1
|
Rubio-Ramos A, Labat-de-Hoz L, Correas I, Alonso MA. The MAL Protein, an Integral Component of Specialized Membranes, in Normal Cells and Cancer. Cells 2021; 10:1065. [PMID: 33946345 PMCID: PMC8145151 DOI: 10.3390/cells10051065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. The MAL protein has two unusual biochemical features. First, it has lipid-like properties that qualify it as a member of the group of proteolipid proteins. Second, it partitions selectively into detergent-insoluble membranes, which are known to be enriched in condensed cell membranes, consistent with MAL being distributed in highly ordered membranes in the cell. Since its original description more than thirty years ago, a large body of evidence has accumulated supporting a role of MAL in specialized membranes in all the cell types in which it is expressed. Here, we review the structure, expression and biochemical characteristics of MAL, and discuss the association of MAL with raft membranes and the function of MAL in polarized epithelial cells, T lymphocytes, and myelin-forming cells. The evidence that MAL is a putative receptor of the epsilon toxin of Clostridium perfringens, the expression of MAL in lymphomas, the hypermethylation of the MAL gene and subsequent loss of MAL expression in carcinomas are also presented. We propose a model of MAL as the organizer of specialized condensed membranes to make them functional, discuss the role of MAL as a tumor suppressor in carcinomas, consider its potential use as a cancer biomarker, and summarize the directions for future research.
Collapse
Affiliation(s)
- Armando Rubio-Ramos
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Leticia Labat-de-Hoz
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Isabel Correas
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A. Alonso
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| |
Collapse
|
2
|
Ting-Hui-Lin, Chia MY, Lin CY, Yeh YQ, Jeng US, Wu WG, Lee MS. Improving immunogenicity of influenza virus H7N9 recombinant hemagglutinin for vaccine development. Vaccine 2020; 37:1897-1903. [PMID: 30857635 DOI: 10.1016/j.vaccine.2018.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022]
Abstract
Human infections of novel avian influenza A virus (H7N9) emerged in early 2013 and caused about 40% case-fatality through 2017. Therefore, development of influenza H7N9 vaccines is critical for pandemic preparedness. Currently, there are three means of production of commercial influenza vaccines: egg-based, mammalian cell-based, and insect cell-based platforms. The insect cell-based platform has the advantage of high speed in producing recombinant protein. In this study, we evaluate the stability and immunogenicity of two different influenza H7 HA expression constructs generated using the baculovirus system, including membrane-based full-length HA (mH7) and secreted ectodomain-based H7 (sH7). The mH7 construct could form an oligomer-rosette structure and had a high hemagglutinin (HA) titer 8192. In contrast to mH7, the sH7 construct could not form an oligomer-rosette structure and did not have HA titer before cross-linking with anti-His antibody. Thermal stability tests showed that the sH7 and mH7 constructs were unstable at 43 °C and 52 °C, respectively. In a mice immunization study, the mH7 construct but not the sH7 construct could induce robust HI and neutralizing antibody titers. In conclusion, further development of the mH7 vaccine candidate is desirable.
Collapse
Affiliation(s)
- Ting-Hui-Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Yuan Chia
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Yang Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan; Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Guey Wu
- College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| |
Collapse
|
3
|
Cholesterol Binding to the Transmembrane Region of a Group 2 Hemagglutinin (HA) of Influenza Virus Is Essential for Virus Replication, Affecting both Virus Assembly and HA Fusion Activity. J Virol 2019; 93:JVI.00555-19. [PMID: 31118253 DOI: 10.1128/jvi.00555-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Hemagglutinin (HA) of influenza virus is incorporated into cholesterol-enriched nanodomains of the plasma membrane. Phylogenetic group 2 HAs contain the conserved cholesterol consensus motif (CCM) YKLW in the transmembrane region. We previously reported that mutations in the CCM retarded intracellular transport of HA and decreased its nanodomain association. Here, we analyzed whether cholesterol interacts with the CCM. Incorporation of photocholesterol into HA was significantly reduced if the whole CCM is replaced by alanine, both using immunoprecipitated HA and when HA is embedded in the membrane. We next used reverse genetics to investigate the significance of the CCM for virus replication. No virus was rescued if the whole motif is exchanged (YKLW4A); singly (LA) or doubly (YK2A and LW2A) mutated virus showed decreased titers and a comparative fitness disadvantage. In polarized cells, transport of HA mutants to the apical membrane was not disturbed. Reduced amounts of HA and cholesterol were incorporated into the viral membrane. Mutant viruses exhibit a decrease in hemolysis, which is only partially corrected if the membrane is replenished with cholesterol. More specifically, viruses have a defect in hemifusion, as demonstrated by fluorescence dequenching. Cells expressing HA YKLW4A fuse with erythrocytes, but the number of events is reduced. Even after acidification unfused erythrocytes remain cell bound, a phenomenon not observed with wild-type HA. We conclude that cholesterol binding to a group 2 HA is essential for virus replication. It has pleiotropic effects on virus assembly and membrane fusion, mainly on lipid mixing and possibly a preceding step.IMPORTANCE The glycoprotein HA is a major pathogenicity factor of influenza viruses. Whereas the structure and function of HA's ectodomain is known in great detail, similar data for the membrane-anchoring part of the protein are missing. Here, we demonstrate that the transmembrane region of a group 2 HA interacts with cholesterol, the major lipid of the plasma membrane and the defining element of the viral budding site nanodomains of the plasma membrane. The cholesterol binding motif is essential for virus replication. Its partial removal affects various steps of the viral life cycle, such as assembly of new virus particles and their subsequent cell entry via membrane fusion. A cholesterol binding pocket in group 2 HAs might be a promising target for a small lipophilic drug that inactivates the virus.
Collapse
|
4
|
Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Targeting Hemagglutinin: Approaches for Broad Protection against the Influenza A Virus. Viruses 2019; 11:v11050405. [PMID: 31052339 PMCID: PMC6563292 DOI: 10.3390/v11050405] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses are dynamically epidemic and genetically diverse. Due to the antigenic drift and shift of the virus, seasonal vaccines are required to be reformulated annually to match with current circulating strains. However, the mismatch between vaccinal strains and circulating strains occurs frequently, resulting in the low efficacy of seasonal vaccines. Therefore, several “universal” vaccine candidates based on the structure and function of the hemagglutinin (HA) protein have been developed to meet the requirement of a broad protection against homo-/heterosubtypic challenges. Here, we review recent novel constructs and discuss several important findings regarding the broad protective efficacy of HA-based universal vaccines.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cong Xu
- Research Center of Agricultural of Dongguan City, Dongguan 523086, China.
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12,050 167th PL NE, Redmond, WA 98052, USA.
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Kordyukova L. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides. Virus Res 2017; 227:183-199. [DOI: 10.1016/j.virusres.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
|
6
|
Wankel B, Ouyang J, Guo X, Hadjiolova K, Miller J, Liao Y, Tham DKL, Romih R, Andrade LR, Gumper I, Simon JP, Sachdeva R, Tolmachova T, Seabra MC, Fukuda M, Schaeren-Wiemers N, Hong WJ, Sabatini DD, Wu XR, Kong X, Kreibich G, Rindler MJ, Sun TT. Sequential and compartmentalized action of Rabs, SNAREs, and MAL in the apical delivery of fusiform vesicles in urothelial umbrella cells. Mol Biol Cell 2016; 27:1621-34. [PMID: 27009205 PMCID: PMC4865319 DOI: 10.1091/mbc.e15-04-0230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
As major urothelial differentiation products, uroplakins are targeted to the apical surface of umbrella cells. Via the sequential actions of Rabs 11, 8, and 27b and their effectors, uroplakin vesicles are transported to a subapical zone above a K20 network and fuse, via a SNARE-mediated and MAL-facilitated step, with the urothelial apical membrane. Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immunomicroscopy of normal and mutant mouse urothelia show that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently a Rab27b/Slp2-a complex mediated FV–membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also show that keratin 20 (K20), which forms a chicken-wire network ∼200 nm below the apical membrane and has hole sizes allowing FV passage, defines a subapical compartment containing FVs primed and strategically located for fusion. Finally, we show that Rab8/11 and Rab27b function in the same pathway, Rab27b knockout leads to uroplakin and Slp2-a destabilization, and Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking.
Collapse
Affiliation(s)
- Bret Wankel
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jiangyong Ouyang
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Xuemei Guo
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Krassimira Hadjiolova
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jeremy Miller
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Yi Liao
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Daniel Kai Long Tham
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Leonardo R Andrade
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Iwona Gumper
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Jean-Pierre Simon
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Rakhee Sachdeva
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Tanya Tolmachova
- Molecular and Cellular Medicine, Imperial College, London SW7 2AZ, United Kingdom
| | - Miguel C Seabra
- Molecular and Cellular Medicine, Imperial College, London SW7 2AZ, United Kingdom
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nicole Schaeren-Wiemers
- Neurobiology Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, CH-4031 Basel, Switzerland
| | - Wan Jin Hong
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673
| | - David D Sabatini
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, NY10016
| | - Xiangpeng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016
| | - Gert Kreibich
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Michael J Rindler
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Tung-Tien Sun
- Department of Cell Biology, New York University School of Medicine, New York, NY10016 Department of Urology, New York University School of Medicine, New York, NY10016 Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016 Department of Dermatology, New York University School of Medicine, New York, NY10016
| |
Collapse
|
7
|
Influenza A virus hemagglutinin and neuraminidase mutually accelerate their apical targeting through clustering of lipid rafts. J Virol 2014; 88:10039-55. [PMID: 24965459 DOI: 10.1128/jvi.00586-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In polarized epithelial cells, influenza A virus hemagglutinin (HA) and neuraminidase (NA) are intrinsically associated with lipid rafts and target the apical plasma membrane for viral assembly and budding. Previous studies have indicated that the transmembrane domain (TMD) and cytoplasmic tail (CT) of HA and NA are required for association with lipid rafts, but the raft dependencies of their apical targeting are controversial. Here, we show that coexpression of HA with NA accelerated their apical targeting through accumulation in lipid rafts. HA was targeted to the apical plasma membrane even when expressed alone, but the kinetics was much slower than that of HA in infected cells. Coexpression experiments revealed that apical targeting of HA and NA was accelerated by their coexpression. The apical targeting of HA was also accelerated by coexpression with M1 but not M2. The mutations in the outer leaflet of the TMD and the deletion of the CT in HA and NA that reduced their association with lipid rafts abolished the acceleration of their apical transport, indicating that the lipid raft association is essential for efficient apical trafficking of HA and NA. An in situ proximity ligation assay (PLA) revealed that HA and NA were accumulated and clustered in the cytoplasmic compartments only when both were associated with lipid rafts. Analysis with mutant viruses containing nonraft HA/NA confirmed these findings. We further analyzed lipid raft markers by in situ PLA and suggest a possible mechanism of the accelerated apical transport of HA and NA via clustering of lipid rafts. IMPORTANCE Lipid rafts serve as sites for viral entry, particle assembly, and budding, leading to efficient viral replication. The influenza A virus utilizes lipid rafts for apical plasma membrane targeting and particle budding. The hemagglutinin (HA) and neuraminidase (NA) of influenza virus, key players for particle assembly, contain determinants for apical sorting and lipid raft association. However, it remains to be elucidated how lipid rafts contribute to the apical trafficking and budding. We investigated the relation of lipid raft association of HA and NA to the efficiency of apical trafficking. We show that coexpression of HA and NA induces their accumulation in lipid rafts and accelerates their apical targeting, and we suggest that the accelerated apical transport likely occurs by clustering of lipid rafts at the TGN. This finding provides the first evidence that two different raft-associated viral proteins induce lipid raft clustering, thereby accelerating apical trafficking of the viral proteins.
Collapse
|
8
|
Stoops EH, Caplan MJ. Trafficking to the apical and basolateral membranes in polarized epithelial cells. J Am Soc Nephrol 2014; 25:1375-86. [PMID: 24652803 DOI: 10.1681/asn.2013080883] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type-specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells.
Collapse
Affiliation(s)
- Emily H Stoops
- Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J Caplan
- Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Thaa B, Siche S, Herrmann A, Veit M. Acylation and cholesterol binding are not required for targeting of influenza A virus M2 protein to the hemagglutinin-defined budozone. FEBS Lett 2014; 588:1031-6. [PMID: 24561202 DOI: 10.1016/j.febslet.2014.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
Abstract
Influenza virus assembles in the budozone, a cholesterol-/sphingolipid-enriched ("raft") domain at the apical plasma membrane, organized by hemagglutinin (HA). The viral protein M2 localizes to the budozone edge for virus particle scission. This was proposed to depend on acylation and cholesterol binding. We show that M2-GFP without these motifs is still transported apically in polarized cells. Employing FRET, we determined that clustering between HA and M2 is reduced upon disruption of HA's raft-association features (acylation, transmembranous VIL motif), but remains unchanged with M2 lacking acylation and/or cholesterol-binding sites. The motifs are thus irrelevant for M2 targeting in cells.
Collapse
Affiliation(s)
- Bastian Thaa
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Virologie, Zentrum für Infektionsmedizin - Robert-von-Ostertag-Haus, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Stefanie Siche
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Virologie, Zentrum für Infektionsmedizin - Robert-von-Ostertag-Haus, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Andreas Herrmann
- Humboldt-Universität zu Berlin, Institute of Biology, Molecular Biophysics, Invalidenstraße 42, 10115 Berlin, Germany
| | - Michael Veit
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Virologie, Zentrum für Infektionsmedizin - Robert-von-Ostertag-Haus, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany.
| |
Collapse
|
10
|
Zhou J, Xu S, Ma J, Lei W, Liu K, Liu Q, Ren Y, Xue C, Cao Y. Recombinant influenza A H3N2 viruses with mutations of HA transmembrane cysteines exhibited altered virological characteristics. Virus Genes 2013; 48:273-82. [PMID: 24272698 DOI: 10.1007/s11262-013-1011-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/06/2013] [Indexed: 01/20/2023]
Abstract
Influenza A H3N2 virus as the cause of 1968 pandemic has since been circulating in human and swine. Our earlier study has shown that mutations of one or two cysteines in the transmembrane domain of H3 hemagglutinin (HA) affected the thermal stability and fusion activity of recombinant HA proteins. Here, we report the successful generation of three recombinant H3N2 mutant viruses (C540S, C544L, and 2C/SL) with mutations of one or two transmembrane cysteines of HA in the background of A/swine/Guangdong/01/98 [H3N2] using reverse genetics, indicating that the mutated cysteines were not essential for virus assembly and growth. Further characterization revealed that recombinant H3N2 mutant viruses exhibited larger plaque sizes, increased growth rate in cells, enhanced fusion activity, reduced thermal and acidic resistances, and increased virulence in embryonated eggs. These results demonstrated that the transmembrane cysteines (C540 and C544) in H3 HA have profound effects on the virological features of H3N2 viruses.
Collapse
Affiliation(s)
- Jianqiang Zhou
- State Key Laboratory of Biocontrol, Life Sciences School, Guangzhou Higher Education Mega Center, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhou G, Liang FX, Romih R, Wang Z, Liao Y, Ghiso J, Luque-Garcia JL, Neubert TA, Kreibich G, Alonso MA, Schaeren-Wiemers N, Sun TT. MAL facilitates the incorporation of exocytic uroplakin-delivering vesicles into the apical membrane of urothelial umbrella cells. Mol Biol Cell 2012; 23:1354-66. [PMID: 22323295 PMCID: PMC3315800 DOI: 10.1091/mbc.e11-09-0823] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MAL, suggested to play a key role in the apical sorting of membrane proteins, is not involved in the apical sorting of uroplakins. Instead, it plays an important role in facilitating the incorporation of the uroplakin-delivering exocytic vesicles into the apical surface of terminally differentiated urothelial umbrella cells. The apical surface of mammalian bladder urothelium is covered by large (500–1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin–Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.
Collapse
Affiliation(s)
- Ge Zhou
- Department of Cell Biology, NYU Cancer Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
MAL, but not MAL2, expression promotes the formation of cholesterol-dependent membrane domains that recruit apical proteins. Biochem J 2011; 439:497-504. [PMID: 21732912 DOI: 10.1042/bj20110803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our recent studies have been aimed at understanding the mechanisms regulating apical protein sorting in polarized epithelial cells. In particular, we have been investigating how lipid rafts serve to sort apical proteins in the biosynthetic pathway. The recent findings that lipid domains are too small or transient to host apically destined cargo have led to newer versions of the hypothesis that invoke proteins required for lipid domain coalescence and stabilization. MAL (myelin and lymphocyte protein) and its highly conserved family member, MAL2, have emerged as possible regulators of this process in the direct and indirect apical trafficking pathways respectively. To test this possibility, we took a biochemical approach. We determined that MAL, but not MAL2, self-associates, forms higher-order cholesterol-dependent complexes with apical proteins and promotes the formation of detergent-resistant membranes that recruit apical proteins. Such biochemical properties are consistent with a role for MAL in raft coalescence and stabilization. These findings also support a model whereby hydrophobic mismatch between the long membrane-spanning helices of MAL and the short-acyl-chain phospholipids in the Golgi drive formation of lipid domains rich in raft components that are characterized by a thicker hydrophobic core to alleviate mismatch.
Collapse
|
13
|
Association of influenza virus proteins with membrane rafts. Adv Virol 2011; 2011:370606. [PMID: 22312341 PMCID: PMC3265303 DOI: 10.1155/2011/370606] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/02/2011] [Indexed: 12/12/2022] Open
Abstract
Assembly and budding of influenza virus proceeds in the viral budozone, a domain in the plasma membrane with characteristics of cholesterol/sphingolipid-rich membrane rafts. The viral transmembrane glycoproteins hemagglutinin (HA) and neuraminidase (NA) are intrinsically targeted to these domains, while M2 is seemingly targeted to the edge of the budozone. Virus assembly is orchestrated by the matrix protein M1, binding to all viral components and the membrane. Budding progresses by protein- and lipid-mediated membrane bending and particle scission probably mediated by M2. Here, we summarize the experimental evidence for this model with emphasis on the raft-targeting features of HA, NA, and M2 and review the functional importance of raft domains for viral protein transport, assembly and budding, environmental stability, and membrane fusion.
Collapse
|
14
|
Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci U S A 2010; 107:22050-4. [PMID: 21131568 DOI: 10.1073/pnas.1016184107] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The physical basis for protein partitioning into lipid rafts remains an outstanding question in membrane biology that has previously been addressed only through indirect techniques involving differential solubilization by nonionic detergents. We have used giant plasma membrane vesicles, a plasma membrane model system that phase separates to include an ordered phase enriching for raft constituents, to measure the partitioning of the transmembrane linker for activation of T cells (LAT). LAT enrichment in the raft phase was dependent on palmitoylation at two juxtamembrane cysteines and could be enhanced by oligomerization. This palmitoylation requirement was also shown to regulate raft phase association for the majority of integral raft proteins. Because cysteine palmitoylation is the only lipid modification that has been shown to be reversibly regulated, our data suggest a role for palmitoylation as a dynamic raft targeting mechanism for transmembrane proteins.
Collapse
|
15
|
Levental I, Grzybek M, Simons K. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 2010; 49:6305-16. [PMID: 20583817 DOI: 10.1021/bi100882y] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that biological membranes can be laterally subdivided into domains enriched in specific lipid and protein components and that these domains may be involved in the regulation of a number of vital cellular processes. An example is membrane rafts, which are lipid-mediated domains dependent on preferential association between sterols and sphingolipids and inclusive of a specific subset of membrane proteins. While the lipid and protein composition of rafts has been extensively characterized, the structural details determining protein partitioning to these domains remain unresolved. Here, we review evidence suggesting that post-translation modification by saturated lipids recruits both peripheral and transmembrane proteins to rafts, while short, unsaturated, and/or branched hydrocarbon chains prevent raft association. The most widely studied group of raft-associated proteins are glycophosphatidylinositol-anchored proteins (GPI-AP), and we review a variety of evidence supporting raft-association of these saturated lipid-anchored extracellular peripheral proteins. For transmembrane and intracellular peripheral proteins, S-acylation with saturated fatty acids mediates raft partitioning, and the dynamic nature of this modification presents an exciting possibility of enzymatically regulated raft association. The other common lipid modifications, that is, prenylation and myristoylation, are discussed in light of their likely role in targeting proteins to nonraft membrane regions. Finally, although the association between raft affinity and lipid modification is well-characterized, we discuss several open questions regarding regulation and remodeling of these post-translational modifications as well as their role in transbilayer coupling of membrane domains.
Collapse
Affiliation(s)
- Ilya Levental
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany
| | | | | |
Collapse
|
16
|
In JG, Tuma PL. MAL2 selectively regulates polymeric IgA receptor delivery from the Golgi to the plasma membrane in WIF-B cells. Traffic 2010; 11:1056-66. [PMID: 20444237 DOI: 10.1111/j.1600-0854.2010.01074.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Myelin and lymphocyte protein 2 (MAL2) has been identified as a hepatic transcytotic regulator that mediates delivery from basolateral endosomes to the subapical compartment (SAC). However, overexpression of polymeric immunoglobulin A-receptor (pIgA-R) in polarized, hepatic WIF-B cells led to the dramatic redistribution of MAL2 into the Golgi and all the transcytotic intermediates occupied by the receptor. Although overexpressed hemagglutinin and dipeptidylpeptidase IV (DPPIV) distributed to the same compartments, MAL2 distributions did not change indicating the effect is selective. Cycloheximide treatment led to decreased pIgA-R and MAL2 intracellular staining, first in the Golgi then the SAC, suggesting they were apically delivered and that MAL2 was mediating the process. This was tested in Clone 9 cells (that lack endogenous MAL2). When expressed alone, pIgA-R was restricted to the Golgi whereas when coexpressed with MAL2, it distributed to the surface, was internalized and delivered to MAL2-positive puncta. In contrast, DPPIV distributions were independent of MAL2. Surface delivery of newly synthesized pIgA-R, but not DPPIV, was enhanced greater than ninefold by MAL2 coexpression. In WIF-B cells where MAL2 expression was knocked down, pIgA-R, but not DPPIV, was retained in the Golgi and its basolateral delivery was impaired. Thus, in addition to its role in transcytosis, MAL2 also regulates pIgA-R delivery from the Golgi to the plasma membrane.
Collapse
Affiliation(s)
- Julie G In
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | |
Collapse
|
17
|
Fölsch H, Mattila PE, Weisz OA. Taking the scenic route: biosynthetic traffic to the plasma membrane in polarized epithelial cells. Traffic 2009; 10:972-81. [PMID: 19453969 DOI: 10.1111/j.1600-0854.2009.00927.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The maintenance of epithelial cell function requires the establishment and continuous renewal of differentiated apical and basolateral plasma membrane domains with distinct lipid and protein compositions. Newly synthesized proteins destined for either surface domain are processed along the biosynthetic pathway and segregated into distinct subsets of transport carriers emanating from the trans-Golgi network. Recent studies have illuminated additional complexities in the subsequent delivery of these proteins to the cell surface. In particular, multiple routes to the apical and basolateral cell surfaces have been uncovered, and many of these involve indirect passage through endocytic compartments. This review summarizes our current understanding of these routes and discusses open issues that remain to be clarified.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA.
| | | | | |
Collapse
|
18
|
Scolari S, Engel S, Krebs N, Plazzo AP, De Almeida RFM, Prieto M, Veit M, Herrmann A. Lateral distribution of the transmembrane domain of influenza virus hemagglutinin revealed by time-resolved fluorescence imaging. J Biol Chem 2009; 284:15708-16. [PMID: 19349276 DOI: 10.1074/jbc.m900437200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Influenza virus hemagglutinin (HA) has been suggested to be enriched in liquid-ordered lipid domains named rafts, which represent an important step in virus assembly. We employed Förster resonance energy transfer (FRET) via fluorescence lifetime imaging microscopy to study the interaction of the cytoplasmic and transmembrane domain (TMD) of HA with agly co sylphos pha tidyl ino si tol (GPI)-anchored peptide, an established marker for rafts in the exoplasmic leaflet of living mammalian plasma membranes. Cyan fluorescent protein (CFP) was fused to GPI, whereas the HA sequence was tagged with yellow fluorescent protein (YFP) on its exoplasmic site (TMD-HA-YFP), avoiding any interference of fluorescent proteins with the proposed role of the cytoplasmic domain in lateral organization of HA. Constructs were expressed in Chinese hamster ovary cells (CHO-K1) for which cholesterol-sensitive lipid nanodomains and their dimension in the plasma membrane have been described (Sharma, P., Varma, R., Sarasij, R. C., Ira, Gousset, K., Krishnamoorthy, G., Rao, M., and Mayor, S. (2004) Cell 116, 577-589). Upon transfection in CHO-K1 cells, TMD-HA-YFP is partially expressed as a dimer. Only dimers are targeted to the plasma membrane. Clustering of TMD-HA-YFP with GPI-CFP was observed and shown to be reduced upon cholesterol depletion, a treatment known to disrupt rafts. No indication for association of TMD-HA-YFP with GPI-CFP was found when palmitoylation, an important determinant of raft targeting, was suppressed. Clustering of TMD-HA-YFP and GPI-CFP was also observed in purified plasma membrane suspensions by homoFRET. We concluded that the pal mit oy lated TMD-HA alone is sufficient to recruit HA to cholesterol-sensitive nanodomains. The corresponding construct of the spike protein E2 of Semliki Forest virus did not partition preferentially in such domains.
Collapse
Affiliation(s)
- Silvia Scolari
- Department of Biology/Molecular Biophysics, Humboldt University Berlin, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Martín‐Belmonte F, Rodríguez‐Fraticelli AE. Chapter 3 Acquisition of Membrane Polarity in Epithelial Tube Formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:129-82. [DOI: 10.1016/s1937-6448(08)02003-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Duffield A, Caplan MJ, Muth TR. Chapter 4 Protein Trafficking in Polarized Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:145-79. [DOI: 10.1016/s1937-6448(08)01404-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Ramnarayanan SP, Cheng CA, Bastaki M, Tuma PL. Exogenous MAL reroutes selected hepatic apical proteins into the direct pathway in WIF-B cells. Mol Biol Cell 2007; 18:2707-15. [PMID: 17494867 PMCID: PMC1924826 DOI: 10.1091/mbc.e07-02-0096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Unlike simple epithelial cells that directly target newly synthesized glycophosphatidylinositol (GPI)-anchored and single transmembrane domain (TMD) proteins from the trans-Golgi network to the apical membrane, hepatocytes use an indirect pathway: proteins are delivered to the basolateral domain and then selectively internalized and transcytosed to the apical plasma membrane. Myelin and lymphocyte protein (MAL) and MAL2 have been identified as regulators of direct and indirect apical delivery, respectively. Hepatocytes lack endogenous MAL consistent with the absence of direct apical targeting. Does MAL expression reroute hepatic apical residents into the direct pathway? We found that MAL expression in WIF-B cells induced the formation of cholesterol and glycosphingolipid-enriched Golgi domains that contained GPI-anchored and single TMD apical proteins; polymeric IgA receptor (pIgA-R), polytopic apical, and basolateral resident distributions were excluded. Basolateral delivery of newly synthesized apical residents was decreased in MAL-expressing cells concomitant with increased apical delivery; pIgA-R and basolateral resident delivery was unchanged. These data suggest that MAL rerouted selected hepatic apical proteins into the direct pathway.
Collapse
Affiliation(s)
| | - Christina A. Cheng
- *Department of Biology, The Catholic University of America, Washington, DC 20064; and
| | - Maria Bastaki
- Graduate Environmental Studies Unit, The Evergreen State College, Olympia, WA 98505
| | - Pamela L. Tuma
- *Department of Biology, The Catholic University of America, Washington, DC 20064; and
| |
Collapse
|
22
|
Au JSY, Puri C, Ihrke G, Kendrick-Jones J, Buss F. Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. ACTA ACUST UNITED AC 2007; 177:103-14. [PMID: 17403927 PMCID: PMC2064115 DOI: 10.1083/jcb.200608126] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B–dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells.
Collapse
Affiliation(s)
- Josephine Sui-Yan Au
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, England, UK
| | | | | | | | | |
Collapse
|
23
|
Delacour D, Greb C, Koch A, Salomonsson E, Leffler H, Le Bivic A, Jacob R. Apical Sorting by Galectin-3-Dependent Glycoprotein Clustering. Traffic 2007; 8:379-88. [PMID: 17319896 DOI: 10.1111/j.1600-0854.2007.00539.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epithelial cells are characterized by their polarized organization based on an apical membrane that is separated from the basolateral membrane domain by tight junctions. Maintenance of this morphology is guaranteed by highly specific sorting machinery that separates lipids and proteins into different carrier populations for the apical or basolateral cell surface. Lipid-raft-independent apical carrier vesicles harbour the beta-galactoside-binding lectin galectin-3, which interacts directly with apical cargo in a glycan-dependent manner. These glycoproteins are mistargeted to the basolateral membrane in galectin-3-depleted cells, dedicating a central role to this lectin in raft-independent sorting as apical receptor. Here, we demonstrate that high-molecular-weight clusters are exclusively formed in the presence of galectin-3. Their stability is sensitive to increased carbohydrate concentrations, and cluster formation as well as apical sorting are perturbed in glycosylation-deficient Madin-Darby canine kidney (MDCK) II cells. Together, our data suggest that glycoprotein cross-linking by galectin-3 is required for apical sorting of non-raft-associated cargo.
Collapse
Affiliation(s)
- Delphine Delacour
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, 35033 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Lipid rafts are liquid-ordered (lo) phase microdomains proposed to exist in biological membranes. Rafts have been widely studied by isolating lo-phase detergent-resistant membranes (DRMs) from cells. Recent findings have shown that DRMs are not the same as preexisting rafts, prompting a major revision of the raft model. Nevertheless, raft-targeting signals identified by DRM analysis are often required for protein function, implicating rafts in a variety of cell processes.
Collapse
Affiliation(s)
- Deborah A Brown
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
25
|
Eisenberg S, Shvartsman DE, Ehrlich M, Henis YI. Clustering of raft-associated proteins in the external membrane leaflet modulates internal leaflet H-ras diffusion and signaling. Mol Cell Biol 2006; 26:7190-200. [PMID: 16980621 PMCID: PMC1592891 DOI: 10.1128/mcb.01059-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the least-explored aspects of cholesterol-enriched domains (rafts) in cells is the coupling between such domains in the external and internal monolayers and its potential to modulate transbilayer signal transduction. Here, we employed fluorescence recovery after photobleaching to study the effects of antibody-mediated patching of influenza hemagglutinin (HA) proteins [raft-resident wild-type HA and glycosylphosphatidylinositol-anchored HA, or the nonraft mutant HA(2A520)] on the lateral diffusion of internal-leaflet raft and nonraft Ras isoforms (H-Ras and K-Ras, respectively). Our studies demonstrate that the clustering of outer-leaflet or transmembrane raft-associated HA proteins (but not their nonraft mutants) retards the lateral diffusion of H-Ras (but not K-Ras), suggesting stabilized interactions of H-Ras with the clusters of raft-associated HA proteins. These modulations were paralleled by specific effects on the activity of H-Ras but not of the nonraft K-Ras. Thus, clustering raft-associated HA proteins facilitated the early step whereby H-Ras is converted to an activated, GTP-loaded state but inhibited the ensuing step of downstream signaling via the Mek/Erk pathway. We propose a model for the modulation of transbilayer signaling by clustering of raft proteins, where external clustering (antibody or ligand mediated) enhances the association of internal-leaflet proteins with the stabilized clusters, promoting either enhancement or inhibition of signaling.
Collapse
Affiliation(s)
- Sharon Eisenberg
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
26
|
Shvartsman DE, Gutman O, Tietz A, Henis YI. Cyclodextrins but not compactin inhibit the lateral diffusion of membrane proteins independent of cholesterol. Traffic 2006; 7:917-26. [PMID: 16787400 DOI: 10.1111/j.1600-0854.2006.00437.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholesterol and glycosphingolipid-enriched membrane domains, termed lipid rafts, were proposed to play important roles in trafficking and signaling events. These functions are inhibited following putative disruption of rafts by cholesterol depletion, commonly induced by treatment with methyl-beta-cyclodextrin (MbetaCD). However, several studies showed that the lateral diffusion of membrane proteins is inhibited by MbetaCD, suggesting that it may have additional effects on membrane organization unrelated to cholesterol removal. Here, we investigated this possibility by comparison of the effects of cholesterol depletion by MbetaCD and by metabolic inhibition (compactin), and of treatment with alpha-CD, which does not bind cholesterol. The studies employed two series of proteins (Ras and influenza hemagglutinin), each containing as internal controls related mutants that differ in raft association. Mild MbetaCD treatment retarded the lateral diffusion of both raft and non-raft mutants, whereas similar cholesterol reduction (30-33%) by metabolic inhibition enhanced selectively the diffusion of the raft-associated mutants. Moreover, alpha-CD also inhibited the diffusion of raft and non-raft mutants, despite its lack of effect on cholesterol content. These findings suggest that the widely used treatment with CD to reduce cholesterol has additional, cholesterol-independent effects on membrane protein mobility, which do not necessarily distinguish between raft and non-raft proteins.
Collapse
Affiliation(s)
- Dmitry E Shvartsman
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
27
|
Hodson CA, Ambrogi IG, Scott RO, Mohler PJ, Milgram SL. Polarized apical sorting of guanylyl cyclase C is specified by a cytosolic signal. Traffic 2006; 7:456-64. [PMID: 16536743 DOI: 10.1111/j.1600-0854.2006.00398.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Receptor guanylyl cyclases respond to ligand stimulation by increasing intracellular cGMP, thereby initiating a variety of cell-signaling pathways. Furthermore, these proteins are differentially localized at the apical and basolateral membranes of epithelial cells. We have identified a region of 11 amino acids in the cytosolic COOH terminus of guanylyl cyclase C (GCC) required for normal apical localization in Madin-Darby canine kidney (MDCK) cells. These amino acids share no significant sequence homology with previously identified cytosolic apical sorting determinants. However, these amino acids are highly conserved and are sufficient to confer apical polarity to the interleukin-2 receptor alpha-chain (Tac). Additionally, we find two molecular weight species of GCC in lysates prepared from MDCK cells over-expressing GCC but observe only the fully mature species on the cell surface. Using pulse-chase analysis in polarized MDCK cells, we followed the generation of this mature species over time finding it to be detectable only at the apical cell surface. These data support the hypothesis that selective apical sorting can be determined using short, cytosolic amino acid motifs and argue for the existence of apical sorting machinery comparable with the machinery identified for basolateral protein traffic.
Collapse
Affiliation(s)
- Caleb A Hodson
- Graduate Program in Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
28
|
Ellis MA, Potter BA, Cresawn KO, Weisz OA. Polarized biosynthetic traffic in renal epithelial cells: sorting, sorting, everywhere. Am J Physiol Renal Physiol 2006; 291:F707-13. [PMID: 16788143 DOI: 10.1152/ajprenal.00161.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The maintenance of apical and basolateral membrane domains with distinct protein and lipid compositions is necessary for the proper function of polarized epithelial cells. Delivery of cargo to the basolateral surface is thought to be mediated by the interaction of cytoplasmically disposed sorting signals with sorting receptors, whereas apically destined cargoes are sorted via mechanisms dependent on cytoplasmic, glycan-mediated, or lipid-interacting sorting signals. Apical and basolateral cargo are delivered to the surface in discrete tubular and vesicular carriers that bud from the trans-Golgi network (TGN). While it has long been thought that the TGN is the primary compartment in which apical and basolateral cargoes are segregated, recent studies suggest that sorting may begin earlier along the biosynthetic pathway. Moreover, rather than being delivered directly from the TGN to the cell surface, at least a subset of biosynthetic cargo appears to transit recycling endosomes en route to the plasma membrane. The implications and limitations of these challenges to the conventional model for how proteins are sorted and trafficked along the biosynthetic pathway are discussed.
Collapse
Affiliation(s)
- Mark A Ellis
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
29
|
|
30
|
Rodriguez-Boulan E, Müsch A, Le Bivic A. Epithelial trafficking: new routes to familiar places. Curr Opin Cell Biol 2005; 16:436-42. [PMID: 15261677 DOI: 10.1016/j.ceb.2004.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Research carried out in mammalian epithelial cell systems over the past 25 years has delineated pathways and sorting signals involved in polarized delivery of plasma membrane proteins. Recently some progress has been made in the identification of mechanisms underlying this polarized trafficking and in the visualization of trafficking routes in live cells. A promising area of research is the study of trafficking functions of novel polarity genes identified in Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Ave, New York, New York 10021, USA.
| | | | | |
Collapse
|
31
|
Campo C, Mason A, Maouyo D, Olsen O, Yoo D, Welling PA. Molecular mechanisms of membrane polarity in renal epithelial cells. Rev Physiol Biochem Pharmacol 2004; 153:47-99. [PMID: 15674648 DOI: 10.1007/s10254-004-0037-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Exciting discoveries in the last decade have cast light onto the fundamental mechanisms that underlie polarized trafficking in epithelial cells. It is now clear that epithelial cell membrane asymmetry is achieved by a combination of intracellular sorting operations, vectorial delivery mechanisms and plasmalemma-specific fusion and retention processes. Several well-defined signals that specify polarized segregation, sorting, or retention processes have, now, been described in a number of proteins. The intracellular machineries that decode and act on these signals are beginning to be described. In addition, the nature of the molecules that associate with intracellular trafficking vesicles to coordinate polarized delivery, tethering, docking, and fusion are also becoming understood. Combined with direct visualization of polarized sorting processes with new technologies in live-cell fluorescent microscopy, new and surprising insights into these once-elusive trafficking processes are emerging. Here we provide a review of these recent advances within an historically relevant context.
Collapse
Affiliation(s)
- C Campo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ellis MA, Miedel MT, Guerriero CJ, Weisz OA. ADP-ribosylation factor 1-independent protein sorting and export from the trans-Golgi network. J Biol Chem 2004; 279:52735-43. [PMID: 15459187 DOI: 10.1074/jbc.m410533200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polarized epithelial cells efficiently sort newly synthesized apical and basolateral proteins into distinct transport carriers that emerge from the trans-Golgi network (TGN), and this sorting is recapitulated in nonpolarized cells. While the targeting signals of basolaterally destined proteins are generally cytoplasmically disposed, apical sorting signals are not typically accessible to the cytosol, and the transport machinery required for segregation and export of apical cargo remains largely unknown. Here we investigated the molecular requirements for TGN export of the apical marker influenza hemagglutinin (HA) in HeLa cells using an in vitro reconstitution assay. HA was released from the TGN in intact membrane-bound compartments, and export was dependent on addition of an ATP-regenerating system and exogenous cytosol. HA release was inhibited by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) as well as under conditions known to negatively regulate apical transport in vivo, including expression of the acid-activated proton channel influenza M2. Interestingly, release of HA was unaffected by depletion of ADP-ribosylation factor 1, a small GTPase that has been implicated in the recruitment of all known adaptors and coat proteins to the Golgi complex. Furthermore, regulation of HA release by GTPgammaS or M2 expression was unaffected by cytosolic depletion of ADP-ribosylation factor 1, suggesting that HA sorting remains functionally intact in the absence of the small GTPase. These data suggest that TGN sorting and export of influenza HA does not require classical adaptors involved in the formation of other classes of exocytic carriers and thus appears to proceed via a novel mechanism.
Collapse
Affiliation(s)
- Mark A Ellis
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|