1
|
Lind A, Siersema PD, Kusters JG, Konijn T, Mebius RE, Koenderman L. The Microenvironment in Barrett's Esophagus Tissue Is Characterized by High FOXP3 and RALDH2 Levels. Front Immunol 2018; 9:1375. [PMID: 29967615 PMCID: PMC6015910 DOI: 10.3389/fimmu.2018.01375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022] Open
Abstract
Metaplasia in Barrett’s esophagus (BE) is characterized by the transition of squamous epithelium into intestinal-type columnar epithelium. The immune response in BE shares many similarities with the response found in the gut, which is different from the response found in a normal-looking esophagus. Here, we investigated the role of the genes associated with the retinoic acid (RA) pathway in BE, as RA is important not only in shaping the gut’s immune response but also in the induction of metaplasia in vitro. mRNA was isolated from esophageal and duodenal biopsies from BE (n = 14), reflux esophagitis patients (n = 9), and controls (n = 12). cDNA was made and qPCR was performed. The expression of RALDH1, CYP26A1, MAdCAM1 were similar for both the BE and duodenum, but different when compared to squamous esophageal epithelium. BE was characterized by a higher expression of RALDH2 and FOXP3, compared to the duodenum. In BE, RALDH2 correlated with expression of the myeloid dendritic cell-specific genes: CD11c and CD1c. Also, RALDH2 expression correlated with RAR-β and FOXP3. Hierarchical clustering on the expression of multiple relevant genes demonstrated that BE, duodenum, and SQ tissues are clustered as three different groups. The differential expression of RA-specific genes and dendritic cell (DC)-subsets indicates that BE resembles duodenal tissue. The higher expression of RALDH2 and FOXP3 in BE points at a mechanism associated with a possible anti-inflammatory microenvironment. This aberrant immune regulation might contribute to the altered tissue and immune responses found in BE.
Collapse
Affiliation(s)
- Alexandra Lind
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Peter D Siersema
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johannes G Kusters
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tanja Konijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
2
|
Naeem AS, Tommasi C, Cole C, Brown SJ, Zhu Y, Way B, Willis Owen SAG, Moffatt M, Cookson WO, Harper JI, Di WL, Brown SJ, Reinheckel T, O'Shaughnessy RFL. A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic dermatitis. J Allergy Clin Immunol 2017; 139:1228-1241. [PMID: 27913303 PMCID: PMC5380661 DOI: 10.1016/j.jaci.2016.09.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/05/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. OBJECTIVE We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. RESULTS We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. CONCLUSION Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD.
Collapse
Affiliation(s)
- Aishath S Naeem
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Cristina Tommasi
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Christian Cole
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Stuart J Brown
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Yanan Zhu
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Benjamin Way
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | | | - Miriam Moffatt
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - William O Cookson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - John I Harper
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Wei-Li Di
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Sara J Brown
- Centre for Dermatology and Genetic Medicine, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Ryan F L O'Shaughnessy
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom.
| |
Collapse
|
3
|
The use of gene arrays and corresponding connectivity mapping (Cmap) to identify novel anti-ageing ingredients. Int J Cosmet Sci 2015; 37 Suppl 1:9-14. [DOI: 10.1111/ics.12251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/05/2015] [Indexed: 01/10/2023]
|
4
|
Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol 2015; 94:483-512. [PMID: 26344860 DOI: 10.1016/j.ejcb.2015.08.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in cell culture methods, multidisciplinary research, clinical need to replace lost skin tissues and regulatory need to replace animal models with alternative test methods has led to development of three dimensional models of human skin. In general, these in vitro models of skin consist of keratinocytes cultured over fibroblast-populated dermal matrices. Accumulating evidences indicate that mesenchyme-derived signals are essential for epidermal morphogenesis, homeostasis and differentiation. Various studies show that fibroblasts isolated from different tissues in the body are dynamic in nature and are morphologically and functionally heterogeneous subpopulations. Further, these differences seem to be dictated by the local biological and physical microenvironment the fibroblasts reside resulting in "positional identity or memory". Furthermore, the heterogeneity among the fibroblasts play a critical role in scarless wound healing and complete restoration of native tissue architecture in fetus and oral mucosa; and excessive scar formation in diseased states like keloids and hypertrophic scars. In this review, we summarize current concepts about the heterogeneity among fibroblasts and their role in various wound healing environments. Further, we contemplate how the insights on fibroblast heterogeneity could be applied for the development of next generation organotypic skin models.
Collapse
|
5
|
|
6
|
Gillbro JM, Al-Bader T, Westman M, Olsson MJ, Mavon A. Transcriptional changes in organoculture of full-thickness human skin following topical application of all-trans retinoic acid. Int J Cosmet Sci 2014; 36:253-61. [PMID: 24697191 PMCID: PMC4265278 DOI: 10.1111/ics.12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/09/2014] [Indexed: 12/28/2022]
Abstract
Objective Retinoids are used as therapeutic agents for numerous skin diseases, for example, psoriasis, acne and keratinization disorders. The same substances have also been recognized in the treatment for hyperpigmentation disorders such as melasma. Other studies on photo-damaged skin have shown that retinoids reduce wrinkles, surface roughness, mottled pigmentation, and visual skin appearance as a whole. We tested the hypothesis that an organoculture of full-thickness human skin could be used as a preclinical model to investigate the retinoid transcriptional profile in human skin in vitro. Methods Full-thickness skin explants were exposed to topically applied all-trans retinoic acid (RA) for 24 h. The gene expression profile was analysed using oligonucleotide microarrays, and data were validated with real-time (RT) PCR. Results We showed that the expression of 93 genes was significantly altered more than twofold. Several of the altered genes, for example, KRT4, CYP26 and LCN2, have previously been shown to be affected by RA in keratinocyte monocultures, reconstructed epidermis and skin biopsies from patients treated topically or orally with RA. In addition, genes, such as SCEL, NRIP1, DGAT2, RDH12 EfnB2, MAPK14, SAMD9 and CEACAM6 not previously reported to be affected by RA in human skin, were identified for the first time in this study. Conclusion The results in the present study show that full-thickness human explants represent a valuable pre-clinical model for studying the effects of retinoids in skin. Résumé
Collapse
Affiliation(s)
- J M Gillbro
- Oriflame Skin Research Institute, Mäster Samuelsgatan 56, Stockholm, 11121, Sweden
| | | | | | | | | |
Collapse
|
7
|
Törmä H. Regulation of keratin expression by retinoids. DERMATO-ENDOCRINOLOGY 2011; 3:136-40. [PMID: 22110773 DOI: 10.4161/derm.3.3.15026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/25/2011] [Indexed: 11/19/2022]
Abstract
Vitamin A and its natural and synthetic metabolites (retinoids) affect growth and differentiation of human skin and among the genes affected by retinoids in epidermis are keratin genes. Keratins are intermediate filament proteins that have essential functions in maintaining the structural integrity of epidermis and its appendages. Their expressions are under strict control to produce keratins that are optimally adapted to their environment. In this article, retinoid regulation of keratin expression in cultured human epidermal keratinocytes and in human skin in vivo will be reviewed. The direct and indirect mechanisms involved will be discussed and novel therapeutic strategies will be proposed for utilizing retinoids in skin disorders due to keratin mutations (e.g., epidermolysis bullosa simplex and epidermolytic ichthyosis).
Collapse
Affiliation(s)
- Hans Törmä
- Department of Medical Sciences/Dermatology; Uppsala University; Uppsala, Sweden
| |
Collapse
|
8
|
Verfaille CJ, Thissen CACB, Bovenschen HJ, Mertens J, Steijlen PM, van de Kerkhof PCM. Oral R115866 in the treatment of moderate to severe plaque-type psoriasis. J Eur Acad Dermatol Venereol 2007; 21:1038-46. [PMID: 17714122 DOI: 10.1111/j.1468-3083.2007.02158.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND R115866 (Rambazole) is a new generation all-trans retinoic acid metabolism blocking agent, highly specific against the retinoic acid 4-hydroxylase. The drug alleviates hyperproliferation and normalizes differentiation of the epidermis in animal models of psoriasis. OBJECTIVE To explore the efficacy, safety and tolerability of systemic R115866 in patients with moderate to severe plaque-type psoriasis. PATIENTS AND METHODS In this open label, single-arm trial, patients were treated with R115866, 1 mg/day for 8 weeks, followed by a 2-week treatment-free follow-up period. Patients were monitored for efficacy and safety. RESULTS Nineteen patients (intent-to-treat population) were treated and 14 completed the entire study. Two patients discontinued due to lack of efficacy and three due to adverse events. At the end of the treatment, 26% of the patients showed at least 50% reduction in Psoriasis Area Severity Index (PASI) compared to baseline. Further improvement was observed at the end of the 2-week follow-up period where 47% of the patients showed a 50% or greater reduction in PASI. Kinetic data showed no evidence of accumulation of either R115866 or retinoic acid in plasma. The most common adverse events were pruritus, xerosis, cheilitis and an increase in blood triglycerides. The majority of adverse events were mild to moderate. No deaths or serious adverse events were reported. CONCLUSION Eight-week daily treatment with 1 mg R115866 resulted in a significant reduction in PASI from baseline to end of therapy. Additional improvement was seen after the 2-week follow-up period. The drug was well tolerated. R115866 merits further evaluation to optimize its clinical efficacy and safety profile in moderate to severe plaque-type psoriasis.
Collapse
Affiliation(s)
- C J Verfaille
- Department of Dermatology, GROW, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
9
|
Bernerd F, Vioux C, Asselineau D. Evaluation of the Protective Effect of Sunscreens on In Vitro Reconstructed Human Skin Exposed to UVB or UVA Irradiation. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710314eotpeo2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Lippens S, Kockx M, Denecker G, Knaapen M, Verheyen A, Christiaen R, Tschachler E, Vandenabeele P, Declercq W. Vitamin D3 induces caspase-14 expression in psoriatic lesions and enhances caspase-14 processing in organotypic skin cultures. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:833-41. [PMID: 15331408 PMCID: PMC1618612 DOI: 10.1016/s0002-9440(10)63346-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Caspase-14 is a nonapoptotic caspase family member whose expression in the epidermis is confined to the suprabasal layers, which consist of differentiating keratinocytes. Proteolytic activation of this caspase is observed in the later stages of epidermal differentiation. In psoriatic skin, a dramatic decrease in caspase-14 expression in the parakeratotic plugs was observed. Topical treatment of psoriatic lesions with a vitamin D3 analogue resulted in a decrease of the psoriatic phenotype and an increase in caspase-14 expression in the parakeratotic plugs. To investigate whether vitamin D3 directly affects caspase-14 expression levels, we used keratinocyte cell cultures. 1alpha,25-Dihydroxycholecalciferol, the biologically active form of vitamin D3, increased caspase-14 expression, whereas retinoic acid inhibited it. Moreover, retinoic acid repressed the vitamin D3-induced caspase-14 expression level. In addition, the use of organotypic skin cultures demonstrated that 1alpha,25-dihydroxycholecalciferol enhanced epidermal differentiation and caspase-14 activation, whereas retinoic acid completely blocked caspase-14 processing. Our data indicate that caspase-14 plays an important role in terminal epidermal differentiation, and its absence may contribute to the psoriatic phenotype.
Collapse
Affiliation(s)
- Saskia Lippens
- Department of Molecular Biomedical Research, Molecular Signaling and Cell Death Unit, Flanders Interuniversity Institute for Biotechnology (VIB) and Ghent University, Zwijnaarde, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Choi JY, Cho KN, Yoon JH. All-trans retinoic acid induces mucociliary differentiation in a human cholesteatoma epithelial cell culture. Acta Otolaryngol 2004; 124:30-5. [PMID: 14977075 DOI: 10.1080/00016480310002104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Retinoic acid (RA) can prevent keratin formation and induce mucous differentiation in epithelia. In this study, we attempted to induce keratinizing squamous epithelium from human cholesteatoma epithelial (HCE) cells using an air-liquid interface (ALI) technique. We also examined the effect of RA on the phenotype of keratinizing HCE cells. MATERIAL AND METHODS HCE cells were cultured in RA-free defined media at an ALI or in a submerged state. We examined the morphological differences between ALI and submerged cultures, and histologically investigated the changes of phenotype after RA treatment. We also determined the effect of RA on the mRNA expressions of the cornifin-alpha and mucin genes as indicators of squamous and mucous differentiation, respectively. RESULTS Using an ALI technique, we were able to differentiate HCE cells into a keratinizing squamous epithelium. When we treated the keratinizing HCE cells with RA, the morphological phenotype progressively changed into mucociliary epithelium. In addition, the expression of cornifin-alpha mRNA was suppressed, and the expressions of mucin gene 5AC (MUC5AC) and MUC5B mRNA increased progressively with RA treatment. CONCLUSION We successfully developed a culturing system for keratinizing differentiation of HCE cells using the ALI technique in a defined medium. Our study also clearly showed that RA treatment led to mucociliary differentiation of HCE cells.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
12
|
Rendl M, Ban J, Mrass P, Mayer C, Lengauer B, Eckhart L, Declerq W, Tschachler E. Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J Invest Dermatol 2002; 119:1150-5. [PMID: 12445205 DOI: 10.1046/j.1523-1747.2002.19532.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Caspase-14 is the only member of the caspase family that shows a restricted tissue expression. It is mainly confined to epidermal keratinocytes and in contrast to other caspases, is not activated during apoptosis induced by ultraviolet irradiation or cytotoxic substances. As it is cleaved under conditions leading to terminal differentiation of keratinocytes we suggested that caspase-14 plays a part in the physiologic cell death of keratinocytes leading to skin barrier formation. Here we show that retinoic acid, at concentrations inhibiting terminal differentiation of keratinocytes, strongly suppressed caspase-14 mRNA and protein expression by keratinocytes in monolayer culture and in a three-dimensional in vitro model of differentiating human epidermis (skin equivalent). By contrast, the expression of the caspases 3 and 8, which are both activated during conventional apoptosis, was increased and unchanged, respectively, after retinoic acid treatment. In addition to inhibition of differentiation in skin equivalents, retinoic acid treatment led to keratinocyte apoptosis and activation of caspase-3, both of which were undetectable in differentiated control skin equivalents. As this occurred in the absence of detectable caspase-14, our data demonstrate that caspase-14 is dispensable for keratinocyte apoptosis. The fact that in contrast to caspase-3 and caspase-8, caspase-14, similarly to other keratinocyte differentiation-associated proteins, is downregulated by retinoids, strongly suggests that this caspase, but not caspase-3 and -8, plays a part in terminal keratinocyte differentiation and skin barrier formation.
Collapse
Affiliation(s)
- Michael Rendl
- Division of Immunology, Allergy, and Infectious Diseases, Department of Dermatology, University of Vienna Medical School, Austria
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bernard FX, Pedretti N, Rosdy M, Deguercy A. Comparison of gene expression profiles in human keratinocyte mono-layer cultures, reconstituted epidermis and normal human skin; transcriptional effects of retinoid treatments in reconstituted human epidermis. Exp Dermatol 2002; 11:59-74. [PMID: 11952828 DOI: 10.1034/j.1600-0625.2002.110107.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to validate a model for predictive screening of dermatological drugs, we used a customized cDNA macro-array system containing 475 skin-related genes to analyze the gene expression patterns in human keratinocytes from different origins: (1) normal human epidermal keratinocyte mono-layer cultures, (2) the commercially available SkinEthic reconstituted human epidermis model, and (3) biopsies of normal human epidermis. Few markers of those that were detected significantly in keratinocyte mono-layers or in reconstituted epidermis were undetected or detected at very low level in the normal epidermis biopsies. A comparative expression of more than 100 markers could be evidenced in both normal epidermis and reconstituted epidermis samples; however, only 90% of these were detected in keratinocyte mono-layers: expression of several terminal differentiation markers, such as filaggrin, loricrin, and corneodesmosin were strongly detected in normal epidermis and reconstituted epidermis, but were not significantly expressed in keratinocyte mono-layers. Under the experimental conditions described herein, the reconstituted human epidermis model was found to significantly reproduce the gene expression profile of normal human epidermis. Using the same methodology, we then investigated the effects of all-trans retinoic acid, 9-cis retinoic acid, all-trans retinol and a commercialized tretinoin-containing cream (Retacnyl) on the gene expression profiles of reconstituted human epidermis. According to the nature and the length of the treatments, more than 40 genes were found significantly modified. Among the genes whose expression was decreased, we found cytokeratins 1, 10, 2E, and 6B, several cornified envelope precursors, integrins alpha 3, alpha 6, beta 1, beta 4, some components of desmosomes, of hemi-desmosomes and of the epidermal basement membrane. Transcriptional upregulation was observed for keratins 18 and 19, autocrine and paracrine growth factors such as HB-EGF, IGF 1, PDGF-A, calgranulins A and B, interleukin-1 alpha and the other IL-1-related markers, type II IL-1 receptor and type I IL-1-receptor antagonist. Our results confirm most of the known effects of retinoids on human epidermis, but also give new insights into their complex pharmacological activity on skin. The reconstituted human epidermis used proves to be a highly predictive model for efficacy evaluation of skin-targeted compounds, such as retinoids.
Collapse
|
14
|
Bernerd F, Del Bino S, Asselineau D. Regulation of keratin expression by ultraviolet radiation: differential and specific effects of ultraviolet B and ultraviolet a exposure. J Invest Dermatol 2001; 117:1421-9. [PMID: 11886503 DOI: 10.1046/j.0022-202x.2001.01589.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skin, the most superficial tissue of our body, is the first target of environmental stimuli, among which is solar ultraviolet radiation. Very little is known about the regulation of keratin gene expression by ultraviolet radiation, however, although (i) it is well established that ultraviolet exposure is involved in skin cancers and photoaging and (ii) keratins represent the major epidermal proteins. The aim of this study was to analyze the regulation of human keratin gene expression under ultraviolet B (290-320 nm) or ultraviolet A (320-400 nm) irradiation using a panel of constructs comprising different human keratin promoters cloned upstream of a chloramphenicol acetyl transferase reporter gene and transfected into normal epidermal keratinocytes. By this approach, we demonstrated that ultraviolet B upregulated the transcription of keratin 19 gene and to a lesser extent the keratin 6, keratin 5, and keratin 14 genes. The DNA sequence responsible for keratin 19 induction was localized between -130 and +1. In contrast to ultraviolet B, ultraviolet A irradiation induced only an increase in keratin 17, showing a differential gene regulation between these two ultraviolet ranges. The induction of keratin 19 was confirmed by studying the endogenous protein in keratinocytes in classical cultures as well as in skin reconstructed in vitro and normal human skin. These data show for the first time that keratin gene expression is regulated by ultraviolet radiation at the transcriptional level with a specificity regarding the ultraviolet domain of solar light.
Collapse
Affiliation(s)
- F Bernerd
- L'Oréal, Life Sciences Research, Clichy, France.
| | | | | |
Collapse
|
15
|
Bernerd F, Vioux C, Asselineau D. Evaluation of the protective effect of sunscreens on in vitro reconstructed human skin exposed to UVB or UVA irradiation. Photochem Photobiol 2000; 71:314-20. [PMID: 10732449 DOI: 10.1562/0031-8655(2000)071<0314:eotpeo>2.0.co;2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that skin reconstructed in vitro is a useful model to study the effects of UVB and UVA exposure. Wavelength-specific biological damage has been identified such as the formation of sunburn cells (SBC) and pyrimidine dimers after UVB irradiation and alterations of dermal fibroblasts after UVA exposure. These specific effects were selected to evaluate the protection afforded by two sunscreens after topical application on the skin surface. Simplified formulations having different absorption spectra but similar sun protection factors were used. One contained a classical UVB absorber, 2-ethylhexyl-p-methoxycinnamate. The other contained a broad-spectrum absorber called Mexoryl SX, characterized by its strong absorbing potency in the UVA range. Both filters were used at 5% in a simple water/oil vehicle. The evaluation of photoprotection on in vitro reconstructed skin revealed good efficiency for both preparations in preventing UVB-induced damage, as shown by SBC counting and pyrimidine dimer immunostaining. By contrast, only the Mexoryl SX-containing preparation was able to efficiently prevent UVA-specific damage such as dermal fibroblast disappearance. Our data further support the fact that skin reconstructed in vitro is a reliable system to evaluate the photoprotection provided by different sunscreens against specific UVB and UVA biological damage.
Collapse
Affiliation(s)
- F Bernerd
- L'Oréal, Life Sciences Research, Clichy, France.
| | | | | |
Collapse
|
16
|
Kurzen H, Jung EG, Hartschuh W, Moll I, Franke WW, Moll R. Forms of epithelial differentiation of draining sinus in acne inversa (hidradenitis suppurativa). Br J Dermatol 1999; 141:231-9. [PMID: 10468793 DOI: 10.1046/j.1365-2133.1999.02970.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The draining sinus is a late complication of several forms of severe acne, leading to extensive, periodically inflamed lesions that are undermined by a system of fistulas, supposed to be of follicular origin. We investigated the expression of various cytokeratins (CKs) and desmosomal proteins in the draining sinus of acne inversa (hidradenitis suppurativa) using monoclonal antibodies in immunohistochemistry on paraffin-embedded sections. We were able to define three different phenotypes of stratified squamous epithelia covering the sinus tracts. Type I epithelium was cornifying and characterized by the presence of CK 10, desmogleins 1-3 and desmocollins 1-3 in an epidermis-like pattern. Type II epithelium was non-cornifying, negative for CK 10 and positive for CK 13. It was negative for desmocollin 1 but strongly immunopositive for desmoglein 1 suprabasally and for desmoglein 2 in the basal cells. Type III epithelium was non-cornifying and strongly inflamed. It was marked by the presence of CK 7, CK 19 and desmoglein 2 and the absence of CK 10, desmoglein 1 and desmocollin 1. In both type II and III epithelium, desmoglein 3, desmocollin 2 and desmocollin 3 showed an inverted staining pattern as compared with normal epidermis and type I epithelium. Desmoglein 2 and CK 5/14 always remained restricted to the basal cell layer. Antibodies against CK 6 and CK 13/15/16 were immunopositive in all three phenotypes and CK 17 was predominantly immunolocalized to suprabasal layers of type II and III epithelium. The three phenotypes are characterized as pathological stratified squamous epithelia reflecting the dynamic process of inflammation, proliferation and stratification taking place in acne inversa.
Collapse
Affiliation(s)
- H Kurzen
- Division of Cell Biology, German Cancer Research Centre, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Boelsma E, Verhoeven MC, Ponec M. Reconstruction of a human skin equivalent using a spontaneously transformed keratinocyte cell line (HaCaT). J Invest Dermatol 1999; 112:489-98. [PMID: 10201534 DOI: 10.1046/j.1523-1747.1999.00545.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reconstruction of a skin equivalent using an immortalized human keratinocyte line, HaCaT, was investigated in an attempt to generate an in vitro system representative for human skin. Three different substrates were used to establish air-exposed cultures of HaCaT cells: de-epidermized dermis, collagen gels, and filter inserts. Effects of variations in culture conditions on tissue morphology, on the expression of proliferation-specific and differentiation-specific protein markers, and on lipid profiles were investigated. When grown at the air-liquid interface HaCaT cells initially developed a multilayered epithelium, but during the course of culture marked alterations in tissue architecture were observed. Ultrastructurally, a disordered tissue organization was evident as judged from the presence of rounded cells with abnormally shaped nuclei. Keratins K1 and K10 were irregularly expressed in all cell layers, including stratum basale. Staining of K6/K16 was evident in all cell layers. Locally, basal and suprabasal cells were positive for K4 and additionally expressed K13 and K19. The cornified envelope precursors were expressed only in older cultures (>2 wk after air exposure), except for transglutaminase and small proline rich protein 1, which were irregularly expressed in both early and older cultures. In addition, HaCaT cells showed an impaired capacity to synthesize lipids that are necessary for a proper barrier formation as indicated by the absence of free fatty acids and a very low content and incomplete profile of ceramides. Our data demonstrate that the ultimate steps of terminal differentiation in HaCaT cells do not occur irrespective of the type of substrate or the culture conditions.
Collapse
Affiliation(s)
- E Boelsma
- Department of Dermatology, Leiden University Medical Center, The Netherlands
| | | | | |
Collapse
|
18
|
Waseem A, Alam Y, Dogan B, White KN, Leigh IM, Waseem NH. Isolation, sequence and expression of the gene encoding human keratin 13. Gene 1998; 215:269-79. [PMID: 9714826 DOI: 10.1016/s0378-1119(98)00297-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Keratins are a family of highly homologous proteins expressed as pairs of acidic and basic forms which make intermediate filaments in epithelial cells. Keratin 13 (K13) is the major acidic keratin, which together with K4, its basic partner, is expressed in the suprabasal layers of non-cornified stratified epithelia. The mechanism which allows mucosal-specific expression of this keratin remains unknown. To provide insight into the tissue-specific expression, we have isolated the human K13 gene by screening a chromosome 17 library with a specific K13 cRNA probe. Sequence analysis of unidirectional deletions produced by transposon Tn3 has revealed that the gene is 4601 nucleotides long and contains seven introns and eight exons. When driven by the CMV promoter, the gene produced K13 protein in MCF-7 cells, which normally do not express this protein. Two transcription-start sites were identified, the major being at 61 and the minor at 63 nucleotides upstream of ATG. The upstream sequence contained a TATA box and several other putative transcription factor binding sites. A single copy of the K13 gene was detected in the human genome by Southern hybridisation and polymerase chain reaction. K13 mRNA shows differential expression in cultured keratinocytes, and in A431 cells the RNA levels remained independent of calcium concentrations in the culture medium. Characterisation of the human K13 gene will facilitate elucidation of the molecular mechanism regulating K13 expression in mucosal tissues.
Collapse
Affiliation(s)
- A Waseem
- Department of Craniofacial Development, Guy's Dental School, Floor 28, Guy's Tower, London Bridge, London, SE1 9RT, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Galectin-7 is a 14-kDA member of the lectin family we have previously cloned in the human. Its expression was found at all stages of differentiation of the human epidermis and was reduced but not suppressed when oral metaplasia of reconstructed epidermis was induced by retinoic acid. This suggested that galectin-7 could be a marker of both keratinized and non-keratinized stratified epithelia. To ascertain this hypothesis, we cloned the rat and the mouse cDNAs and produced a specific antiserum raised against a synthetic peptide. The distribution of galectin-7 mRNAs and protein was studied by in situ hybridization and immunolabelling of various human, rat and mouse epithelia. Galectin-7 was found to be expressed in interfollicular epidermis and in the outer root sheath of the hair follicle, but not in the hair matrix, nor in the sebaceous glands. It was present in esophagus and oral epithelia, cornea, Hassal's corpuscles of the thymus, but not in simple and transitional epithelia. Galectin-7 can thus be considered as a marker of all subtypes of keratinocytes. In that respect it differs from both "basal-specific" keratins K5-K14 and from "suprabasal-specific" markers such as keratins K1-K10 and involucrin. Galectin-7 also differs from some desmosomal proteins, which are present in all types of epithelia and in myocardium. Galectin-7 was absent from cultured carcinoma cell lines and was reduced both in human carcinomas and in murine tumors produced with the two-stage carcinogenesis protocol.
Collapse
Affiliation(s)
- T Magnaldo
- Laboratoire de Génétique Moléculaire, CNRS UPR 42, Institut de Recherches sur le Cancer, Villejuif, France
| | | | | |
Collapse
|
20
|
Normal Human Epidermal Keratinocytes Express In Vitro Specific Molecular Forms of (Pro)Filaggrin Recognized by Rheumatoid Arthritis-Associated Antifilaggrin Autoantibodies. Mol Med 1997. [DOI: 10.1007/bf03401806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Schön M, Rheinwald JG. A limited role for retinoic acid and retinoic acid receptors RAR alpha and RAR beta in regulating keratin 19 expression and keratinization in oral and epidermal keratinocytes. J Invest Dermatol 1996; 107:428-38. [PMID: 8751982 DOI: 10.1111/1523-1747.ep12363411] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Different types of stratified squamous epithelia-for example, the "orthokeratinized" epidermis, the "parakeratinized" gingiva, and the "nonkeratinized" oral lining mucosal epithelia-are formed by intrinsically distinct keratinocyte subtypes. These subtypes exhibit characteristic patterns of keratin protein expression in vivo and in culture. Keratin 19 is an informative subtype-specific marker because the basal cells of only nonkeratinizing epithelia express K19 in vivo and in culture. Epidermal keratinocytes normally do not express K19, but can be induced to do so in culture by retinoic acid (RA). Keratinocyte subtypes express the retinoic acid receptor (RAR) beta at levels roughly correlated with their level of K19 expression in culture and their potential for forming a nonkeratinized epithelium in vivo. We tested the hypothesis that the level of RAR beta expressed by a keratinocyte determines its K19 expression and its form of suprabasal differentiation. Normal human epidermal and gingival keratinocytes stably overexpressing either RAR beta or RAR alpha were generated by defective retroviral transduction. Overexpression of either receptor enhanced the RA inducibility of K19 in conventional culture, in that the proportion of the transductants becoming K19+ in response to RA was markedly increased compared with controls. The pattern of differentiation of the epithelium formed in organotypic culture, assessed by basal K19 and suprabasal K1, K4, and filaggrin expression, however, was unaltered by RAR overexpression. Thus, the susceptibility of keratinocytes to regulation of K19 expression by retinoids is conditional, and levels of neither RAR beta nor RAR alpha are limiting to the intrinsic mechanism that specifies alternate differentiation pathways for stratified squamous epithelia.
Collapse
Affiliation(s)
- M Schön
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|