(s)
- Tomoya Imamichi
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nao Kusumoto
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Haruka Aoyama
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Seidai Takamatsu
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yugo Honda
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shiori Muraoka
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yuka Hagiwara-Komoda
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Yukako Chiba
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Onouchi
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yui Yamashita
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Research Group of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
5
|
Burian M, Podgórska A, Kryzheuskaya K, Gieczewska K, Sliwinska E, Szal B. Ammonium treatment inhibits cell cycle activity and induces nuclei endopolyploidization in Arabidopsis thaliana. PLANTA 2024; 259:94. [PMID: 38509428 DOI: 10.1007/s00425-024-04372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
MAIN CONCLUSION This study determined the effect of ammonium supply on the cell division process and showed that ammonium-dependent elevated reactive oxygen species production could mediate the downregulation of the cell cycle-related gene expression. Plants grown under high-ammonium conditions show stunted growth and other toxicity symptoms, including oxidative stress. However, how ammonium regulates the development of plants remains unknown. Growth is defined as an increase in cell volume or proliferation. In the present study, ammonium-related changes in cell cycle activity were analyzed in seedlings, apical buds, and young leaves of Arabidopsis thaliana plants. In all experimental ammonium treatments, the genes responsible for regulating cell cycle progression, such as cyclin-dependent kinases and cyclins, were downregulated in the studied tissues. Thus, ammonium nutrition could be considered to reduce cell proliferation; however, the cause of this phenomenon may be secondary. Reactive oxygen species (ROS), which are produced in large amounts in response to ammonium nutrition, can act as intermediates in this process. Indeed, high ROS levels resulting from H2O2 treatment or reduced ROS production in rbohc mutants, similar to ammonium-triggered ROS, correlated with altered cell cycle-related gene expression. It can be concluded that the characteristic ammonium growth suppression may be executed by enhanced ROS metabolism to inhibit cell cycle activity. This study provides a base for future research in determining the mechanism behind ammonium-induced dwarfism in plants, and strategies to mitigate such stress.
Collapse
Affiliation(s)
- Maria Burian
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796, Bydgoszcz, Poland
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
6
|
Parsons HT. Preparation of Highly Enriched ER Membranes Using Free-Flow Electrophoresis. Methods Mol Biol 2024; 2772:115-127. [PMID: 38411809 DOI: 10.1007/978-1-0716-3710-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Free-flow electrophoresis (FFE) is a technique for separation of proteins, peptides, organelles, and cells. With zone electrophoresis (ZE-FFE), organelles are separated according to surface charge. The ER is the only remaining major cellular compartment in Arabidopsis not to have been isolated using density centrifugation, immune-isolation, or any other method previously applied to purification of plant membranes. By using continuous-flow electrophoresis, ER vesicles of similar surface charge, which may have been fragmented during cell lysis, can be focused. A large portion of these vesicles are of sufficiently different surface charge that separation from the majority of Golgi and other contaminants is possible. Here we adapt an earlier ZE-FFE Golgi isolation protocol for the isolation of highly pure ER vesicles and for tracking the migration of peripheral ER vesicles. Isolating ER vesicles of homogeneous surface charge allows multi-omic analyses to be performed on the ER. This facilitates investigations into structure-function relationships within the ER.
Collapse
|
7
|
Krasauskas J, Ganie SA, Al-Husari A, Bindschedler L, Spanu P, Ito M, Devoto A. Jasmonates, gibberellins, and powdery mildew modify cell cycle progression and evoke differential spatiotemporal responses along the barley leaf. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:180-203. [PMID: 37611210 PMCID: PMC10735486 DOI: 10.1093/jxb/erad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.
Collapse
Affiliation(s)
- Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Aroub Al-Husari
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Laurence Bindschedler
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Masaki Ito
- School of Biological Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
8
|
Voichek Y, Hurieva B, Michaud C, Schmücker A, Vergara Z, Desvoyes B, Gutierrez C, Nizhynska V, Jaegle B, Borg M, Berger F, Nordborg M, Ingouff M. Cell cycle status of male and female gametes during Arabidopsis reproduction. PLANT PHYSIOLOGY 2023; 194:412-421. [PMID: 37757882 PMCID: PMC10756760 DOI: 10.1093/plphys/kiad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Fertilization in Arabidopsis (Arabidopsis thaliana) is a highly coordinated process that begins with a pollen tube delivering the 2 sperm cells into the embryo sac. Each sperm cell can then fertilize either the egg or the central cell to initiate embryo or endosperm development, respectively. The success of this double fertilization process requires a tight cell cycle synchrony between the male and female gametes to allow karyogamy (nuclei fusion). However, the cell cycle status of the male and female gametes during fertilization remains elusive as DNA quantification and DNA replication assays have given conflicting results. Here, to reconcile these results, we quantified the DNA replication state by DNA sequencing and performed microscopic analyses of fluorescent markers covering all phases of the cell cycle. We show that male and female Arabidopsis gametes are both arrested prior to DNA replication at maturity and initiate their DNA replication only during fertilization.
Collapse
Affiliation(s)
- Yoav Voichek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Bohdana Hurieva
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | | | - Anna Schmücker
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Zaida Vergara
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Benjamin Jaegle
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Mathieu Ingouff
- DIADE, IRD, CIRAD, University Montpellier, Montpellier, France
| |
Collapse
|
9
|
Williamson D, Tasker-Brown W, Murray JAH, Jones AR, Band LR. Modelling how plant cell-cycle progression leads to cell size regulation. PLoS Comput Biol 2023; 19:e1011503. [PMID: 37862377 PMCID: PMC10653611 DOI: 10.1371/journal.pcbi.1011503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/16/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2023] Open
Abstract
Populations of cells typically maintain a consistent size, despite cell division rarely being precisely symmetrical. Therefore, cells must possess a mechanism of "size control", whereby the cell volume at birth affects cell-cycle progression. While size control mechanisms have been elucidated in a number of other organisms, it is not yet clear how this mechanism functions in plants. Here, we present a mathematical model of the key interactions in the plant cell cycle. Model simulations reveal that the network of interactions exhibits limit-cycle solutions, with biological switches underpinning both the G1/S and G2/M cell-cycle transitions. Embedding this network model within growing cells, we test hypotheses as to how cell-cycle progression can depend on cell size. We investigate two different mechanisms at both the G1/S and G2/M transitions: (i) differential expression of cell-cycle activator and inhibitor proteins (with synthesis of inhibitor proteins being independent of cell size), and (ii) equal inheritance of inhibitor proteins after cell division. The model demonstrates that both these mechanisms can lead to larger daughter cells progressing through the cell cycle more rapidly, and can thus contribute to cell-size control. To test how these features enable size homeostasis over multiple generations, we then simulated these mechanisms in a cell-population model with multiple rounds of cell division. These simulations suggested that integration of size-control mechanisms at both G1/S and G2/M provides long-term cell-size homeostasis. We concluded that while both size independence and equal inheritance of inhibitor proteins can reduce variations in cell size across individual cell-cycle phases, combining size-control mechanisms at both G1/S and G2/M is essential to maintain size homeostasis over multiple generations. Thus, our study reveals how features of the cell-cycle network enable cell-cycle progression to depend on cell size, and provides a mechanistic understanding of how plant cell populations maintain consistent size over generations.
Collapse
Affiliation(s)
- Daniel Williamson
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - William Tasker-Brown
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - James A. H. Murray
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - Angharad R. Jones
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | - Leah R. Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| |
Collapse
|
10
|
Tessi TM, Maurino VG, Shahriari M, Meissner E, Novak O, Pasternak T, Schumacher BS, Ditengou F, Li Z, Duerr J, Flubacher NS, Nautscher M, Williams A, Kazimierczak Z, Strnad M, Thumfart JO, Palme K, Desimone M, Teale WD. AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response. THE NEW PHYTOLOGIST 2023; 238:1924-1941. [PMID: 36918499 DOI: 10.1111/nph.18879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/29/2023] [Indexed: 05/04/2023]
Abstract
An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture. Auxin defines both the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here, we describe a search for proteins that regulate root system architecture (RSA) by interacting directly with a key auxin transporter, PIN1. The native separation of Arabidopsis plasma membrane protein complexes identified several PIN1 co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. Here, we show that, in Arabidopsis, AZG1 is a cytokinin (CK) import protein that co-localizes with and stabilizes PIN1, linking auxin and CK transport streams. AZG1 expression in LR primordia is sensitive to NaCl, and the frequency of LRs is AZG1-dependent under salt stress. This report therefore identifies a potential point for auxin:cytokinin crosstalk, which shapes RSA in response to NaCl.
Collapse
Affiliation(s)
- Tomás M Tessi
- Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000, Córdoba, Argentina
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Mojgan Shahriari
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Esther Meissner
- Conservation Ecology, Department Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35032, Marburg, Germany
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Taras Pasternak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Benjamin S Schumacher
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Franck Ditengou
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Zenglin Li
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Jasmin Duerr
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Noemi S Flubacher
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Moritz Nautscher
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Alyssa Williams
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Zuzanna Kazimierczak
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jörg-Oliver Thumfart
- Faculty of Medicine, Institute of Physiology II, University of Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
- Labormedizinisches Zentrum Ostschweiz, Lagerstrasse 30, 9470, Buchs, SG, Switzerland
| | - Klaus Palme
- Molecular Plant Physiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Centre of Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Marcelo Desimone
- Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000, Córdoba, Argentina
| | - William D Teale
- Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
11
|
López-Hernández MN, Vázquez-Ramos JM. Maize CDKA2;1a and CDKB1;1 kinases have different requirements for their activation and participate in substrate recognition. FEBS J 2023; 290:2463-2488. [PMID: 36259272 DOI: 10.1111/febs.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
Cyclin-dependent kinases (CDKs), in association with cyclins, control cell cycle progression by phosphorylating a large number of substrates. In animals, activation of CDKs regularly requires both the association with a cyclin and then phosphorylation of a highly conserved threonine residue in the CDK activation loop (the classical mechanism), mediated by a CDK-activating kinase (CAK). In addition to this typical mechanism of activation, some CDKs can also be activated by the association of a cyclin to a monomeric CDK previously phosphorylated by CAK although not all CDKs can be activated by this mechanism. In animals and yeast, cyclin, in addition to being required for CDK activation, provides substrate specificity to the cyclin/CDK complex; however, in plants both the mechanisms of CDKs activation and the relevance of the CDK-associated cyclin for substrate targeting have been poorly studied. In this work, by co-expressing proteins in E. coli, we studied maize CDKA2;1a and CDKB1;1, two of the main types of CDKs that control the cell cycle in plants. These kinases could be activated by the classical mechanism and by the association of CycD2;2a to a phosphorylated intermediate in its activation loop, a previously unproven mechanism for the activation of plant CDKs. Unlike CDKA2;1a, CDKB1;1 did not require CAK for its activation, since it autophosphorylated in its activation loop. Phosphorylation of CDKB1;1 and association of CycD2;2 was not enough for its full activation as association of maize CKS, a scaffolding protein, differentially stimulated substrate phosphorylation. Our results suggest that both CDKs participate in substrate recognition.
Collapse
Affiliation(s)
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
12
|
Wang C, Li Y, Wang N, Yu Q, Li Y, Gao J, Zhou X, Ma N. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:895-899. [PMID: 36460630 DOI: 10.1111/jipb.13421] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-related nuclease 9 (Cas9) system enables precise, simple editing of genes in many animals and plants. However, this system has not been applied to rose (Rosa hybrida) due to the genomic complexity and lack of an efficient transformation technology for this plant. Here, we established a platform for screening single-guide RNAs (sgRNAs) with high editing efficiency for CRISPR/Cas9-mediated gene editing in rose using suspension cells. We used the Arabidopsis thaliana U6-29 promoter, which showed high activity for driving sgRNA expression, to modify the CRISPR/Cas9 system. We used our highly efficient optimized CRISPR/Cas9 system to successfully edit RhEIN2, encoding an indispensable component of the ethylene signaling pathway, resulting in ethylene insensitivity in rose. Our optimized CRISPR/Cas9 system provides a powerful toolbox for functional genomics, molecular breeding, and synthetic biology in rose.
Collapse
Affiliation(s)
- Chengpeng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Na Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qin Yu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yonghong Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, 518038, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Sasaki S, Murakami T, Yasumuro M, Makita A, Oi Y, Hiragori Y, Watanabe S, Kudo R, Hayashi N, Ohbayashi I, Sugiyama M, Yamashita Y, Naito S, Onouchi H. Upstream open reading frame-mediated upregulation of ANAC082 expression in response to nucleolar stress in Arabidopsis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:21-30. [PMID: 38213914 PMCID: PMC10777128 DOI: 10.5511/plantbiotechnology.22.1215a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2024]
Abstract
Perturbations in ribosome biogenesis cause a type of cellular stress called nucleolar or ribosomal stress, which triggers adaptive responses in both animal and plant cells. The Arabidopsis ANAC082 transcription factor has been identified as a key mediator of the plant nucleolar stress response. The 5'-untranslated region (5'-UTR) of ANAC082 mRNA contains an upstream ORF (uORF) encoding an evolutionarily conserved amino acid sequence. Here, we report that this uORF mediates the upregulation of ANAC082 expression in response to nucleolar stress. When transgenic Arabidopsis plants containing a luciferase reporter gene under the control of the ANAC082 promoter and 5'-UTR were treated with reagents that induced nucleolar stress, expression of the reporter gene was enhanced in a uORF sequence-dependent manner. Additionally, we examined the effect of an endoplasmic reticulum (ER) stress-inducing reagent on reporter gene expression because the closest homolog of ANAC082 in Arabidopsis, ANAC103, is involved in the ER stress response. However, the ANAC082 uORF did not respond to ER stress. Interestingly, although ANAC103 has a uORF with an amino acid sequence similar to that of the ANAC082 uORF, the C-terminal sequence critical for regulation is not well conserved among ANAC103 homologs in Brassicaceae. Transient expression assays revealed that unlike the ANAC082 uORF, the ANAC103 uORF does not exert a sequence-dependent repressive effect. Altogether, our findings suggest that the ANAC082 uORF is important for the nucleolar stress response but not for the ER stress response, and that for this reason, the uORF sequence-dependent regulation was lost in ANAC103 during evolution.
Collapse
Affiliation(s)
- Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Toru Murakami
- Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Miharu Yasumuro
- Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Ayaka Makita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Yutaro Oi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Shun Watanabe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Rin Kudo
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Iwai Ohbayashi
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan R.O.C
| | - Munetaka Sugiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
14
|
Hiragori Y, Takahashi H, Karino T, Kaido A, Hayashi N, Sasaki S, Nakao K, Motomura T, Yamashita Y, Naito S, Onouchi H. Genome-wide identification of Arabidopsis non-AUG-initiated upstream ORFs with evolutionarily conserved regulatory sequences that control protein expression levels. PLANT MOLECULAR BIOLOGY 2023; 111:37-55. [PMID: 36044152 DOI: 10.1007/s11103-022-01309-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This study identified four novel regulatory non-AUG-initiated upstream ORFs (uORFs) with evolutionarily conserved sequences in Arabidopsis and elucidated the mechanism by which a non-AUG-initiated uORF promotes main ORF translation. Upstream open reading frames (uORFs) are short ORFs found in the 5'-untranslated regions (5'-UTRs) of eukaryotic transcripts and can influence the translation of protein-coding main ORFs (mORFs). Recent genome-wide ribosome profiling studies have revealed that hundreds or thousands of uORFs initiate translation at non-AUG start codons. However, the physiological significance of these non-AUG uORFs has so far been demonstrated for only a few of them. In this study, to identify physiologically important regulatory non-AUG uORFs in Arabidopsis, we took an approach that combined bioinformatics and experimental analysis. Since physiologically important non-AUG uORFs are likely to be conserved across species, we first searched the Arabidopsis genome for non-AUG-initiated uORFs with evolutionarily conserved sequences. Then, we examined the effects of the conserved non-AUG uORFs on the expression of the downstream mORFs using transient expression assays. As a result, three inhibitory and one promotive non-AUG uORFs were identified. Among the inhibitory non-AUG uORFs, two exerted repressive effects on mORF expression in an amino acid sequence-dependent manner. These two non-AUG uORFs are likely to encode regulatory peptides that cause ribosome stalling, thereby enhancing their repressive effects. In contrast, one of the identified regulatory non-AUG uORFs promoted mORF expression by alleviating the inhibitory effect of a downstream AUG-initiated uORF. These findings provide insights into the mechanisms that enable non-AUG uORFs to play regulatory roles despite their low translation initiation efficiencies.
Collapse
Affiliation(s)
- Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Taihei Karino
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Kaido
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kodai Nakao
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
15
|
Gill-Hille M, Wang A, Murcha MW. Presequence translocase-associated motor subunits of the mitochondrial protein import apparatus are dual-targeted to mitochondria and plastids. FRONTIERS IN PLANT SCIENCE 2022; 13:981552. [PMID: 36438081 PMCID: PMC9695410 DOI: 10.3389/fpls.2022.981552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The import and assembly of most of the mitochondrial proteome is regulated by protein translocases located within the mitochondrial membranes. The Presequence Translocase-Associated Motor (PAM) complex powers the translocation of proteins across the inner membrane and consists of Hsp70, the J-domain containing co-chaperones, Pam16 and Pam18, and their associated proteins Tim15 and Mge1. In Arabidopsis, multiple orthologues of Pam16, Pam18, Tim15 and Mge1 have been identified and a mitochondrial localization has been confirmed for most. As the localization of Pam18-1 has yet to be determined and a plastid localization has been observed for homologues of Tim15 and Mge1, we carried out a comprehensive targeting analysis of all PAM complex orthologues using multiple in vitro and in vivo methods. We found that, Pam16 was exclusively targeted to the mitochondria, but Pam18 orthologues could be targeted to both the mitochondria and plastids, as observed for the PAM complex interacting partner proteins Tim15 and Mge1.
Collapse
Affiliation(s)
- Mabel Gill-Hille
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Andre Wang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Monika W. Murcha
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
16
|
Shibata M, Favero DS, Takebayashi R, Takebayashi A, Kawamura A, Rymen B, Hosokawa Y, Sugimoto K. Trihelix transcription factors GTL1 and DF1 prevent aberrant root hair formation in an excess nutrient condition. THE NEW PHYTOLOGIST 2022; 235:1426-1441. [PMID: 35713645 PMCID: PMC9544051 DOI: 10.1111/nph.18255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Root hair growth is tuned in response to the environment surrounding plants. While most previous studies focused on the enhancement of root hair growth during nutrient starvation, few studies investigated the root hair response in the presence of excess nutrients. We report that the post-embryonic growth of wild-type Arabidopsis plants is strongly suppressed with increasing nutrient availability, particularly in the case of root hair growth. We further used gene expression profiling to analyze how excess nutrient availability affects root hair growth, and found that RHD6 subfamily genes, which are positive regulators of root hair growth, are downregulated in this condition. However, defects in GTL1 and DF1, which are negative regulators of root hair growth, cause frail and swollen root hairs to form when excess nutrients are supplied. Additionally, we observed that the RHD6 subfamily genes are mis-expressed in gtl1-1 df1-1. Furthermore, overexpression of RSL4, an RHD6 subfamily gene, induces swollen root hairs in the face of a nutrient overload, while mutation of RSL4 in gtl1-1 df1-1 restore root hair swelling phenotype. In conclusion, our data suggest that GTL1 and DF1 prevent unnecessary root hair formation by repressing RSL4 under excess nutrient conditions.
Collapse
Affiliation(s)
| | - David S. Favero
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
| | - Ryu Takebayashi
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Ayako Kawamura
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
| | - Bart Rymen
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- KU Leuven Plant Institute (LPI)KU LeuvenKasteelpark Arenberg 31LeuvenB‐3001Belgium
| | - Yoichiroh Hosokawa
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesUniversity of TokyoTokyo119‐0033Japan
| |
Collapse
|
17
|
The B-Type Cyclin CYCB1-1 Regulates Embryonic Development and Seed Size in Maize. Int J Mol Sci 2022; 23:ijms23115907. [PMID: 35682593 PMCID: PMC9180882 DOI: 10.3390/ijms23115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Progress through the cell cycle is a critical process during plant embryo and seed development and its progression is regulated by cyclins. Despite extensive study of cyclins in other systems, their role in embryo and seed development of maize is unclear. In this study, we demonstrate that ZmCYCB1-1 overexpression significantly accelerated embryo growth and increased seed size. In situ hybridization and toluidine blue staining indicated that ZmCYCB1-1 was highly expressed in the plumule of embryos, and the cells of the plumule were smaller, denser, and more regularly arranged in ZmCYCB1-1 overexpression plants. Overexpression of ZmCYCB1-1 in maize also resulted in an increased ear length and enhanced kernel weight by increasing kernel width. Transcriptome analysis indicated that the overexpression of ZmCYCB1-1 affected several different metabolic pathways, including photosynthesis in embryos and leaves, and lipid metabolism in leaves. Conversely, knocking out ZmCYCB1-1 resulted in plants with slow growth. Our results suggest that ZmCYCB1-1 regulates embryo growth and seed size, making it an ideal target for efforts aimed at maize yield improvement.
Collapse
|
18
|
Zhang Z, Timmerman E, Impens F, Van Breusegem F. Characterization of RBPome in Oxidative Stress Conditions. Methods Mol Biol 2022; 2526:259-275. [PMID: 35657526 DOI: 10.1007/978-1-0716-2469-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellular redox signaling is triggered by accumulation of various reactive oxygen species (ROS) that integrate with other signaling cascades to enable plants to ultimately respond to (a)biotic stresses. The identification of key regulators underlying redox signaling networks is therefore of high priority. This chapter describes an improved mRNA interactome capture method that allows to systematically detect oxidative stress responsive regulators in the post-transcriptional gene regulation (PTGR) pathway. The protocol includes PSB-D suspension cell culture preparation, setup of oxidative stress conditions, short-term exposure to UV irradiation, cell lysis, pull-down and purification of crosslinked messenger ribonucleoproteins, their mass spectrometric analyses, and identification of proteome by statistical analyses. As result, a comprehensive inventory of the functional oxidative stress responsive RBPome (OxRBPome) is generated, which paves the way toward new insights into PTGR processes in redox signaling.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, Ghent, Belgium
- UGent Department of Biomolecular Medicine, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Francis Impens
- VIB Center for Medical Biotechnology, Ghent, Belgium
- UGent Department of Biomolecular Medicine, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Frank Van Breusegem
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| |
Collapse
|
19
|
Gentric N, Genschik P, Noir S. Connections between the Cell Cycle and the DNA Damage Response in Plants. Int J Mol Sci 2021; 22:ijms22179558. [PMID: 34502465 PMCID: PMC8431409 DOI: 10.3390/ijms22179558] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Due to their sessile lifestyle, plants are especially exposed to various stresses, including genotoxic stress, which results in altered genome integrity. Upon the detection of DNA damage, distinct cellular responses lead to cell cycle arrest and the induction of DNA repair mechanisms. Interestingly, it has been shown that some cell cycle regulators are not only required for meristem activity and plant development but are also key to cope with the occurrence of DNA lesions. In this review, we first summarize some important regulatory steps of the plant cell cycle and present a brief overview of the DNA damage response (DDR) mechanisms. Then, the role played by some cell cycle regulators at the interface between the cell cycle and DNA damage responses is discussed more specifically.
Collapse
|
20
|
The Arabidopsis GRAS-type SCL28 transcription factor controls the mitotic cell cycle and division plane orientation. Proc Natl Acad Sci U S A 2021; 118:2005256118. [PMID: 33526654 DOI: 10.1073/pnas.2005256118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gene expression is reconfigured rapidly during the cell cycle to execute the cellular functions specific to each phase. Studies conducted with synchronized plant cell suspension cultures have identified hundreds of genes with periodic expression patterns across the phases of the cell cycle, but these results may differ from expression occurring in the context of intact organs. Here, we describe the use of fluorescence-activated cell sorting to analyze the gene expression profile of G2/M cells in the growing root. To this end, we isolated cells expressing the early mitosis cell cycle marker CYCLINB1;1-GFP from Arabidopsis root tips. Transcriptome analysis of these cells allowed identification of hundreds of genes whose expression is reduced or enriched in G2/M cells, including many not previously reported from cell suspension cultures. From this dataset, we identified SCL28, a transcription factor belonging to the GRAS family, whose messenger RNA accumulates to the highest levels in G2/M and is regulated by MYB3R transcription factors. Functional analysis indicates that SCL28 promotes progression through G2/M and modulates the selection of cell division planes.
Collapse
|
21
|
Elena-Real CA, González-Arzola K, Pérez-Mejías G, Díaz-Quintana A, Velázquez-Campoy A, Desvoyes B, Gutiérrez C, De la Rosa MA, Díaz-Moreno I. Proposed mechanism for regulation of H 2 O 2 -induced programmed cell death in plants by binding of cytochrome c to 14-3-3 proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:74-85. [PMID: 33354856 DOI: 10.1111/tpj.15146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
Programmed cell death (PCD) is crucial for development and homeostasis of all multicellular organisms. In human cells, the double role of extra-mitochondrial cytochrome c in triggering apoptosis and inhibiting survival pathways is well reported. In plants, however, the specific role of cytochrome c upon release from the mitochondria remains in part veiled yet death stimuli do trigger cytochrome c translocation as well. Here, we identify an Arabidopsis thaliana 14-3-3ι isoform as a cytosolic cytochrome c target and inhibitor of caspase-like activity. This finding establishes the 14-3-3ι protein as a relevant factor at the onset of plant H2 O2 -induced PCD. The in vivo and in vitro studies herein reported reveal that the interaction between cytochrome c and 14-3-3ι exhibits noticeable similarities with the complex formed by their human orthologues. Further analysis of the heterologous complexes between human and plant cytochrome c with plant 14-3-3ι and human 14-3-3ε isoforms corroborated common features. These results suggest that cytochrome c blocks p14-3-3ι so as to inhibit caspase-like proteases, which in turn promote cell death upon H2 O2 treatment. Besides establishing common biochemical features between human and plant PCD, this work sheds light onto the signaling networks of plant cell death.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain
- Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain
- Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), Madrid, 28029, Spain
- Fundacion ARAID, Government of Aragon, Zaragoza, 50018, Spain
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Crisanto Gutiérrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| |
Collapse
|
22
|
Schwedersky RP, Saleme MDLS, Rocha IA, Montessoro PDF, Hemerly AS, Eloy NB, Ferreira PCG. The Anaphase Promoting Complex/Cyclosome Subunit 11 and Its Role in Organ Size and Plant Development. FRONTIERS IN PLANT SCIENCE 2021; 12:563760. [PMID: 34887878 PMCID: PMC8650582 DOI: 10.3389/fpls.2021.563760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/02/2021] [Indexed: 05/09/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C), a member of the E3 ubiquitin ligase family, plays an important role in recognizing the substrates to be ubiquitylated. Progression of anaphase, and therefore, of the cell cycle, is coordinated through cyclin degradation cycles dependent on proteolysis triggered by APC/C. The APC/C activity depends on the formation of a pocket comprising the catalytic subunits, APC2, APC11, and APC10. Among these, the role of APC11 outside the cell division cycle is poorly understood. Therefore, the goal of this work was to analyze the function of APC11 during plant development by characterizing apc11 knock-down mutant lines. Accordingly, we observed decreased apc11 expression in the mutant lines, followed by a reduction in meristem root size based on the cortical cell length, and an overall size diminishment throughout the development. Additionally, crosses of apc11-1 and amiR-apc11 with plants carrying a WUSCHEL-RELATED HOMEOBOX5 (WOX5) fluorescent marker showed a weakening of the green fluorescent protein-positive cells in the Quiescent Center. Moreover, plants with apc11-1 show a decreased leaf area, together with a decrease in the cell area when the shoot development was observed by kinematics analysis. Finally, we observed a decreased APC/C activity in the root and shoot meristems in crosses of pCYCB1;1:D-box-GUS with apc11-1 plants. Our results indicate that APC11 is important in the early stages of development, mediating meristematic architecture through APC/C activity affecting the overall plant growth.
Collapse
Affiliation(s)
- Rodrigo Porto Schwedersky
- Laboratorio de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina de Lyra Soriano Saleme
- Department of Biological Sciences, Escola Superior de Agricultura ‘Luiz de Queiroz’, University of São Paulo, Piracicaba, Brazil
| | - Ingrid Andrade Rocha
- Department of Biological Sciences, Escola Superior de Agricultura ‘Luiz de Queiroz’, University of São Paulo, Piracicaba, Brazil
| | - Patricia da Fonseca Montessoro
- Laboratorio de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Silva Hemerly
- Laboratorio de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nubia Barbosa Eloy
- Department of Biological Sciences, Escola Superior de Agricultura ‘Luiz de Queiroz’, University of São Paulo, Piracicaba, Brazil
- *Correspondence: Nubia Barbosa Eloy,
| | - Paulo Cavalcanti Gomes Ferreira
- Laboratorio de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Ghifari AS, Teixeira PF, Kmiec B, Pružinská A, Glaser E, Murcha MW. A mitochondrial prolyl aminopeptidase PAP2 releases N-terminal proline and regulates proline homeostasis during stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1182-1194. [PMID: 32920905 DOI: 10.1111/tpj.14987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Most mitochondrial proteins are synthesised in the cytosol and targeted into the organelle via N-terminal targeting peptides that are cleaved upon import. The free targeting peptide is subsequently processed in a stepwise manner, with single amino acids released as final products. Here, we have characterised a proline-cleaving aminopeptidase in Arabidopsis thaliana, prolyl aminopeptidase-2 (PAP2, At3g61540). Activity assays show that PAP2 has a preferred activity to hydrolyse N-terminal proline. Protein localisation studies revealed that PAP2 is exclusively targeted to mitochondria. Characterisation of pap2 mutants show defective pollen, enhanced dark-induced senescence and increased susceptibility to abiotic stresses, which are likely attributed to a reduced level of accumulated free proline. Taken together, these results demonstrate the role of PAP2 in proline cleavage from mitochondrial peptides and proline homeostasis, which is required for the development of male gametophyte, tolerance to abiotic stresses, and leaf senescence.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Adriana Pružinská
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| |
Collapse
|
24
|
Bose S, Suescún AV, Song J, Castillo-González C, Aklilu BB, Branham E, Lynch R, Shippen DE. tRNA ADENOSINE DEAMINASE 3 is required for telomere maintenance in Arabidopsis thaliana. PLANT CELL REPORTS 2020; 39:1669-1685. [PMID: 32959123 PMCID: PMC7655638 DOI: 10.1007/s00299-020-02594-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE: tRNA Adenosine Deaminase 3 helps to sustain telomere tracts in a telomerase-independent fashion, likely through regulating cellular metabolism. Telomere length maintenance is influenced by a complex web of chromatin and metabolism-related factors. We previously reported that a lncRNA termed AtTER2 regulates telomerase activity in Arabidopsis thaliana in response to DNA damage. AtTER2 was initially shown to partially overlap with the 5' UTR of the tRNA ADENOSINE DEAMINASE 3 (TAD3) gene. However, updated genome annotation showed that AtTER2 was completely embedded in TAD3, raising the possibility that phenotypes ascribed to AtTER2 could be derived from TAD3. Here we show through strand-specific RNA-Seq, strand-specific qRT-PCR and bioinformatic analyses that AtTER2 does not encode a stable lncRNA. Further examination of the original tad3 (ter2-1/tad3-1) mutant revealed expression of an antisense transcript driven by a cryptic promoter in the T-DNA. Hence, a new hypomorphic allele of TAD3 (tad3-2) was examined. tad3-2 mutants showed hypersensitivity to DNA damage, but no deregulation of telomerase, suggesting that the telomerase phenotype of tad3-1 mutants reflects an off-target effect. Unexpectedly, however, tad3-2 plants displayed progressive loss of telomeric DNA over successive generations that was not accompanied by alteration of terminal architecture or end protection. The phenotype was exacerbated in plants lacking the telomerase processivity factor POT1a, indicating that TAD3 promotes telomere maintenance through a non-canonical, telomerase-independent pathway. The transcriptome of tad3-2 mutants revealed significant dysregulation of genes involved in auxin signaling and glucosinolate biosynthesis, pathways that intersect the stress response, cell cycle regulation and DNA metabolism. These findings indicate that the TAD3 locus indirectly contributes to telomere length homeostasis by altering the metabolic profile in Arabidopsis.
Collapse
Affiliation(s)
- Sreyashree Bose
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ana Victoria Suescún
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Facultad de Ciencias, Instituto de Ciencias Ambientales Y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Jiarui Song
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | | - Behailu Birhanu Aklilu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- KWS Gateway Research Center, LLC, 1005 N Warson Rd, BRDG Park, St. Louis, MO, 63132, USA
| | - Erica Branham
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ryan Lynch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Department of Biochemistry and Biophysics, 300 Olsen Blvd, Room 413, College Station, TX, 77843-2128, USA.
| |
Collapse
|
25
|
Takahashi H, Hayashi N, Hiragori Y, Sasaki S, Motomura T, Yamashita Y, Naito S, Takahashi A, Fuse K, Satou K, Endo T, Kojima S, Onouchi H. Comprehensive genome-wide identification of angiosperm upstream ORFs with peptide sequences conserved in various taxonomic ranges using a novel pipeline, ESUCA. BMC Genomics 2020; 21:260. [PMID: 32228449 PMCID: PMC7106846 DOI: 10.1186/s12864-020-6662-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
Background Upstream open reading frames (uORFs) in the 5′-untranslated regions (5′-UTRs) of certain eukaryotic mRNAs encode evolutionarily conserved functional peptides, such as cis-acting regulatory peptides that control translation of downstream main ORFs (mORFs). For genome-wide searches for uORFs with conserved peptide sequences (CPuORFs), comparative genomic studies have been conducted, in which uORF sequences were compared between selected species. To increase chances of identifying CPuORFs, we previously developed an approach in which uORF sequences were compared using BLAST between Arabidopsis and any other plant species with available transcript sequence databases. If this approach is applied to multiple plant species belonging to phylogenetically distant clades, it is expected to further comprehensively identify CPuORFs conserved in various plant lineages, including those conserved among relatively small taxonomic groups. Results To efficiently compare uORF sequences among many species and efficiently identify CPuORFs conserved in various taxonomic lineages, we developed a novel pipeline, ESUCA. We applied ESUCA to the genomes of five angiosperm species, which belong to phylogenetically distant clades, and selected CPuORFs conserved among at least three different orders. Through these analyses, we identified 89 novel CPuORF families. As expected, ESUCA analysis of each of the five angiosperm genomes identified many CPuORFs that were not identified from ESUCA analyses of the other four species. However, unexpectedly, these CPuORFs include those conserved across wide taxonomic ranges, indicating that the approach used here is useful not only for comprehensive identification of narrowly conserved CPuORFs but also for that of widely conserved CPuORFs. Examination of the effects of 11 selected CPuORFs on mORF translation revealed that CPuORFs conserved only in relatively narrow taxonomic ranges can have sequence-dependent regulatory effects, suggesting that most of the identified CPuORFs are conserved because of functional constraints of their encoded peptides. Conclusions This study demonstrates that ESUCA is capable of efficiently identifying CPuORFs likely to be conserved because of the functional importance of their encoded peptides. Furthermore, our data show that the approach in which uORF sequences from multiple species are compared with those of many other species, using ESUCA, is highly effective in comprehensively identifying CPuORFs conserved in various taxonomic ranges.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan. .,Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan.
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Anna Takahashi
- Faculty of Information Technologies and Control, Belarusian State University of Informatics and Radio Electronics, 220013, Minsk, Belarus
| | - Kazuyuki Fuse
- New Business Development Office, Churitsu Electric Corporation, Toyoake, 470-1112, Japan
| | - Kenji Satou
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Toshinori Endo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
26
|
Zhang Y, Natale R, Domingues AP, Toleco MR, Siemiatkowska B, Fàbregas N, Fernie AR. Rapid Identification of Protein-Protein Interactions in Plants. ACTA ACUST UNITED AC 2020; 4:e20099. [PMID: 31714676 DOI: 10.1002/cppb.20099] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme-enzyme interactions can be discovered by affinity purification mass spectrometry (AP-MS) under in vivo conditions. Tagged enzymes can either be transiently transformed into plant leaves or stably transformed into plant cells prior to AP-MS. The success of AP-MS depends on the levels and stability of the bait protein, the stability of the protein-protein interactions, and the efficiency of trypsin digestion and recovery of tryptic peptides for MS analysis. Unlike in-gel-digestion AP-MS, in which the gel is cut into pieces for several independent trypsin digestions, we uses a proteomics-based in-solution digestion method to directly digest the proteins on the beads following affinity purification. Thus, a single replicate within an AP-MS experiment constitutes a single sample for LC-MS measurement. In subsequent data analysis, normalized signal intensities can be processed to determine fold-change abundance (FC-A) scores by use of the SAINT algorithm embedded within the CRAPome software. Following analysis of co-sublocalization of "bait" and "prey," we suggest considering only the protein pairs for which the intensities were more than 2% compared with the bait, corresponding to FC-A values of at least four within-biological replicates, which we recommend as minimum. If the procedure is faithfully followed, experimental assessment of enzyme-enzyme interactions can be carried out in Arabidopsis within 3 weeks (transient expression) or 5 weeks (stable expression). © 2019 The Authors. Basic Protocol 1: Gene cloning to the destination vectors Alternate Protocol: In-Fusion or Gibson gene cloning protocol Basic Protocol 2: Transformation of baits into the plant cell culture or plant leaf Basic Protocol 3: Affinity purification of protein complexes Basic Protocol 4: On-bead trypsin/LysC digestion and C18 column peptide desalting and concentration Basic Protocol 5: Data analysis and quality control.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Roberto Natale
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.,Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Adilson Pereira Domingues
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.,Department of Crop Science, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Mitchell Rey Toleco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Beata Siemiatkowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Norma Fàbregas
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
27
|
Torii K, Kubota A, Araki T, Endo M. Time-Series Single-Cell RNA-Seq Data Reveal Auxin Fluctuation during Endocycle. PLANT & CELL PHYSIOLOGY 2020; 61:243-254. [PMID: 31841158 DOI: 10.1093/pcp/pcz228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Appropriate cell cycle regulation is crucial for achieving coordinated development and cell differentiation in multicellular organisms. In Arabidopsis, endoreduplication is often observed in terminally differentiated cells and several reports have shown its molecular mechanisms. Auxin is a key factor for the mode transition from mitotic cell cycle to endocycle; however, it remains unclear if and how auxin maintains the endocycle mode. In this study, we reanalyzed root single-cell transcriptome data and reconstructed cell cycle trajectories of the mitotic cell cycle and endocycle. With progression of the endocycle, genes involved in auxin synthesis, influx and efflux were induced at the specific cell phase, suggesting that auxin concentration fluctuated dynamically. Such induction of auxin-related genes was not observed in the mitotic cell cycle, suggesting that the auxin fluctuation plays some roles in maintaining the endocycle stage. In addition, the expression level of CYCB1;1, which is required for cell division in the M phase, coincided with the expected amount of auxin and cell division. Our analysis also provided a set of genes expressed in specific phases of the cell cycle. Taking these findings together, reconstruction of single-cell transcriptome data enables us to identify properties of the cell cycle more accurately.
Collapse
Affiliation(s)
- Kotaro Torii
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8501 Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Takashi Araki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8501 Japan
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
28
|
Jones AR, Band LR, Murray JAH. Double or Nothing? Cell Division and Cell Size Control. TRENDS IN PLANT SCIENCE 2019; 24:1083-1093. [PMID: 31630972 DOI: 10.1016/j.tplants.2019.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Size is a fundamental property that must be tightly regulated to ensure that cells and tissues function efficiently. Dynamic size control allows unicellular organisms to adapt to environmental changes, but cell size is also integral to multicellular development, affecting tissue size and structure. Despite clear evidence for homeostatic cell size maintenance, we are only now beginning to understand cell size regulation in the actively dividing meristematic tissues of higher plants. We discuss here how coupled advances in live cell imaging and modelling are uncovering dynamic mechanisms for size control mediated at the cellular level. We argue that integrated models of cell growth and division will be necessary to predict cell size and fully understand multicellular growth and development.
Collapse
Affiliation(s)
- Angharad R Jones
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Leah R Band
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK; Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - James A H Murray
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
29
|
Kamal KY, van Loon JJ, Medina FJ, Herranz R. Differential transcriptional profile through cell cycle progression in Arabidopsis cultures under simulated microgravity. Genomics 2019; 111:1956-1965. [DOI: 10.1016/j.ygeno.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
|
30
|
Emami H, Kempken F. PRECOCIOUS1 (POCO1), a mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:265-278. [PMID: 31219634 DOI: 10.1111/tpj.14441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 05/24/2023]
Abstract
Flowering is a vital developmental shift in plants from vegetative to reproductive phase. The timing of this shift is regulated by various linked genetic pathways including environmental cues and internal regulation. Here we report a role for an Arabidopsis gene, AT1G15480, which encodes a P-class pentatricopeptide repeat (PPR) protein, affecting flowering time. We show that AT1G15480 is localized to mitochondria. An AT1G15480 T-DNA insertion line exhibits an early-flowering phenotype, which is quite a rare phenotype among PPR mutants. The early-flowering phenotype was observed under both long and short days compared with wild type plants. Genetic complementation confirmed the observed phenotype. We therefore named the PPR protein PRECOCIOUS1 (POCO1). poco1 plants showed lower respiration, ATP content and higher accumulation of superoxide. Importantly, the quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression of FLOWERING LOCUS C (FLC), which is a key floral repressor, was strongly downregulated in the poco1. Likewise, the expression level of the FLC positive regulator ABSCISIC ACID-INSENSITIVE 5 (ABI5) was reduced in the poco1. Consistent with the qRT-PCR results, poco1 plants showed reduced sensitivity to abscisic acid compared with wild type with respect to primary root growth and days to flowering. Furthermore, the poco1 mutation enhances the sensitivity to drought stress. Further analysis showed that POCO1 affects mitochondrial RNA editing. Taken together, our data demonstrate a remarkable function of POCO1 in flowering time and the abscisic acid signalling pathway.
Collapse
Affiliation(s)
- Hossein Emami
- Department of Botany, Christian Albrechts University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Frank Kempken
- Department of Botany, Christian Albrechts University, Olshausenstr. 40, 24098, Kiel, Germany
| |
Collapse
|
31
|
Arae T, Morita K, Imahori R, Suzuki Y, Yasuda S, Sato T, Yamaguchi J, Chiba Y. Identification of Arabidopsis CCR4-NOT Complexes with Pumilio RNA-Binding Proteins, APUM5 and APUM2. PLANT & CELL PHYSIOLOGY 2019; 60:2015-2025. [PMID: 31093672 DOI: 10.1093/pcp/pcz089] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
CCR4/CAF1 are widely conserved deadenylases in eukaryotes. They form a large complex that includes NOT1 as a scaffold protein and various NOT proteins that are core components of multiple levels of gene expression control. The CCR4-NOT complex also contains several RNA-binding proteins as accessory proteins, which are required for target recognition by CCR4/CAF1 deadenylases. AtCCR4a/b, orthologs of human CCR4 in Arabidopsis, have various physiological effects. AtCCR4 isoforms are likely to have specific target mRNAs related to each physiological effect; however, AtCCR4 does not have RNA-binding capability. Therefore, identifying factors that interact with AtCCR4a/b is indispensable to understand its function as a regulator of gene expression, as well as the target mRNA recognition mechanism. Here, we identified putative components of the AtCCR4-NOT complex using co-immunoprecipitation in combination with mass spectrometry using FLAG-tagged AtCCR4b and subsequent verification with a yeast two-hybrid assay. Interestingly, four of 11 AtCAF1 isoforms interacted with both AtCCR4b and AtNOT1, whereas two isoforms interacted only with AtNOT1 in yeast two-hybrid assays. These results imply that Arabidopsis has multiple CCR4-NOT complexes with various combinations of deadenylases. We also revealed that the RNA-binding protein Arabidopsis Pumilio 5 and 2 interacted with AtCCR4a/b in the cytoplasm with a few foci.
Collapse
Affiliation(s)
- Toshihiro Arae
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Kotone Morita
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Riko Imahori
- School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Yuya Suzuki
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Shigetaka Yasuda
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Takeo Sato
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Junji Yamaguchi
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
- JST PRESTO, Kawaguchi, Japan
| |
Collapse
|
32
|
Krasnoperova OE, Buy DD, Goriunova II, Isayenkov SV, Karpov PA, Blume YB, Yemets AI. The Potential Role of SnRK1 Protein Kinases in the Regulation of Cell Division in Arabidopsis thaliana. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719030022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, Cannoot B, De Winne N, Persiau G, Van De Slijke E, Van de Cotte B, Stes E, Van Bel M, Storme V, Impens F, Gevaert K, Vandepoele K, De Smet I, De Jaeger G. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. NATURE PLANTS 2019; 5:316-327. [PMID: 30833711 DOI: 10.1038/s41477-019-0378-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 05/18/2023]
Abstract
The target of rapamycin (TOR) kinase is a conserved regulatory hub that translates environmental and nutritional information into permissive or restrictive growth decisions. Despite the increased appreciation of the essential role of the TOR complex in plants, no large-scale phosphoproteomics or interactomics studies have been performed to map TOR signalling events in plants. To fill this gap, we combined a systematic phosphoproteomics screen with a targeted protein complex analysis in the model plant Arabidopsis thaliana. Integration of the phosphoproteome and protein complex data on the one hand shows that both methods reveal complementary subspaces of the plant TOR signalling network, enabling proteome-wide discovery of both upstream and downstream network components. On the other hand, the overlap between both data sets reveals a set of candidate direct TOR substrates. The integrated network embeds both evolutionarily-conserved and plant-specific TOR signalling components, uncovering an intriguing complex interplay with protein synthesis. Overall, the network provides a rich data set to start addressing fundamental questions about how TOR controls key processes in plants, such as autophagy, auxin signalling, chloroplast development, lipid metabolism, nucleotide biosynthesis, protein translation or senescence.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Chao Han
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, China
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Caroline Matthijs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bernard Cannoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brigitte Van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Francis Impens
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
34
|
Kamal KY, Herranz R, van Loon JJWA, Medina FJ. Cell cycle acceleration and changes in essential nuclear functions induced by simulated microgravity in a synchronized Arabidopsis cell culture. PLANT, CELL & ENVIRONMENT 2019; 42:480-494. [PMID: 30105864 DOI: 10.1111/pce.13422] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/22/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Zero gravity is an environmental challenge unknown to organisms throughout evolution on Earth. Nevertheless, plants are sensitive to altered gravity, as exemplified by changes in meristematic cell proliferation and growth. We found that synchronized Arabidopsis-cultured cells exposed to simulated microgravity showed a shortened cell cycle, caused by a shorter G2/M phase and a slightly longer G1 phase. The analysis of selected marker genes and proteins by quantitative polymerase chain reaction and flow cytometry in synchronic G1 and G2 subpopulations indicated changes in gene expression of core cell cycle regulators and chromatin-modifying factors, confirming that microgravity induced misregulation of G2/M and G1/S checkpoints and chromatin remodelling. Changes in chromatin-based regulation included higher DNA methylation and lower histone acetylation, increased chromatin condensation, and overall depletion of nuclear transcription. Estimation of ribosome biogenesis rate using nucleolar parameters and selected nucleolar genes and proteins indicated reduced nucleolar activity under simulated microgravity, especially at G2/M. These results expand our knowledge of how meristematic cells are affected by real and simulated microgravity. Counteracting this cellular stress is necessary for plant culture in space exploration.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Agronomy Department, Zagazig University, Zagazig, Egypt
| | - Raúl Herranz
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jack J W A van Loon
- DESC (Dutch Experiment Support Center), Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- ESA-ESTEC, TEC-MMG, Noordwijk, The Netherlands
| | - F Javier Medina
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| |
Collapse
|
35
|
Olszak M, Truman W, Stefanowicz K, Sliwinska E, Ito M, Walerowski P, Rolfe S, Malinowski R. Transcriptional profiling identifies critical steps of cell cycle reprogramming necessary for Plasmodiophora brassicae-driven gall formation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:715-729. [PMID: 30431210 PMCID: PMC6850046 DOI: 10.1111/tpj.14156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 05/08/2023]
Abstract
Plasmodiophora brassicae is a soil-borne biotroph whose life cycle involves reprogramming host developmental processes leading to the formation of galls on its underground parts. Formation of such structures involves modification of the host cell cycle leading initially to hyperplasia, increasing the number of cells to be invaded, followed by overgrowth of cells colonised by the pathogen. Here we show that P. brassicae infection stimulates formation of the E2Fa/RBR1 complex and upregulation of MYB3R1, MYB3R4 and A- and B-type cyclin expression. These factors were previously described as important regulators of the G2-M cell cycle checkpoint. As a consequence of this manipulation, a large population of host hypocotyl cells are delayed in cell cycle exit and maintained in the proliferative state. We also report that, during further maturation of galls, enlargement of host cells invaded by the pathogen involves endoreduplication leading to increased ploidy levels. This study characterises two aspects of the cell cycle reprogramming efforts of P. brassicae: systemic, related to the disturbance of host hypocotyl developmental programs by preventing cell cycle exit; and local, related to the stimulation of cell enlargement via increased endocycle activity.
Collapse
Affiliation(s)
- Marcin Olszak
- Department of Integrative Plant BiologyInstitute of Plant Genetics of the Polish Academy of Sciencesul. Strzeszyńska 3460‐479PoznańPoland
| | - William Truman
- Department of Integrative Plant BiologyInstitute of Plant Genetics of the Polish Academy of Sciencesul. Strzeszyńska 3460‐479PoznańPoland
| | - Karolina Stefanowicz
- Department of Integrative Plant BiologyInstitute of Plant Genetics of the Polish Academy of Sciencesul. Strzeszyńska 3460‐479PoznańPoland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and CytometryDepartment of Plant Genetics, Physiology and BiotechnologyUTP University of Science and TechnologyKaliskiego Ave. 785‐789BydgoszczPoland
| | - Masaki Ito
- Graduate School of Bioagricultural SciencesNagoya UniversityChikusaNagoya464‐8601Japan
| | - Piotr Walerowski
- Department of Integrative Plant BiologyInstitute of Plant Genetics of the Polish Academy of Sciencesul. Strzeszyńska 3460‐479PoznańPoland
| | - Stephen Rolfe
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Robert Malinowski
- Department of Integrative Plant BiologyInstitute of Plant Genetics of the Polish Academy of Sciencesul. Strzeszyńska 3460‐479PoznańPoland
| |
Collapse
|
36
|
Foyer CH, Pellny TK, Locato V, Hull J, De Gara L. Analysis of Redox Relationships in the Plant Cell Cycle: Determination of Ascorbate, Glutathione, and Poly(ADPribose)polymerase (PARP) in Plant Cell Cultures. Methods Mol Biol 2019; 1990:165-181. [PMID: 31148071 DOI: 10.1007/978-1-4939-9463-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) and low molecular weight antioxidants, such as glutathione and ascorbate, are powerful signalling molecules that participate in the control of plant growth and development, and modulate progression through the mitotic cell cycle. Enhanced ROS accumulation or low levels of ascorbate or glutathione cause the cell cycle to arrest and halt progression especially through the G1 checkpoint. Plant cell suspension cultures have proved to be particularly useful tools for the study of cell cycle regulation. Here we provide effective and accurate methods for the measurement of changes in the cellular ascorbate and glutathione pools and the activities of related enzymes such poly(ADP-ribose)polymerase (PARP) during mitosis and cell expansion, particularly in cell suspension cultures. These methods can be used in studies seeking to improve current understanding of the roles of redox controls on cell division and cell expansion.
Collapse
Affiliation(s)
| | - Till K Pellny
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Vittoria Locato
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jonathon Hull
- Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Faculty Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Laura De Gara
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
37
|
Mohammadi F, Ghanati F, Sharifi M, Chashmi NA. On the mechanism of the cell cycle control of suspension-cultured tobacco cells after exposure to static magnetic field. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:139-144. [PMID: 30466579 DOI: 10.1016/j.plantsci.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 06/09/2023]
Abstract
One of the main sites of the magnetic fields influence on living cells is the cell cycle. The intensity of this influence however, varies depending on the cell type and the duration of the treatment. Suspension of cultured tobacco cells (Nicotiana tabacum cv. Barley 21) were synchronized via sucrose starvation at their stationary growth phase. The cells were then exposed to 0.2 m T SMF up to 24 h. The progression of different cell cycle phases was monitored through flow cytometry in a time course manner. Expression of cell cycle controlling genes and amounts of certain signaling molecules were measured as well. Exposure to SMF delayed G1.S transition which was accompanied by decrease of cyclin-dependent kinases A (CDK A) and D-type cyclin, but an increase in the adenylyl cyclase (AC), transcription factor E2F, retinoblastoma protein (Rbp), and CDK-inhibitor protein 21 (p21) transcript accumulation. Exposure to SMF also increased the contents of nitric oxide (NO), hydrogen peroxide (H2O2), and salicylic acid (SA), compared to the control group. The results suggest a signaling pathway triggered by SMF starting from accumulation of NO and H2O2 followed by downstream events including the increase of cyclic nucleotides and subsequent decrease of both CDKA and CycD.
Collapse
Affiliation(s)
- Farzaneh Mohammadi
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), POB141115-154, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), POB141115-154, Tehran, Iran.
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), POB141115-154, Tehran, Iran
| | | |
Collapse
|
38
|
Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators. PLoS Genet 2018; 14:e1007797. [PMID: 30500810 PMCID: PMC6268010 DOI: 10.1371/journal.pgen.1007797] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
Retinoblastoma (pRb) is a multifunctional regulator, which was likely present in the last common ancestor of all eukaryotes. The Arabidopsis pRb homolog RETINOBLASTOMA RELATED 1 (RBR1), similar to its animal counterparts, controls not only cell proliferation but is also implicated in developmental decisions, stress responses and maintenance of genome integrity. Although most functions of pRb-type proteins involve chromatin association, a genome-wide understanding of RBR1 binding sites in Arabidopsis is still missing. Here, we present a plant chromatin immunoprecipitation protocol optimized for genome-wide studies of indirectly DNA-bound proteins like RBR1. Our analysis revealed binding of Arabidopsis RBR1 to approximately 1000 genes and roughly 500 transposable elements, preferentially MITES. The RBR1-decorated genes broadly overlap with previously identified targets of two major transcription factors controlling the cell cycle, i.e. E2F and MYB3R3 and represent a robust inventory of RBR1-targets in dividing cells. Consistently, enriched motifs in the RBR1-marked domains include sequences related to the E2F consensus site and the MSA-core element bound by MYB3R transcription factors. Following up a key role of RBR1 in DNA damage response, we performed a meta-analysis combining the information about the RBR1-binding sites with genome-wide expression studies under DNA stress. As a result, we present the identification and mutant characterization of three novel genes required for growth upon genotoxic stress. The Retinoblastoma (pRb) tumor suppressor is a master regulator of the cell cycle and its inactivation is associated with many types of cancer. Since pRb’s first description as a transcriptional repressor of genes important for cell cycle progression, many more functions have been elucidated, e.g. in developmental decisions and genome integrity. Homologs of human pRb have been identified in most eukaryotes, including plants, indicating an ancient evolutionary origin of pRb-type proteins. We describe here the first genome-wide DNA-binding study for a plant pRb protein, i.e. RBR1, the only pRb homolog in Arabidopsis thaliana. We see prominent binding of RBR1 to the 5’ region of genes involved in cell cycle regulation, chromatin organization and DNA repair. Moreover, we also reveal extensive binding of RBR1 to specific classes of DNA transposons. Since RBR1 is involved in a plethora of processes, our dataset provides a valuable resource for researches from different fields. As an example, we used our dataset to successfully identify new genes necessary for growth upon DNA damage exerted by drugs such as cisplatin or the environmentally prevalent metal aluminum.
Collapse
|
39
|
Halder V, Oeljeklaus J, Heilmann G, Krahn JH, Liu Y, Xiong Y, Schlicht M, Schillinger J, Kracher B, Ehrmann M, Kombrink E, Kaschani F, Kaiser M. Identification of the Natural Product Rotihibin A as a TOR Kinase Signaling Inhibitor by Unbiased Transcriptional Profiling. Chemistry 2018; 24:12500-12504. [DOI: 10.1002/chem.201802647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Vivek Halder
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
- Chemical Biology Laboratory; Max-Planck-Institute for Plant Breeding Research; Carl-von-Linnè-Weg 10 50829 Köln Germany
| | - Julian Oeljeklaus
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Geronimo Heilmann
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Jan H. Krahn
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Yanlin Liu
- Basic Forestry and Proteomics Research Center; Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University; Fujian Province 350002 P.R. China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Center; Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University; Fujian Province 350002 P.R. China
| | - Markus Schlicht
- Chemical Biology Laboratory; Max-Planck-Institute for Plant Breeding Research; Carl-von-Linnè-Weg 10 50829 Köln Germany
| | - Jasmin Schillinger
- Microbiology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Barbara Kracher
- Bioinformatics, Department of Plant Microbe Interactions; Max-Planck-Institute for Plant Breeding Research; Carl-von-Linnè-Weg 10 50829 Köln Germany
| | - Michael Ehrmann
- Microbiology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Erich Kombrink
- Chemical Biology Laboratory; Max-Planck-Institute for Plant Breeding Research; Carl-von-Linnè-Weg 10 50829 Köln Germany
| | - Farnusch Kaschani
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie; Universität Duisburg-Essen; Universitätsstrasse 2 45117 Essen Germany
| |
Collapse
|
40
|
Bontinck M, Van Leene J, Gadeyne A, De Rybel B, Eeckhout D, Nelissen H, De Jaeger G. Recent Trends in Plant Protein Complex Analysis in a Developmental Context. FRONTIERS IN PLANT SCIENCE 2018; 9:640. [PMID: 29868093 PMCID: PMC5962756 DOI: 10.3389/fpls.2018.00640] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/26/2018] [Indexed: 05/30/2023]
Abstract
Because virtually all proteins interact with other proteins, studying protein-protein interactions (PPIs) is fundamental in understanding protein function. This is especially true when studying specific developmental processes, in which proteins often make developmental stage- or tissue specific interactions. However, studying these specific PPIs in planta can be challenging. One of the most widely adopted methods to study PPIs in planta is affinity purification coupled to mass spectrometry (AP/MS). Recent developments in the field of mass spectrometry have boosted applications of AP/MS in a developmental context. This review covers two main advancements in the field of affinity purification to study plant developmental processes: increasing the developmental resolution of the harvested tissues and moving from affinity purification to affinity enrichment. Furthermore, we discuss some new affinity purification approaches that have recently emerged and could have a profound impact on the future of protein interactome analysis in plants.
Collapse
Affiliation(s)
- Michiel Bontinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
41
|
Kamal KY, Herranz R, van Loon JJWA, Medina FJ. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures. Sci Rep 2018; 8:6424. [PMID: 29686401 PMCID: PMC5913308 DOI: 10.1038/s41598-018-24942-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/13/2018] [Indexed: 01/09/2023] Open
Abstract
Gravity is the only component of Earth environment that remained constant throughout the entire process of biological evolution. However, it is still unclear how gravity affects plant growth and development. In this study, an in vitro cell culture of Arabidopsis thaliana was exposed to different altered gravity conditions, namely simulated reduced gravity (simulated microgravity, simulated Mars gravity) and hypergravity (2g), to study changes in cell proliferation, cell growth, and epigenetics. The effects after 3, 14, and 24-hours of exposure were evaluated. The most relevant alterations were found in the 24-hour treatment, being more significant for simulated reduced gravity than hypergravity. Cell proliferation and growth were uncoupled under simulated reduced gravity, similarly, as found in meristematic cells from seedlings grown in real or simulated microgravity. The distribution of cell cycle phases was changed, as well as the levels and gene transcription of the tested cell cycle regulators. Ribosome biogenesis was decreased, according to levels and gene transcription of nucleolar proteins and the number of inactive nucleoli. Furthermore, we found alterations in the epigenetic modifications of chromatin. These results show that altered gravity effects include a serious disturbance of cell proliferation and growth, which are cellular functions essential for normal plant development.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt. .,Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Raúl Herranz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Jack J W A van Loon
- DESC (Dutch Experiment Support Center), Dept. Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.,ESA-ESTEC, TEC-MMG, Keplerlaan 1, NL-2200 AG, Noordwijk, The Netherlands
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
42
|
The Circadian Clock Sets the Time of DNA Replication Licensing to Regulate Growth in Arabidopsis. Dev Cell 2018; 45:101-113.e4. [DOI: 10.1016/j.devcel.2018.02.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/28/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
|
43
|
Dolzblasz A, Gola EM, Sokołowska K, Smakowska-Luzan E, Twardawska A, Janska H. Impairment of Meristem Proliferation in Plants Lacking the Mitochondrial Protease AtFTSH4. Int J Mol Sci 2018. [PMID: 29538317 PMCID: PMC5877714 DOI: 10.3390/ijms19030853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shoot and root apical meristems (SAM and RAM, respectively) are crucial to provide cells for growth and organogenesis and therefore need to be maintained throughout the life of a plant. However, plants lacking the mitochondrial protease AtFTSH4 exhibit an intriguing phenotype of precocious cessation of growth at both the shoot and root apices when grown at elevated temperatures. This is due to the accumulation of internal oxidative stress and progressive mitochondria dysfunction. To explore the impacts of the internal oxidative stress on SAM and RAM functioning, we study the expression of selected meristem-specific (STM, CLV3, WOX5) and cell cycle-related (e.g., CYCB1, CYCD3;1) genes at the level of the promoter activity and/or transcript abundance in wild-type and loss-of-function ftsh4-1 mutant plants grown at 30 °C. In addition, we monitor cell cycle progression directly in apical meristems and analyze the responsiveness of SAM and RAM to plant hormones. We show that growth arrest in the ftsh4-1 mutant is caused by cell cycle dysregulation in addition to the loss of stem cell identity. Both the SAM and RAM gradually lose their proliferative activity, but with different timing relative to CYCB1 transcriptional activity (a marker of G2-M transition), which cannot be compensated by exogenous hormones.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Edyta M Gola
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Katarzyna Sokołowska
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Elwira Smakowska-Luzan
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| | - Adriana Twardawska
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Hanna Janska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| |
Collapse
|
44
|
Shibata M, Breuer C, Kawamura A, Clark NM, Rymen B, Braidwood L, Morohashi K, Busch W, Benfey PN, Sozzani R, Sugimoto K. GTL1 and DF1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis. Development 2018; 145:145/3/dev159707. [PMID: 29439132 PMCID: PMC5818008 DOI: 10.1242/dev.159707] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/09/2018] [Indexed: 01/17/2023]
Abstract
How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis. Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors. Summary:Arabidopsis gtl1 df1 double mutants and tissue-specific overexpression of GTL1 and DF1 demonstrate that both GTL1 and DF1 negatively regulate root hair growth by directly repressing RSL4.
Collapse
Affiliation(s)
- Michitaro Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Christian Breuer
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27708, USA.,Biomathematics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Bart Rymen
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Luke Braidwood
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Kengo Morohashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Philip N Benfey
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27695, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27708, USA.,Biomathematics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| |
Collapse
|
45
|
Noutoshi Y, Shirasu K. A High-Throughput Chemical Screening Method for Inhibitors and Potentiators of Hypersensitive Cell Death Using Suspension Cell Culture of Arabidopsis thaliana. Methods Mol Biol 2018; 1795:39-47. [PMID: 29846917 DOI: 10.1007/978-1-4939-7874-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Chemical biology provides an alternative way to identify genes involved in a particular biological process. It has the potential to overcome issues such as redundancy or lethality often found in genetic approaches, since the chemical compounds can simultaneously target all homologous proteins that function at the same step, and chemicals can be applied conditionally. Even with a variety of genetic approaches, the molecular mechanisms of plant hypersensitive cell death that occurs during disease resistance responses remain unclear. Therefore, application of chemical biology should provide new insights into this phenomenon. Here we describe a high-throughput chemical screening procedure to detect hypersensitive cell death quantitatively, using a suspension cell culture of Arabidopsis thaliana and a well-studied avirulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000 avrRpm1.
Collapse
Affiliation(s)
- Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
| |
Collapse
|
46
|
Abstract
Free-flow electrophoresis (FFE) is a technique for separation of proteins, peptides, organelles, and cells. With zone electrophoresis (ZE-FFE), organelles are separated according to surface charge. The ER is the only remaining major cellular compartment in Arabidopsis not to have been isolated using density centrifugation, immune-isolation, or any other method previously applied to purification of plant membranes. By using continuous-flow electrophoresis ER vesicles of similar surface charge, which may have been fragmented during cell lysis, can be focused. A large portion of these vesicles are of sufficiently different surface charge that separation from the majority of Golgi and other contaminants is possible. Here we adapt an earlier ZE-FFE Golgi isolation protocol for the isolation of highly pure ER vesicles and for tracking the migration of peripheral ER vesicles. Isolating ER vesicles of homogenous surface charge allows multi-'omic analyses to be performed on the ER. This facilitates investigations into structure-function relationships within the ER.
Collapse
Affiliation(s)
- Harriet T Parsons
- Biochemistry Department, Cambridge University, Cambridge, CB2 1QJ, UK.
| |
Collapse
|
47
|
de Simone A, Hubbard R, de la Torre NV, Velappan Y, Wilson M, Considine MJ, Soppe WJJ, Foyer CH. Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana. Antioxid Redox Signal 2017; 27:1505-1519. [PMID: 28457165 PMCID: PMC5678362 DOI: 10.1089/ars.2016.6959] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. RESULTS Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. INNOVATION These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. CONCLUSIONS Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.
Collapse
Affiliation(s)
- Ambra de Simone
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Rachel Hubbard
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Natanael Viñegra de la Torre
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany
| | - Yazhini Velappan
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia
| | - Michael Wilson
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Michael J Considine
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia .,5 The UWA Institute of Agriculture, The University of Western Australia , Perth, Australia .,6 The Department of Agriculture and Food Western Australia, South Perth, Australia
| | - Wim J J Soppe
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany .,7 Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn , Bonn, Germany
| | - Christine H Foyer
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia
| |
Collapse
|
48
|
Anderson SN, Johnson CS, Chesnut J, Jones DS, Khanday I, Woodhouse M, Li C, Conrad LJ, Russell SD, Sundaresan V. The Zygotic Transition Is Initiated in Unicellular Plant Zygotes with Asymmetric Activation of Parental Genomes. Dev Cell 2017; 43:349-358.e4. [DOI: 10.1016/j.devcel.2017.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/15/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
|
49
|
Vergara Z, Sequeira-Mendes J, Morata J, Peiró R, Hénaff E, Costas C, Casacuberta JM, Gutierrez C. Retrotransposons are specified as DNA replication origins in the gene-poor regions of Arabidopsis heterochromatin. Nucleic Acids Res 2017; 45:8358-8368. [PMID: 28605523 PMCID: PMC5737333 DOI: 10.1093/nar/gkx524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022] Open
Abstract
Genomic stability depends on faithful genome replication. This is achieved by the concerted activity of thousands of DNA replication origins (ORIs) scattered throughout the genome. The DNA and chromatin features determining ORI specification are not presently known. We have generated a high-resolution genome-wide map of 3230 ORIs in cultured Arabidopsis thaliana cells. Here, we focused on defining the features associated with ORIs in heterochromatin. In pericentromeric gene-poor domains ORIs associate almost exclusively with the retrotransposon class of transposable elements (TEs), in particular of the Gypsy family. ORI activity in retrotransposons occurs independently of TE expression and while maintaining high levels of H3K9me2 and H3K27me1, typical marks of repressed heterochromatin. ORI-TEs largely colocalize with chromatin signatures defining GC-rich heterochromatin. Importantly, TEs with active ORIs contain a local GC content higher than the TEs lacking them. Our results lead us to conclude that ORI colocalization with retrotransposons is determined by their transposition mechanism based on transcription, and a specific chromatin landscape. Our detailed analysis of ORIs responsible for heterochromatin replication has implications on the mechanisms of ORI specification in other multicellular organisms in which retrotransposons are major components of heterochromatin and of the entire genome.
Collapse
Affiliation(s)
- Zaida Vergara
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Joana Sequeira-Mendes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Jordi Morata
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus Universitat Autónoma de Barcelona, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain
| | - Ramón Peiró
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Elizabeth Hénaff
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus Universitat Autónoma de Barcelona, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain
| | - Celina Costas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus Universitat Autónoma de Barcelona, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
50
|
Hayashi N, Sasaki S, Takahashi H, Yamashita Y, Naito S, Onouchi H. Identification of Arabidopsis thaliana upstream open reading frames encoding peptide sequences that cause ribosomal arrest. Nucleic Acids Res 2017. [PMID: 28637336 PMCID: PMC5587730 DOI: 10.1093/nar/gkx528] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specific sequences of certain nascent peptides cause programmed ribosomal arrest during mRNA translation to control gene expression. In eukaryotes, most known regulatory arrest peptides are encoded by upstream open reading frames (uORFs) present in the 5′-untranslated region of mRNAs. However, to date, a limited number of eukaryotic uORFs encoding arrest peptides have been reported. Here, we searched for arrest peptide-encoding uORFs among Arabidopsis thaliana uORFs with evolutionarily conserved peptide sequences. Analysis of in vitro translation products of 22 conserved uORFs identified three novel uORFs causing ribosomal arrest in a peptide sequence-dependent manner. Stop codon-scanning mutagenesis, in which the effect of changing the uORF stop codon position on the ribosomal arrest was examined, and toeprint analysis revealed that two of the three uORFs cause ribosomal arrest during translation elongation, whereas the other one causes ribosomal arrest during translation termination. Transient expression assays showed that the newly identified arrest-causing uORFs exerted a strong sequence-dependent repressive effect on the expression of the downstream reporter gene in A. thaliana protoplasts. These results suggest that the peptide sequences of the three uORFs identified in this study cause ribosomal arrest in the uORFs, thereby repressing the expression of proteins encoded by the main ORFs.
Collapse
Affiliation(s)
- Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Chiba 263-8522, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|