1
|
Goździewska-Harłajczuk K, Hamouzová P, Klećkowska-Nawrot J, Čížek P. Morphological adaptation of the tongue of okapi (Okapia johnstoni Artiodactyla, Giraffidae)-Anatomy, histology, and ultrastructure. J Morphol 2024; 285:e21743. [PMID: 38825877 DOI: 10.1002/jmor.21743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
The aim of this study was to describe the morphology of the tongue of the okapi, and to compare the results with other ruminants including browsers, intermediates and grazers. The material was collected post-mortem from two animals from a Zoological Garden. The structure of the okapi tongue, focusing of the shape of the tongue, lingual surface, its papillae and lingual glands, was examined using gross morphology, light and polarized microscopy, and by scanning electron microscopy. The okapi tongue was characterized by dark pigmentation on the lingual dorsum (except lingual torus) and on the whole ventral surface. Two types of filiform papillae were observed, with additional, even 6-8 projections at their base. The round fungiform papillae were present at a higher density, up to 16/cm2, on the ventro-lateral area of the lingual apex. Round and elongate vallate papillae were arranged in two parallel lines between the body and root of the tongue. Numerous taste buds were detected within the epithelium of their vallum, while fungiform papillae had sparse taste buds. A lack of foliate papillae was noted. Very small conical papillae, some lenticular in shape, were present on the lingual torus. Thick collagen type I fibers were dominant over collagen type III fibers in the connective tissue of the lingual papillae. The mucous acini units were dominant among lingual glands, indicating that the secretion of okapi lingual glands was mostly mucous. In many aspects, the tongue of okapi resembles the tongue of other ruminants. The specific lingual shape and lingual surface, together with the lingual glands, support the processing of plant food, such as young and soft leaves. Although okapi tongue is characterized by smaller conical papillae compared to other ruminants, its high number of vallate papillae is similar that found in other browsers, intermediate and grazers. Thus the number of gustatory papillae rather indicates that this feature is not related to the type of feeding.
Collapse
Affiliation(s)
- Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Pavla Hamouzová
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Joanna Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Petr Čížek
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
2
|
Sabaghi Y, PourFarzad F, Zolghadr L, Bahrami A, Shojazadeh T, Farasat A, Gheibi N. A nano-liposomal carrier containing p-coumaric acid for induction of targeted apoptosis on melanoma cells and kinetic modeling. Biochem Biophys Res Commun 2024; 690:149219. [PMID: 37995451 DOI: 10.1016/j.bbrc.2023.149219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
There has been a growth in the use of plant compounds as biological products for the prevention and treatment of various diseases, including cancer. As a phenolic compound, p-Coumaric acid (p-CA) demonstrates preferrable biological effects such as anti-cancer activities. A nano-liposomal carrier containing p-CA was designed to increase the anticancer effectiveness of this compound on melanoma cells (A375). To determine the characteristics of synthesized liposomes, encapsulation efficiency was measured. In addition, the particle size was measured utilizing DLS, FTIR, and morphology examination using SEM. In vitro release was also studied through the dialysis method, while toxicity was evaluated using the MTT assay. To determine apoptotic characteristics, biotechnology tools like flow cytometry, real time PCR, and atomic force microscopy (AFM) were employed. The findings indicated that in the cells treated with the liposomal form of p-CA, the amount of elastic modulus was higher compared to its free form. Kinetic modeling indicated that the best fitting model was zero-order.
Collapse
Affiliation(s)
- Yalda Sabaghi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farnaz PourFarzad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran.
| | - Azita Bahrami
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tahereh Shojazadeh
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Farasat
- Monoclnal Antibodi Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
3
|
Goenka S, Lee HM. Effect of Commercial Children's Mouthrinses and Toothpastes on the Viability of Neonatal Human Melanocytes: An In Vitro Study. Dent J (Basel) 2023; 11:287. [PMID: 38132425 PMCID: PMC10742640 DOI: 10.3390/dj11120287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
In this study, we examined the cytotoxic effects of six commercial children's mouthrinses (designated as #1, #2, #3, #4, #5, and #6) and four commercial children's toothpastes (designated as #1, #2, #3, and #4) on primary human neonatal melanocytes that were used as a representative model for oral melanocytes. Mouthrinses diluted directly with culture medium (1:2, 1:5, 1:10, 1:100, and 1:1000) were added to monolayers of melanocytes for 2 min, followed by 24 h recovery, after which MTS cytotoxicity assay was conducted. The extracts of each toothpaste were prepared (50% w/v), diluted in culture medium (1:2, 1:5, 1:10, 1:50, 1:100, and 1:1000), and added to cell monolayers for 2 min (standard brushing time), followed by an analysis of cell viability after 24 h. Results showed that all mouthrinses except mouthrinse #4 showed significantly greater loss of cell viability, ascribed to cetylpyridinium chloride (CPC) that induced significant cytotoxicity to melanocytes (IC50 = 54.33 µM). In the case of toothpastes, the examination of cellular morphology showed that a 2 min exposure to all toothpaste extracts induced a concentration-dependent decline in cell viability, pronounced in toothpaste containing sodium lauryl sulfate (SLS) detergent. Further results suggested SLS to be the critical driver of cytotoxicity (IC50 = 317.73 µM). It is noteworthy that toothpaste #1 exhibited much lower levels of cytotoxicity compared to the other three toothpastes containing SLS. Taken together, these findings suggest that the melanocytotoxicity of children's mouthrinse (#4) and toothpaste (#1) is comparatively low. To the best of our knowledge, this is the first study to examine the impact of children's toothpastes and mouthrinses on neonatal primary human melanocytes. Future studies to investigate these findings in a realistic scenario replicating oral cavity conditions of the presence of microbiota, pellicle layer and saliva, and other cell types are warranted.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
4
|
Kaushik H, Kumar V, Parsad D. Mitochondria-Melanocyte cellular interactions: An emerging mechanism of vitiligo pathogenesis. J Eur Acad Dermatol Venereol 2023; 37:2196-2207. [PMID: 36897230 DOI: 10.1111/jdv.19019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria has emerged as a potential modulator of melanocyte function other than just meeting its cellular ATP demands. Mitochondrial DNA defects are now an established cause of maternal inheritance diseases. Recent cellular studies have highlighted the mitochondrial interaction with other cellular organelles that lead to disease conditions such as in Duchenne muscular dystrophy, where defective mitochondria was found in melanocytes of these patients. Vitiligo, a depigmentory ailment of the skin, is another such disorder whose pathogenesis is now found to be associated with mitochondria. The complete absence of melanocytes at the lesioned site in vitiligo is a fact; however, the precise mechanism of this destruction is still undefined. In this review we have tried to discuss and link the emerging facts of mitochondrial function or its inter- and intra-organellar communications in vitiligo pathogenesis. Mitochondrial close association with melanosomes, molecular involvement in melanocyte-keratinocyte communication and melanocyte survival are new paradigm of melanogenesis that could ultimately account for vitiligo. This definitely adds the new dimensions to our understanding of vitiligo, its management and designing of future mitochondrial targeted therapy for vitiligo.
Collapse
Affiliation(s)
- Hitaishi Kaushik
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| |
Collapse
|
5
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
El Mir J, Fedou S, Thézé N, Morice‐Picard F, Cario M, Fayyad‐Kazan H, Thiébaud P, Rezvani H. Xenopus: An in vivo model for studying skin response to ultraviolet B irradiation. Dev Growth Differ 2023; 65:194-202. [PMID: 36880984 PMCID: PMC11520974 DOI: 10.1111/dgd.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Ultraviolet B (UVB) in sunlight cause skin damage, ranging from wrinkles to photoaging and skin cancer. UVB can affect genomic DNA by creating cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidine (6-4) photoproducts (6-4PPs). These lesions are mainly repaired by the nucleotide excision repair (NER) system and by photolyase enzymes that are activated by blue light. Our main goal was to validate the use of Xenopus laevis as an in vivo model system for investigating the impact of UVB on skin physiology. The mRNA expression levels of xpc and six other genes of the NER system and CPD/6-4PP photolyases were found at all stages of embryonic development and in all adult tissues tested. When examining Xenopus embryos at different time points after UVB irradiation, we observed a gradual decrease in CPD levels and an increased number of apoptotic cells, together with an epidermal thickening and an increased dendricity of melanocytes. We observed a quick removal of CPDs when embryos are exposed to blue light versus in the dark, confirming the efficient activation of photolyases. A decrease in the number of apoptotic cells and an accelerated return to normal proliferation rate was noted in blue light-exposed embryos compared with their control counterparts. Overall, a gradual decrease in CPD levels, detection of apoptotic cells, thickening of epidermis, and increased dendricity of melanocytes, emulate human skin responses to UVB and support Xenopus as an appropriate and alternative model for such studies.
Collapse
Affiliation(s)
| | | | | | - Fanny Morice‐Picard
- University Bordeaux, Inserm, BRICBordeauxFrance
- Department of Dermatology and Pediatric Dermatology, National Reference Centre for Rare DisordersHôpital des Enfants Pellegrin, Centre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Muriel Cario
- University Bordeaux, Inserm, BRICBordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| | - Hussein Fayyad‐Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences ILebanese UniversityHadathLebanon
| | | | - Hamid‐Reza Rezvani
- University Bordeaux, Inserm, BRICBordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| |
Collapse
|
7
|
Enhancement of stability and dermal delivery of Carissa carandas Linn. leaf extract by liquid crystals. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
SNA077, an Extract of Marine Streptomyces sp., Inhibits Melanogenesis by Downregulating Melanogenic Proteins via Inactivation of cAMP/PKA/CREB Signaling. Int J Mol Sci 2022; 23:ijms232314922. [PMID: 36499251 PMCID: PMC9737552 DOI: 10.3390/ijms232314922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Excess melanin in skin is known to be the main cause of hyper-pigmentary skin diseases such as freckles and lentigo. This study aimed to evaluate the depigmenting efficacy of an extract from the marine microorganism strain, Streptomyces sp. SNA077. To determine the anti-melanogenic efficacy of SNA077, we assessed the melanin contents of SNA077-treated B16, Melan-a, and MNT-1 cells. We observed the expression of key enzymes in melanogenesis via qRT-PCR and Western blot analyses. We further estimated the skin-whitening effect of SNA077 using a skin-equivalent model. SNA077 dramatically decreased the melanin production of B16 cells, Melan-a, and MNT-1 cells. In B16 cells treated with SNA077, the activity of cellular tyrosinase was clearly inhibited. In addition, the mRNA and protein expression levels of melanogenic genes were suppressed by SNA077 treatment in B16 and MNT-1 cells. Upstream of tyrosinase, the expression levels of phospho-CREB, phospho-p38, PKA activity, cyclic AMP production, and MC1R gene expression were inhibited by SNA077. Finally, SNA077 clearly showed a skin-brightening effect with a reduced melanin content in the skin tissue model. Collectively, our results suggest for the first time that an extract of marine Streptomyces sp. SNA077 could be a novel anti-melanogenic material for skin whitening.
Collapse
|
9
|
Mokhtar M, El-Ashmawy AA, Mostafa WA, Gamei MM. Clinical and dermoscopic evaluation of follicular unit transplantation vs. Mini-Punch grafting in the repigmentation of resistant and stable vitiligo: A comparative study. J Cosmet Dermatol 2022; 21:5837-5851. [PMID: 35634687 DOI: 10.1111/jocd.15127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Various surgical modalities and transplantation techniques had been evolved for the treatment of recalcitrant stable vitiligo. Each of these techniques has its own limitations and side effects. There are insufficient studies evaluating the efficacy of transplantation of hair follicle (HF) units as a surgical modality for vitiligo treatment in comparison with the classic mini-punch grafting. OBJECTIVES To compare the efficacy and safety of follicular unit transplantation (FUT) with mini-punch grafting (mPG) in cases of resistant and stable vitiligo. METHODS Twenty-five patients with stable vitiligo were included. Treated areas were classified into 2 groups: group I: Areas were treated with the FUT technique and group II: Areas were treated with mPG technique. Treated areas were exposed to narrowband ultraviolet B phototherapy for 6 months. After 3 months, follow-up patients' response was evaluated clinically and by dermoscopy. RESULTS Both techniques showed efficacy in repigmentation of stable vitiligo. Group II showed a statistically significant higher percentage of repigmentation and significant earlier repigmentation than group I. Cobblestone-like appearance was the major complication in group II, while no serious side effect was reported in group I. Leukotrichia was present in 8 patients, and 6 of them showed hair repigmentation evidently in group I. CONCLUSION Both techniques are effective, safe, and inexpensive methods of surgical repigmentation of stable localized/segmental vitiligo. mPG gives earlier and better percent of repigmentation, with higher incidence of cobblestoning. FUT is a good alternative for mPG, especially in hairy areas with better cosmetic outcome and minimal complications.
Collapse
Affiliation(s)
- Mennah Mokhtar
- Dermatology and Venereology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amal Ahmad El-Ashmawy
- Dermatology and Venereology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Walid Ahmed Mostafa
- Plastic Surgery Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Mahmoud Gamei
- Dermatology and Venereology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells 2022; 11:cells11132082. [PMID: 35805166 PMCID: PMC9266247 DOI: 10.3390/cells11132082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin’s well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor. The ubiquitous inner circadian rhythm controls the body’s basic physiological processes. Light not only affects skin photoaging, but also regulates inner circadian rhythms and communicates with the local neuroendocrine system. Do melanocytes “see” light and play a unique role in photoentrainment of the local circadian clock system? Why, then, are melanocytes responsible for so many mysterious functions? Do these complex functional devices work to maintain homeostasis locally and throughout the body? In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight. Thus, what can the observation of extracutaneous melanocytes tell us about the “secret identity” of melanocytes? While the answers to some of these intriguing questions remain to be discovered, here we summarize and weave a thread around available data to explore the established and potential roles of melanocytes in the biological communication of skin and systemic homeostasis, and elaborate on important open issues and propose ways forward.
Collapse
|
11
|
Chakraborty N, Srinivasan S, Yang R, Miller SA, Gautam A, Detwiler LJ, Carney BC, Alkhalil A, Moffatt LT, Jett M, Shupp JW, Hammamieh R. Comparison of Transcriptional Signatures of Three Staphylococcal Superantigenic Toxins in Human Melanocytes. Biomedicines 2022; 10:biomedicines10061402. [PMID: 35740423 PMCID: PMC9219963 DOI: 10.3390/biomedicines10061402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus, a gram-positive bacterium, causes toxic shock through the production of superantigenic toxins (sAgs) known as Staphylococcal enterotoxins (SE), serotypes A-J (SEA, SEB, etc.), and toxic shock syndrome toxin-1 (TSST-1). The chronology of host transcriptomic events that characterizes the response to the pathogenesis of superantigenic toxicity remains uncertain. The focus of this study was to elucidate time-resolved host responses to three toxins of the superantigenic family, namely SEA, SEB, and TSST-1. Due to the evolving critical role of melanocytes in the host’s immune response against environmental harmful elements, we investigated herein the transcriptomic responses of melanocytes after treatment with 200 ng/mL of SEA, SEB, or TSST-1 for 0.5, 2, 6, 12, 24, or 48 h. Functional analysis indicated that each of these three toxins induced a specific transcriptional pattern. In particular, the time-resolved transcriptional modulations due to SEB exposure were very distinct from those induced by SEA and TSST-1. The three superantigens share some similarities in the mechanisms underlying apoptosis, innate immunity, and other biological processes. Superantigen-specific signatures were determined for the functional dynamics related to necrosis, cytokine production, and acute-phase response. These differentially regulated networks can be targeted for therapeutic intervention and marked as the distinguishing factors for the three sAgs.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
- Correspondence: ; Tel.: +1-301-452-8940 or +1-301-319-7363
| | - Seshamalini Srinivasan
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Leanne J. Detwiler
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Bonnie C. Carney
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
- Department of Surgery, Georgetown University School of Medicine, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Abdulnaser Alkhalil
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
| | - Lauren T. Moffatt
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
- Department of Surgery, Georgetown University School of Medicine, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Marti Jett
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Jeffrey W. Shupp
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
- Department of Surgery, Georgetown University School of Medicine, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
- The Burn Center, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| |
Collapse
|
12
|
Goenka S. Comparative Study of Δ9-Tetrahydrocannabinol and Cannabidiol on Melanogenesis in Human Epidermal Melanocytes from Different Pigmentation Phototypes: A Pilot Study. J Xenobiot 2022; 12:131-144. [PMID: 35736025 PMCID: PMC9224588 DOI: 10.3390/jox12020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/21/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Δ9-tetrahydrocannabinol (THC) is one of the primary ingredients of cannabis plants and is responsible for the psychoactive properties of cannabis. While cannabidiol (CBD), the non-psychoactive compound from cannabis, has been shown to stimulate human epidermal melanogenesis, the effects of THC have not been addressed in human epidermal melanocytes. Moreover, to date, no study has tested the effects of these compounds on melanocytes differing in pigmentation, representative of different skin phototypes, which would be significant as different ethnicities are known to differentially metabolize these xenobiotics. Herein, the effects of THC were studied and compared alongside CBD in human epidermal melanocytes derived from lightly-pigmented (HEMn-LP; Caucasian) and darkly-pigmented (HEMn-DP; African-American) cells over a chronic exposure of 6 d. Results demonstrated that both compounds displayed cytotoxicity at 4 µM but stimulated melanin synthesis and tyrosinase activity in a similar manner in LP and DP cells at nontoxic concentrations of 1-2 µM. However, THC and CBD showed a differential effect on dendricity in both cells; THC and CBD reversibly increased dendricity in LP cells while there was no significant change in DP cells. THC and CBD induced higher levels of reactive oxygen species (ROS) in LP cells while there was no change in the ROS levels in DP cells. In summary, although THC was relatively less cytotoxic as compared to CBD to both LP and DP cells, it exhibited a similar capacity as CBD to stimulate melanin synthesis and export in LP cells which was accompanied by a significant oxidative stress. DP cells were relatively resistant to the effects of both THC and CBD which might implicate the protective effects conferred by melanin in dark-skinned individuals.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
13
|
Nam G, An SK, Park IC, Bae S, Lee JH. Daphnetin inhibits α-MSH-induced melanogenesis via PKA and ERK signaling pathways in B16F10 melanoma cells. Biosci Biotechnol Biochem 2022; 86:596-609. [PMID: 35325017 DOI: 10.1093/bbb/zbac016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Daphnetin is a dehydroxylated derivative of coumarin isolated from Daphne species. However, the effect of daphnetin on melanogenesis has not been elucidated. This study aims to investigate the inhibitory effect of daphnetin on melanogenesis in α-melanocyte stimulating hormone (α-MSH)-treated B16F10 cells and its potential mechanism. Melanin content analysis and cellular tyrosinase activity assay showed that daphnetin inhibited melanin biosynthesis in α-MSH-treated B16F10 cells. Immunoblotting and qRT-PCR also indicated that daphnetin suppressed the expression of microphthalmia-associated transcription factor, a mastering transcription factor of melanogenesis and its downstream melanogenic enzymes including tyrosinase and tyrosinase-related proteins. Moreover, daphnetin downregulated the phosphorylation of PKA, ERK, MSK1, and CREB. Additionally, daphnetin inhibited melanin synthesis in UVB-irradiated HaCaT conditioned medium system suggesting that daphnetin has potential as an antipigmentation activity in a physiological skin condition. Our data propose that daphnetin inhibits melanogenesis via modulating both the PKA/CREB and the ERK/MSK1/CREB pathways.
Collapse
Affiliation(s)
- Garam Nam
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Sung Kwan An
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - In-Chul Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
14
|
da Silva LA, Teodoro TGW, Wouters ATB, Wouters F, Abreu DS, Neto DMGP, Negrão Watanabe TT. Metastatic Digital Chondrogenic Melanocytic Tumour in a Dog. J Comp Pathol 2022; 190:13-18. [DOI: 10.1016/j.jcpa.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
|
15
|
Lee HK, Ha JW, Hwang YJ, Boo YC. Identification of L-Cysteinamide as a Potent Inhibitor of Tyrosinase-Mediated Dopachrome Formation and Eumelanin Synthesis. Antioxidants (Basel) 2021; 10:1202. [PMID: 34439449 PMCID: PMC8388879 DOI: 10.3390/antiox10081202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/31/2023] Open
Abstract
The purpose of this study is to identify amino acid derivatives with potent anti-eumelanogenic activity. First, we compared the effects of twenty different amidated amino acids on tyrosinase (TYR)-mediated dopachrome formation in vitro and melanin content in dark-pigmented human melanoma MNT-1 cells. The results showed that only L-cysteinamide inhibited TYR-mediated dopachrome formation in vitro and reduced the melanin content of cells. Next, the antimelanogenic effect of L-cysteinamide was compared to those of other thiol compounds (L-cysteine, N-acetyl L-cysteine, glutathione, L-cysteine ethyl ester, N-acetyl L-cysteinamide, and cysteamine) and positive controls with known antimelanogenic effects (kojic acid and β-arbutin). The results showed the unique properties of L-cysteinamide, which effectively reduces melanin content without causing cytotoxicity. L-Cysteinamide did not affect the mRNA and protein levels of TYR, tyrosinase-related protein 1, and dopachrome tautomerase in MNT-1 cells. L-Cysteinamide exhibited similar properties in normal human epidermal melanocytes (HEMs). Experiments using mushroom TYR suggest that L-cysteinamide at certain concentrations can inhibit eumelanin synthesis through a dual mechanism by inhibiting TYR-catalyzed dopaquinone synthesis and by diverting the synthesized dopaquinone to the formation of DOPA-cysteinamide conjugates rather than dopachrome. Finally, L-cysteinamide was shown to increase pheomelanin content while decreasing eumelanin and total melanin contents in MNT-1 cells. This study suggests that L-cysteinamide has an optimal structure that can effectively and safely inhibit eumelanin synthesis in MNT-1 cells and HEMs, and will be useful in controlling skin hyperpigmentation.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Department of Molecular Medicine, Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.K.L.); (J.W.H.); (Y.J.H.)
| | - Jae Won Ha
- Department of Molecular Medicine, Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.K.L.); (J.W.H.); (Y.J.H.)
| | - Yun Jeong Hwang
- Department of Molecular Medicine, Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.K.L.); (J.W.H.); (Y.J.H.)
| | - Yong Chool Boo
- Department of Molecular Medicine, Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.K.L.); (J.W.H.); (Y.J.H.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
16
|
Ogen-Shtern N, Chumin K, Silberstein E, Borkow G. Copper Ions Ameliorated Thermal Burn-Induced Damage in ex vivo Human Skin Organ Culture. Skin Pharmacol Physiol 2021; 34:317-327. [PMID: 34237749 DOI: 10.1159/000517194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The zone of stasis is formed around the coagulation zone following skin burning and is characterized by its unique potential for salvation. The cells in this zone may die or survive depending on the severity of the burn and therefore are target for the local treatments of burns. Their low survival rate is consistent with decreased tissue perfusion, hypotension, infection, and/or edema, resulting in a significant increase in the wound size following burning. Copper is an essential trace mineral needed for the normal function of almost all body tissues, including the skin. OBJECTIVE The aim of the work was to study the effect copper ions have on skin burn pathophysiology. METHODS Skin obtained from healthy patients undergoing abdominoplasty surgery was cut into 8 × 8 mm squares, and round 0.8-mm diameter burn wounds were inflicted on the skin explants. The burned and control intact skin samples were cultured up to 27 days after wounding. Immediately following injury and then again every 48 h, saline only or containing 0.02 or 1 µM copper ions was added onto the skin explant burn wounds. RESULTS We found that exposing the wounded sites immediately after burn infliction to 0.02 or 1 µM copper ions reduced the deterioration of the zone of stasis and the increase in wound size. The presence of the copper ions prevented the dramatic increase of pro-inflammatory cytokines (interleukin (IL)-6 and IL-8) and transforming growth factor beta-1 that followed skin burning. We also detected re-epithelialization of the skin tissue and a greater amount of collagen fibers upon copper treatment. CONCLUSION The deterioration of the zone of stasis and the increase in wound size following burning may be prevented or reduced by using copper ion-based therapeutic interventions.
Collapse
Affiliation(s)
- Navit Ogen-Shtern
- The Skin research institute, The Dead-Sea & Arava Science Center, Masada, Israel.,Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel
| | - Katerina Chumin
- The Skin research institute, The Dead-Sea & Arava Science Center, Masada, Israel
| | - Eldad Silberstein
- Plastic and Reconstructive Surgery, Soroka University Medical Center, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
17
|
Yang Y, Wei X, Bai J, Huang M, Hao T, Hao Y, Wang Y, Li C. MicroRNA-340 is involved in ultraviolet B-induced pigmentation by regulating the MITF/TYRP1 axis. J Int Med Res 2021; 48:300060520971510. [PMID: 33179560 PMCID: PMC7673059 DOI: 10.1177/0300060520971510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective There is growing evidence that ultraviolet B (UVB) irradiation can change the expression profile of microRNAs (miRNAs) in immortalized human epidermal melanocytes (Pig-1). We aimed to investigate the effect of miR-340 on regulating UVB-induced pigmentation. Methods Real-time quantitative PCR (qRT-PCR) was used to evaluate the expression of miR-340 in Pig-1 cells. Immunoblotting analysis, qRT-PCR, and luciferase reporter assays were used to detect the potential target of miR-340. The sodium hydroxide dissolution assay was used to assess the effect of miR-340 on changes in melanin content. Results Expression of miR-340 was reduced in human Pig-1 cells after UVB irradiation. We found a negative correlation between miR-340 and melanocyte inducing transcription factor (MITF) in Pig-1 cells after UVB irradiation. Knockdown and overexpression of MITF in Pig-1 cells down- and upregulated melanogenesis, respectively. Overexpression of miR-340 inhibited MITF expression, reduced the amount of melanin, and suppressed expression of multiple key molecules involved in the pigment synthesis pathway, whereas knockdown of miR-340 showed the opposite results. Conclusions Our results showed that miR-340 inhibited melanogenesis by regulating the downstream molecules of MITF and its signaling pathways, suggested that miRNA-340 may be a new target for the clinical treatment of UVB-induced pigmentation.
Collapse
Affiliation(s)
- Yi Yang
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Xuanjin Wei
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Jia Bai
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Min Huang
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Tian Hao
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Yonghong Hao
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Yilin Wang
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Chengxin Li
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Boo YC. Up- or Downregulation of Melanin Synthesis Using Amino Acids, Peptides, and Their Analogs. Biomedicines 2020; 8:biomedicines8090322. [PMID: 32882959 PMCID: PMC7555855 DOI: 10.3390/biomedicines8090322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Harmonious synthesis and distribution of melanin in the skin contribute to the expression of beauty and the maintenance of health. When skin pigmentary disorders occur because of internal or external factors or, when there is a need to artificially increase or reduce the pigmentation level of the skin for aesthetic or therapeutic purposes, various pharmacological therapies are applied but the results are not always satisfactory. Studies have been conducted to improve the efficacy and safety of these treatment strategies. In this review, we present the latest studies regarding peptides and related compounds that may be useful in artificially increasing or reducing skin melanin levels. Certain analogs of α-melanocyte stimulating hormone (MSH) and oligopeptides with the sequences derived from the hormone were shown to promote melanin synthesis in cells and in vivo models. Various amino acids, peptides, their analogs, and their hybrid compounds with other chemical moieties were shown to inhibit tyrosinase (TYR) catalytic activity or downregulate TYR gene expression. Certain peptides were shown to inhibit melanosome biogenesis or induce autophagy, leading to decreased pigmentation. In vivo and clinical evidence are available for some compounds, including [Nle4-D-Phe7]-α-MSH, glutathione disulfide, and glycinamide hydrochloride. For many other compounds, additional studies are required to verify their efficacy and safety in vivo and in clinical trials. The accumulating information regarding pro- and antimelanogenic activity of peptides and related compounds will lead to the development of novel drugs for the treatment of skin pigmentary disorders.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; ; Tel.: +82-53-420-4946
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
19
|
Li H, DaSilva NA, Liu W, Xu J, Dombi GW, Dain JA, Li D, Chamcheu JC, Seeram NP, Ma H. Thymocid ®, a Standardized Black Cumin ( Nigella sativa) Seed Extract, Modulates Collagen Cross-Linking, Collagenase and Elastase Activities, and Melanogenesis in Murine B16F10 Melanoma Cells. Nutrients 2020; 12:E2146. [PMID: 32707654 PMCID: PMC7400895 DOI: 10.3390/nu12072146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Black cumin (Nigella sativa) seed extract has been shown to improve dermatological conditions, yet its beneficial effects for skin are not fully elucidated. Herein, Thymocid®, a chemically standardized black cumin seed extract, was investigated for its cosmeceutical potential including anti-aging properties associated with modulation of glycation, collagen cross-linking, and collagenase and elastase activities, as well as antimelanogenic effect in murine melanoma B16F10 cells. Thymocid® (50, 100, and 300 µg/mL) inhibited the formation of advanced glycation end-products (by 16.7-70.7%), collagen cross-linking (by 45.1-93.3%), collagenase activity (by 10.4-92.4%), and elastases activities (type I and III by 25.3-75.4% and 36.0-91.1%, respectively). In addition, Thymocid® (2.5-20 µg/mL) decreased melanin content in B16F10 cells by 42.5-61.6% and reduced cellular tyrosinase activity by 20.9% (at 20 µg/mL). Furthermore, Thymocid® (20 µg/mL for 72 h) markedly suppressed the mRNA expression levels of melanogenesis-related genes including microphthalmia-associated transcription factor (MITF), tyrosinase-related protein 1 (TYRP1), and TYRP2 to 78.9%, 0.3%, and 0.2%, respectively. Thymocid® (10 µg/mL) also suppressed the protein expression levels of MITF (by 15.2%) and TYRP1 (by 97.7%). Findings from this study support the anti-aging and antimelanogenic potential of Thymocid® as a bioactive cosmeceutical ingredient for skin care products.
Collapse
Affiliation(s)
- Huifang Li
- School of Biotechnology and Health Sciences, Wuyi University, International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; (H.L.); (D.L.)
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (N.A.D.); (J.X.); (N.P.S.)
| | - Nicholas A. DaSilva
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (N.A.D.); (J.X.); (N.P.S.)
| | - Weixi Liu
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA; (W.L.); (G.W.D.); (J.A.D.)
| | - Jialin Xu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (N.A.D.); (J.X.); (N.P.S.)
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - George W. Dombi
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA; (W.L.); (G.W.D.); (J.A.D.)
| | - Joel A. Dain
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA; (W.L.); (G.W.D.); (J.A.D.)
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; (H.L.); (D.L.)
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA;
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (N.A.D.); (J.X.); (N.P.S.)
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; (H.L.); (D.L.)
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (N.A.D.); (J.X.); (N.P.S.)
| |
Collapse
|
20
|
Boo YC. Emerging Strategies to Protect the Skin from Ultraviolet Rays Using Plant-Derived Materials. Antioxidants (Basel) 2020; 9:E637. [PMID: 32708455 PMCID: PMC7402153 DOI: 10.3390/antiox9070637] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sunlight contains a significant amount of ultraviolet (UV) ray, which leads to various effects on homeostasis in the body. Defense strategies to protect from UV rays have been extensively studied, as sunburn, photoaging, and photocarcinogenesis are caused by excessive UV exposure. The primary lines of defense against UV damage are melanin and trans-urocanic acid, which are distributed in the stratum corneum. UV rays that pass beyond these lines of defense can lead to oxidative damage. However, cells detect changes due to UV rays as early as possible and initiate cell signaling processes to prevent the occurrence of damage and repair the already occurred damage. Cosmetic and dermatology experts recommend using a sunscreen product to prevent UV-induced damage. A variety of strategies using antioxidants and anti-inflammatory agents have also been developed to complement the skin's defenses against UV rays. Researchers have examined the use of plant-derived materials to alleviate the occurrence of skin aging, diseases, and cancer caused by UV rays. Furthermore, studies are also underway to determine how to promote melanin production to protect from UV-induced skin damage. This review provides discussion of the damage that occurs in the skin due to UV light and describes potential defense strategies using plant-derived materials. This review aims to assist researchers in understanding the current research in this area and to potentially plan future studies.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, BK21 Plus KNU Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
21
|
Ikarashi N, Fukuda N, Ochiai M, Sasaki M, Kon R, Sakai H, Hatanaka M, Kamei J. Lactobacillus helveticus-Fermented Milk Whey Suppresses Melanin Production by Inhibiting Tyrosinase through Decreasing MITF Expression. Nutrients 2020; 12:nu12072082. [PMID: 32674403 PMCID: PMC7400678 DOI: 10.3390/nu12072082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Whey obtained from milk fermented by the Lactobacillus helveticus CM4 strain (LHMW) has been shown to improve skin barrier function and increase skin-moisturizing factors. In this study, we investigated the effects of LHMW on melanin production to explore the additional impacts of LHMW on the skin. We treated mouse B16 melanoma cells with α-melanocyte-stimulating hormone (α-MSH) alone or simultaneously with LHMW and measured the amount of melanin. The amount of melanin in B16 cells treated with α-MSH significantly increased by 2-fold compared with that in control cells, and tyrosinase activity was also elevated. Moreover, treatment with LHMW significantly suppressed the increase in melanin content and elevation of tyrosinase activity due to α-MSH. LHMW also suppressed the α-MSH-induced increased expression of tyrosinase, tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) at the protein and mRNA levels. Furthermore, the mRNA and protein microphthalmia-associated transcription factor (MITF) expression levels were significantly increased with treatment with α-MSH alone, which were also suppressed by LHMW addition. LHMW suppression of melanin production is suggested to involve inhibition of the expression of the tyrosinase gene family by lowering the MITF expression level. LHMW may have promise as a material for cosmetics with expected clinical application in humans.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (M.O.); (M.S.); (R.K.); (H.S.); (J.K.)
- Correspondence: ; Tel.: +81-3-5498-5918
| | - Natsuko Fukuda
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (M.O.); (M.S.); (R.K.); (H.S.); (J.K.)
| | - Makiba Ochiai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (M.O.); (M.S.); (R.K.); (H.S.); (J.K.)
| | - Mami Sasaki
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (M.O.); (M.S.); (R.K.); (H.S.); (J.K.)
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (M.O.); (M.S.); (R.K.); (H.S.); (J.K.)
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (M.O.); (M.S.); (R.K.); (H.S.); (J.K.)
| | - Misaki Hatanaka
- Asahi Calpis Wellness Co., Ltd., 2-4-1 Ebisu-minami, Shibuya-ku, Tokyo 150-0022, Japan;
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (N.F.); (M.O.); (M.S.); (R.K.); (H.S.); (J.K.)
| |
Collapse
|
22
|
Yuan J, Lu Y, Wang H, Feng Y, Jiang S, Gao XH, Qi R, Wu Y, Chen HD. Paeoniflorin Resists H 2O 2-Induced Oxidative Stress in Melanocytes by JNK/Nrf2/HO-1 Pathway. Front Pharmacol 2020; 11:536. [PMID: 32410998 PMCID: PMC7198857 DOI: 10.3389/fphar.2020.00536] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
Paeoniflorin (PF) possesses multiple biological functions including anti-oxidization. PF is the major bioactive ingredient of total glycosides of paeony (TGP), which could promote re-pigmentation of vitiligo. The study was sought to investigate the effects and potential signaling pathways of PF on hydrogen peroxide (H2O2)-induced oxidative stress in melanocytes. The results showed that pretreatment with 50 µM PF significantly inhibited cell apoptosis, enhanced cell viability, and suppressed reactive oxygen species (ROS) accumulation by enhancing the productions of superoxide dismutase (SOD) and antioxidant enzymes catalase (CAT). Furthermore, PF activated c-Jun amino terminal kinase (JNK) and the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway to counteract H2O2-induced oxidative damage in PIG1 and PIG3V. Taken together, our study firstly demonstrates that PF resists H2O2-induced oxidative stress in melanocytes probably by activating JNK/Nrf2/HO-1 signaling, suggesting a potential therapeutic application of PF on vitiligo.
Collapse
Affiliation(s)
- Jinping Yuan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| | - Yansong Lu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| | - Hexiao Wang
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| | - Yuxin Feng
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| | - Shibin Jiang
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| | - RuiQun Qi
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| | - Hong-Duo Chen
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Colorimetric assay of tyrosinase inhibition using melanocyte laden hydrogel fabricated by digital light processing printing. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Rok J, Karkoszka M, Rzepka Z, Respondek M, Banach K, Beberok A, Wrześniok D. Cytotoxic and proapoptotic effect of doxycycline - An in vitro study on the human skin melanoma cells. Toxicol In Vitro 2020; 65:104790. [PMID: 32044399 DOI: 10.1016/j.tiv.2020.104790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Doxycycline is a semisynthetic, second generation tetracycline. Currently, it is used, among others, in the treatment of acne and skin infections. Moreover, doxycycline has many valuable nonantibiotic properties, including anti-inflammatory, immunosuppressive and anticancer effects. Recent studies showed that the drug had the ability to inhibit the adhesion and migration of cancer cells, as well as affected their growth and proliferation and induced apoptosis. The purpose of this study was to examine the antimelanoma effect of doxycycline. The obtained results demonstrated that doxycycline decreased the viability and inhibited the proliferation of human melanoma cells, proportionally to the drug concentration and the treatment time. It was stated that doxycycline disturbed the homeostasis of the cells by lowering intracellular level of reduced thiols. In addition, the treatment changed the cell cycle profile and triggered the DNA fragmentation. Mitochondria of melanoma cells exposed to the drug had lowered membrane potential, which indicated cells apoptosis. Finally, doxycycline induced the externalization phosphatidylserine - a well-known hallmark of apoptosis, confirmed by results of annexin V test. The presented study contributes to the increase of knowledge about nonantibacterial action of doxycycline, including the influence on human cancer cells and indicates new potential possibility of effective treatment of malignant melanoma.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Marta Karkoszka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Michalina Respondek
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
25
|
Wang W, Zhang Y, Nakashima S, Nakamura S, Wang T, Yoshikawa M, Matsuda H. Inhibition of melanin production by anthracenone dimer glycosides isolated from Cassia auriculata seeds. J Nat Med 2019; 73:439-449. [PMID: 30847755 PMCID: PMC7176596 DOI: 10.1007/s11418-018-01276-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
The methanol extract of Cassia auriculata seeds was found to inhibit melanogenesis in B16 melanoma 4A5 cells under conditions of theophylline stimulation. Two new phlegmacin-type anthracenone dimer glycosides, auriculataosides A and B, were isolated from the active methanol fraction, and their inhibitory effects were observed in the concentration range of 0.03 to 0.3 μM. Inhibition of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 protein expression was observed, suggesting that the inhibition of these factors is part of the mechanism of action underlying melanogenesis inhibition.
Collapse
Affiliation(s)
- Weicheng Wang
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Yi Zhang
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Souichi Nakashima
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.,N.T.H Co., Ltd., 4F Sky-ebisu Bldg, 1-8-11 Ebisu, Shibuya-ku, Tokyo, 150-0013, Japan
| | - Seikou Nakamura
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Tao Wang
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Masayuki Yoshikawa
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Hisashi Matsuda
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| |
Collapse
|
26
|
Dalmau N, Andrieu-Abadie N, Tauler R, Bedia C. Untargeted lipidomic analysis of primary human epidermal melanocytes acutely and chronically exposed to UV radiation. Mol Omics 2018; 14:170-180. [DOI: 10.1039/c8mo00060c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultraviolet (UV) radiation present in sunlight has been related to harmful effects on skin such as premature aging and skin cancer.
Collapse
Affiliation(s)
- Núria Dalmau
- Department of Environmental Chemistry
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC)
- 08034 Barcelona
- Spain
| | | | - Romà Tauler
- Department of Environmental Chemistry
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC)
- 08034 Barcelona
- Spain
| | - Carmen Bedia
- Department of Environmental Chemistry
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC)
- 08034 Barcelona
- Spain
| |
Collapse
|
27
|
Rok J, Wrześniok D, Beberok A, Otręba M, Delijewski M, Buszman E. Phototoxic effect of oxytetracycline on normal human melanocytes. Toxicol In Vitro 2017; 48:26-32. [PMID: 29248593 DOI: 10.1016/j.tiv.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
Oxytetracycline is a broad-spectrum antibiotic, used in dermatology and veterinary medicine. Like other tetracyclines, it may evoke skin phototoxic reactions related to generation of reactive oxygen species (ROS). Melanins are biopolymers synthesised in melanocytes - highly specialised cells, localised in the basal layer of epidermis. Production of melanin is a defence mechanism against harmful effects of UV radiation, ROS and many chemical substances, including drugs. In the present study the influence of oxytetracycline and UVA radiation on darkly pigmented melanocytes viability, the melanogenesis process and the activity of antioxidant enzymes were analysed. The obtained results show that oxytetracycline decreases cell viability in a dose-dependent manner. It has also been stated that UVA radiation as well as simultaneous exposure to oxytetracycline and UVA radiation reduce melanocytes viability. The tested drug alone exhibits little effect on antioxidant enzymes activity and has no influence on the synthesis of melanin. However, simultaneous exposure of the cells to oxytetracycline and UVA radiation causes an increase of SOD and GPx activity, a decrease of CAT activity as well as stimulates melanogenesis. The obtained results suggest that phototoxicity of oxytetracycline towards normal human melanocytes depends on both time of UVA exposure and the drug concentration.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland.
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Michał Otręba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Marcin Delijewski
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Ewa Buszman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| |
Collapse
|
28
|
Pi K, Lee K. Prunus mume extract exerts antioxidant activities and suppressive effect of melanogenesis under the stimulation by alpha-melanocyte stimulating hormone in B16-F10 melanoma cells. Biosci Biotechnol Biochem 2017; 81:1883-1890. [PMID: 28831862 DOI: 10.1080/09168451.2017.1365591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the current study, we examined the antioxidant and skin-whitening properties of Prunus mume extract (PME). The ability of PME to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals was investigated in vitro. At a concentration of 1000 μg/mL, PME neutralized >45% free radical activity. Cell viability assessment with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that at concentrations <1500 μg/mL, PME does not exert cytotoxic effects on murine B16 melanoma (B16) cells. Morphological analysis disclosed that melanin production is inhibited in B16 cells treated with 250 nM α-melanocyte-stimulating hormone (α-MSH) and PME. We conclude that fruit extracts of P. mume exert a skin-whitening effect by inhibiting melanin production via regulation of melanogenesis-associated protein expression in melanocytes.
Collapse
Affiliation(s)
- KyungBae Pi
- a Bio Center , Incheon Business Information Technopark , Incheon , Republic of Korea
| | - KiBeom Lee
- a Bio Center , Incheon Business Information Technopark , Incheon , Republic of Korea
| |
Collapse
|
29
|
Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD. Surface Modification of Water Purification Membranes. Angew Chem Int Ed Engl 2017; 56:4662-4711. [DOI: 10.1002/anie.201601509] [Citation(s) in RCA: 441] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel J. Miller
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
- Joint Center for Artificial Photosynthesis Lawrence Berkeley National Laboratory 1 Cyclotron Road, 30-210C Berkeley CA 94702 USA
| | - Daniel R. Dreyer
- Nalco Champion 3200 Southwest Freeway, Ste. 2700 Houston TX 77027 USA
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Department of Chemistry and Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Donald R. Paul
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| |
Collapse
|
30
|
Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD. Oberflächenmodifizierung von Wasseraufbereitungsmembranen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201601509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel J. Miller
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
- Joint Center for Artificial Photosynthesis Lawrence Berkeley National Laboratory 1 Cyclotron Road, 30-210C Berkeley CA 94702 USA
| | - Daniel R. Dreyer
- Nalco Champion 3200 Southwest Freeway, Ste. 2700 Houston TX 77027 USA
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
- Department of Chemistry and Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
| | - Donald R. Paul
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| |
Collapse
|
31
|
Delijewski M, Wrześniok D, Beberok A, Rok J, Otręba M, Buszman E. The effect of simultaneous exposure of HEMn-DP and HEMn-LP melanocytes to nicotine and UV-radiation on the cell viability and melanogenesis. ENVIRONMENTAL RESEARCH 2016; 151:44-49. [PMID: 27450998 DOI: 10.1016/j.envres.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine on this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells.
Collapse
Affiliation(s)
- Marcin Delijewski
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Michał Otręba
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Ewa Buszman
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
32
|
Chang CC, Chang CH, Lo YH, Lin MH, Shen CC, Liu RS, Wang HE, Chen CL. Preparation and characterization of a novel Al(18)F-NOTA-BZA conjugate for melanin-targeted imaging of malignant melanoma. Bioorg Med Chem Lett 2016; 26:4133-9. [PMID: 27445169 DOI: 10.1016/j.bmcl.2016.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
Abstract
Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. Previous studies have demonstrated the specific binding ability of benzamide moiety to melanin. In this study, we developed a novel (18)F-labeled NOTA-benzamide conjugate, Al(18)F-NOTA-BZA, which can be synthesized in 30min with a radiochemical yield of 20-35% and a radiochemical purity of >95%. Al(18)F-NOTA-BZA is highly hydrophilic (logP=-1.96) and shows good in vitro stability. Intravenous administration of Al(18)F-NOTA-BZA in two melanoma-bearing mouse models revealed highly specific uptake in B16F0 melanotic melanoma (6.67±0.91 and 1.50±0.26%ID/g at 15 and 120min p.i., respectively), but not in A375 amelanotic melanoma (0.87±0.21 and 0.24±0.09%ID/g at 15 and 120min p.i., respectively). The clearance from most normal tissues was fast. A microPET scan of Al(18)F-NOTA-BZA-injected mice also displayed high-contrast tumor images as compared with normal organs. Owing to the favorable in vivo distribution of Al(18)F-NOTA-BZA after intravenous administration, the estimated absorption dose was low in all normal organs and tissues. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and thelow projected human dosimetry supported that Al(18)F-NOTA-BZA is a very promising melanin-specific PET probe for melanin-positive melanoma.
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Yi-Hsuan Lo
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Chih-Chieh Shen
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan; Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan; National PET/Cyclotron Center and Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan.
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan.
| |
Collapse
|
33
|
Wang C, Xu W, Hao W, Wang B, Zheng Q. Alternol inhibits the proliferation and induces the differentiation of the mouse melanoma B16F0 cell line. Oncol Rep 2016; 36:1150-6. [PMID: 27278753 DOI: 10.3892/or.2016.4844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/02/2016] [Indexed: 11/06/2022] Open
Abstract
High malignant potential and low susceptibility to treatment are characteristics of malignant melanoma. Alternol, a novel compound purified from microbial fermentation products obtained from the bark of the yew tree, exhibits a variety of antitumor activities. Based on these findings, the aim of the present study was to extend the knowledge on the antineoplastic effect of alternol in the mouse melanoma B16F0 cell line. Alternol significantly inhibited the proliferation and colony formation of B16F0 cells in a dose-dependent manner as detected by MTT and soft agar colony formation assays. NaOH alkaline lysis and oxidation of Dopa indicated that alternol enhanced the melanin content and tyrosinase activity of the B16F0 cells and results also showed a dose‑response relationship. Morphologic changes accompanied by extended dendrites were discovered in the B16F0 cells after treatment with alternol. Furthermore, the mRNA levels of tyrosinase, Trp1 and Trp2 were increased by alternol. Our results confirmed that alternol possesses marked antineoplastic properties against melanoma cells, indicating that this microbial fermentation product is a promising agent for the differentiation therapy of cancer. The inhibition of cell proliferation and colony formation by alternol was associated with both cytotoxicity and induction of differentiation.
Collapse
Affiliation(s)
- Caixia Wang
- Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjuan Xu
- Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjin Hao
- Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Bingsheng Wang
- Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qiusheng Zheng
- Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
34
|
Attwa E. Review of narrowband ultraviolet B radiation in vitiligo. World J Dermatol 2016; 5:93-108. [DOI: 10.5314/wjd.v5.i2.93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/16/2015] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
Vitiligo is a common, acquired pigmentary disorder of unknown etiology with great impact on patient’s appearance and quality of life. It presents a therapeutic challenge to many dermatologists. Photochemotherapy using psoralen and ultraviolet A (UVA) therapy, topical and oral immunosuppresants, as well as cosmetic camouflage are also commonly employed with varying clinical efficacy. Phototherapy is a popular treatment option, which includes both of the generalized ultraviolet B (UVB) therapies, broadband UVB and narrowband UVB (NB-UVB). It has been used favorably, both alone as well as in combination with other agents like topical calcineurin inhibitors, vitamin-D analogs. Combination therapies are useful and may provide quicker regimentation and treat vitiligo with an additive mechanism of action than UVB phototherapy. Advances in technology may lead to the continuing use of UVB phototherapy as a treatment for vitiligo through the development of sophisticated devices and delivery systems as well as innovative application methods. These will provide increased therapeutic options for all vitiligo patients, particularly those with refractory disease. In this article, I have reviewed the available data pertaining to efficacy and safety issues for NB-UVB as monotherapy, its comparison with psoralen plus UVA and other modes of phototherapy, combination regimens that have been tried and future prospects of NB-UVB in vitiligo.
Collapse
|
35
|
Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 2016; 338:52-63. [PMID: 26802581 DOI: 10.1016/j.heares.2016.01.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The blood-labyrinth barrier (BLB) in the stria vascularis is a highly specialized capillary network that controls exchanges between blood and the intrastitial space in the cochlea. The barrier shields the inner ear from blood-born toxic substances and selectively passes ions, fluids, and nutrients to the cochlea, playing an essential role in the maintenance of cochlear homeostasis. Anatomically, the BLB is comprised of endothelial cells (ECs) in the strial microvasculature, elaborated tight and adherens junctions, pericytes (PCs), basement membrane (BM), and perivascular resident macrophage-like melanocytes (PVM/Ms), which together form a complex "cochlear-vascular unit" in the stria vascularis. Physical interactions between the ECs, PCs, and PVM/Ms, as well as signaling between the cells, is critical for controlling vascular permeability and providing a proper environment for hearing function. Breakdown of normal interactions between components of the BLB is seen in a wide range of pathological conditions, including genetic defects and conditions engendered by inflammation, loud sound trauma, and ageing. In this review, we will discuss prevailing views of the structure and function of the strial cochlear-vascular unit (also referred to as the "intrastrial fluid-blood barrier"). We will also discuss the disrupted homeostasis seen in a variety of hearing disorders. Therapeutic targeting of the strial barrier may offer opportunities for improvement of hearing health and amelioration of auditory disorders. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
|
36
|
Coram RJ, Stillwagon SJ, Guggilam A, Jenkins MW, Swanson MS, Ladd AN. Muscleblind-like 1 is required for normal heart valve development in vivo. BMC DEVELOPMENTAL BIOLOGY 2015; 15:36. [PMID: 26472242 PMCID: PMC4608261 DOI: 10.1186/s12861-015-0087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/09/2015] [Indexed: 12/26/2022]
Abstract
Background Development of the valves and septa of the heart depends on the formation and remodeling of the endocardial cushions in the atrioventricular canal and outflow tract. These cushions are populated by mesenchyme produced from the endocardium by epithelial-mesenchymal transition (EMT). The endocardial cushions are remodeled into the valves at post-EMT stages via differentiation of the mesenchyme and changes in the extracellular matrix (ECM). Transforming growth factor β (TGFβ) signaling has been implicated in both the induction of EMT in the endocardial cushions and the remodeling of the valves at post-EMT stages. We previously identified the RNA binding protein muscleblind-like 1 (MBNL1) as a negative regulator of TGFβ signaling and EMT in chicken endocardial cushions ex vivo. Here, we investigate the role of MBNL1 in endocardial cushion development and valvulogenesis in Mbnl1∆E3/∆E3 mice, which are null for MBNL1 protein. Methods Collagen gel invasion assays, histology, immunohistochemistry, real-time RT-PCR, optical coherence tomography, and echocardiography were used to evaluate EMT and TGFβ signaling in the endocardial cushions, and morphogenesis, ECM composition, and function of the heart valves. Results As in chicken, the loss of MBNL1 promotes precocious TGFβ signaling and EMT in the endocardial cushions. Surprisingly, this does not lead to the production of excess mesenchyme, but later valve morphogenesis is aberrant. Adult Mbnl1∆E3/∆E3 mice exhibit valve dysmorphia with elevated TGFβ signaling, changes in ECM composition, and increased pigmentation. This is accompanied by a high incidence of regurgitation across both inflow and outflow valves. Mbnl1∆E3/∆E3 mice also have a high incidence of ostium secundum septal defects accompanied by atrial communication, but do not develop overt cardiomyopathy. Conclusions Together, these data indicate that MBNL1 plays a conserved role in negatively regulating TGFβ signaling, and is required for normal valve morphogenesis and homeostasis in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0087-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan J Coram
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Present Address: Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA.
| | - Samantha J Stillwagon
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Present Address: Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Anuradha Guggilam
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Maurice S Swanson
- Department of Molecular Genetics & Microbiology, College of Medicine, Center for NeuroGenetics and the Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Andrea N Ladd
- Department of Cellular & Molecular Medicine, Lerner Research Institute, 9500 Euclid Ave. NC10, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
37
|
Lindgren J, Sjövall P, Carney RM, Cincotta A, Uvdal P, Hutcheson SW, Gustafsson O, Lefèvre U, Escuillié F, Heimdal J, Engdahl A, Gren JA, Kear BP, Wakamatsu K, Yans J, Godefroit P. Molecular composition and ultrastructure of Jurassic paravian feathers. Sci Rep 2015; 5:13520. [PMID: 26311035 PMCID: PMC4550916 DOI: 10.1038/srep13520] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/29/2015] [Indexed: 11/17/2022] Open
Abstract
Feathers are amongst the most complex epidermal structures known, and they have a well-documented evolutionary trajectory across non-avian dinosaurs and basal birds. Moreover, melanosome-like microbodies preserved in association with fossil plumage have been used to reconstruct original colour, behaviour and physiology. However, these putative ancient melanosomes might alternatively represent microorganismal residues, a conflicting interpretation compounded by a lack of unambiguous chemical data. We therefore used sensitive molecular imaging, supported by multiple independent analytical tests, to demonstrate that the filamentous epidermal appendages in a new specimen of the Jurassic paravian Anchiornis comprise remnant eumelanosomes and fibril-like microstructures, preserved as endogenous eumelanin and authigenic calcium phosphate. These results provide novel insights into the early evolution of feathers at the sub-cellular level, and unequivocally determine that melanosomes can be preserved in fossil feathers.
Collapse
Affiliation(s)
- Johan Lindgren
- Department of Geology, Lund University, 223 62 Lund, Sweden
| | - Peter Sjövall
- SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, 501 15 Borås, Sweden
| | - Ryan M Carney
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02906, USA
| | - Aude Cincotta
- Operational Direction 'Earth and History of Life', Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium.,Department of Geology, University of Namur, 5000 Namur, Belgium
| | - Per Uvdal
- MAX-IV laboratory, Lund University, 221 00 Lund, Sweden.,Chemical Physics, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Steven W Hutcheson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Ola Gustafsson
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Ulysse Lefèvre
- Operational Direction 'Earth and History of Life', Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium.,Department of Geology, Liège University, 4000 Liège, Belgium
| | | | - Jimmy Heimdal
- MAX-IV laboratory, Lund University, 221 00 Lund, Sweden
| | | | - Johan A Gren
- Department of Geology, Lund University, 223 62 Lund, Sweden
| | - Benjamin P Kear
- Museum of Evolution, Uppsala University, 752 36 Uppsala, Sweden.,Palaeobiology Programme, Department of Earth Sciences, Uppsala University, 752 36 Uppsala, Sweden
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Johan Yans
- Department of Geology, University of Namur, 5000 Namur, Belgium
| | - Pascal Godefroit
- Operational Direction 'Earth and History of Life', Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| |
Collapse
|
38
|
Structural changes in thestrial blood-labyrinth barrier of aged C57BL/6 mice. Cell Tissue Res 2015; 361:685-96. [PMID: 25740201 DOI: 10.1007/s00441-015-2147-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Tight control over cochlear blood flow (CoBF) and the blood-labyrinth barrier (BLB) in the striavascularis is critical for maintaining the ionic, fluid and energy balance necessary for hearing function. Inefficient CoBF and disruption of BLB integrity have long been considered major etiologic factors in a variety of hearing disorders. In this study, we investigate structural changes in the BLB of the striavascularis in age-graded C57BL/6 mice (1 to 21 months) with a focus on changes in two blood barrier accessory cells, namely pericytes (PCs) and perivascular-resident macrophage-like melanocytes (PVM/Ms). Decreased capillary density was detectable at 6 months, with significant capillary degeneration seen in 9- to 21-month-old mice. Reduced capillary density was highly correlated with lower numbers of PCs and PVM/Ms. "Drop-out" of PCs and "activation" of PVM/Ms were seen at 6 months, with drastic changes being observed by 21 months. With newly established in vitro three-dimensional cell-based co-culture models, we demonstrate that PCs and PVM/Ms are essential for maintaining cochlear vascular architecture and stability.
Collapse
|
39
|
Chang CC, Chang CH, Shen CC, Chen CL, Liu RS, Lin MH, Wang HE. Synthesis and evaluation of ¹²³/¹³¹I-Iochlonicotinamide as a novel SPECT probe for malignant melanoma. Bioorg Med Chem 2015; 23:2261-9. [PMID: 25800432 DOI: 10.1016/j.bmc.2015.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
Malignant melanoma expresses a highly aggressive metastasis. Early diagnosis of malignant melanoma is important for patient survival. Radiolabeled benzamides and nicotinamides have been reported to be attractive candidates for malignant melanoma diagnosis as they bind to melanin, a characteristic substance that displays in malignant melanoma, and show high tumor accumulation and retention. Herein, we designed and synthesized a novel (123/131)I-labeled nicotinamide derivative that specifically binds to melanin. (123/131)I-Iochlonicotinamide was prepared with good radiochemical yield (50-70%, decay corrected) and high specific radioactivity (50-80 GBq/μmol). (131)I-Iochlonicotinamide exhibited good in vitro stability (radiochemical purity >95% after a 24-h incubation) in human serum. High uptake of (123/131)I-Iochlonicotinamide in B16F0 melanoma cells compared to that in A375 amelanotic cells demonstrated its selective binding to melanin. Intravenous administration of (123/131)I-Iochlonicotinamide in a melanoma-bearing mouse model revealed high uptake in melanotic melanoma and high tumor-to-muscle ratio. MicroSPECT scan of (123/131)I-Iochlonicotinamide injected mice also displayed high contrast tumor imaging as compared with normal organs. The radiation-absorbed dose projection for the administration of (131)I-Iochlonicotinamide to human was based on the results of biodistribution study. The effective dose appears to be approximately 0.44 mSv/MBq(-1). The specific binding of (123/131)I-Iochlonicotinamide to melanin along with a prolonged tumor retention and acceptable projected human dosimetry suggest that it may be a promising theranostic agent for treating malignant melanoma.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Humans
- Iodine Radioisotopes
- Male
- Melanoma/diagnosis
- Melanoma/drug therapy
- Melanoma/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Molecular Probes/administration & dosage
- Molecular Probes/chemistry
- Molecular Probes/pharmacokinetics
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Niacinamide/administration & dosage
- Niacinamide/chemistry
- Niacinamide/pharmacology
- Positron-Emission Tomography
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemistry
- Radiopharmaceuticals/pharmacokinetics
- Structure-Activity Relationship
- Tissue Distribution
- Tomography, Emission-Computed, Single-Photon
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Chih-Chieh Shen
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Taipei City Hospital, Zhongxiao Branch, No. 87, Tong-De Rd., Nan-Gang District, Taipei 11556, Taiwan.
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan.
| |
Collapse
|
40
|
Delijewski M, Beberok A, Otręba M, Wrześniok D, Rok J, Buszman E. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes. ENVIRONMENTAL RESEARCH 2014; 134:309-314. [PMID: 25199971 DOI: 10.1016/j.envres.2014.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/05/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC50 was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine.
Collapse
Affiliation(s)
- Marcin Delijewski
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Michał Otręba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Ewa Buszman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
41
|
MicroRNA 340 is involved in UVB-induced dendrite formation through the regulation of RhoA expression in melanocytes. Mol Cell Biol 2014; 34:3407-20. [PMID: 24980435 DOI: 10.1128/mcb.00106-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influence of UV irradiation on pigmentation is well established, but the molecular and cellular mechanisms controlling dendrite formation remain incompletely understood. MicroRNAs (miRNAs) are a class of small RNAs that participate in various cellular processes by suppressing the expression of target mRNAs. In this study, we investigated the expression of miRNAs in response to UVB irradiation using a microarray screen and then identified potential mRNA targets for differentially expressed miRNAs among the genes governing dendrite formation. We subsequently determined the ability of miRNA 340 (miR-340) to suppress the expression of RhoA, which is a predicted miR-340 target gene that regulates dendrite formation. The overexpression of miR-340 promoted dendrite formation and melanosome transport, and the downregulation of miR-340 inhibited UVB-induced dendrite formation and melanosome transport. Moreover, a luciferase reporter assay demonstrated direct targeting of RhoA by miR-340 in the immortalized human melanocyte cell line Pig1. In conclusion, this study has established an miRNA associated with UVB irradiation. The significant downregulation of RhoA protein and mRNA expression after UVB irradiation and the modulation of miR-340 expression suggest a key role for miR-340 in regulating UVB-induced dendrite formation and melanosome transport.
Collapse
|
42
|
Delijewski M, Wrześniok D, Otręba M, Beberok A, Rok J, Buszman E. Nicotine impact on melanogenesis and antioxidant defense system in HEMn-DP melanocytes. Mol Cell Biochem 2014; 395:109-16. [PMID: 24942236 PMCID: PMC4131136 DOI: 10.1007/s11010-014-2116-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Abstract
Nicotine is a compound of tobacco plants and is responsible for addictive properties of tobacco which is used by about one billion of smokers all over the world. Recently, nicotine has drawn even more attention due to its presumed neuroprotective and antioxidant features as far as common use in various forms of smoking cessation therapies. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn influence biochemical processes in human cells producing melanin. The aim of this study was to examine the impact of nicotine on melanogenesis and antioxidant defense system in cultured normal human melanocytes (HEMn-DP). Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC50 was determined to be 2.52 mM. Nicotine modulated melanin biosynthesis in normal human melanocytes. Significant changes in hydrogen peroxide content and cellular antioxidant enzymes: SOD, CAT, and GPx activities were stated in melanocytes exposed to nicotine, which indicates alterations of antioxidant defense system. The results obtained in vitro may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long-term exposition to nicotine.
Collapse
Affiliation(s)
- Marcin Delijewski
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | | | | | | | | | | |
Collapse
|
43
|
Tapia CV, Falconer M, Tempio F, Falcón F, López M, Fuentes M, Alburquenque C, Amaro J, Bucarey SA, Di Nardo A. Melanocytes and melanin represent a first line of innate immunity against Candida albicans. Med Mycol 2014; 52:445-54. [PMID: 24934806 DOI: 10.1093/mmy/myu026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanocytes are dendritic cells located in the skin and mucosae that synthesize melanin. Some infections induce hypo- or hyperpigmentation, which is associated with the activation of Toll-like receptors (TLRs), especially TLR4. Candida albicans is an opportunist pathogen that can switch between blastoconidia and hyphae forms; the latter is associated with invasion. Our objectives in this study were to ascertain whether C. albicans induces pigmentation in melanocytes and whether this process is dependent on TLR activation, as well as relating this with the antifungal activity of melanin as a first line of innate immunity against fungal infections. Normal human melanocytes were stimulated with C. albicans supernatants or with crude extracts of the blastoconidia or hyphae forms, and pigmentation and TLR2/TLR4 expression were measured. Expression of the melanosomal antigens Melan-A and gp100 was examined for any correlation with increased melanin levels or antifungal activity in melanocyte lysates. Melanosomal antigens were induced earlier than cell pigmentation, and hyphae induced stronger melanization than blastoconidia. Notably, when melanocytes were stimulated with crude extracts of C. albicans, the cell surface expression of TLR2/TLR4 began at 48 h post-stimulation and peaked at 72 h. At this time, blastoconidia induced both TLR2 and TLR4 expression, whereas hyphae only induced TLR4 expression. Taken together, these results suggest that melanocytes play a key role in innate immune responses against C. albicans infections by recognizing pathogenic forms of C. albicans via TLR4, resulting in increased melanin content and inhibition of infection.
Collapse
Affiliation(s)
- Cecilia V Tapia
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile Servicio de Laboratorio, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Maryanne Falconer
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Fabián Tempio
- Programa de Inmunología, ICBM, Facultad de Medicina Universidad de Chile
| | - Felipe Falcón
- Programa de Inmunología, ICBM, Facultad de Medicina Universidad de Chile
| | - Mercedes López
- Programa de Inmunología, ICBM, Facultad de Medicina Universidad de Chile
| | - Marisol Fuentes
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Claudio Alburquenque
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - José Amaro
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Sergio A Bucarey
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Anna Di Nardo
- Division of Dermatology, Department of Medicine, University of California, San Diego, and Veterans Administration, San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
44
|
Pang S, Wu H, Wang Q, Cai M, Shi W, Shang J. Chronic stress suppresses the expression of cutaneous hypothalamic-pituitary-adrenocortical axis elements and melanogenesis. PLoS One 2014; 9:e98283. [PMID: 24854026 PMCID: PMC4031121 DOI: 10.1371/journal.pone.0098283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022] Open
Abstract
Chronic stress can affect skin function, and some skin diseases might be triggered or aggravated by stress. Stress can activate the central hypothalamic–pituitary–adrenocortical (HPA) axis, which causes glucocorticoid levels to increase. The skin has HPA axis elements that react to environmental stressors to regulate skin functions, such as melanogenesis. This study explores the mechanism whereby chronic stress affects skin pigmentation, focusing on the HPA axis, and investigates the role of glucocorticoids in this pathway. We exposed C57BL/6 male mice to two types of chronic stress, chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS). Mice subjected to either stress condition showed reduced melanogenesis. Interestingly, CRS and CUMS triggered reductions in the mRNA expression levels of key factors involved in the HPA axis in the skin. In mice administered corticosterone, decreased melanin synthesis and reduced expression of HPA axis elements were observed. The reduced expression of HPA axis elements and melanogenesis in the skin of stressed mice were reversed by RU486 (a glucocorticoid receptor antagonist) treatment. Glucocorticoids had no significant inhibitory effect on melanogenesis in vitro. These results suggest that, high levels of serum corticosterone induced by chronic stress can reduce the expression of elements of the skin HPA axis by glucocorticoid-dependent negative feedback. These activities can eventually result in decreased skin pigmentation. Our findings raise the possibility that chronic stress could be a risk factor for depigmentation by disrupting the cutaneous HPA axis and should prompt dermatologists to exercise more caution when using glucocorticoids for treatment.
Collapse
Affiliation(s)
- Silin Pang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huali Wu
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qian Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Minxuan Cai
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Weimin Shi
- Shanghai First People Hospital, Shanghai, China
| | - Jing Shang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- * E-mail:
| |
Collapse
|
45
|
Inhibitory effect of corn silk on skin pigmentation. Molecules 2014; 19:2808-18. [PMID: 24595276 PMCID: PMC6270964 DOI: 10.3390/molecules19032808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022] Open
Abstract
In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.
Collapse
|
46
|
Yeom GGM, Min S, Kim SY. 2,3,5,6-Tetramethylpyrazine of Ephedra sinica regulates melanogenesis and inflammation in a UVA-induced melanoma/keratinocytes co-culture system. Int Immunopharmacol 2013; 18:262-9. [PMID: 24333010 DOI: 10.1016/j.intimp.2013.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/28/2013] [Accepted: 11/22/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND 2,3,5,6-Tetramethylpyrazine (TMP) is known as a composition of Ephedra sinica and it has been used in the treatment of several disorders such as asthma, heart failure, rhinitis, and urinary incontinence. It has been reported that TMP inhibits melanoma metastasis and suppression angiogenesis by VEGF. OBJECTIVE The inhibitory activity of melanogenic proteins by TMP was confirmed in UVA-induced melanoma/keratinocyte co-culture system in this paper. METHODS The melanin content, cell viability and cytokines release such as TNFα, IL-1β, IL-8 and GM-CSF were measured by ELISA assay. In addition, TRP1, MITF and MAPK signaling protein expression were also evaluated by Western blotting analysis. RESULTS Decreasing melanogenic factors (TRP1, MITF, and MAPK) and factors (TNFα, IL-1β, IL-8, and GM-CSF) improving skin cancer and inflammation were identified. CONCLUSION It suggests that TMP can serve as a potent candidate for regulation of melanogenesis.
Collapse
Affiliation(s)
- Gyoseon Goya M Yeom
- Skin Science, R&D Center, iPEERES Cosmetics Ltd., 104, Je2gongdan 1-gil, Miyang-myeon, Anseong-si, Gyeonggi-do 456-843, Republic of Korea.
| | - Seona Min
- Laboratory of Microbiology, INOMAX, 16, Goji 5-gil, Jeongnam-myeon, Hwaseong-si, Gyeonggi-do, 445-962, Republic of Korea.
| | - Sun Yeou Kim
- Gachon Univ. of Medicine and Science, 191, Hambangmoe-ro, Yeonsu-gu, Incheon, 406-799 Korea.
| |
Collapse
|
47
|
Tang J, Li Q, Cheng B, Jing L. Primary culture of human face skin melanocytes for the study of hyperpigmentation. Cytotechnology 2013; 66:891-8. [PMID: 24113919 DOI: 10.1007/s10616-013-9643-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/31/2013] [Indexed: 11/28/2022] Open
Abstract
Facial epidermal pigmentation and skin tumors can be caused by UV exposure and other physical and chemical irritations. In this report we describe the primary culture of melanocytes from human face skin. The ability to culture these melanocytes will enable their morphological and biological properties to be investigated. Skin specimens were obtained from patients who had undergone lower blepharoplasty procedures. Digestion with neutral protease and trypsin was used to obtain single cell suspensions of epidermal cells. The cells were cultured in M254 medium supplemented with human melanocyte growth solution. Cell morphology was observed using inverted microscopy. Melanocytes were positively identified using both L-DOPA staining and S-100 protein immunohistochemical staining. Immunofluorescence was used to confirm the expression of tyrosinase-related protein-1, a melanocyte-specific protein. The cellular ultrastructure of the melanocytes was observed by transmission electron microscopy. The cultured human melanocytes from face skin were multi-dendritic, and many mature melanosomes were observed. Therefore, using a specific culture medium, melanocytes from face skin can be successfully cultured and made available for further investigations.
Collapse
Affiliation(s)
- Jianbing Tang
- Department of Plastic Surgery, The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, HuaBo Bio-pharmaceutic Institute of Guangzhou, General Hospital of Guangzhou Military Command, Guangzhou, 510010, People's Republic of China
| | | | | | | |
Collapse
|
48
|
Zhang F, Dai M, Neng L, Zhang JH, Zhi Z, Fridberger A, Shi X. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma--a salient feature of strial barrier associated hearing loss. FASEB J 2013; 27:3730-40. [PMID: 23729595 DOI: 10.1096/fj.13-232892] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue perivascular resident macrophages (PVM/Ms), a hybrid cell type with characteristics of both macrophages and melanocytes, are critical for establishing and maintaining the endocochlear potential (EP) required for hearing. The PVM/Ms modulate expression of tight- and adherens-junction proteins in the endothelial barrier of the stria vascularis (intrastrial fluid-blood barrier) through secretion of a signaling molecule, pigment epithelium growth factor (PEDF). Here, we identify a significant link between abnormalities in PVM/Ms and endothelial barrier breakdown from acoustic trauma to the mouse ear. We find that acoustic trauma causes activation of PVM/Ms and physical detachment from capillary walls. Concurrent with the detachment, we find loosened tight junctions between endothelial cells and decreased production of tight- and adherens-junction protein, resulting in leakage of serum proteins from the damaged barrier. A key factor in the intrastrial fluid-blood barrier hyperpermeability exhibited in the mice is down-regulation of PVM/M modulated PEDF production. We demonstrate that delivery of PEDF to the damaged ear ameliorates hearing loss by restoring intrastrial fluid-blood barrier integrity. PEDF up-regulates expression of tight junction-associated proteins (ZO-1 and VE-cadherin) and PVM/M stabilizing neural cell adhesion molecule (NCAM-120). These studies point to the critical role PVM/Ms play in regulating intrastrial fluid-blood barrier integrity in healthy and noise-damaged ears.
Collapse
Affiliation(s)
- Fei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head and Neck Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239-3098, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Decean H, Perde-Schrepler M, Tatomir C, Fischer-Fodor E, Brie I, Virag P. Modulation of the pro-inflammatory cytokines and matrix metalloproteinases production in co-cultivated human keratinocytes and melanocytes. Arch Dermatol Res 2013; 305:705-14. [DOI: 10.1007/s00403-013-1353-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/30/2013] [Indexed: 10/26/2022]
|
50
|
Cichorek M, Wachulska M, Stasiewicz A, Tymińska A. Skin melanocytes: biology and development. Postepy Dermatol Alergol 2013; 30:30-41. [PMID: 24278043 PMCID: PMC3834696 DOI: 10.5114/pdia.2013.33376] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/15/2012] [Accepted: 10/24/2012] [Indexed: 01/03/2023] Open
Abstract
In the human skin, melanocytes are present in the epidermis and hair follicles. The basic features of these cells are the ability to melanin production and the origin from neural crest cells. This last element is important because there are other cells able to produce melanin but of different embryonic origin (pigmented epithelium of retina, some neurons, adipocytes). The life cycle of melanocyte consists of several steps including differentiation of melanocyte lineage/s from neural crest, migration and proliferation of melanoblasts, differentiation of melanoblasts into melanocytes, proliferation and maturation of melanocytes at the target places (activity of melanogenic enzymes, melanosome formation and transport to keratinocytes) and eventual cell death (hair melanocytes). Melanocytes of the epidermis and hair are cells sharing some common features but in general they form biologically different populations living in unique niches of the skin.
Collapse
Affiliation(s)
- Mirosława Cichorek
- Department of Embryology, Medical University of Gdansk, Poland. Head: Mirosława Cichorek PhD
| | | | | | | |
Collapse
|