1
|
Gong C, Xia C, Liu L. Exosomes derived from epidermal growth factor-like domain protein 6-preconditioned mesenchymal stem cells for diabetic wound healing. Regen Ther 2024; 26:932-940. [PMID: 39508057 PMCID: PMC11539165 DOI: 10.1016/j.reth.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Diabetic wounds are difficult to repair effectively in the clinic. Tissue engineering based on mesenchymal stem cells (MSCs) showed great therapeutic potential in wound healing. MSCs-derived exosome could reproduce the effect of MSCs by transferring the bioactive substance to the recipient cells. The biological function of exosomes was determined by the state of the derived MSCs. In this study, we cultured hUC-MSCs with EGFL6 and isolated EGFL6-preconditioned exosomes (EGF-Exos), and then investigated the effect of EGF-Exos on wound healing. The results revealed that EGF-Exos promoted the proliferation and migration of HUVECs, had the anti-inflammtory function and improved angiogenesis. Moreover, we fabricated Gelama hydrogel to load EGF-Exos to repair diabetic wounds. In vivo results showed that EGF-Exos contributed to the repair of diabetic wound and provided valuable data for understanding the role of EGF-Exos in diabetic wound healing.
Collapse
Affiliation(s)
- Chen Gong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chengde Xia
- Department of Burn Surgery, The First People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Linbo Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Sakhrani N, Stefani RM, Setti S, Cadossi R, Ateshian GA, Hung CT. Pulsed Electromagnetic Field Therapy and Direct Current Electric Field Modulation Promote the Migration of Fibroblast-like Synoviocytes to Accelerate Cartilage Repair In Vitro. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:12406. [PMID: 36970107 PMCID: PMC10035757 DOI: 10.3390/app122312406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Articular cartilage injuries are a common source of joint pain and dysfunction. As articular cartilage is avascular, it exhibits a poor intrinsic healing capacity for self-repair. Clinically, osteochondral grafts are used to surgically restore the articular surface following injury. A significant challenge remains with the repair properties at the graft-host tissue interface as proper integration is critical toward restoring normal load distribution across the joint. A key to addressing poor tissue integration may involve optimizing mobilization of fibroblast-like synoviocytes (FLS) that exhibit chondrogenic potential and are derived from the adjacent synovium, the specialized connective tissue membrane that envelops the diarthrodial joint. Synovium-derived cells have been directly implicated in the native repair response of articular cartilage. Electrotherapeutics hold potential as low-cost, low-risk, non-invasive adjunctive therapies for promoting cartilage healing via cell-mediated repair. Pulsed electromagnetic fields (PEMFs) and applied direct current (DC) electric fields (EFs) via galvanotaxis are two potential therapeutic strategies to promote cartilage repair by stimulating the migration of FLS within a wound or defect site. PEMF chambers were calibrated to recapitulate clinical standards (1.5 ± 0.2 mT, 75 Hz, 1.3 ms duration). PEMF stimulation promoted bovine FLS migration using a 2D in vitro scratch assay to assess the rate of wound closure following cruciform injury. Galvanotaxis DC EF stimulation assisted FLS migration within a collagen hydrogel matrix in order to promote cartilage repair. A novel tissue-scale bioreactor capable of applying DC EFs in sterile culture conditions to 3D constructs was designed in order to track the increased recruitment of synovial repair cells via galvanotaxis from intact bovine synovium explants to the site of a cartilage wound injury. PEMF stimulation further modulated FLS migration into the bovine cartilage defect region. Biochemical composition, histological analysis, and gene expression revealed elevated GAG and collagen levels following PEMF treatment, indicative of its pro-anabolic effect. Together, PEMF and galvanotaxis DC EF modulation are electrotherapeutic strategies with complementary repair properties. Both procedures may enable direct migration or selective homing of target cells to defect sites, thus augmenting natural repair processes for improving cartilage repair and healing.
Collapse
Affiliation(s)
- Neeraj Sakhrani
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Robert M. Stefani
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Seiwerth S, Milavic M, Vukojevic J, Gojkovic S, Krezic I, Vuletic LB, Pavlov KH, Petrovic A, Sikiric S, Vranes H, Prtoric A, Zizek H, Durasin T, Dobric I, Staresinic M, Strbe S, Knezevic M, Sola M, Kokot A, Sever M, Lovric E, Skrtic A, Blagaic AB, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 and Wound Healing. Front Pharmacol 2021; 12:627533. [PMID: 34267654 PMCID: PMC8275860 DOI: 10.3389/fphar.2021.627533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Significance: The antiulcer peptide, stable gastric pentadecapeptide BPC 157 (previously employed in ulcerative colitis and multiple sclerosis trials, no reported toxicity (LD1 not achieved)), is reviewed, focusing on the particular skin wound therapy, incisional/excisional wound, deep burns, diabetic ulcers, and alkali burns, which may be generalized to the other tissues healing. Recent Advances: BPC 157 has practical applicability (given alone, with the same dose range, and same equipotent routes of application, regardless the injury tested). Critical Issues: By simultaneously curing cutaneous and other tissue wounds (colocutaneous, gastrocutaneous, esophagocutaneous, duodenocutaneous, vesicovaginal, and rectovaginal) in rats, the potency of BPC 157 is evident. Healing of the wounds is accomplished by resolution of vessel constriction, the primary platelet plug, the fibrin mesh which acts to stabilize the platelet plug, and resolution of the clot. Thereby, BPC 157 is effective in wound healing much like it is effective in counteracting bleeding disorders, produced by amputation, and/or anticoagulants application. Likewise, BPC 157 may prevent and/or attenuate or eliminate, thus, counteract both arterial and venous thrombosis. Then, confronted with obstructed vessels, there is circumvention of the occlusion, which may be the particular action of BPC 157 in ischemia/reperfusion. Future Directions: BPC 157 rapidly increases various genes expression in rat excision skin wound. This would define the healing in the other tissues, that is, gastrointestinal tract, tendon, ligament, muscle, bone, nerve, spinal cord, cornea (maintained transparency), and blood vessels, seen with BPC 157 therapy.
Collapse
Affiliation(s)
- Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jaksa Vukojevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Andrea Petrovic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Andreja Prtoric
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tajana Durasin
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine Osijek, University of Osijek, Osijek, Croatia
| | - Marko Sever
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Rajendran SB, Challen K, Wright KL, Hardy JG. Electrical Stimulation to Enhance Wound Healing. J Funct Biomater 2021; 12:40. [PMID: 34205317 PMCID: PMC8293212 DOI: 10.3390/jfb12020040] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Electrical stimulation (ES) can serve as a therapeutic modality accelerating the healing of wounds, particularly chronic wounds which have impaired healing due to complications from underlying pathology. This review explores how ES affects the cellular mechanisms of wound healing, and its effectiveness in treating acute and chronic wounds. Literature searches with no publication date restrictions were conducted using the Cochrane Library, Medline, Web of Science, Google Scholar and PubMed databases, and 30 full-text articles met the inclusion criteria. In vitro and in vivo experiments investigating the effect of ES on the general mechanisms of healing demonstrated increased epithelialization, fibroblast migration, and vascularity around wounds. Six in vitro studies demonstrated bactericidal effects upon exposure to alternating and pulsed current. Twelve randomized controlled trials (RCTs) investigated the effect of pulsed current on chronic wound healing. All reviewed RCTs demonstrated a larger reduction in wound size and increased healing rate when compared to control groups. In conclusion, ES therapy can contribute to improved chronic wound healing and potentially reduce the financial burden associated with wound management. However, the variations in the wound characteristics, patient demographics, and ES parameters used across studies present opportunities for systematic RCT studies in the future.
Collapse
Affiliation(s)
- Saranya B. Rajendran
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, Lancashire LA1 4AT, UK;
| | - Kirsty Challen
- Emergency Department, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston, Lancashire PR2 9HT, UK;
| | - Karen L. Wright
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, Lancashire LA1 4YG, UK
| | - John G. Hardy
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YB, UK
| |
Collapse
|
5
|
He JJ, McCarthy C, Camci-Unal G. Development of Hydrogel‐Based Sprayable Wound Dressings for Second‐ and Third‐Degree Burns. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jacqueline Jialu He
- Department of Chemical Engineering University of Massachusetts Lowell One University Avenue Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell One University Avenue Lowell MA 01854 USA
| | - Colleen McCarthy
- Department of Chemical Engineering University of Massachusetts Lowell One University Avenue Lowell MA 01854 USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering University of Massachusetts Lowell One University Avenue Lowell MA 01854 USA
- Department of Surgery University of Massachusetts Medical School 55 Lake Avenue Worcester MA 01655 USA
| |
Collapse
|
6
|
Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Tayanloo Beik A, Arjmand B. Tissue Engineered Skin Substitutes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:143-188. [PMID: 29855826 DOI: 10.1007/5584_2018_226] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental skin role is to supply a supportive barrier to protect body against harmful agents and injuries. Three layers of skin including epidermis, dermis and hypodermis form a sophisticated tissue composed of extracellular matrix (ECM) mainly made of collagens and glycosaminoglycans (GAGs) as a scaffold, different cell types such as keratinocytes, fibroblasts and functional cells embedded in the ECM. When the skin is injured, depends on its severity, the majority of mentioned components are recruited to wound regeneration. Additionally, different growth factors like fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) are needed to orchestrated wound healing process. In case of large surface area wounds, natural wound repair seems inefficient. Inspired by nature, scientists in tissue engineering field attempt to engineered constructs mimicking natural healing process to promote skin restoration in untreatable injuries. There are three main types of commercially available engineered skin substitutes including epidermal, dermal, and dermoepidermal. Each of them could be composed of scaffold, desired cell types or growth factors. These substitutes could have autologous, allogeneic, or xenogeneic origin. Moreover, they may be cellular or acellular. They are used to accelerate wound healing and recover normal skin functions with pain relief. Although there are a wide variety of commercially available skin substitutes, almost none of them considered as an ideal equivalents required for proper wound healing.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Falahzadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nematizadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Farazandeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration. Mediators Inflamm 2017; 2017:5217967. [PMID: 29213192 PMCID: PMC5682068 DOI: 10.1155/2017/5217967] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/14/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022] Open
Abstract
Cutaneous wound healing is a complex multiple phase process, which overlaps each other, where several growth factors, cytokines, chemokines, and various cells interact in a well-orchestrated manner. However, an imbalance in any of these phases and factors may lead to disruption in harmony of normal wound healing process, resulting in transformation towards chronic nonhealing wounds and abnormal scar formation. Although various therapeutic interventions are available to treat chronic wounds, current wound-care has met with limited success. Progenitor stem cells possess potential therapeutic ability to overcome limitations of the present treatments as it offers accelerated wound repair with tissue regeneration. A substantial number of stem cell therapies for cutaneous wounds are currently under development as a result of encouraging preliminary findings in both preclinical and clinical studies. However, the mechanisms by which these stem cells contribute to the healing process have yet to be elucidated. In this review, we emphasize on the major treatment modalities currently available for the treatment of the wound, role of various interstitial stem cells and exogenous adult stem cells in cutaneous wound healing, and possible mechanisms involved in the healing process.
Collapse
|
8
|
Sun YS. Studying Electrotaxis in Microfluidic Devices. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2048. [PMID: 28880251 PMCID: PMC5621068 DOI: 10.3390/s17092048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
Collective cell migration is important in various physiological processes such as morphogenesis, cancer metastasis and cell regeneration. Such migration can be induced and guided by different chemical and physical cues. Electrotaxis, referring to the directional migration of adherent cells under stimulus of electric fields, is believed to be highly involved in the wound-healing process. Electrotactic experiments are conventionally conducted in Petri dishes or cover glasses wherein cells are cultured and electric fields are applied. However, these devices suffer from evaporation of the culture medium, non-uniformity of electric fields and low throughput. To overcome these drawbacks, micro-fabricated devices composed of micro-channels and fluidic components have lately been applied to electrotactic studies. Microfluidic devices are capable of providing cells with a precise micro-environment including pH, nutrition, temperature and various stimuli. Therefore, with the advantages of reduced cell/reagent consumption, reduced Joule heating and uniform and precise electric fields, microfluidic chips are perfect platforms for observing cell migration under applied electric fields. In this paper, I review recent developments in designing and fabricating microfluidic devices for studying electrotaxis, aiming to provide critical updates in this rapidly-growing, interdisciplinary field.
Collapse
Affiliation(s)
- Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
9
|
Electrical Stimulation for Wound-Healing: Simulation on the Effect of Electrode Configurations. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5289041. [PMID: 28497054 PMCID: PMC5401728 DOI: 10.1155/2017/5289041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/22/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
Abstract
Endogenous electric field is known to play important roles in the wound-healing process, mainly through its effects on protein synthesis and cell migration. Many clinical studies have demonstrated that electrical stimulation (ES) with steady direct currents is beneficial to accelerating wound-healing, even though the underlying mechanisms remain unclear. In the present study, a three-dimensional finite element wound model was built to optimize the electrode configuration in ES. Four layers of the skin, stratum corneum, epidermis, dermis, and subcutis, with defined thickness and electrical properties were modeled. The main goal was to evaluate the distributions of exogenous electric fields delivered with direct current (DC) stimulation using different electrode configurations such as sizes and positions. Based on the results, some guidelines were obtained in designing the electrode configuration for applications of clinical ES.
Collapse
|
10
|
Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR. Advances in Skin Regeneration Using Tissue Engineering. Int J Mol Sci 2017; 18:E789. [PMID: 28387714 PMCID: PMC5412373 DOI: 10.3390/ijms18040789] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/04/2017] [Indexed: 12/11/2022] Open
Abstract
Tissue engineered skin substitutes for wound healing have evolved tremendously over the last couple of years. New advances have been made toward developing skin substitutes made up of artificial and natural materials. Engineered skin substitutes are developed from acellular materials or can be synthesized from autologous, allograft, xenogenic, or synthetic sources. Each of these engineered skin substitutes has their advantages and disadvantages. However, to this date, a complete functional skin substitute is not available, and research is continuing to develop a competent full thickness skin substitute product that can vascularize rapidly. There is also a need to redesign the currently available substitutes to make them user friendly, commercially affordable, and viable with longer shelf life. The present review focuses on providing an overview of advances in the field of tissue engineered skin substitute development, the availability of various types, and their application.
Collapse
Affiliation(s)
- Komal Vig
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Atul Chaudhari
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Shweta Tripathi
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Saurabh Dixit
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Rajnish Sahu
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Shreekumar Pillai
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Vida A Dennis
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Shree R Singh
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| |
Collapse
|
11
|
Bayati V, Abbaspour MR, Dehbashi FN, Neisi N, Hashemitabar M. A dermal equivalent developed from adipose-derived stem cells and electrospun polycaprolactone matrix: an in vitro and in vivo study. Anat Sci Int 2016; 92:509-520. [DOI: 10.1007/s12565-016-0352-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 01/22/2023]
|
12
|
Piraino F, Selimović Š. A Current View of Functional Biomaterials for Wound Care, Molecular and Cellular Therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:403801. [PMID: 26509154 PMCID: PMC4609773 DOI: 10.1155/2015/403801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 01/04/2023]
Abstract
The intricate process of wound healing involves activation of biological pathways that work in concert to regenerate a tissue microenvironment consisting of cells and external cellular matrix (ECM) with enzymes, cytokines, and growth factors. Distinct stages characterize the mammalian response to tissue injury: hemostasis, inflammation, new tissue formation, and tissue remodeling. Hemostasis and inflammation start right after the injury, while the formation of new tissue, along with migration and proliferation of cells within the wound site, occurs during the first week to ten days after the injury. In this review paper, we discuss approaches in tissue engineering and regenerative medicine to address each of these processes through the application of biomaterials, either as support to the native microenvironment or as delivery vehicles for functional hemostatic, antibacterial, or anti-inflammatory agents. Molecular therapies are also discussed with particular attention to drug delivery methods and gene therapies. Finally, cellular treatments are reviewed, and an outlook on the future of drug delivery and wound care biomaterials is provided.
Collapse
Affiliation(s)
- Francesco Piraino
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Šeila Selimović
- American Association for the Advancement of Science, Washington, DC 20520, USA
| |
Collapse
|
13
|
Wu SY, Hou HS, Sun YS, Cheng JY, Lo KY. Correlation between cell migration and reactive oxygen species under electric field stimulation. BIOMICROFLUIDICS 2015; 9:054120. [PMID: 26487906 PMCID: PMC4600077 DOI: 10.1063/1.4932662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 05/04/2023]
Abstract
Cell migration is an essential process involved in the development and maintenance of multicellular organisms. Electric fields (EFs) are one of the many physical and chemical factors known to affect cell migration, a phenomenon termed electrotaxis or galvanotaxis. In this paper, a microfluidics chip was developed to study the migration of cells under different electrical and chemical stimuli. This chip is capable of providing four different strengths of EFs in combination with two different chemicals via one simple set of agar salt bridges and Ag/AgCl electrodes. NIH 3T3 fibroblasts were seeded inside this chip to study their migration and reactive oxygen species (ROS) production in response to different EF strengths and the presence of β-lapachone. We found that both the EF and β-lapachone level increased the cell migration rate and the production of ROS in an EF-strength-dependent manner. A strong linear correlation between the cell migration rate and the amount of intracellular ROS suggests that ROS are an intermediate product by which EF and β-lapachone enhance cell migration. Moreover, an anti-oxidant, α-tocopherol, was found to quench the production of ROS, resulting in a decrease in the migration rate.
Collapse
Affiliation(s)
- Shang-Ying Wu
- Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Hsien-San Hou
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University , New Taipei City 24205, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| |
Collapse
|
14
|
Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen 2015; 22:313-25. [PMID: 24844331 DOI: 10.1111/wrr.12173] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/01/2014] [Indexed: 12/11/2022]
Abstract
Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.
Collapse
Affiliation(s)
- Waqar Ul Hassan
- Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
15
|
Proliferation of keratinocytes induced by adipose-derived stem cells on a chitosan scaffold and its role in wound healing, a review. Arch Plast Surg 2014; 41:452-7. [PMID: 25276634 PMCID: PMC4179346 DOI: 10.5999/aps.2014.41.5.452] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 01/09/2023] Open
Abstract
In the field of tissue engineering and reconstruction, the development of efficient biomaterial is in high demand to achieve uncomplicated wound healing. Chronic wounds and excessive scarring are the major complications of tissue repair and, as this inadequate healing continues to increase, novel therapies and treatments for dysfunctional skin repair and reconstruction are important. This paper reviews the various aspects of the complications related to wound healing and focuses on chitosan because of its unique function in accelerating wound healing. The proliferation of keratinocytes is essential for wound closure, and adipose-derived stem cells play a significant role in wound healing. Thus, chitosan in combination with keratinocytes and adipose-derived stem cells may act as a vehicle for delivering cells, which would increase the proliferation of keratinocytes and help complete recovery from injuries.
Collapse
|
16
|
Finch PW, Mark Cross LJ, McAuley DF, Farrell CL. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models. J Cell Mol Med 2014; 17:1065-87. [PMID: 24151975 PMCID: PMC4118166 DOI: 10.1111/jcmm.12091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023] Open
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin.
Collapse
|
17
|
Drug Delivery to Wounds, Burns, and Diabetes-Related Ulcers. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Therapeutic Effects of Acupuncture through Enhancement of Functional Angiogenesis and Granulogenesis in Rat Wound Healing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:464586. [PMID: 23304201 PMCID: PMC3529882 DOI: 10.1155/2012/464586] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/08/2012] [Accepted: 11/14/2012] [Indexed: 01/09/2023]
Abstract
Acupuncture regulates inflammation process and growth factors by increasing blood circulation in affected areas. In this study, we examined whether acupuncture has an effect on wound healing in injured rat. Rats were assigned randomly into two groups: control group and acupuncture group. Acupuncture treatment was carried out at 8 sites around the wounded area. We analyzed the wound area, inflammatory cytokines, proliferation of resident cells, and angiogenesis and induction of extracelluar matrix remodeling. At 7 days after-wounding the wound size in acupuncture-treat group was decreased more significantly compared to control group. In addition, the protein levels of proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were significantly decreased compared to the control at 2 and 7 days post-wounding. Also, we analyzed newly generated cells by performing immunostaining for PCNA and using several phenotype markers such as CD-31, α-SMA, and collagen type I. In acupuncture-treated group, PCNA-positive cell was increased and PCNA labeled CD-31-positive vessels, α-SMA- and collagen type I-positive fibroblastic cells, were increased compared to the control group at 7 days post-wounding. These results suggest that acupuncture may improve wound healing through decreasing pro-inflammatory response, increasing cell proliferation and angiogenesis, and inducing extracellular matrix remodeling.
Collapse
|
19
|
Makowski AJ, Davidson JM, Mahadevan-Jansen A, Jansen ED. In vivo analysis of laser preconditioning in incisional wound healing of wild-type and HSP70 knockout mice with Raman spectroscopy. Lasers Surg Med 2012; 44:233-44. [PMID: 22275297 DOI: 10.1002/lsm.22002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Laser preconditioning augments incisional wound healing by reducing scar tissue and increasing maximum tensile load of the healed wound [Wilmink et al. (2009) J Invest Dermatol 129(1): 205-216]. Recent studies have optimized treatments or confirmed results using HSP70 as a biomarker. Under the hypothesis that HSP70 plays a role in reported results and to better understand the downstream effects of laser preconditioning, this study utilized a probe-based Raman spectroscopy (RS) system to achieve an in vivo, spatio-temporal biochemical profile of murine skin incisional wounds as a function of laser preconditioning and the presence of HSP70. STUDY DESIGN/MATERIALS AND METHODS A total of 19 wild-type (WT) and HSP70 knockout (HSP70-/-) C57BL/6 mice underwent normal and laser preconditioned incisional wounds. Laser thermal preconditioning was conducted via previously established protocol (λ = 1.85 µm, H(0 ) = 7.64 mJ/cm(2) per pulse, spot diameter = 5 mm, Rep. rate = 50 Hz, τ(p) = 2 milliseconds, exposure time = 10 minutes) with an Aculight Renoir diode laser, with tissue temperature confirmed by real-time infrared camera measurements. Wound-healing progression was quantified by daily collection of a spatial distribution of Raman spectra. The results of RS findings were then qualified using standard histology and polarization microscopy. RESULTS Raman spectra yielded significant differences (t-test; α = 0.05) in several known biochemical peaks between WT and HSP70 (-/-) mice on wounds and in adjacent tissue early in the wound-healing process. Analysis of peak ratios implied (i) an increase in protein configuration in and surrounding the wound in WT mice, and (ii) an increased cellular trend in WT mice that was prolonged due to laser treatment. Polarization microscopy confirmed that laser treated WT mice showed increased heterogeneity in collagen orientation. CONCLUSIONS The data herein supports the theory that HSP70 is involved in normal skin protein configuration and the cellularity of early wound healing. Laser preconditioning extends cellular trends in the presence of HSP70. Despite study limitations, RS provided a non-invasive method for quantifying temporal trends in altered wound healing, narrowing candidates and design for future studies with clinically applicable instrumentation.
Collapse
Affiliation(s)
- Alexander J Makowski
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
20
|
Sun YS, Peng SW, Cheng JY. In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process. BIOMICROFLUIDICS 2012; 6:34117. [PMID: 24009651 PMCID: PMC3448595 DOI: 10.1063/1.4750486] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/21/2012] [Indexed: 05/21/2023]
Abstract
The wound-healing assay is an easy and economical way to quantify cell migration under diverse stimuli. Traditional assays such as scratch assays and barrier assays are widely and commonly used, but neither of them can represent the complicated condition when a wound occurs. It has been suggested that wound-healing is related to electric fields, which were found to regulate wound re-epithelialization. As a wound occurs, the disruption of epithelial barrier short-circuits the trans-epithelial potential and then a lateral endogenous electric field is created. This field has been proved invitro as an important cue for guiding the migration of fibroblasts, macrophages, and keratinocytes, a phenomenon termed electrotaxis or galvanotaxis. In this paper, we report a microfluidic electrical-stimulated wound-healing chip (ESWHC) integrating electric field with a modified barrier assay. This chip was used to study the migration of fibroblasts under different conditions such as serum, electric field, and wound-healing-promoting drugs. We successfully demonstrate the feasibility of ESWHC to effectively and quantitatively study cell migration during wound-healing process, and therefore this chip could be useful in drug discovery and drug safety tests.
Collapse
Affiliation(s)
- Yung-Shin Sun
- Research Center for Applied Sciences, Academia Sinica, Taipei City 11529, Taiwan
| | | | | |
Collapse
|
21
|
Saarto EE, Hielm-Björkman AK, Hette K, Kuusela EK, Brandão CVS, Luna SPL. Effect of a single acupuncture treatment on surgical wound healing in dogs: a randomized, single blinded, controlled pilot study. Acta Vet Scand 2010; 52:57. [PMID: 20950467 PMCID: PMC2965713 DOI: 10.1186/1751-0147-52-57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 10/15/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The aim of the study was to investigate the effect of acupuncture on wound healing after soft tissue or orthopaedic surgery in dogs. METHODS 29 dogs were submitted to soft tissue and/or orthopaedic surgeries. Five dogs had two surgical wounds each, so there were totally 34 wounds in the study. All owners received instructions for post operative care as well as antibiotic and pain treatment. The dogs were randomly assigned to treatment or control groups. Treated dogs received one dry needle acupuncture treatment right after surgery and the control group received no such treatment. A veterinary surgeon that was blinded to the treatment, evaluated the wounds at three and seven days after surgery in regard to oedema (scale 0-3), scabs (yes/no), exudate (yes/no), hematoma (yes/no), dermatitis (yes/no), and aspect of the wound (dry/humid). RESULTS There was no significant difference between the treatment and control groups in the variables evaluated three and seven days after surgery. However, oedema reduced significantly in the group treated with acupuncture at seven days compared to three days after surgery, possibly due the fact that there was more oedema in the treatment group at day three (although this difference was nor significant between groups). CONCLUSIONS The use of a single acupuncture treatment right after surgery in dogs did not appear to have any beneficial effects in surgical wound healing.
Collapse
Affiliation(s)
- Erja E Saarto
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, P.O. Box 57, FI-00014 University of Helsinki, Finland, Europe
- Pieneläinvastaanotto, Torniomäentie 30, 45120 Kouvola, Finland, Europe
- Department of Veterinary Surgery and Anaesthesiology of the School of Veterinary Medicine and Animal Science of São Paulo State University, Brazil
| | - Anna K Hielm-Björkman
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, P.O. Box 57, FI-00014 University of Helsinki, Finland, Europe
| | - Khadije Hette
- Department of Veterinary Surgery and Anaesthesiology of the School of Veterinary Medicine and Animal Science of São Paulo State University, Brazil
| | - Erja K Kuusela
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, P.O. Box 57, FI-00014 University of Helsinki, Finland, Europe
| | - Cláudia Valéria S Brandão
- Department of Veterinary Surgery and Anaesthesiology of the School of Veterinary Medicine and Animal Science of São Paulo State University, Brazil
| | - Stélio PL Luna
- Department of Veterinary Surgery and Anaesthesiology of the School of Veterinary Medicine and Animal Science of São Paulo State University, Brazil
| |
Collapse
|
22
|
Huang B, Tang S, Desai A, Cheng XM, Kotlyar A, Spek AVD, Thomas TP, Baker JR. Human plasma-mediated hypoxic activation of indolequinone-based naloxone pro-drugs. Bioorg Med Chem Lett 2009; 19:5016-20. [DOI: 10.1016/j.bmcl.2009.07.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
|
23
|
Sabnis A, Wadajkar AS, Aswath P, Nguyen KT. Factorial analyses of photopolymerizable thermoresponsive composite hydrogels for protein delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:305-15. [PMID: 19231314 DOI: 10.1016/j.nano.2008.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/16/2008] [Accepted: 11/10/2008] [Indexed: 12/01/2022]
Abstract
UNLABELLED A smart protein delivery system for wound healing applications was developed using composite nanoparticle hydrogels that can release protein in a temperature-responsive manner. This system can also be formed in situ in the presence of ultraviolet light and Irgacure 2959 photoinitiator. The system consists of temperature-sensitive poly(N-isopropylacrylamide-co-acrylamide) (PNIPAM-AAm) nanoparticles embedded in a poly(ethylene glycol) diacrylate (PEGDA) matrix. A factorial analysis was performed to evaluate the effects of PEGDA concentration (10% and 15% w/v) and PEGDA molecular weight (MW; 3.4 kDa and 8 kDa), as well as PNIPAM-AAm nanoparticle concentration (2% and 4% w/v) and temperature (23 degrees C and 40 degrees C) on the protein release profiles and swelling ratios of the hydrogels. Results indicate that PNIPAM-AAm nanoparticle concentration and temperature were the most important factors affecting the protein release during the burst release phase. Additionally, PEGDA MW was the most important factor affecting the protein release in the plateau region. It was also important in controlling the hydrogel swelling ratio. A dual-layered hydrogel was further developed to produce a protein delivery system with a better sustained release. These findings have improved our understanding of the composite hydrogel systems and will help in tailoring future systems with desired release profiles. FROM THE CLINICAL EDITOR A smart protein delivery system for wound healing applications using composite nanoparticle hydrogels that can release protein in a temperature-responsive manner is reported in this paper. Systems like this may aid in optimal would healing in the surgical and trauma-related settings.
Collapse
Affiliation(s)
- Abhimanyu Sabnis
- Department of Bioengineering, University of Texas Southwestern Medical Center at Dallas, USA
| | | | | | | |
Collapse
|
24
|
Abstract
The tremendous ability of the skin's epidermis to regenerate is due to the presence of epidermal stem cells that continuously produce keratinocytes, which undergo terminal differentiation to a keratinized layer that provides the skin's barrier properties. The ability to control this process in vitro has made it possible to develop various types of tissue-engineered skin grafts, some of which are among the first tissue-engineered products to ever reach the market. In the past 30 years, these products have been applied with some success to the treatment of chronic skin wounds such as diabetic and venous ulcers and deep, acute wounds such as burns. Current technologies remain partially effective in their ability to restore other skin structures, for example, the dermis, which is critical to the overall long-term appearance and function of the skin. As yet, none of these approaches can regenerate skin appendages (e.g. hair follicles and sweat glands). The use of earlier progenitor and stem cells, including embryonic stem cells, is gaining interest in the attempt to overcome such limitations. Furthermore, recent evidence suggests that "adult" stem cells, which are present in the circulation, target areas of injury and likely participate in the wound-healing process. In this paper, we start with an overview of the wound-healing process and current methods used for wound treatment, both conventional and tissue-engineering based. We then review current research on the various types of stem cells used for skin tissue engineering and wound healing, and provide future directions.
Collapse
Affiliation(s)
- Ming Chen
- The Center for Engineering Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114
| | - Melissa Przyborowski
- Department of Biomedical Engineering, Rutgers University, New Brunswick, NJ 08901
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
25
|
Effects of a specially pulsed electric field on an animal model of wound healing. Lasers Med Sci 2008; 24:735-40. [PMID: 19057982 DOI: 10.1007/s10103-008-0631-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
The possible beneficial effects of a specially pulsed electric field (PEF) on wound healing were investigated in this study. We made a pair of triangular, full-thickness, dorsal incisions in the skin of 32 healthy male mice (one control group and three exposure groups). The treatment groups were kept between parallel plates in a partially insulated exposed environment. Group I was exposed to an electric field intensity of 10 kV/m, group II was exposed to 1.9 kV/m, and group III was exposed to 0.9 kV/m. PEFs were applied to the subjects for 20-22 h and 8 consecutive days. We determined the differences in wound recovery between the groups based on the following parameters: collagen fiber density, inflammatory infiltration density, capillary proliferation, and existence of exudates. We found that a 0.9 kV/m-1.9 kV/m chopped direct current (DC) electric field with a 30 micros repetition time favorably affected collagen synthesis and wound recovery. Despite the intensity of 0.9-1.9 kV/m, PEF accelerated healing, but 10 kV/m decelerated this recovery process.
Collapse
|
26
|
Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers. Arch Dermatol Res 2008; 300:377-83. [DOI: 10.1007/s00403-008-0875-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 06/23/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
|
27
|
Wilmink GJ, Opalenik SR, Beckham JT, Abraham AA, Nanney LB, Mahadevan-Jansen A, Davidson JM, Jansen ED. Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement. J Invest Dermatol 2008; 129:205-16. [PMID: 18580963 DOI: 10.1038/jid.2008.175] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients at risk for impaired healing may benefit from prophylactic measures aimed at improving wound repair. Several photonic devices claim to enhance repair by thermal and photochemical mechanisms. We hypothesized that laser-induced thermal preconditioning would enhance surgical wound healing that was correlated with hsp70 expression. Using a pulsed diode laser (lambda=1.85 microm, tau(p)=2 ms, 50 Hz, H=7.64 mJ cm(-2)), the skin of transgenic mice that contain an hsp70 promoter-driven luciferase was preconditioned 12 hours before surgical incisions were made. Laser protocols were optimized in vitro and in vivo using temperature, blood flow, and hsp70-mediated bioluminescence measurements as benchmarks. Biomechanical properties and histological parameters of wound healing were evaluated for up to 14 days. Bioluminescent imaging studies indicated that an optimized laser protocol increased hsp70 expression by 10-fold. Under these conditions, laser-preconditioned incisions were two times stronger than control wounds. Our data suggest that this molecular imaging approach provides a quantitative method for optimization of tissue preconditioning and that mild laser-induced heat shock may be a useful therapeutic intervention prior to surgery.
Collapse
Affiliation(s)
- Gerald J Wilmink
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Assessment of Optimal Virus-Mediated Growth Factor Gene Delivery for Human Cutaneous Wound Healing Enhancement. J Invest Dermatol 2008; 128:1565-75. [DOI: 10.1038/sj.jid.5701217] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Jurjus A, Atiyeh BS, Abdallah IM, Jurjus RA, Hayek SN, Jaoude MA, Gerges A, Tohme RA. Pharmacological modulation of wound healing in experimental burns. Burns 2007; 33:892-907. [PMID: 17521821 DOI: 10.1016/j.burns.2006.10.406] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 10/27/2006] [Indexed: 12/28/2022]
Abstract
Factors involved in wound healing and their interdependence are not yet fully understood; nevertheless, new prospects for therapy to favor speedy and optimal healing are emerging. Reports about wound healing modulation by local application of simple and natural agents abound even in the recent literature, however, most are anecdotal and lack solid scientific evidence. We describe the effect of silver sulfadiazine and moist exposed burn ointment (MEBO), a recently described burn ointment of herbal origin, on mast cells and several wound healing cytokines (bFGF, IL-1, TGF-beta, and NGF) in the rabbit experimental burn model. The results demonstrate that various inflammatory cells, growth factors and cytokines present in the wound bed may be modulated by application of local agents with drastic effects on their expression dynamics with characteristic temporal and spatial regulation and changes in the expression pattern. Such data are likely to be important for the development of novel strategies for wound healing since they shed some light on the potential formulations of temporally and combinatory optimized therapeutic regimens.
Collapse
Affiliation(s)
- Abdo Jurjus
- Human Morphology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tkalcević VI, Cuzić S, Brajsa K, Mildner B, Bokulić A, Situm K, Perović D, Glojnarić I, Parnham MJ. Enhancement by PL 14736 of granulation and collagen organization in healing wounds and the potential role of egr-1 expression. Eur J Pharmacol 2007; 570:212-21. [PMID: 17628536 DOI: 10.1016/j.ejphar.2007.05.072] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 02/06/2023]
Abstract
Apart from becaplermin (recombinant human platelet-derived growth factor homodimer of B chains, PDGF-BB), for the treatment of lower extremity diabetic ulcers, few agents are available for pharmacological stimulation of wound healing. We have compared the mechanism of action of the potential wound healing agent, PL 14736 (G E P P P G K P A D D A G L V), with that of PDGF-BB on granulation tissue formation following sponge implantation in the normoglycemic rat and in healing full-thickness excisional wounds in db/db genetically diabetic mice. Expression of the immediate response gene, early growth response gene-1 (egr-1) was studied in Caco-2 cells in vitro. While PDGF-BB and PL 14736 had similar selectivity for stimulation of granulation tissue in both sponge granuloma and in healing wounds in db/db mice, PL 14736 was more active in stimulating early collagen organization. It also stimulated expression of egr-1 and its repressor nerve growth factor 1-A binding protein-2 (nab2) in non-differentiated Caco-2 cells more rapidly than PDGF-BB. EGR-1 induces cytokine and growth factor generation and early extracellular matrix (collagen) formation, offering an explanation for the beneficial effects of PL 14736 on wound healing.
Collapse
|
31
|
Braddock M. Natural product promotes repair of injured spinal cord. Expert Opin Investig Drugs 2007; 16:251-5. [PMID: 17243945 DOI: 10.1517/13543784.16.2.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Martin Braddock
- Discovery Bioscience, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire, LE11 5RH, UK.
| |
Collapse
|
32
|
|
33
|
Atiyeh BS, Hayek SN, Gunn SW. New technologies for burn wound closure and healing--review of the literature. Burns 2005; 31:944-56. [PMID: 16274932 DOI: 10.1016/j.burns.2005.08.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 08/31/2005] [Indexed: 12/31/2022]
Abstract
Methods for handling burn wounds have changed in recent decades. Increasingly, aggressive surgical approach with early tangential excision and wound closure is being applied leading to improvement in mortality rates of burn victims. Autografts from uninjured skin remain the mainstay of treatment. Autologous skin graft, however, has limited availability and is associated with additional morbidity and scarring. Severe burn patients invariably lack sufficient adequate skin donor sites requiring alternative methods of skin replacement. The present review summarizes available replacement technologies.
Collapse
Affiliation(s)
- Bishara S Atiyeh
- Division Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon.
| | | | | |
Collapse
|
34
|
Adunsky A, Ohry A. Decubitus direct current treatment (DDCT) of pressure ulcers: results of a randomized double-blinded placebo controlled study. Arch Gerontol Geriatr 2005; 41:261-9. [PMID: 15998547 DOI: 10.1016/j.archger.2005.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 04/18/2005] [Accepted: 04/20/2005] [Indexed: 11/28/2022]
Abstract
Electrostimulation for the treatment of pressure sores remains problematic and controversial. We studied the decubitus direct current treatment (DDCT) electrostimulation treatment of pressure sores stage 3 degree, with respect to rates of ulcer closure and wound area reduction. This was a multicenter, double-blind, randomized, placebo-controlled study involving 11 departments of geriatric and rehabilitation medicine including 63 patients. We compared a placebo treated group (PG) with an active treatment group (TG). Treatment lasted for 8 consecutive weeks, followed by a 12-week-period of follow-up. At day 57 (end of treatment) and at day 147 (end of follow-up), there was no difference between the groups with regards to rates of complete closure of ulcers (p=0.28 and 0.39, respectively), as well as for the mean time needed to achieve complete wound closure (p=0.16). Absolute ulcer area reduction and speed rate of wound area reduction (reflected by change from baseline ulcer area, percentage) were better in participants allocated in the treatment group only until day 45 (standardized estimate for trend of healing speed -0.44 and -0.14 for TG and PG, respectively). Afterwards, there were no differences between the two groups. A logistic regression analysis favored complete healing in TG, compared with PG (odds ratio 1.6, CI 0.4-4.73). Analysis of per protocol patients revealed that time needed for wound closure was 52% longer in PG (p=0.03, compared with TG). The results suggest that DDCT treatment for pressure ulcers grade 3 degree, in addition to the conservative wound care, may be useful in accelerating the healing process during the first period of care.
Collapse
Affiliation(s)
- Abraham Adunsky
- Department of Geriatric Medicine, Sheba Medical Center, Tel Hashomer 52621, Israel.
| | | |
Collapse
|
35
|
Jackson CJ, Xue M, Thompson P, Davey RA, Whitmont K, Smith S, Buisson-Legendre N, Sztynda T, Furphy LJ, Cooper A, Sambrook P, March L. Activated protein C prevents inflammation yet stimulates angiogenesis to promote cutaneous wound healing. Wound Repair Regen 2005; 13:284-94. [PMID: 15953048 DOI: 10.1111/j.1067-1927.2005.00130311.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activated protein C (APC) is a serine protease that plays a central role in physiological anticoagulation, and has more recently been shown to be a potent anti-inflammatory mediator. Using cultured human cells, we show here that APC up-regulates the angiogenic promoters matrix metalloproteinase-2 in skin fibroblasts and umbilical vein endothelial cells, vascular endothelial growth factor in keratinocytes and fibroblasts, and monocyte chemoattractant protein-1 in fibroblasts. In the chick embryo chorioallantoic membrane assay, APC promoted the granulation/remodeling phases of wound healing by markedly stimulating angiogenesis as well as promoting reepithelialization. In a full-thickness rat skin-healing model, a single topical application of APC enhanced wound healing compared to saline control. APC-treated wounds had markedly more blood vessels on day 7 and a significantly lower infiltration of neutrophils at days 4 and 7. The broad spectrum matrix metallo-proteinase, GM6001, prevented the ability of APC to promote wound healing. In summary, our results show that APC promotes cutaneous wound healing via a complex mechanism involving stimulation of angiogenesis and inhibition of inflammation. These unique properties of APC make it an attractive therapeutic agent to promote the healing of chronic wounds.
Collapse
Affiliation(s)
- Christopher J Jackson
- The Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Optimal treatment of burn victims requires deep understanding of the profound pathophysiological changes occurring locally and systemically after injury. Accurate estimation of burn size and depth, as well as early resuscitation, is essential. Good burn care includes also cleansing, debridement, and prevention of sepsis. Wound healing, is of major importance to the survival and clinical outcome of burn patients. An ideal therapy would not only promote rapid healing but would also act as an antiscarring therapy. The present article is a literature review of the most up-to-date modalities applied to burn treatment without overlooking the numerous controversies that still persist.
Collapse
Affiliation(s)
- Bishara S Atiyeh
- Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center on Burns and Fire Disasters, Beirut, Lebanon.
| | | | | |
Collapse
|
37
|
Fernandez-Chimeno M, Houghton PE, Holey L. Electrical stimulation for chronic wounds. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2004. [DOI: 10.1002/14651858.cd004550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Abstract
Tendon healing is a complex and highly-regulated process that is initiated, sustained and eventually terminated by a large number and variety of molecules. Growth factors represent one of the most important of the molecular families involved in healing, and a considerable number of studies have been undertaken in an effort to elucidate their many functions. This review covers some of the recent investigations into the roles of five growth factors whose activities have been best characterised during tendon healing: insulin-like growth factor-I (IGF-I), transforming growth factor beta (TGFbeta), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF). All five are markedly up-regulated following tendon injury and are active at multiple stages of the healing process. IGF-I has been shown to be highly expressed during the early inflammatory phase in a number of animal tendon healing models, and appears to aid in the proliferation and migration of fibroblasts and to subsequently increase collagen production. TGFbeta is also active during inflammation, and has a variety of effects including the regulation of cellular migration and proliferation, and fibronectin binding interactions. VEGF is produced at its highest levels only after the inflammatory phase, at which time it is a powerful stimulator of angiogenesis. PDGF is produced shortly after tendon damage and helps to stimulate the production of other growth factors, including IGF-I, and has roles in tissue remodelling. In vitro and in vivo studies have shown that bFGF is both a powerful stimulator of angiogenesis and a regulator of cellular migration and proliferation. This review also covers some of the most recent studies into the use of these molecules as therapeutic agents to increase the efficacy and efficiency of tendon and ligament healing. Studies into the effects of the exogenous application of TGFbeta, IGF-I, PDGF and bFGF into the wound site singly and in combination have shown promise, significantly decreasing a number of parameters used to define the functional deficit of a healing tendon. Application of IGF-I has been shown to increase in the Achilles Functional Index and the breaking energy of injured rat tendon. TGFbeta and PDGF have been shown separately to increase the breaking energy of healing tendon. Finally, application of bFGF has been shown to promote cellular proliferation and collagen synthesis in vivo.
Collapse
Affiliation(s)
- Timothy Molloy
- Orthopaedic Research Institute, St George Hospital Campus, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
39
|
Abstract
Gene therapy is a new and emerging technology that has been catalyzed by the progress of the Human Genome Project. It employs the process of manipulating genes to achieve a clinically beneficial alteration in gene product. Wound healing lends itself to the application of gene therapy by virtue of the vast array of proteins involved in its complex cascade. This article provides an overview of the background to gene therapy and describes current techniques in use as applied to wound healing. The authors show the potential role that many candidate genes may offer in the future for optimizing wound healing through gene therapy.
Collapse
Affiliation(s)
- Nicola C Petrie
- Laboratory of Wound Repair and Gene Transfer, Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
40
|
Abstract
This review focuses on the experimental evidence supporting a role for endogenous electric fields in wound healing in vertebrates. Most wounds involve the disruption of epithelial layers composing the epidermis or surrounding organs in the body. These epithelia generate a steady voltage across themselves that will drive an injury current out of the wounded region, generating a lateral electric field that has been measured in four different cases to be 40-200 mV/mm. Many epithelial cells, including human keratinocytes, have the ability to detect electric fields of this magnitude and respond with directed migration. Their response typically requires Ca2+ influx, the presence of specific growth factors and intracellular kinase activity. Protein kinase C is required by neural crest cells and cAMP-dependent protein kinase is used in keratinocytes while mitogen-activated protein kinase is required by corneal epithelial cells. Several recent experiments support a role for electric fields in the stimulation of wound healing in the developing frog neurula, adult newt skin and adult mammalian cornea. Some experiments indicate that when the electric field is removed the wound healing rate is 25% slower. In addition, nearly every clinical trial using electric fields to stimulate healing in mammalian wounds reports a significant increase in the rate of healing from 13 to 50%. However, these trials have utilized many different field strengths and polarities, so much work is needed to optimize this approach for the treatment of mammalian wounds.
Collapse
|
41
|
Abstract
Hypoxia is a feature that exists in most, if not all, solid tumours and hypoxia has been shown to exist in a variety of other diseases. Bioreductive prodrugs have been developed to preferentially target the hypoxic cells in tumours. They are prodrugs, that are reductively activated (catalysed by reductive enzymes) to afford their active (toxic) species. More recently, bioreductive delivery agents that "release" a therapeutic entity preferentially under hypoxic conditions have also been developed to target hypoxia, not only in tumours, but also in a host of other diseases. This new technology platform is described in this review. In addition, we discuss the potential of utilising hypoxia to deliver selective gene therapy based upon the transcription factor HIF-1 and the use of unique genetic sequences termed HRE's (hypoxia responsive elements) that specifically control gene expression under hypoxic conditions. Finally, we describe how these drugs and gene-based therapeutic approaches can be combined to potentially deliver a highly selective form of therapy for cancer and other diseases where hypoxia plays a major pathophysiological role.
Collapse
Affiliation(s)
- M Jaffar
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | | | | |
Collapse
|
42
|
Todd I, Clothier RH, Huggins ML, Patel N, Searle KC, Jeyarajah S, Pradel L, Lacey KL. Electrical stimulation of transforming growth factor-beta 1 secretion by human dermal fibroblasts and the U937 human monocytic cell line. Altern Lab Anim 2001; 29:693-701. [PMID: 11709043 DOI: 10.1177/026119290102900611] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The in vitro effects on human dermal fibroblasts and the U937 human monocytic cell line of three phases of electrical microcurrents generated by the ACE Stimulator were investigated. The growth and viability of growing and confluent dermal fibroblasts were not directly influenced by the separate microcurrent phases. One form of microcurrent (designated phase 1) stimulated both dermal fibroblasts and U937 cells to secrete transforming growth factor-beta 1 (TGF-beta 1), which is an important regulator of cell-mediated inflammation and tissue regeneration, but none of the three phases stimulated secretion of the pro-inflammatory cytokine interleukin-6 by U937 cells. The stimulation of TGF-beta 1 secretion in these experiments was not dramatic (a median increase over control levels of 20-30%), although it could be biologically significant.
Collapse
Affiliation(s)
- I Todd
- Division of Molecular and Clinical Immunology, School of Clinical Laboratory Sciences, University of Nottingham Faculty of Medicine and Health Sciences, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
In the United States, between 40 and 90 million hospital days are lost per year as a result of trauma and surgical procedures which result in the loss of functional tissue. This is estimated to cost the economy and healthcare providers in excess of US$ 500 billion, a figure that is increasing because of extending population lifespan. Tissue engineering and gene therapies are radical new treatments that are aimed at tissue regeneration ranging from dermal, osteal and occular repair to the replacement of failing tissue with entire biosynthetic organs. Over the last decade, numerous proteins have been identified that are able to direct the synthesis of new tissue. Such proteins include growth factors, cytokines and, more recently, transcription factors.
Collapse
Affiliation(s)
- M Braddock
- Disease Cell Biology Unit, GlaxoWellcome Medicines Research Centre, Stevenage, Herts, UK.
| |
Collapse
|
44
|
Houston P, Campbell CJ, Svaren J, Milbrandt J, Braddock M. The transcriptional corepressor NAB2 blocks Egr-1-mediated growth factor activation and angiogenesis. Biochem Biophys Res Commun 2001; 283:480-6. [PMID: 11327726 DOI: 10.1006/bbrc.2001.4810] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effective tissue repair results from a rapid, temporally orchestrated series of events. At the site of local tissue injury, the production of many growth factors and cytokines is, in part, stimulated by the early growth response transcription factors such as Egr-1. Egr-1 protein binds to a family of corepressor proteins called NAB which function to block or limit Egr-1 trans-activation of cognate target genes. NAB2 blocks Egr-1 activation of the tissue factor (TF) promoter, Egr-1 stimulated production of PDGF-AB, HGF, TGFbeta(1), and VEGF and the endogenous expression of PDGF-AB and TGFbeta(1). Expression of a wild-type NAB2 but not a dominant negative NAB2 mutant abrogates Egr-1 driven TF promoter activity and tubule formation in an in vitro model of angiogenesis. These findings may have importance in any tissue that is subject to scarring after acute or chronic injury.
Collapse
Affiliation(s)
- P Houston
- Cardiovascular Systems Unit, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, England.
| | | | | | | | | |
Collapse
|
45
|
Bryant M, Drew GM, Houston P, Hissey P, Campbell CJ, Braddock M. Tissue repair with a therapeutic transcription factor. Hum Gene Ther 2000; 11:2143-58. [PMID: 11044915 DOI: 10.1089/104303400750001444] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
The healing of tissue involves a wide range of molecular, cellular, and physiological events that are coordinated in a temporally specific manner. The cellular transcription factor early growth response factor 1 (Egr-1) is expressed minutes after acute injury and serves to stimulate the production of a class of growth factors whose role is to promote tissue repair. We have studied the effects of Egr-1 expression at the site of dermal wounding in rodents. We find that Egr-1 promotes angiogenesis in vitro and in vivo, increases collagen production, and accelerates wound closure. These results show that Egr-1 gene therapy accelerates the normal healing process and raises the potential use of this therapeutic transcription factor for any aspect of tissue repair.
Collapse
Affiliation(s)
- M Bryant
- Wound Healing and Tissue Regeneration Program, Endothelial Gene Expression Group, Vascular Diseases Unit, Glaxo-Wellcome Medicines Research Centre, Stevenage, Hertfordshire, SG1 2NY, UK
| | | | | | | | | | | |
Collapse
|