1
|
Week B, Bradburd G. Host-Parasite Coevolution in Continuous Space Leads to Variation in Local Adaptation across Spatial Scales. Am Nat 2024; 203:43-54. [PMID: 38207142 PMCID: PMC11016188 DOI: 10.1086/727470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractPrevious host-parasite coevolutionary theory has focused on understanding the determinants of local adaptation using spatially discrete models. However, these studies fall short of describing patterns of host-parasite local adaptation across spatial scales. In contrast, empirical work demonstrates that patterns of adaptation depend on the scale at which they are measured. Here, we propose a mathematical model of host-parasite coevolution in continuous space that naturally leads to a scale-dependent definition of local adaptation. In agreement with empirical research, we find that patterns of adaptation vary across spatial scales. In some cases, not only the magnitude of local adaptation but also the identity of the locally adapted species will depend on the spatial scale at which measurements are taken. Building on our results, we suggest a way to consistently measure parasite local adaptation when continuous space is the driver of cross-scale variation. We also describe a way to test whether continuous space is driving cross-scale variation. Taken together, our results provide a new perspective that can be used to understand empirical observations previously unexplained by theoretical expectations and deepens our understanding of the mechanics of host-parasite local adaptation.
Collapse
Affiliation(s)
- Bob Week
- University of Oregon, Eugene, Oregon 97403
| | | |
Collapse
|
2
|
Craig TP, Livingston‐Anderson A, Itami JK. A small‐tiled geographic mosaic of coevolution between
Eurosta solidaginis
and its natural enemies and host plant. Ecosphere 2020. [DOI: 10.1002/ecs2.3182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Timothy P. Craig
- Department of Biology University of Minnesota Duluth Duluth Minnesota55812USA
| | | | - Joanne K. Itami
- Department of Biology University of Minnesota Duluth Duluth Minnesota55812USA
| |
Collapse
|
3
|
Urban MC, Scarpa A, Travis JMJ, Bocedi G. Maladapted Prey Subsidize Predators and Facilitate Range Expansion. Am Nat 2019; 194:590-612. [PMID: 31490731 DOI: 10.1086/704780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dispersal of prey from predator-free patches frequently supplies a trophic subsidy to predators by providing more prey than are produced locally. Prey arriving from predator-free patches might also have evolved weaker defenses against predators and thus enhance trophic subsidies by providing easily captured prey. Using local models assuming a linear or accelerating trade-off between defense and population growth rate, we demonstrate that immigration of undefended prey increased predator abundances and decreased defended prey through eco-evolutionary apparent competition. In individual-based models with spatial structure, explicit genetics, and gene flow along an environmental gradient, prey became maladapted to predators at the predator's range edge, and greater gene flow enhanced this maladaptation. The predator gained a subsidy from these easily captured prey, which enhanced its abundance, facilitated its persistence in marginal habitats, extended its range extent, and enhanced range shifts during environmental changes, such as climate change. Once the predator expanded, prey adapted to it and the advantage disappeared, resulting in an elastic predator range margin driven by eco-evolutionary dynamics. Overall, the results indicate a need to consider gene flow-induced maladaptation and species interactions as mutual forces that frequently determine ecological and evolutionary dynamics and patterns in nature.
Collapse
|
4
|
Duxbury EML, Day JP, Maria Vespasiani D, Thüringer Y, Tolosana I, Smith SCL, Tagliaferri L, Kamacioglu A, Lindsley I, Love L, Unckless RL, Jiggins FM, Longdon B. Host-pathogen coevolution increases genetic variation in susceptibility to infection. eLife 2019; 8:e46440. [PMID: 31038124 PMCID: PMC6491035 DOI: 10.7554/elife.46440] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
It is common to find considerable genetic variation in susceptibility to infection in natural populations. We have investigated whether natural selection increases this variation by testing whether host populations show more genetic variation in susceptibility to pathogens that they naturally encounter than novel pathogens. In a large cross-infection experiment involving four species of Drosophila and four host-specific viruses, we always found greater genetic variation in susceptibility to viruses that had coevolved with their host. We went on to examine the genetic architecture of resistance in one host species, finding that there are more major-effect genetic variants in coevolved host-pathogen interactions. We conclude that selection by pathogens has increased genetic variation in host susceptibility, and much of this effect is caused by the occurrence of major-effect resistance polymorphisms within populations.
Collapse
Affiliation(s)
- Elizabeth ML Duxbury
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Jonathan P Day
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Yannik Thüringer
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Ignacio Tolosana
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Sophia CL Smith
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Lucia Tagliaferri
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Altug Kamacioglu
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Imogen Lindsley
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Luca Love
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Robert L Unckless
- Department of Molecular BiosciencesUniversity of KansasLawrenceUnited States
| | - Francis M Jiggins
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Ben Longdon
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
- Centre for Ecology and Conservation, BiosciencesUniversity of Exeter (Penryn Campus)CornwallUnited Kingdom
| |
Collapse
|
5
|
Laplacian matrices and Turing bifurcations: revisiting Levin 1974 and the consequences of spatial structure and movement for ecological dynamics. THEOR ECOL-NETH 2019. [DOI: 10.1007/s12080-018-0403-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Govaert L, Fronhofer EA, Lion S, Eizaguirre C, Bonte D, Egas M, Hendry AP, De Brito Martins A, Melián CJ, Raeymaekers JAM, Ratikainen II, Saether B, Schweitzer JA, Matthews B. Eco‐evolutionary feedbacks—Theoretical models and perspectives. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13241] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | | | - Sébastien Lion
- Centre d'Ecologie Fonctionnelle et Evolutive CNRS, IRD, EPHE Université de Montpellier Montpellier France
| | | | - Dries Bonte
- Department of Biology Ghent University Ghent Belgium
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Andrew P. Hendry
- Redpath Museum and Department of Biology McGill University Montreal Quebec Canada
| | - Ayana De Brito Martins
- Fish Ecology and Evolution DepartmentCenter for Ecology, Evolution and BiogeochemistryEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Carlos J. Melián
- Fish Ecology and Evolution DepartmentCenter for Ecology, Evolution and BiogeochemistryEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | | | - Irja I. Ratikainen
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Bernt‐Erik Saether
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Blake Matthews
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| |
Collapse
|
7
|
Grüter C, Jongepier E, Foitzik S. Insect societies fight back: the evolution of defensive traits against social parasites. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170200. [PMID: 29866913 PMCID: PMC6000133 DOI: 10.1098/rstb.2017.0200] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2017] [Indexed: 01/05/2023] Open
Abstract
Insect societies face many social parasites that exploit their altruistic behaviours or their resources. Due to the fitness costs these social parasites incur, hosts have evolved various behavioural, chemical, architectural and morphological defence traits. Similar to bacteria infecting multicellular hosts, social parasites have to successfully go through several steps to exploit their hosts. Here, we review how social insects try to interrupt this sequence of events. They can avoid parasite contact by choosing to nest in parasite-free locales or evade attacks by adapting their colony structure. Once social parasites attack, hosts attempt to detect them, which can be facilitated by adjustments in colony odour. If social parasites enter the nest, hosts can either aggressively defend their colony or take their young and flee. Nest structures are often shaped to prevent social parasite invasion or to safeguard host resources. Finally, if social parasites successfully establish themselves in host nests, hosts can rebel by killing the parasite brood or by reproducing in the parasites' presence. Hosts of social parasites can therefore develop multiple traits, leading to the evolution of complex defence portfolios of co-dependent traits. Social parasites can respond to these multi-level defences with counter-adaptations, potentially leading to geographical mosaics of coevolution.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Christoph Grüter
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz 55099, Germany
| | - Evelien Jongepier
- Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Hüfferstrasse 1, 48149 Münster, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz 55099, Germany
| |
Collapse
|
8
|
Aubier TG, Elias M, Llaurens V, Chazot N. Mutualistic mimicry enhances species diversification through spatial segregation and extension of the ecological niche space. Evolution 2017; 71:826-844. [DOI: 10.1111/evo.13182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/06/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas G. Aubier
- Centre d'Ecologie Fonctionnelle et Evolutive; CEFE - UMR 5175 - CNRS, Université de Montpellier, EPHE, Université Paul Valéry; 1919 route de Mende, F-34293 Montpellier 5 France
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 57 rue Cuvier, CP50 F-75005 Paris France
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 57 rue Cuvier, CP50 F-75005 Paris France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 57 rue Cuvier, CP50 F-75005 Paris France
| | - Nicolas Chazot
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 57 rue Cuvier, CP50 F-75005 Paris France
- Department of Biology; Lund University; Lund Sweden
| |
Collapse
|
9
|
Bozick BA, Real LA. INTEGRATING PARASITES AND PATHOGENS INTO THE STUDY OF GEOGRAPHIC RANGE LIMITS. QUARTERLY REVIEW OF BIOLOGY 2016; 90:361-80. [PMID: 26714350 DOI: 10.1086/683698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The geographic distributions of all species are limited, and the determining factors that set these limits are of fundamental importance to the fields of ecology and evolutionary biology. Plant and animal ranges have been of primary concern, while those of parasites, which represent much of the Earth's biodiversity, have been neglected. Here, we review the determinants of the geographic ranges of parasites and pathogens, and explore how parasites provide novel systems with which to investigate the ecological and evolutionary processes governing host/parasite spatial distributions. Although there is significant overlap in the causative factors that determine range borders of parasites and free-living species, parasite distributions are additionally constrained by the geographic range and ecology of the host species' population, as well as by evolutionary factors that promote host-parasite coevolution. Recently, parasites have been used to infer population demographic and ecological information about their host organisms and we conclude that this strategy can be further exploited to understand geographic range limitations of both host and parasite populations.
Collapse
|
10
|
Poisot T, Stouffer DB, Gravel D. Beyond species: why ecological interaction networks vary through space and time. OIKOS 2014. [DOI: 10.1111/oik.01719] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Timothée Poisot
- School of Biological Sciences, Univ. of Canterbury; Christchurch New Zealand
- Québec Centre for Biodiversity Sciences; Montréal, QC Canada
| | - Daniel B. Stouffer
- School of Biological Sciences, Univ. of Canterbury; Christchurch New Zealand
| | - Dominique Gravel
- Québec Centre for Biodiversity Sciences; Montréal, QC Canada
- Dept of Biology; Univ. du Québec à Rimouski; Rimouski, QC G5L 3A1 Canada
| |
Collapse
|
11
|
Gibert JP, Pires MM, Thompson JN, Guimarães PR. The spatial structure of antagonistic species affects coevolution in predictable ways. Am Nat 2013; 182:578-91. [PMID: 24107366 DOI: 10.1086/673257] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A current challenge in evolutionary ecology is to assess how the spatial structure of interacting species shapes coevolution. Previous work on the geographic mosaic of coevolution has shown that coevolution depends on the spatial structure, the strength of selection, and gene flow across populations. We used spatial subgraphs and coevolutionary models to evaluate how spatial structure and the location of coevolutionary hotspots (sites in which reciprocal selection occurs) and coldspots (sites in which unidirectional selection occurs) contribute to the dynamics of coevolution and the maintenance of polymorphisms. Specifically, we developed a new approach based on the Laplacian matrices of spatial subgraphs to explore the tendency of interacting species to evolve toward stable polymorphisms. Despite the complex interplay between gene flow and the strength of reciprocal selection, simple rules drive coevolution in small groups of spatially structured interacting populations. Hotspot location and the spatial organization of coldspots are crucial for understanding patterns in the maintenance of polymorphisms. Moreover, the degree of spatial variation in the outcomes of the coevolutionary process can be predicted from the network pattern of gene flow among sites. Our work provides us with novel tools that can be used in the field or the laboratory to predict the effects of spatial structure on coevolutionary trajectories.
Collapse
Affiliation(s)
- Jean P Gibert
- Laboratorio de Paleobiología, Sección Paleontología, Facultad de Ciencias de la Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | | | | | | |
Collapse
|
12
|
Kuzmin Y, Kinsella JM, Tkach VV, Bush SE. New Species ofKalicephalus(Nematoda: Diaphanocephalidae) from a Snake,Oxyrhabdium leporinum, on Luzon Island, Philippines. COMP PARASITOL 2013. [DOI: 10.1654/4636.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Loeuille N, Barot S, Georgelin E, Kylafis G, Lavigne C. Eco-Evolutionary Dynamics of Agricultural Networks. ADV ECOL RES 2013. [DOI: 10.1016/b978-0-12-420002-9.00006-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Iseki N, Sasaki A, Toju H. Arms race between weevil rostrum length and camellia pericarp thickness: Geographical cline and theory. J Theor Biol 2011; 285:1-9. [PMID: 21651915 DOI: 10.1016/j.jtbi.2011.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 05/23/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
The geographical cline of the coevolving traits of weevil rostrum (mouthpart) length and camellia pericarp (fruit coat) thickness provides an opportunity to test the arms race theory of defense (pericarp thickness) and countermeasure (rostrum length) between antagonistically interacting species. By extending the previous model for the coevolution of quantitative traits to introduce nonlinear costs for exaggerated traits, the generation overlap, and density-dependent regulation in the host, we studied the evolutionarily stable (ES) pericarp thickness in the Japanese camellia (Camellia japonica) and the ES rostrum length in the camellia-weevil (Curculio camelliae). The joint monomorphic ES system has a robust outcome with nonlinear costs, and we analyzed how the traits of both species at evolutionary equilibrium depend on demographic parameters. If camellia demographic parameters vary latitudinally, data collected over the geographical scale of rostrum length and pericarp thickness should lie on an approximately linear curve with the slope less than that of the equiprobability line A/B of boring success, where A and B are coefficients for the logistic regression of boring success to pericarp thickness and rostrum length, respectively. This is a robust prediction as long as the cost of rostrum length is nonlinear (accelerating). As a result, boring success should be lower in populations with longer rostrum length, as reported in the weevil-camellia system (Toju, H., and Sota, T., 2006a. Imbalance of predator and prey armament: Geographic clines in phenotypic interface and natural selection. American Naturalist 167, 105-117). The nonlinearity (exponent) for the cost of rostrum length estimated from the geographical cline data for the weevil-camellia system was 2.2, suggesting nonlinearity between quadratic and cubic forms.
Collapse
Affiliation(s)
- Naoyuki Iseki
- Department of Biology, Faculty of Science, Kyushu University Graduate School, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|
15
|
King KC, Delph LF, Jokela J, Lively CM. Coevolutionary hotspots and coldspots for host sex and parasite local adaptation in a snail-trematode interaction. OIKOS 2011. [DOI: 10.1111/j.1600-0706.2011.19241.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
RUANO F, DEVERS S, SANLLORENTE O, ERRARD C, TINAUT A, LENOIR A. A geographical mosaic of coevolution in a slave-making host-parasite system. J Evol Biol 2011; 24:1071-9. [DOI: 10.1111/j.1420-9101.2011.02238.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
ZANATTA DAVIDT, WILSON CHRISC. Testing congruency of geographic and genetic population structure for a freshwater mussel (Bivalvia: Unionoida) and its host fish. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2010.01596.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
GODSOE W, YODER JB, SMITH CI, DRUMMOND CS, PELLMYR O. Absence of population-level phenotype matching in an obligate pollination mutualism. J Evol Biol 2010; 23:2739-46. [DOI: 10.1111/j.1420-9101.2010.02120.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
|
20
|
Lopez-Pascua LDC, Brockhurst MA, Buckling A. Antagonistic coevolution across productivity gradients: an experimental test of the effects of dispersal. J Evol Biol 2009; 23:207-11. [PMID: 20002253 DOI: 10.1111/j.1420-9101.2009.01877.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coevolution commonly occurs in spatially heterogeneous environments, resulting in variable selection pressures acting on coevolving species. Dispersal across such environments is predicted to have a major impact on local coevolutionary dynamics. Here, we address how co-dispersal of coevolving populations of host and parasite across an environmental productivity gradient affected coevolution in experimental populations of bacteria and their parasitic viruses (phages). The rate of coevolution between bacteria and phages was greater in high-productivity environments. High-productivity immigrants ( approximately 2% of the recipient population) caused coevolutionary dynamics (rates of coevolution and degree of generalist evolution) in low-productivity environments to be largely indistinguishable from high-productivity environments, whereas immigration from low-productivity environments ( approximately 0.5% of the population) had no discernable impact. These results could not be explained by demography alone, but rather high-productivity immigrants had a selective advantage in low-productivity environments, but not vice versa. Coevolutionary interactions in high-productivity environments are therefore likely to have a disproportionate impact on coevolution across the landscape as a whole.
Collapse
|
21
|
King KC, Delph LF, Jokela J, Lively CM. The geographic mosaic of sex and the Red Queen. Curr Biol 2009; 19:1438-41. [PMID: 19631541 DOI: 10.1016/j.cub.2009.06.062] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
The maintenance of sexual reproduction in natural populations is a pressing question for evolutionary biologists. Under the "Red Queen" hypothesis, coevolving parasites reduce the reproductive advantage of asexual reproduction by adapting to infect clonal genotypes after they become locally common. In addition, the "geographic mosaic" theory of coevolution proposes that structured populations of interacting species can produce selection mosaics manifested as coevolutionary "hot spots" and "cold spots". Here, we tested whether a steep, habitat-specific cline in the frequency of sexual reproduction in a freshwater snail could be explained by the existence of hot spots and cold spots for coevolving parasites. We found that the shallow-water margins of lakes, where sexual reproduction is most common, are coevolutionary hot spots, and that deeper habitats are cold spots. These results are consistent with the geographic mosaic theory, in that the intensity of selection resulting from biological interactions can vary sharply in space. The results also support the Red Queen hypothesis, in that sex is associated with coevolutionary hot spots for virulent parasites.
Collapse
Affiliation(s)
- Kayla C King
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA.
| | | | | | | |
Collapse
|
22
|
Vogwill T, Fenton A, Buckling A, Hochberg ME, Brockhurst MA. Source populations act as coevolutionary pacemakers in experimental selection mosaics containing hotspots and coldspots. Am Nat 2009; 173:E171-6. [PMID: 19272015 DOI: 10.1086/597374] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural populations of hosts and their enemies are often spatially structured, with patches that vary in the strength of reciprocal selection, so-called coevolutionary hotspots and coldspots with strong or weak reciprocal selection, respectively. Theory predicts that dispersal from hotspots should intensify coevolution in coldspots, whereas dispersal from coldspots should weaken coevolution in hotspots; however, there have been few empirical tests. We addressed this using paired populations of the bacterium Pseudomonas fluorescens and the phage SBW25Phi2 linked by one-way dispersal. Within each population, the strength of reciprocal selection was manipulated by altering the bacteria-phage encounter rate, which changes the rate of coevolution without affecting environmental productivity. We observed that dispersal from hotspots accelerated coevolution in coldspots, while dispersal from coldspots decelerated coevolution in hotspots. These results confirm theoretical predictions and suggest that source populations can act as coevolutionary "pacemakers" for recipient populations, overriding local conditions.
Collapse
Affiliation(s)
- Tom Vogwill
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Abstract
The geographic mosaic theory is fast becoming a unifying framework for coevolutionary studies. A recent experimental study of interactions between pines and mycorrhizal fungi in BMC Biology is the first to rigorously test geographical selection mosaics, one of the cornerstones of the theory.
Collapse
Affiliation(s)
- David R Nash
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
Stokke BG, Hafstad I, Rudolfsen G, Moksnes A, Møller AP, Røskaft E, Soler M. Predictors of resistance to brood parasitism within and among reed warbler populations. Behav Ecol 2008. [DOI: 10.1093/beheco/arn007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
de Vienne DM, Giraud T, Shykoff JA. When can host shifts produce congruent host and parasite phylogenies? A simulation approach. J Evol Biol 2007; 20:1428-38. [PMID: 17584237 DOI: 10.1111/j.1420-9101.2007.01340.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Congruence between host and parasite phylogenies is often taken as evidence for cospeciation. However, 'pseudocospeciation', resulting from host-switches followed by parasite speciation, may also generate congruent trees. To investigate this process and the conditions favouring its appearance, we here simulated the adaptive radiation of a parasite onto a new range of hosts. A very high congruence between the host tree and the resulting parasite trees was obtained when parasites switched between closely related hosts. Setting a shorter time lag for speciation after switches between distantly related hosts further increased the degree of congruence. The shape of the host tree, however, had a strong impact, as no congruence could be obtained when starting with highly unbalanced host trees. The strong congruences obtained were erroneously interpreted as the result of cospeciations by commonly used phylogenetic software packages despite the fact that all speciations resulted from host-switches in our model. These results highlight the importance of estimating the age of nodes in host and parasite phylogenies when testing for cospeciation and also demonstrate that the results obtained with software packages simulating evolutionary events must be interpreted with caution.
Collapse
Affiliation(s)
- D M de Vienne
- Ecologie, Systématique et Evolution, UMR 8079 CNRS-Université Paris Sud, Université Paris Sud, Orsay Cedex, France.
| | | | | |
Collapse
|
26
|
Brockhurst MA, Buckling A, Poullain V, Hochberg ME. The impact of migration from parasite-free patches on antagonistic host-parasite coevolution. Evolution 2007; 61:1238-43. [PMID: 17492974 DOI: 10.1111/j.1558-5646.2007.00087.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural populations of hosts and parasites are often subdivided and patchily distributed such that some regions of a host species' range will be free from a given parasite. Host migration from parasite-free to parasite-containing patches is expected to alter coevolutionary dynamics by changing the evolutionary potential of antagonists. Specifically, host immigration can favor parasites by increasing transmission opportunities, or hosts by introducing genetic variation. We tested these predictions in coevolving populations of Pseudomonas fluorescens and phage Phi2 that received immigrants from phage-free populations. We observed a negative quadratic relationship between sympatric resistance to phage and host immigration rate (highest at intermediate immigration) but a positive quadratic relationship between coevolution rate and host immigration rate (lowest at intermediate immigration). These results indicate that for a wide range of rates, host immigration from parasite-free patches can increase the evolutionary potential of parasites, and increase the coevolutionary rate if parasite adaptation is limiting in the absence of immigration.
Collapse
Affiliation(s)
- Michael A Brockhurst
- School of Biological Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | | | | | | |
Collapse
|
27
|
Hoeksema JD, Thompson JN. Geographic structure in a widespread plant?mycorrhizal interaction: pines and false truffles. J Evol Biol 2007; 20:1148-63. [PMID: 17465924 DOI: 10.1111/j.1420-9101.2006.01287.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutualistic interactions are likely to exhibit a strong geographic mosaic in their coevolutionary dynamics, but the structure of geographic variation in these interactions is much more poorly characterized than in host-parasite interactions. We used a cross-inoculation experiment to characterize the scales and patterns at which geographic structure has evolved in an interaction between three pine species and one ectomycorrhizal fungus species along the west coast of North America. We found substantial and contrasting patterns of geographic interaction structure for the plants and fungi. The fungi exhibited a clinal pattern of local adaptation to their host plants across the geographic range of three coastal pines. In contrast, plant growth parameters were unaffected by fungal variation, but varied among plant populations and species. Both plant and fungal performance measures varied strongly with latitude. This set of results indicates that in such widespread species interactions, interacting species may evolve asymmetrically in a geographic mosaic because of differing evolutionary responses to clinally varying biotic and abiotic factors.
Collapse
Affiliation(s)
- J D Hoeksema
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
28
|
Gomulkiewicz R, Drown DM, Dybdahl MF, Godsoe W, Nuismer SL, Pepin KM, Ridenhour BJ, Smith CI, Yoder JB. Dos and don'ts of testing the geographic mosaic theory of coevolution. Heredity (Edinb) 2007; 98:249-58. [PMID: 17344805 DOI: 10.1038/sj.hdy.6800949] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The geographic mosaic theory of coevolution is stimulating much new research on interspecific interactions. We provide a guide to the fundamental components of the theory, its processes and main predictions. Our primary objectives are to clarify misconceptions regarding the geographic mosaic theory of coevolution and to describe how empiricists can test the theory rigorously. In particular, we explain why confirming the three main predicted empirical patterns (spatial variation in traits mediating interactions among species, trait mismatching among interacting species and few species-level coevolved traits) does not provide unequivocal support for the theory. We suggest that strong empirical tests of the geographic mosaic theory of coevolution should focus on its underlying processes: coevolutionary hot and cold spots, selection mosaics and trait remixing. We describe these processes and discuss potential ways each can be tested.
Collapse
Affiliation(s)
- R Gomulkiewicz
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The metacommunity framework predicts that local coexistence depends on the outcome of local species interactions and regional migration. In analogous fashion, spatial structure among populations can shape species interactions through evolutionary mechanisms. Yet, most metacommunity theories assume that populations do not evolve. Here, we evaluate how evolution shapes local species coexistence and exclusion within the multiscale and multispecies context embodied by the metacommunity framework. In general, coexistence in joint ecological-evolutionary models requires low to intermediate dispersal rates that can promote maintenance of both regional species and genetic diversity. These conditions support a set of key mechanisms that modify patterns of species coexistence including local adaptation, gene storage effects, genetic rescue effects, spatial genetic subsidies, and metacommunity evolution. Multispecies extensions indicate that correlated selection can further alter the outcome of interspecific interactions depending on the magnitude and direction of correlations and shape of fitness trade-offs. We suggest that an evolving metacommunity perspective has the potential to generate novel predictions about community structure and function by incorporating the genetic and species diversity that characterize natural communities. In adopting such a perspective, we seek to facilitate understanding about the interactions between evolutionary and metacommunity dynamics.
Collapse
Affiliation(s)
- Mark C Urban
- Yale University School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|
30
|
Urban MC. Maladaptation and mass effects in a metacommunity: consequences for species coexistence. Am Nat 2006; 168:28-40. [PMID: 16874613 DOI: 10.1086/505159] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 04/17/2006] [Indexed: 11/03/2022]
Abstract
Metacommunity theories predict multispecies coexistence based on the interplay between local species interactions and regional migration. To date, most metacommunity models implicitly assume that evolution can be ignored. Yet empirical studies indicate a substantial potential for contemporary evolution. I evaluate how evolution alters species diversity in a simulated mass-effects (sink-source) metacommunity. Populations inhabiting source habitats became locally adapted, while subordinate competitors became maladapted because of assumed ecological and phenotypic trade-offs between habitats. This maladaptation decreased and leveled relative abundances among subordinate populations. These two effects produced two regions of departure from nonevolutionary predictions. Assuming low proportional migration, maladaptation reduced local species richness via an overall reduction in reproductive rates in sink populations. With intermediate proportional migration, a greater absolute reduction of reproductive rates in intermediate competitors leveled reproductive rates and thereby enhanced local species richness. Although maladaptation is usually viewed as a constraint on species coexistence, simulations suggest that its effects on diversity are manifold and dependent on interpatch migration and community context. Hence, metacommunity predictions often may profit from an evolutionary perspective. Results indicate that modifications of community connectivity, such as might occur during habitat fragmentation, could elicit rapid shifts in communities from regions of high to low biodiversity.
Collapse
Affiliation(s)
- Mark C Urban
- School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
31
|
Stenberg JA, Witzell J, Ericson L. Tall herb herbivory resistance reflects historic exposure to leaf beetles in a boreal archipelago age-gradient. Oecologia 2006; 148:414-25. [PMID: 16502319 DOI: 10.1007/s00442-006-0390-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/02/2006] [Indexed: 10/25/2022]
Abstract
In this paper, we introduce the coevolution-by-coexistence hypothesis which predicts that the strength of a coevolutionary adaptation will become increasingly apparent as long as the corresponding selection from an interacting counterpart continues. Hence, evolutionary interactions between plants and their herbivores can be studied by comparing discrete plant populations with known history of herbivore colonization. We studied populations of the host plant, Filipendula ulmaria (meadow sweet), on six islands, in a Bothnian archipelago subject to isostatic rebound, that represent a spatio-temporal gradient of coexistence with its two major herbivores, the specialist leaf beetles Galerucella tenella and Altica engstroemi. Regression analyses showed that a number of traits important for insect-plant interactions (leaf concentrations of individual phenolics and condensed tannins, plant height, G. tenella adult feeding and oviposition) were significantly correlated with island age. First, leaf concentrations of condensed tannins and individual phenolics were positively correlated with island age, suggesting that plant resistance increased after herbivore colonization and continued to increase in parallel to increasing time of past coexistence, while plant height showed a reverse negative correlation. Second, a multi-choice experiment with G. tenella showed that both oviposition and leaf consumption of the host plants were negatively correlated with island age. Third, larvae performed poorly on well-defended, older host populations and well on less-defended, younger populations. Thus, no parameter assessed in this study falsifies the coevolution-by-coexistence hypothesis. We conclude that spatio-temporal gradients present in rising archipelagos offer unique opportunities to address evolutionary interactions, but care has to be taken as abiotic (and other biotic) factors may interact in a complicated way.
Collapse
Affiliation(s)
- Johan A Stenberg
- Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden.
| | | | | |
Collapse
|
32
|
|
33
|
|
34
|
THOMPSON JOHNN, NUISMER SCOTTL, MERG KURT. Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biol J Linn Soc Lond 2004. [DOI: 10.1111/j.1095-8312.2004.00338.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Abstract
Many mutualistic interactions are probably not mutualistic across all populations and years. This article explores consequences of this observation with a series of genetic models that consider how variable mutualisms coevolve. The first models, previously introduced in a general coevolutionary context, consider two coevolving species whose fitness interactions change between beneficial and antagonistic in response to independent spatial or temporal variation in the abiotic or biotic environment. The results demonstrate that both temporal and spatial variability in fitness interactions can cause partner species with tightly matched traits favored by unconditional mutualisms to be vulnerable to evolutionary invasion by alternative types. A new model presented here shows that an additional mutualistic species can have a similar effect and can even cause fitness interactions between the other two species to evolve. Under some conditions, the pairwise interactions can change unidirectionally from mutualistic to antagonistic, with virtually no evolutionary change in either partner species. In other cases, fitness interactions between the species pair can oscillate between mutualism and antagonism as a result of coevolution in the third species. Taken as a whole, these theoretical results suggest that many features of mutualistic coevolution can best be understood by considering spatial, temporal, and community-dependent patterns of fitness interactions.
Collapse
Affiliation(s)
- Richard Gomulkiewicz
- School of Biological Sciences, P.O. Box 644236, Washington State University, Pullman, Washington 99164, USA.
| | | | | |
Collapse
|