1
|
Liu Y, Chen L, Sun G, Zhang H, Geng W, Li X, Zhang Q, Jin Y, Yao J, Yang X, Fan W, Jing J, Wang S, Peng H. Association Between Genetically Determined Serum Corin and the Risk of Stroke in Chinese Adults: A Mendelian Randomization Study. J Am Heart Assoc 2024; 13:e035858. [PMID: 39258515 DOI: 10.1161/jaha.124.035858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Serum corin has been associated with stroke in observational studies, but the underlying causality is uncertain. This study examined the causal association between corin and stroke through Mendelian randomization study. METHODS AND RESULTS In the Gusu cohort, serum corin was assayed at baseline, and stroke incidents were prospectively obtained during 10 years of follow-up. Single-nucleotide polymorphisms (SNPs) in CORIN were genotyped by MassArray for 2310 participants (mean age, 53 years; 39% men). Seventeen SNPs passed the Hardy-Weinberg test and were considered the potential instruments. Only 1 SNP (rs2271037) determined variability of serum corin was significantly associated with stroke even after adjusting for conventional risk factors (hazard ratio [HR], 1.36 [95% CI, 1.00-1.85]). The weighted genetic risk score generated from the SNP-corin associations was significantly associated with stroke (HR, 2.01 [95% CI, 1.15-3.51]). Using this genetic risk score as the instrument, 1-sample Mendelian randomization analysis found a significant HR of stroke per-SD higher log2-transformed corin (HR, 1.37 [95% CI, 1.07-1.76]). The inverse variance-weighted analysis based on the SNP-corin and SNP-stroke associations found that the HR of stroke pre-SD higher log2-transformed corin was 5.92 (95% CI, 2.23-15.72). The effect estimates stayed consistent regardless of an individual SNP being removed from the instruments. An almost identical effect estimate was also confirmed by multiple other 2-sample Mendelian randomization methods. CONCLUSIONS Genetically determined variations of serum corin concentration were significantly associated with the risk of stroke in Chinese adults. Elevated serum corin may be a risk factor for stroke.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cardiology The First Affiliated Hospital of Soochow University Suzhou China
| | - Linan Chen
- Department of Epidemiology, School of Public Health Suzhou Medical College of Soochow University Suzhou China
- Faculty of Medicine The George Institute for Global Health, The University of New South Wales Sydney Australia
| | - Guozhe Sun
- Department of Cardiology The First Hospital of China Medical University Shenyang China
| | - Hao Zhang
- Department of Epidemiology, School of Public Health Suzhou Medical College of Soochow University Suzhou China
| | - Wenqing Geng
- Department of Neurology The First Affiliated Hospital of Soochow University Suzhou China
| | - Xinwei Li
- Department of Nursing, School of Nursing Suzhou Medical College of Soochow University Suzhou China
| | - Qiu Zhang
- Department of Chronic Disease Gusu Center of Disease Prevention and Control Suzhou China
| | - Yibing Jin
- Department of Epidemiology, School of Public Health Suzhou Medical College of Soochow University Suzhou China
| | - Jialing Yao
- Department of Epidemiology, School of Public Health Suzhou Medical College of Soochow University Suzhou China
| | - Xiangdong Yang
- Department of Epidemiology, School of Public Health Suzhou Medical College of Soochow University Suzhou China
| | - Wenxiu Fan
- Department of Epidemiology, School of Public Health Suzhou Medical College of Soochow University Suzhou China
| | - Jiexiang Jing
- Department of Epidemiology, School of Public Health Suzhou Medical College of Soochow University Suzhou China
| | - Shuyao Wang
- Department of Neurology Tongliao City Hospital Tongliao China
| | - Hao Peng
- Department of Epidemiology, School of Public Health Suzhou Medical College of Soochow University Suzhou China
- MOE Key Laboratory of Geriatric Diseases and Immunology Soochow University Suzhou China
| |
Collapse
|
2
|
Chen CE, Guo JY, Chou RH, Wu CH, Kuo CS, Wei JH, Huang PH. Circulating corin concentration is associated with risk of mortality and acute kidney injury in critically ill patients. Sci Rep 2024; 14:19848. [PMID: 39191876 PMCID: PMC11349996 DOI: 10.1038/s41598-024-70587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Elevated serum corin concentrations in patients with cardiac diseases have been associated with adverse cardiovascular events and progressive renal dysfunction. This study aimed to determine the role of serum corin levels in predicting the incidence of acute kidney injury (AKI) and mortality in critically ill patients admitted to intensive care units (ICUs). We screened 323 patients admitted to the ICU in our institution from May 2018 through December 2019. After excluding patients receiving renal replacement therapy, 288 subjects were enrolled. Cases were divided equally into high (n = 144) and low (n = 144) corin groups according to median serum corin levels, using 910 pg/mL as the cut-off point. Patient characteristics and comorbidities were collected from medical records. The primary outcome was AKI within 48 h after ICU admission, while the secondary outcome was all-cause of mortality within 1 year. Compared with the low corin group, patients in the high corin group had higher prevalence rates of diabetes, cirrhosis, and nephrotoxic agent exposure; higher Sequential Organ Failure Assessment scores, white blood cell counts, proteinuria, and serum N-terminal pro-brain natriuretic peptide levels; but had lower initial estimated glomerular filtration rates. Furthermore, elevated serum corin was associated with higher risks of AKI within 48h of ICU admission (43.1% vs. 18.1%, p < 0.001) and all-cause mortality within one year (63.9% vs. 50.0%, p = 0.024). High corin level showed strongly positive results as an independent predictor of AKI (OR 2.15, 95% CI 1.11-4.19, p = 0.024) but not for the all-cause mortality after adjusting for confounding factors in multivariate analyses. Elevated circulating corin predicted AKI in critically ill patients, but did not predict all-cause mortality within 1 year. As a key enzyme in renin-angiotensin-aldosterone system, corin expression may be regulated through a feedback loop following natriuretic peptide resistance and desensitization of natriuretic peptide receptors in different critically ill status.
Collapse
Affiliation(s)
- Ching-En Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Jiun-Yu Guo
- School of Medicine, Cardiovascular Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, New Taipei City Hospital, New Taipei City, Taiwan
| | - Ruey-Hsing Chou
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, Cardiovascular Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| | - Cheng-Hsueh Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chin-Sung Kuo
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- School of Medicine, Cardiovascular Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jih-Hua Wei
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Cardiovascular Division, Internal Medicine Department, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Nutrition and Health Sciences, School of Healthcare Management, Kai-Nan University, Taoyuan, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, Cardiovascular Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Gu X, Liu M, Wang M, Wang K, Zhou T, Wu Q, Dong N. Corin deficiency alleviates mucosal lesions in a mouse model of colitis induced by dextran sulfate sodium. Life Sci 2024; 339:122446. [PMID: 38246520 DOI: 10.1016/j.lfs.2024.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
AIMS High dietary salt consumption is a risk factor for inflammatory bowel disease (IBD). Corin is a protease that activates atrial natriuretic peptide (ANP), thereby regulating sodium homeostasis. Corin acts in multiple tissues, including the intestine. In mice, corin deficiency impairs intestinal sodium excretion. This study aims to examine if reduced intestinal sodium excretion alters the pathophysiology of IBD. MAIN METHODS Wild-type (WT), Corin knockout (KO), and Corin kidney conditional KO (kcKO) mice were tested in a colitis model induced by dextran sulfide sodium (DSS). Effects of ANP on DSS-induced colitis were tested in WT and Corin KO mice. Body weight changes in the mice were monitored. Necropsy, histological analysis, and immunostaining studies were conducted to examine colon length and mucosal lesions. Fecal sodium levels were measured. RT-PCR was done to analyze proinflammatory genes in colon samples. KEY FINDINGS DSS-treated Corin KO mice had an ameliorated colitis phenotype with less body weight loss, longer colon lengths, smaller mucosal lesions, lower disease scores, more preserved goblet cells, and suppressed proinflammatory genes in the colon. In longitudinal studies, the DSS-treated Corin KO mice had delayed onset of colon mucosal lesions. ANP administration lessened the colitis in WT, but not Corin KO, mice. Analyses of WT, Corin KO, and Corin kcKO mice indicated that fecal sodium excretion, controlled by intestinal corin, may regulate inflammatory responses in DSS-induced colitis in mice. SIGNIFICANCE Our findings indicate a role of corin in intestinal pathophysiology, suggesting that reduced intestinal sodium level may offer protective benefits against IBD.
Collapse
Affiliation(s)
- Xiabing Gu
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Ningzheng Dong
- Jiangsu Institute of Hematology, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Niu Y, Zhou T, Zhang S, Li W, Wang K, Dong N, Wu Q. Corin deficiency impairs cardiac function in mouse models of heart failure. Front Cardiovasc Med 2023; 10:1164524. [PMID: 37636304 PMCID: PMC10450958 DOI: 10.3389/fcvm.2023.1164524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Corin is a protease in the natriuretic peptide system. Deleterious CORIN variants are associated with hypertension and heart disease. It remains unclear if and to what extent corin deficiency may contribute to heart failure (HF). Methods Corin knockout (KO) mice were used as a model. Cardiac function was assessed by echocardiography and tissue analysis in Corin KO mice at different ages or subjected to transverse aortic constriction (TAC), which increased pressure overload. Heart and lung tissues were analyzed for cardiac hypertrophy and lung edema using wheat germ agglutinin, Sirius red, Masson's trichrome, and Prussian blue staining. Recombinant corin was tested for its effect on cardiac function in the TAC-operated Corin KO mice. Selected gene expression in the heart was examined by RT-PCR. ELISA was used to analyze factors in plasma. Results Corin KO mice had progressive cardiac dysfunction with cardiac hypertrophy and fibrosis after 9 months of age, likely due to chronic hypertension. When Corin KO mice were subjected to TAC at 10-12 weeks of age, cardiac function decreased more rapidly than in similarly treated wild-type mice. When the TAC-operated Corin KO mice were treated with recombinant corin protein, cardiac dysfunction, hypertrophy, and fibrosis were ameliorated. The corin treatment also decreased the gene expression associated with cardiac hypertrophy and fibrosis, increased plasma cGMP levels, lowered plasma levels of N-terminal pro-atrial natriuretic peptide, angiotensin II, and aldosterone, and lessened lung edema in the Corin KO mice subjected to TAC. Conclusion Corin deficiency impairs cardiac function and exacerbates HF development in mice. Corin protein may be used to reduce cardiac hypertrophy and fibrosis, suppress the renin-angiotensin-aldosterone system, and improve cardiac function in HF.
Collapse
Affiliation(s)
- Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Wu Q. Natriuretic Peptide Signaling in Uterine Biology and Preeclampsia. Int J Mol Sci 2023; 24:12309. [PMID: 37569683 PMCID: PMC10418983 DOI: 10.3390/ijms241512309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial decidualization is a uterine process essential for spiral artery remodeling, embryo implantation, and trophoblast invasion. Defects in endometrial decidualization and spiral artery remodeling are important contributing factors in preeclampsia, a major disorder in pregnancy. Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood volume and pressure. ANP is also generated in non-cardiac tissues, such as the uterus and placenta. In recent human genome-wide association studies, multiple loci with genes involved in natriuretic peptide signaling are associated with gestational hypertension and preeclampsia. In cellular experiments and mouse models, uterine ANP has been shown to stimulate endometrial decidualization, increase TNF-related apoptosis-inducing ligand expression and secretion, and enhance apoptosis in arterial smooth muscle cells and endothelial cells. In placental trophoblasts, ANP stimulates adenosine 5'-monophosphate-activated protein kinase and the mammalian target of rapamycin complex 1 signaling, leading to autophagy inhibition and protein kinase N3 upregulation, thereby increasing trophoblast invasiveness. ANP deficiency impairs endometrial decidualization and spiral artery remodeling, causing a preeclampsia-like phenotype in mice. These findings indicate the importance of natriuretic peptide signaling in pregnancy. This review discusses the role of ANP in uterine biology and potential implications of impaired ANP signaling in preeclampsia.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Gu X, Wang K, Li W, He M, Zhou T, Liu M, Wu Q, Dong N. Corin Deficiency Diminishes Intestinal Sodium Excretion in Mice. BIOLOGY 2023; 12:945. [PMID: 37508377 PMCID: PMC10376046 DOI: 10.3390/biology12070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Sodium excretion, a critical process in sodium homeostasis, occurs in many tissues, including the kidney and intestine. Unlike in the kidney, the hormonal regulation of intestinal sodium excretion remains unclear. Atrial natriuretic peptide (ANP) is a crucial hormone in renal natriuresis. Corin is a protease critical for ANP activation. Corin and ANP are expressed mainly in the heart. In this study, we investigated corin, ANP, and natriuretic peptide receptor A (Npra) expression in mouse intestines. Corin and ANP expression was co-localized in enteroendocrine cells, whereas Npra expression was on the luminal epithelial cells. In Corin knockout (KO) mice, fecal Na+ and Cl- excretion decreased compared with that in wild-type (WT) mice. Such a decrease was not found in conditional Corin KO mice lacking cardiac corin selectively. In kidney conditional Corin KO mice lacking renal corin, fecal Na+ and Cl- excretion increased, compared to that in WT mice. When WT, Corin KO, and the kidney conditional KO mice were treated with aldosterone, the differences in fecal Na+ and Cl- levels disappeared. These results suggest that intestinal corin may promote fecal sodium excretion in a paracrine mechanism independent of the cardiac corin function. The increased fecal sodium excretion in the kidney conditional Corin KO mice likely reflected an intestinal compensatory response to renal corin deficiency. Our results also suggest that intestinal corin activity may antagonize aldosterone action in the promotion of fecal sodium excretion. These findings help us understand the hormonal mechanism controlling sodium excretion the intestinal tract.
Collapse
Affiliation(s)
- Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| | - Meiling He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| |
Collapse
|
7
|
Gladysheva IP, Sullivan RD, Reed GL. Falling corin and ANP activity levels accelerate development of heart failure and cardiac fibrosis. Front Cardiovasc Med 2023; 10:1120487. [PMID: 37388639 PMCID: PMC10309071 DOI: 10.3389/fcvm.2023.1120487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/03/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
| | | | - Guy L. Reed
- Correspondence: Inna P. Gladysheva Guy L. Reed
| |
Collapse
|
8
|
Chen L, Jiang J, Yao J, Lu Y, Zhang X, Zhang M, Zhang Q, Peng H. Association between CORIN promoter methylation and stroke: Results from two independent samples of Chinese adults. Front Neurol 2023; 14:1103374. [PMID: 37064175 PMCID: PMC10102360 DOI: 10.3389/fneur.2023.1103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
ObjectiveAs the physical activator of natriuretic peptides, corin has been associated with stroke, but the underlying mechanism is not very clear. Here, we examined whether the CORIN promoter’s methylation, an epigenetic DNA modification, was associated with the risk of stroke in two independent samples.MethodsA total of 1771 participants including 853 stroke cases and 918 healthy controls were included as a discovery sample and 2,498 community members with 10 years of follow-up were included as a replication sample. DNA methylation of the CORIN promoter was quantified by target bisulfite sequencing in both samples. We first examined the single CpG association, followed by a gene-based analysis of the joint association between multiple CpG methylation and stroke, adjusting for conventional risk factors.ResultsThe single CpG association analysis found that hypermethylation at all of the 9 CpG sites assayed was significantly associated with lower odds of prevalent stroke in the discovery sample (all p < 0.05), and three of them located at Chr4:47840038 (HR = 0.74, p = 0.015), Chr4:47839941 (HR = 0.80, p = 0.047), and Chr4:47839933 (HR = 0.82, p = 0.050) were also significantly associated with incident stroke in the replication sample. The gene-based association analysis found that DNA methylation of the 9 CpG sites at the CORIN promoter was jointly associated with stroke in both samples (all p < 0.05).ConclusionDNA methylation levels of the CORIN gene promoter were lower in stroke patients and predicted a higher risk of incident stroke in Chinese adults. The underlying causality warranted further investigation.
Collapse
Affiliation(s)
- Linan Chen
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jun Jiang
- Department of Tuberculosis Control, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Jialing Yao
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ying Lu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiaolong Zhang
- Department of Tuberculosis Control, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Qiu Zhang
- Department of Chronic Disease, Gusu Center for Disease Control and Prevention, Suzhou, China
- *Correspondence: Hao Peng, ; Qiu Zhang,
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
- *Correspondence: Hao Peng, ; Qiu Zhang,
| |
Collapse
|
9
|
Zhou T, Zhang S, Du C, Wang K, Gu X, Sun S, Zhang X, Niu Y, Wang C, Liu M, Dong N, Wu Q. Renal Corin Is Essential for Normal Blood Pressure and Sodium Homeostasis. Int J Mol Sci 2022; 23:ijms231911251. [PMID: 36232551 PMCID: PMC9570390 DOI: 10.3390/ijms231911251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Atrial natriuretic peptide (ANP)-mediated natriuresis is known as a cardiac endocrine function in sodium and body fluid homeostasis. Corin is a protease essential for ANP activation. Here, we studied the role of renal corin in regulating salt excretion and blood pressure. We created corin conditional knockout (cKO), in which the Corin gene was selectively disrupted in the kidney (kcKO) or heart (hcKO). We examined the blood pressure, urinary Na+ and Cl− excretion, and cardiac hypertrophy in wild-type, corin global KO, kcKO, and hcKO mice fed normal- and high-salt diets. We found that on a normal-salt diet (0.3% NaCl), corin kcKO and hcKO mice had increased blood pressure, indicating that both renal and cardiac corin is necessary for normal blood pressure in mice. On a high-salt diet (4% NaCl), reduced urinary Na+ and Cl− excretion, increased body weight, salt-exacerbated hypertension, and cardiac hypertrophy were observed in corin kcKO mice. In contrast, impaired urinary Na+ and Cl− excretion and salt-exacerbated hypertension were not observed in corin hcKO mice. These results indicated that renal corin function is important in enhancing natriuresis upon high salt intakes and that this function cannot be compensated by the cardiac corin function in mice.
Collapse
Affiliation(s)
- Tiantian Zhou
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Shengnan Zhang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Chunyu Du
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Kun Wang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiabing Gu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Shijin Sun
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Xianrui Zhang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Yayan Niu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Can Wang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Meng Liu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
- Correspondence: (N.D.); (Q.W.)
| | - Qingyu Wu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Correspondence: (N.D.); (Q.W.)
| |
Collapse
|
10
|
Chen L, Zhang Q, Zhang M, Yu J, Ren L, Li J, Ma S, He Y, Hu W, Peng H. Soluble Corin Predicts the Risk of Cardiovascular Disease. JACC: ASIA 2022; 2:490-501. [PMID: 36339355 PMCID: PMC9627939 DOI: 10.1016/j.jacasi.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/04/2022]
Abstract
Background As a key enzyme of the natriuretic peptides system, corin may participate in the development of cardiovascular disease (CVD). Its level in circulation predicted CVD recurrence in patients with myocardial infarction and heart failure, but no study examined this prediction in general populations. Objectives This study sought to examine the prospective association between corin and CVD in a community-based population of Chinese adults. Methods The Gusu cohort included 2,498 participants (mean age 53 years, 39% men) who were free of CVD at baseline. Serum corin was measured by enzyme-linked immunosorbent assay kits at baseline and CVD events were followed every 2 years for all participants. A competing-risks survival regression model was used to examine the association between serum corin and CVD. Results During 10 years of follow-up, 210 participants developed CVD including 88 stroke events. A higher serum corin (after log-transformation) at baseline was significantly associated with an increased risk of CVD (HR: 1.88; P = 0.019) and stroke (HR: 3.19; P = 0.014). Analysis using categorical serum corin (in quartiles) showed that participants in the highest quartile had a 62% and 179% increased risk for CVD (HR: 1.62; P = 0.024) and stroke (HR: 2.79; P = 0.004), respectively, compared with those in the lowest quartile. We did not find a significant association between serum corin and coronary heart disease. Conclusions A higher serum corin at baseline predicted a higher risk of CVD events and stroke, but not coronary heart disease, in Chinese adults, independent of conventional risk factors. Serum corin may be a predictor for stroke but the underlying mechanism needs further investigation.
Collapse
|
11
|
Jiang N, Jiang B, Zhang X, Yong W, Zhuang S. Evaluation of CORIN in patients with heart failure: A systematic review and meta-analysis. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221130650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objectives: We aim to evaluate the association between CORIN and heart failure. Methods: This study used PubMed, EMBASE, Cochrane database, and China National Knowledge Database (CNKI) to search for CORIN-related full-text articles with heart failure patients. We drew forest plots, performed sensitivity and bias analyses based on the included data. Next, we used Review Manager 5.2 software to assess the heterogeneity among selected articles. Results: Our meta-analysis results showed there was significant relationship between CORIN and heart failure (HF). There was significant difference of CORIN between heart failure group and control group (MD = −293.88, 95% confidence interval [-380.26, −207.49], p < .00001; heterogeneity p < .0001, I2= 97%) and there was significant difference in CORIN between ischemic group and non-ischemic group (MD = 88.79, 95% confidence interval [70.46107.12], heterogeneity p < .000, p = 0.94, l2= 0%). In subgroup analysis, there were significant differences in three different HF levels. Limited publication bias was observed, and this study was robust. Conclusion: In short, the results showed that CORIN was closely related with heart failure and might be helpful in the diagnosis of heart failure.
Collapse
Affiliation(s)
- Nianxin Jiang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Jiang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Zhang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yong
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaowei Zhuang
- Department of Cardiology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Khoury EE, Fokra A, Kinaneh S, Knaney Y, Aronson D, Abassi Z. Distribution of Cardiac and Renal Corin and Proprotein Convertase Subtilisin/Kexin-6 in the Experimental Model of Cardio-Renal Syndrome of Various Severities. Front Physiol 2021; 12:673497. [PMID: 34733169 PMCID: PMC8558519 DOI: 10.3389/fphys.2021.673497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Congestive heart failure (CHF) often leads to progressive cardiac hypertrophy and salt/water retention. However, its pathogenesis remains largely unclarified. Corin, a cardiac serine protease, is responsible for converting proANP and proBNP to biologically active peptides. Although the involvement of corin in cardiac hypertrophy and heart failure was extensively studied, the alterations in corin and proprotein convertase subtilisin/kexin-6 (PCSK6), a key enzyme in the conversion of procorin to corin, has not been studied simultaneously in the cardiac and renal tissues in cardiorenal syndrome. Thus, this study aims to examine the status of PCSK6/corin in the cardiac and renal tissues of rats with CHF induced by the creation of aorto-caval fistula (ACF). We divided rats with ACF into two subgroups based on the pattern of their urinary sodium excretion, namely, compensated and decompensated. Placement of ACF led to cardiac hypertrophy, pulmonary congestion, and renal dysfunction, which were more profound in the decompensated subgroup. Corin immunoreactive peptides were detected in all heart chambers at the myocyte membranal and cytosolic localization and in the renal tissue, especially in the apical membrane of the proximal tubule, mTAL, and the collecting duct. Interestingly, the expression and abundance of corin in both the cardiac ventricles and renal tissues were significantly increased in compensated animals as compared with the decompensated state. Noteworthy, the abundance of PCSK6 in these tissues followed a similar pattern as corin. In contrast, furin expression was upregulated in the cardiac and renal tissues in correlation with CHF severity. We hypothesize that the obtained upregulation of cardiac and renal PCSK6/corin in rats with compensated CHF may represent a compensatory response aiming at maintaining normal Na+ balance, whereas the decline in these two enzymes may contribute to the pathogenesis of avid sodium retention, cardiac hypertrophy, and blunted atrial natriuretic peptide/brain natriuretic peptide actions in decompensated CHF.
Collapse
Affiliation(s)
- Emad E Khoury
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ahmad Fokra
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Safa Kinaneh
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yara Knaney
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
13
|
Zhao Y, Yuan X, Zhong Y, Zhang Y, Zhang S, Li S, Zhao Y, Zheng W, Liu J, Xia Y, Yang Y, Liu Y, Chen F. Single-Nucleotide Polymorphisms in the 3' Untranslated Region of CORIN Associated With Cardiovascular Diseases in a Chinese Han Population: A Case-Control Study. Front Cardiovasc Med 2021; 8:625072. [PMID: 34409072 PMCID: PMC8365884 DOI: 10.3389/fcvm.2021.625072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Corin is a transmembrane serine protease that activates pro-forms of atrial and brain natriuretic peptides. Numerous studies have indicated that corin played an important role in cardiovascular diseases (CVDs). However, there have been few studies about the correlation between single-nucleotide polymorphisms (SNPs) in the 3' untranslated region (3'UTR) of CORIN and CVDs. The aims of this study were to investigate the associations of three SNPs (rs3749585, rs4695253, and rs12641823) in the 3'UTR of CORIN with CVDs and to find the seed regions of microRNAs (miRNAs) that bind to SNPs of CORIN. Methods and Results: A case–control study (n = 3,537) was performed in a Han population of northeastern China. CVDs included essential hypertension (EH), atrial fibrillation (AF), heart failure (HF), and coronary artery disease (CAD). Genotyping was performed using high-resolution melt analysis. In the EH-control study, rs3749585T was significantly associated with the risk of EH after adjusting for sex and age in allelic (padj = 0.049; OR: 1.113) and dominant (padj = 0.015, OR: 1.233) models. Rs4695253T was significantly associated with the risk of EH in the recessive model after adjusting for sex and age (padj = 0.005, OR: 2.084). Rs3749585T was significantly and negatively associated with AF in the dominant and additive models after adjusting for sex, age, EH, HF, T2DM, and CAD (dominant: padj = 0.009, OR: 0.762; additive: padj = 0.048, OR: 0.873). In the HF-control study and CAD-control study, none of the three SNPs was associated with HF and CAD after adjusting for covariates in any models (padj > 0.05). The levels of high-density lipoprotein (HDL) in rs4695253CC+CT were lower than the levels of HDL in rs4695253TT (42.47 ± 10.30 vs. 48.0 ± 10.24 mg/dl, padj = 0.008). The levels of total cholesterol (TC) in rs4695253CC+CT were lower than the levels of TC in rs4695253TT (164.01 ± 49.15 vs. 180.81 ± 43.92 mg/dl, padj = 0.036). Luciferase assay revealed that the relative luciferase activity of rs3749585CC-transfected cells was significantly decreased by miR-494-3p, in comparison to cells transfected with rs3749585TT (p < 0.001). A significant decrease in the relative luciferase activity of rs3749585TT reporter was observed as compared with rs3749585CC reporter in the presence of miR-1323 or miR-548o-3p (p = 0.017 and 0.012, respectively). Conclusions: We found significant associations between rs3749585T and rs4695253T and EH, between rs4695253T and the levels of TC and HDL, and between rs3749585T and AF. Hsa-miR-494-3p may serve as a potential therapeutic target for EH and AF patients in the future.
Collapse
Affiliation(s)
- Yichang Zhao
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyang Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Zhong
- Department of Cardiology, The Fifth People's Hospital of Dalian, Dalian, China
| | - Yutao Zhang
- Chinese Center for Disease Control and Prevention, National Institute of Occupational Health and Poison Control, Beijing, China
| | - Shushan Zhang
- Department of Ultrasonography, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Sisi Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Department of Epidemiology, School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinqiu Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanzong Yang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feifei Chen
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Beauvois H, Dufaure de Citres C, Gache V, Abitbol M. Siberian cats help in solving part of the mystery surrounding golden cats. Anim Genet 2021; 52:482-491. [PMID: 33970502 DOI: 10.1111/age.13076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/01/2022]
Abstract
Golden cats have been appreciated since the beginning of the cat fancy. Golden is a modification of the tabby coat. In the Siberian breed, a specific golden phenotype, named sunshine, has been described. Sunshine tabby cats exhibit a warm tone of tabby, a pink nose lacking the black lining and a large light cream area around the nose. Pedigree analyses revealed an autosomal recessive inheritance pattern. A single candidate region was identified by genome-wide association study (GWAS) and homozygosity mapping. Within that region, we identified CORIN (Corin, serine peptidase) as a strong candidate gene, since CORIN variants have been identified in mice and tigers with a golden phenotype and CORIN has been described as a modifier of the ASIP (Agouti Signaling Protein) pathway. A homozygous CORIN:c.2383C>T missense variant was identified in sunshine tabby cats. Segregation of the variant was consistent with recessive inheritance. The variant was also found in three Kurilian bobtail cats and in two ToyBob cats from the 99 Lives dataset but genotyping of 106 cats from 13 breeds failed to identify carriers in cats from other breeds. The CORIN:c.2383C>T variant was predicted to change an arginine to a cysteine at position 795 in the protein: CORIN:p.(Arg795Cys). Finally, hair observation in Siberian cats was consistent with elongated ASIP signaling as golden hair showed a large yellow band instead of the short subapical one usually observed in agouti hair. These results support an association of the Siberian sunshine modification with the CORIN:c.2383C>T variant. The Siberian cat has helped us to decipher one of the golden phenotypes observed in cats and we propose that the CORIN:c.2383C>T variant represents the wbSIB (Siberian recessive wideband) allele in the domestic cat.
Collapse
Affiliation(s)
- H Beauvois
- VetAgro Sup, Univ. Lyon, 1 avenue Bourgelat, 69280, Marcy-l'Etoile, France
| | | | - V Gache
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69008, Rockefeller, Lyon, France
| | - M Abitbol
- VetAgro Sup, Univ. Lyon, 1 avenue Bourgelat, 69280, Marcy-l'Etoile, France.,Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69008, Rockefeller, Lyon, France
| |
Collapse
|
15
|
Zhang C, Chen Y, Sun S, Zhang Y, Wang L, Luo Z, Liu M, Dong L, Dong N, Wu Q. A conserved LDL-receptor motif regulates corin and CD320 membrane targeting in polarized renal epithelial cells. eLife 2020; 9:56059. [PMID: 33136001 PMCID: PMC7605860 DOI: 10.7554/elife.56059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Selective protein distribution on distinct plasma membranes is important for epithelial cell function. To date, how proteins are directed to specific epithelial cell surface is not fully understood. Here we report a conserved DSSDE motif in LDL-receptor (LDLR) modules of corin (a transmembrane serine protease) and CD320 (a receptor for vitamin B12 uptake), which regulates apical membrane targeting in renal epithelial cells. Altering this motif prevents specific apical corin and CD320 expression in polarized Madin-Darby canine kidney (MDCK) cells. Mechanistic studies indicate that this DSSDE motif participates in a Rab11a-dependent mechanism that specifies apical sorting. In MDCK cells, inhibition of Rab11a, but not Rab11b, expression leads to corin and CD320 expression on both apical and basolateral membranes. Together, our results reveal a novel molecular recognition mechanism that regulates LDLR module-containing proteins in their specific apical expression in polarized renal epithelial cells.
Collapse
Affiliation(s)
- Ce Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yue Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yikai Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Liang Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| |
Collapse
|
16
|
He M, Zhang Y, Li H, Liu M, Dong N, Wu Q. A common CORIN variant in hypertension reduces corin intracellular trafficking by exposing an inhibitory N-terminus. Biochem Biophys Res Commun 2020; 530:35-41. [DOI: 10.1016/j.bbrc.2020.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
|
17
|
Cardiac-Specific Overexpression of Catalytically Inactive Corin Reduces Edema, Contractile Dysfunction, and Death in Mice with Dilated Cardiomyopathy. Int J Mol Sci 2019; 21:ijms21010203. [PMID: 31892216 PMCID: PMC6981738 DOI: 10.3390/ijms21010203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
Humans with dilated cardiomyopathy (DCM) and heart failure (HF) develop low levels of corin, a multi-domain, cardiac-selective serine protease involved in natriuretic peptide cleavage and sodium and water regulation. However, experimental restoration of corin levels markedly attenuates HF progression. To determine whether the beneficial effects of corin in HF require catalytic activity, we engineered cardiac overexpression of an enzymatically inactive corin transgene (corin-Tg(i)). On a wild-type (WT) background, corin-Tg(i) had no evident phenotypic effects. However, in a well-established genetic model of DCM, corin-Tg(i)/DCM mice had increased survival (p < 0.01 to 0.001) vs. littermate corin-WT/DCM controls. Pleural effusion (p < 0.01), lung edema (p < 0.05), systemic extracellular free water (p < 0.01), and heart weight were decreased (p < 0.01) in corin-Tg(i)/DCM vs. corin-WT/DCM mice. Cardiac ejection fraction and fractional shortening improved (p < 0.01), while ventricular dilation decreased (p < 0.0001) in corin-Tg(i)/DCM mice. Plasma atrial natriuretic peptide, cyclic guanosine monophosphate, and neprilysin were significantly decreased. Cardiac phosphorylated glycogen synthase kinase-3β (pSer9-GSK3β) levels were increased in corin(i)-Tg/DCM mice (p < 0.01). In summary, catalytically inactive corin-Tg(i) decreased fluid retention, improved contractile function, decreased HF biomarkers, and diminished cardiac GSK3β activity. Thus, the protective effects of cardiac corin on HF progression and survival in experimental DCM do not require the serine protease activity of the molecule.
Collapse
|
18
|
Wang H, He M, Willard B, Wu Q. Cross-linking, Immunoprecipitation and Proteomic Analysis to Identify Interacting Proteins in Cultured Cells. Bio Protoc 2019; 9:e3258. [PMID: 31528665 PMCID: PMC6746336 DOI: 10.21769/bioprotoc.3258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extracellular expression is essential for the function of secreted and cell surface proteins. Proper intracellular trafficking depends on protein interactions in multiple subcellular compartments. Co-immunoprecipitation and the yeast two-hybrid system are commonly used to investigate protein-protein interactions. These methods, however, depend on high-affinity protein interactions. In many glycoproteins, glycans are important for protein intracellular trafficking and extracellular expression. If glycoprotein interactions are transient and relatively weak, it may be challenging to use co-immunoprecipitation or the two-hybrid system to identify glycoprotein-binding partners. To circumvent this problem, protein cross-linking can be applied first to immobilize the transient and/or low-affinity protein interactions. Here we describe a protocol of protein cross-linking, co-immunoprecipitation, and proteomic analysis, which was used to identify endoplasmic reticulum (ER) chaperones critical for the folding and ER exiting of N-glycosylated serine proteases in human embryonic kidney (HEK) 293 cells. This approach can be used to identify other protein interactions in a variety of cells.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Meiling He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Belinda Willard
- Proteomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Qingyu Wu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.,Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Nordberg RC, Wang H, Wu Q, Loboa EG. Corin is a key regulator of endochondral ossification and bone development via modulation of vascular endothelial growth factor A expression. J Tissue Eng Regen Med 2018; 12:2277-2286. [PMID: 30352487 DOI: 10.1002/term.2760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023]
Abstract
Corin has been studied extensively within the vascular system and is known to regulate blood pressure. We have shown that corin is one of the most highly upregulated genes during osteogenic differentiation of human adipose-derived stem cells (hASCs). This study tested the hypothesis that, through modulation of angiogenic signalling pathways, corin is a critical regulator of osteogenic differentiation and endochondral ossification. In vitro, corin expression in hASC was suppressed via siRNA knockdown and vascular endothelial growth factor A (VEGF-A) expression was quantified via reverse transcription polymerase chain reaction. In vivo, a murine corin knockout model (female, 10 weeks) was used to determine the effect of corin deficiency on long bone development. Wild-type and corin knockout long bones were compared via haematoxylin and eosin staining to assess tissue characteristics and cellular organization, three-point bending to assess mechanical characteristics, and immunohistochemistry to visualize VEGF-A expression patterns. Corin knockdown significantly (p < 0.05) increased VEGF-A mRNA expression during osteogenic differentiation. In vivo, corin knockout reduced tibial growth plate thickness (p < 0.01) and severely diminished the hypertrophic region. Corin knockout femurs had significantly increased stiffness (p < 0.01) and maximum loads (p < 0.01) but reduced postyield deflections (p < 0.01). In corin knockout mice, VEGF-A expression was increased near the growth plate but was reduced throughout the tibial shaft and distal head of the tibiae. This is the first study to show that corin is a key regulator of bone development by modulation of VEGF-A expression. Further elucidation of this mechanism will aid in the development of optimized bone tissue engineering and regenerative medicine therapies.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Hao Wang
- Molecular Cardiology, Cleveland Clinic, Ohio
| | - Qingyu Wu
- Molecular Cardiology, Cleveland Clinic, Ohio
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,College of Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
20
|
Wang D, Gladysheva IP, Sullivan RD, Fan THM, Mehta RM, Tripathi R, Sun Y, Reed GL. Increases in plasma corin levels following experimental myocardial infarction reflect the severity of ischemic injury. PLoS One 2018; 13:e0202571. [PMID: 30192780 PMCID: PMC6128455 DOI: 10.1371/journal.pone.0202571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/06/2018] [Indexed: 12/01/2022] Open
Abstract
Following acute myocardial infarction, clinical studies show alterations in the blood levels of corin, a cardiac-selective activator of the natriuretic peptides pro-atrial natriuretic peptide (pro-ANP) and pro-B-type natriuretic peptide (pro-BNP). However, the temporal changes in circulating and cardiac corin levels and their relationships to the severity of myocardial infarction have not been studied. The main objective of this study was to examine the relationship between cardiac and circulating corin levels and their association with cardiac systolic function and infarct size during the early phase of acute myocardial infarction (<72 h) in a translationally relevant induced coronary ligation mouse model. This acute phase timeline was chosen to correlate with the clinical practice within which blood samples are collected from myocardial infarction patients. Heart and plasma samples were examined at 3, 24, and 72 hours post acute myocardial infarction. Plasma corin levels were examined by enzyme-linked immunosorbent assay, transcripts of cardiac corin, pro-ANP and pro-BNP by quantitative real-time polymerase chain reaction, cardiac corin expression by immunohistology, infarct size by histology and heart function by echocardiography. Plasma corin levels were significantly increased at 3 (P<0.05), 24 (P<0.001), and 72 hours (P<0.01) post-acute myocardial infarction. In contrast, cardiac corin transcript levels dropped by 5% (P>0.05), 69% (P<0.001) and 65% (P<0.001) and immunoreactive cardiac corin protein levels dropped by 30% (P<0.05), 76% (P<0.001) and 75% (P<0.001), while cardiac pro-ANP and pro-BNP transcript levels showed an opposite pattern. Plasma corin levels were negatively correlated with immunoreactive cardiac corin (P<0.01), ejection fraction (P<0.05) and fractional shortening (P<0.05), but positively correlated with infarct size (P<0.01). In conclusion, acute myocardial infarction induces rapid increases in plasma corin and decreases in cardiac corin levels. In the early phase of acute myocardial infarction, plasma corin levels are inversely correlated with heart function and may reflect the severity of myocardial damage.
Collapse
Affiliation(s)
- Dong Wang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Inna P. Gladysheva
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ryan D. Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Tai-Hwang M. Fan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Radhika M. Mehta
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ranjana Tripathi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Yao Sun
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Guy L. Reed
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
21
|
Wang H, Li S, Wang J, Chen S, Sun XL, Wu Q. N-glycosylation in the protease domain of trypsin-like serine proteases mediates calnexin-assisted protein folding. eLife 2018; 7:e35672. [PMID: 29889025 PMCID: PMC6021170 DOI: 10.7554/elife.35672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/08/2018] [Indexed: 12/24/2022] Open
Abstract
Trypsin-like serine proteases are essential in physiological processes. Studies have shown that N-glycans are important for serine protease expression and secretion, but the underlying mechanisms are poorly understood. Here, we report a common mechanism of N-glycosylation in the protease domains of corin, enteropeptidase and prothrombin in calnexin-mediated glycoprotein folding and extracellular expression. This mechanism, which is independent of calreticulin and operates in a domain-autonomous manner, involves two steps: direct calnexin binding to target proteins and subsequent calnexin binding to monoglucosylated N-glycans. Elimination of N-glycosylation sites in the protease domains of corin, enteropeptidase and prothrombin inhibits corin and enteropeptidase cell surface expression and prothrombin secretion in transfected HEK293 cells. Similarly, knocking down calnexin expression in cultured cardiomyocytes and hepatocytes reduced corin cell surface expression and prothrombin secretion, respectively. Our results suggest that this may be a general mechanism in the trypsin-like serine proteases with N-glycosylation sites in their protease domains.
Collapse
Affiliation(s)
- Hao Wang
- Molecular CardiologyCleveland ClinicClevelandUnited States
- Department of ChemistryCleveland State UniversityClevelandUnited States
| | - Shuo Li
- Molecular CardiologyCleveland ClinicClevelandUnited States
| | - Juejin Wang
- Molecular CardiologyCleveland ClinicClevelandUnited States
| | - Shenghan Chen
- Molecular CardiologyCleveland ClinicClevelandUnited States
| | - Xue-Long Sun
- Molecular CardiologyCleveland ClinicClevelandUnited States
- Department of ChemistryCleveland State UniversityClevelandUnited States
- Chemical and Biomedical EngineeringCleveland State UniversityClevelandUnited States
- Center for Gene Regulation of Health and DiseaseCleveland State UniversityClevelandUnited States
| | - Qingyu Wu
- Molecular CardiologyCleveland ClinicClevelandUnited States
- Department of ChemistryCleveland State UniversityClevelandUnited States
- Cyrus Tang Hematology CenterState Key Laboratory of Radiation Medicine and Prevention, Soochow UniversitySuzhouChina
| |
Collapse
|
22
|
Chen YL, Li TJ, Hao Y, Wu BG, Li H, Geng N, Sun ZQ, Zheng LQ, Sun YX. Association of rs2271037 and rs3749585 polymorphisms in CORIN with susceptibility to hypertension in a Chinese Han population: A case-control study. Gene 2018; 651:79-85. [PMID: 29391274 DOI: 10.1016/j.gene.2018.01.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/12/2018] [Accepted: 01/24/2018] [Indexed: 01/01/2023]
Abstract
Corins are membrane-bound protease that regulates blood pressure by activating the natriuretic peptides. These pro-atrial natriuretic peptide convertases are essential for sodium homeostasis and normal blood pressure. CORIN variants have been identified in humans and other animals, but no studies of CORIN polymorphisms have been conducted in northeastern China. This study aims to investigate the association of 2 single nucleotide polymorphisms (SNPs) in CORIN (rs2271037 and rs3749585) with hypertension, as well as their potential interactions with some risk factors of hypertension in a Han population of northeastern China. A case-control study, including 402 patients with hypertension and 406 participants with normal blood pressure, was conducted in Liaoning province. SNP genotyping was carried out by high resolution melting (HRM) after polymerase chain reaction amplifications. Since rs3749585 is located in 3' untranslated region (UTR) of CORIN, in silico analysis was used to predict target micro RNAs on TargetScan, miRanda, and DIANA-microT. As a result, mutant T allele in rs2271037 (odds ratio [OR], 1.693; 95% confidence [CI], 1.528-1.877; p < 0.001) and C allele in rs3749585 (OR, 1.114; 95% CI 1.011-1.227; p = 0.029) increased the risk of hypertension, comparing with wild G allele and T allele, respectively. Patients with genotype TT (OR, 10.209; 95% CI, 6.414-16.250; p < 0.001) and GT (OR, 1.730; 95% CI, 1.226-2.443; p = 0.002) have higher risk of hypertension than those with genotype GG. SNP rs2271037 was significantly associated with susceptibility to hypertension in all genetic models (dominant model: OR, 2.879; 95% CI, 2.080-3.986; p < 0.001; recessive model: OR, 7.159; 95% CI, 4.779-10.724; p < 0.001; additive model: OR, 1.535; 95% CI, 1.163-2.027; p = 0.002). SNP rs3749585 was significantly correlated with hypertension susceptibility only in dominant model (OR, 1.533; 95% CI, 1.073-2.189; p = 0.019), but not in recessive model (OR, 1.220; 95% CI, 0.906-1.644; p = 0.191) or additive model (OR, 0.915; 95% CI, 0.694-1.205; p = 0.527). After adjusting for age, gender, body mass index (BMI), smoking, low-density lipoprotein cholesterol, and serum sodium level in logistic models, the same statistical results were obtained. Interaction study showed the association between CORIN polymorphisms and hypertension could be changed by overweight (BMI ≥ 25 kg/m2). In silico analyses implicated hsa-miR-495 as a target miRNA that potentially interacts with the 3' UTR of CORIN. In conclusion, polymorphisms of rs2271037 and rs3749585 in CORIN were significantly associated with hypertension in a Han population of northeastern China. The mutant-type T allele of rs2271037 and C allele of rs3749585 might increase the susceptibility to hypertension in this population.
Collapse
Affiliation(s)
- Yan-Li Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Tie-Jun Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ying Hao
- Department of Geriatrics, Jinqiu Hospital, Shenyang, Liaoning, PR China
| | - Bao-Gang Wu
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Hong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ning Geng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Zhao-Qing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Li-Qiang Zheng
- Department of Clinical Epidemiology, Library, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ying-Xian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
23
|
Zhang Y, Zhou T, Niu Y, He M, Wang C, Liu M, Yang J, Zhang Y, Zhou J, Fukuda K, Qin J, Dong N, Wu Q. Identification and functional analysis of CORIN variants in hypertensive patients. Hum Mutat 2017; 38:1700-1710. [PMID: 28861913 PMCID: PMC5794343 DOI: 10.1002/humu.23318] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/06/2017] [Accepted: 08/25/2017] [Indexed: 11/10/2022]
Abstract
Corin is a serine protease that activates atrial natriuretic peptide (ANP). CORIN gene variants have been reported in patients with hypertension. To date, however, the prevalence of CORIN variants in hypertensive patients remains unknown. To understand the prevalence and functional significance of CORIN variants in hypertension, we sequenced CORIN exons in 300 normal and 401 hypertensive individuals in a Chinese population and identified nine nonsynonymous variants, of which eight were not characterized previously. Among them, variants c.131A > G (p.Tyr13Cys), c.376G > T (p.Asp95Tyr), c.1094T > G (p.Leu334Trp), and c.1667G > A (p.Arg525His) occurred similarly in both normal and hypertensive individuals. Variants c1139G > A (p.Arg349His), c.2689C > T (p.Pro866Ser), and c.2864C > T (p.Thr924Met) were found once each in hypertensive individuals. Variant c.1683G > T (p.Arg530Ser) occurred preferentially in hypertensive individuals [10/401 (2.5%) vs. 1/300 (0.3%) in normal individuals; P = 0.023], which was confirmed in another independent cohort [9/368 (2.44%) in hypertensive and 2/377 (0.53%) in normal individuals; P = 0.033]. In biochemical and cell-based functional studies, variants p.Arg530Ser and p.Thr924Met, but not p.Tyr13Cys, p.Asp95Tyr, p.Leu334Trp, p.Arg349His, p.Arg525His, and p.Pro866Ser, exhibited reduced pro-ANP processing activity, which was caused by endoplasmic reticulum retention and poor zymogen activation, respectively. These results indicate that genetic variants impairing corin function are not uncommon in general populations and that such variants may be an important contributing factor in hypertension.
Collapse
Affiliation(s)
- Yue Zhang
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Tiantian Zhou
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Yayan Niu
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Meiling He
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Can Wang
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Meng Liu
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Junhua Yang
- Department of Cardiology and MOH Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, People’s Republic of China
| | - Jianping Zhou
- Department of Gerontology, the First Hospital of Yancheng, Yancheng, People’s Republic of China
| | - Koichi Fukuda
- Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Jun Qin
- Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Ningzheng Dong
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
- Department of Cardiology and MOH Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, People’s Republic of China
| | - Qingyu Wu
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, People’s Republic of China
- Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
24
|
Chen S, Wang H, Li H, Zhang Y, Wu Q. Functional analysis of corin protein domains required for PCSK6-mediated activation. Int J Biochem Cell Biol 2017; 94:31-39. [PMID: 29180304 DOI: 10.1016/j.biocel.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/20/2017] [Accepted: 11/24/2017] [Indexed: 02/08/2023]
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone essential for normal blood pressure and cardiac function. Corin is a transmembrane serine protease that activates ANP. Recently, we identified proprotein convertase subtilisin/kexin-6 (PCSK6), also called PACE4, as the long-sought corin activator. Both corin and PCSK6 are expressed in cardiomyocytes, but corin activation occurs only on the cell surface. It remains unknown if cell membrane association is needed for PCSK6 to activate corin. Here we expressed corin deletion mutants in HEK293 cells to analyze the domain structures required for PCSK6-mediated activation. Our results show that soluble corin lacking the transmembrane domain was activated by PCSK6 in the conditioned medium but not intracellularly. Recombinant PCSK6 also activated the soluble corin under cell-free conditions. Moreover, PCSK6-mediated corin activation was not enhanced by cell membrane fractions. These results indicate that cell membrane association is unnecessary for PCSK6 to activate corin. Experiments with monensin that blocks PCSK6 secretion and immunostaining indicated that the soluble corin and PCSK6 were secreted via different intracellular pathways, which may explain the lack of corin activation inside the cell. We also found that the protein domains in the corin pro-peptide region were dispensable for PCSK6-mediated activation and that addition of heparan sulfate and chondroitin sulfate or treatment with heparinase or chondroitinase did not alter corin activation by PCSK6 in HEK293 cells. Together, our results provide important insights into the molecular and cellular mechanisms underlying PCSK6-mediated corin activation that is critical for cardiovascular homeostasis.
Collapse
Affiliation(s)
- Shenghan Chen
- From the Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China; The Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Hao Wang
- The Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Heng Li
- From the Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China
| | - Yue Zhang
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qingyu Wu
- The Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA; The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
25
|
Zhou H, Zhu J, Liu M, Wu Q, Dong N. Role of the protease corin in chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 2017; 12:973-982. [PMID: 28714548 DOI: 10.1002/term.2514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potency to differentiate into chondrocytes, osteocytes and adipocytes. Corin is a cardiac protease that activates the natriuretic peptides, thereby regulating blood volume and pressure. In addition to the heart, corin gene upregulation was reported in bone marrow- and adipose tissue-derived MSCs that underwent osteogenic differentiation. To date, the biological significance of corin expression in MSC differentiation remains unknown. In this study we isolated and cultured human bone marrow-derived MSCs that were capable of undergoing chondrogenic, osteogenic and adipogenic lineage differentiation. By reverse transcription polymerase chain reaction (RT-PCR) and immunostaining, we found that corin expression was upregulated when these MSCs underwent chondrogenic, osteogenic and adipogenic differentiation. The upregulation of corin expression was most significant in the cells undergoing chondrogenic lineage differentiation. Silencing corin gene expression by small hairpin RNA in the MSCs inhibited chondrogenic, but not osteogenic and adipogenic, differentiation. These results suggest a novel function of corin in MSC differentiation and chondrocyte development.
Collapse
Affiliation(s)
- Haibin Zhou
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinsong Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Sun C, Shen L, Sha W, Zhou L, Xu D, Dong N. IL-1β increases urinary corin in patients with primary proteinuric kidney diseases and in 293 cells. Exp Ther Med 2017; 15:487-493. [PMID: 29387201 DOI: 10.3892/etm.2017.5398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/16/2017] [Indexed: 11/06/2022] Open
Abstract
Corin is a serine protease that is important for the regulation of blood pressure and water balance. Corin was initially discovered in the heart, however, it has also been detected in kidney cells, though its function in the kidneys is unclear. To further investigate the function of corin in the kidney, the present study analyzed the levels of corin in urine and blood samples collected from normal individuals and patients with primary proteinuric diseases. The associations between the levels of corin, and the cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were then assessed. The results demonstrated that corin was detectable in the urine and plasma following an enzyme-linked immunosorbent assay; the level of corin in the urine was associated with the level of urinary β2-microglobulin (P=0.01), which was indicative of renal tubular injury. When compared with normal individuals, the levels of urinary corin in proteinuric patients were markedly increased (P=0.02), and were also associated with IL-1β (P=0.03). This correlation between corin and IL-1β was confirmed in vitro using 293 cells. As the IL-1β concentrations increased (0, 0.1, 1, 10 ng/ml), an elevation in the level of corin was observed in the culture medium (P<0.01); however, the amount of corin was not markedly altered in the cell lysate (P>0.05). In addition, when TNF-α reached 10 ng/ml, the level of corin in the medium increased significantly when compared with the control group (0 ng/ml; P=0.02), however, no significant difference in corin levels was detected in the cell lysate. The results suggest that the cytokines IL-1β and TNF-α may increase urinary corin in patients with primary proteinuric kidney diseases. Cytokines may accelerate corin shedding from the cell membrane of renal tubule epithelial cells. These findings indicate that corin may be associated with kidney inflammation and injury.
Collapse
Affiliation(s)
- Ci Sun
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lei Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wengang Sha
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Deyu Xu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ningzheng Dong
- The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Corin is a transmembrane protease that activates atrial natriuretic peptide (ANP), an important hormone in regulating salt-water balance and blood pressure. This review focuses on the regulation of corin function and potential roles of corin defects in hypertensive, heart, and renal diseases. RECENT FINDINGS Proprotein convertase subtilisin/kexin-6 has been identified as a primary enzyme that converts zymogen corin to an active protease. Genetic variants that impair corin intracellular trafficking, cell surface expression, and zymogen activation have been found in patients with hypertension, cardiac hypertrophy, and pre-eclampsia. Reduced corin expression has been detected in animal models of cardiomyopathies and in human failing hearts. Low levels of circulating soluble corin have been reported in patients with heart disease and stroke. Corin, ANP and natriuretic peptide receptor-A mRNAs, and proteins have been colocalized in human renal segments, suggesting a corin-ANP autocrine function in the kidney. SUMMARY Corin is a key enzyme in the natriuretic peptide system. The latest findings indicate that corin-mediated ANP production may act in a tissue-specific manner to regulate cardiovascular and renal function. Corin defects may contribute to major diseases such as hypertension, heart failure, pre-eclampsia, and kidney disease.
Collapse
Affiliation(s)
- Hui Li
- Cyrus Tang Hematology Center, MOE Engineering Center of Hematological Disease, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yue Zhang
- Cyrus Tang Hematology Center, MOE Engineering Center of Hematological Disease, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, MOE Engineering Center of Hematological Disease, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Feistritzer HJ, Klug G, Reinstadler SJ, Reindl M, Mayr A, Mair J, Metzler B. Novel biomarkers predicting cardiac function after acute myocardial infarction. Br Med Bull 2016; 119:63-74. [PMID: 27418651 DOI: 10.1093/bmb/ldw027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Measurement of biomarkers provides a cost-effective and widely available method to estimate cardiac dysfunction and clinical outcome of patients with acute myocardial infarction (AMI). SOURCES OF DATA PubMed entries with terms 'myocardial infarction' and the respective biomarker. AREAS OF AGREEMENT Cardiac troponins and natriuretic peptides are closely related to left ventricular dysfunction and the occurrence of adverse clinical events following AMI. AREAS OF CONTENTION The incremental value of novel biomarkers is controversial. FUTURE DIRECTIONS The combination of traditional and novel biomarkers might further improve risk stratification of patients with AMI. SEARCH STRATEGY We searched all entries on the PubMed database with the MeSH terms 'myocardial infarction' and 'cardiac troponins', 'natriuretic peptides', 'copeptin', galectin-3', 'corin', 'fetuin-A', 'adiponectin' and 'microRNA'.
Collapse
Affiliation(s)
- Hans-Josef Feistritzer
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Gert Klug
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Sebastian J Reinstadler
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Martin Reindl
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Agnes Mayr
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Johannes Mair
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Bernhard Metzler
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| |
Collapse
|
29
|
Localization of corin and atrial natriuretic peptide expression in human renal segments. Clin Sci (Lond) 2016; 130:1655-64. [PMID: 27343265 DOI: 10.1042/cs20160398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
Atrial natriuretic peptide (ANP)-mediated natriuretic response is a well-established cardiac endocrine function. Corin is a transmembrane protease that activates ANP in the heart. Corin expression has been detected in non-cardiac tissues including the kidney. Here we examined corin, pro-ANP/ANP and natriuretic peptide receptor-A (NPR-A) expression in human renal segments. By immunostaining and in situ hybridization, we found similar corin, pro-ANP/ANP and NPR-A protein and mRNA expression in human renal segments. The expression was most abundant in the proximal convoluted tubules and the medullary connecting ducts. In the proximal tubules, corin protein was present in the apical membrane region underneath the brush border where the ANP-degrading protease neprilysin was abundant. These results suggest that corin-mediated pro-ANP activation may occur in renal segments and that locally produced ANP may act in an autocrine manner to regulate sodium and water reabsorption in situ Our results also point to the proximal convoluted tubules as a major site for local ANP action. Such a renal corin/ANP autocrine mechanism may differ from the cardiac corin/ANP endocrine mechanism in regulating sodium homoeostasis under physiological and pathological conditions.
Collapse
|
30
|
Abstract
Membrane-anchored serine proteases are a group of extracellular serine proteases tethered directly to plasma membranes, via a C-terminal glycosylphosphatidylinositol linkage (GPI-anchored), a C-terminal transmembrane domain (Type I), or an N-terminal transmembrane domain (Type II). A variety of biochemical, cellular, and in vivo studies have established that these proteases are important pericellular contributors to processes vital for the maintenance of homeostasis, including food digestion, blood pressure regulation, hearing, epithelial permeability, sperm maturation, and iron homeostasis. These enzymes are hijacked by viruses to facilitate infection and propagation, and their misregulation is associated with a wide range of diseases, including cancer malignancy.
Collapse
|
31
|
Fathy SA, Abdel Hamid FF, Zabut BM, Jamee AF, Ali MAM, Abu Mustafa AM. Diagnostic utility of BNP, corin and furin as biomarkers for cardiovascular complications in type 2 diabetes mellitus patients. Biomarkers 2015; 20:460-9. [PMID: 26488448 DOI: 10.3109/1354750x.2015.1093032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CONTEXT The number of patients with type 2 diabetes mellitus (T2DM) is progressively increasing, and diabetic cardiovascular complications have become a public health problem. Brain or B-type natriuretic peptide (BNP) is a cardiac hormone synthesized as a pre-pro-peptide. pro-BNP is produced by cleaving the signal peptide then two proprotein convertases, corin and furin cleave pro-BNP to form a biologically active hormone. Two corin single nucleotide polymorphisms (SNPs) have been reported to alter corin protein conformation and impair its biological activity. OBJECTIVE We aimed to investigate the potential role of corin and furin in comparison to BNP as biomarkers for predicting cardiovascular complications in T2DM patients. The association of corin gene SNPs with corin levels was also examined. METHODS Seventy-five subjects were recruited in this study, including 25 T2DM patients with complications, 25 T2DM patients without complications as well as 25 healthy subjects. Plasma BNP, corin and furin levels were measured using enzyme-linked immunosorbent assays. Two corin SNPs were genotyped using allele specific oligonucleotide-polymerase chain reaction. RESULTS Both furin and BNP were found to be more sensitive than corin (80% versus 56%, p = 0.008), whereas furin showed higher specificity when compared to BNP (96% versus 84%, p = 0.041) and corin (96% versus 64%, p < 0.0001) in predicting cardiovascular complications in T2DM patients. Corin SNPs are not associated with corin levels, neither in the entire study cohort nor in the subgroup of T2DM patients with cardiovascular complications (p > 0.05). CONCLUSIONS Furin may be useful, either alone or in combination with other biomarkers, for cardiovascular risk stratification assessment in T2DM patients.
Collapse
Affiliation(s)
- Shadia A Fathy
- a Department of Biochemistry , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Fatma F Abdel Hamid
- a Department of Biochemistry , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Baker M Zabut
- b Biochemistry Department , Faculty of Science, Islamic University , Gaza , Palestine
| | - Amal F Jamee
- c Cardiology Department , El-Shifa Hospital , Gaza , Palestine , and
| | - Mohamed A M Ali
- a Department of Biochemistry , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Ayman M Abu Mustafa
- d General Directorate of Human Resources Development, Ministry of Health , Gaza , Palestine
| |
Collapse
|
32
|
Li H, Zhang Y, Wang L, Dong N, Qi X, Wu Q. A novel cytoplasmic tail motif regulates mouse corin expression on the cell surface. Biochem Biophys Res Commun 2015; 465:152-8. [PMID: 26241673 DOI: 10.1016/j.bbrc.2015.07.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 07/30/2015] [Indexed: 01/23/2023]
Abstract
Type II transmembrane serine proteases (TTSPs) are important in many biological processes. Cell surface expression is critical for TTSP activation and function. To date, the mechanism underlying TTSP cell surface expression is poorly understood. Corin is a TTSP and acts as the pro-atrial natriuretic peptide convertase that is essential for sodium homeostasis and normal blood pressure. In this study, we investigated how cytoplasmic tail sequences may regulate corin expression and activation on the cell surface. By site-directed mutagenesis, we made mouse corin proteins with truncations or point-mutations in the cytoplasmic tail. We expressed the mutants in transfected HEK293 cells and analyzed corin cell surface expression and activation by Western blotting and flow cytometry. We found that corin truncation mutants lacking a Lys-Phe-Gln sequence at residues 71-73 had higher levels of cell surface expression and activation compared with that in wild-type corin. When Lys-71, Phe-72 and Gln-73 residues were mutated together, but not individually, in corin with the full-length cytoplasmic tail, increased levels of cell surface expression and zymogen activation were also observed. These results indicate that residues Lys-71, Phe-72 and Gln-73 serve as a novel retention motif in the intracellular pathway to regulate corin cell surface expression and activation.
Collapse
Affiliation(s)
- Hui Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yue Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaofei Qi
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Molecular Cardiology, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
33
|
Chen F, Xia Y, Liu Y, Zhang Y, Song W, Zhong Y, Gao L, Jin Y, Li S, Jiang Y, Yang Y. Increased plasma corin levels in patients with atrial fibrillation. Clin Chim Acta 2015; 447:79-85. [DOI: 10.1016/j.cca.2015.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 01/28/2023]
|
34
|
Circulating corin concentrations are related to infarct size in patients after ST-segment elevation myocardial infarction. Int J Cardiol 2015; 192:22-3. [PMID: 25981578 DOI: 10.1016/j.ijcard.2015.05.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/22/2022]
|
35
|
Kanumuri RM, Bajji C, Tummuru RR, Tatireddigari VRRA, Mangamoori LN, Panati K, Narala VR. Increased yield of high purity recombinant human brain natriuretic peptide by acid hydrolysis of short fusion partner in Escherichia coli. Protein Expr Purif 2015; 111:61-7. [PMID: 25823948 DOI: 10.1016/j.pep.2015.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/19/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
Recombinant human B-type natriuretic peptide (rhBNP) is a 32-amino acid peptide used to treat congestive heart failure. In this paper, we report a method for the increased production of rhBNP in Escherichia coli with high purity. hBNP was cloned with a short growth hormone fusion partner coupled with a unique acid-labile dipeptide linker to cleave the fusion protein to release the rhBNP. The recombinant fusion protein was expressed as an inclusion body (IB) and the fermentation process was optimized to produce on large scale. The IBs were recovered by cell lysis, and the pure IBs were directly treated with diluted acid to get the target peptide from the fusion protein and the resultant peptide was purified by reversed phase chromatography. The final purity of the rhBNP was more than 99% with yield of 50mg per liter of culture, which is ten times higher than the previous reports. The purified rhBNP exhibited specific biological activity similar to the standard peptide in producing cyclic-guanosine monophosphate.
Collapse
Affiliation(s)
- Radha Madhavi Kanumuri
- Virchow Research Centre, Hyderabad 500 055, India; Centre for Biotechnology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 085, India
| | - Chitra Bajji
- Virchow Research Centre, Hyderabad 500 055, India
| | | | | | - Lakshmi Narasu Mangamoori
- Centre for Biotechnology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 085, India
| | - Kalpana Panati
- Department of Biotechnology, Govt. College for Men, Kadapa, AP, India
| | | |
Collapse
|
36
|
Serafino A, Pierimarchi P. Atrial natriuretic peptide: a magic bullet for cancer therapy targeting Wnt signaling and cellular pH regulators. Curr Med Chem 2015; 21:2401-9. [PMID: 24524761 PMCID: PMC4063317 DOI: 10.2174/0929867321666140205140152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 02/06/2023]
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone playing a crucial role in
cardiovascular homeostasis mainly through blood volume and pressure regulation.
In the last years, the new property ascribed to ANP of inhibiting tumor growth
both in vitro and in vivo has made this peptide an attractive
candidate for anticancer therapy. The molecular mechanism underlying the
anti-proliferative effect of ANP has been mainly related to its interaction with
the specific receptors NPRs, through which this natriuretic hormone inhibits
some metabolic targets critical for cancer development, including the
Ras-MEK1⁄2-ERK1⁄2 kinase cascade, functioning as a multikinase inhibitor. In
this review we summarize the current knowledge on this topic, focusing on our
recent data demonstrating that the antitumor activity of this natriuretic
hormone is also mediated by a concomitant effect on the Wnt/β-catenin pathway
and on the pH regulation ability of cancer cells, through a Frizzled-related
mechanism. This peculiarity of simultaneously targeting two processes crucial
for neoplastic transformation and solid tumor survival reinforces the utility of
ANP for the development of both preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | - P Pierimarchi
- Institute of Translational Pharmacology - National Research Council of Italy, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
37
|
Khalil A, Maiz N, Garcia-Mandujano R, Elkhouli M, Nicolaides KH. Longitudinal changes in maternal corin and mid-regional proatrial natriuretic peptide in women at risk of pre-eclampsia. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2015; 45:190-198. [PMID: 25296530 DOI: 10.1002/uog.14685] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/21/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Corin, an atrial natriuretic peptide-converting enzyme, has been found to promote trophoblast invasion and spiral artery remodeling. Yet, elevated maternal plasma atrial natriuretic peptide (ANP) and corin levels have been reported in pregnancies complicated by pre-eclampsia (PE). The aim of this study was to investigate longitudinal changes in maternal plasma levels of corin and mid-regional proatrial natriuretic peptide (MR-PANP) in pregnancies that develop PE and gestational hypertension (GH). METHODS This was a nested case-control study drawn from a larger prospective longitudinal study in singleton pregnancies identified as being at high risk for PE by screening at 11 + 0 to 13 + 6 weeks' gestation. Blood samples were taken every 4 weeks until delivery. Values were compared in pregnancies that developed preterm PE (requiring delivery before 37 weeks' gestation), term PE, GH and those that remained normotensive. RESULTS A total of 471 samples were analyzed from 122 women, including 85 that remained normotensive, 12 that developed GH, 13 term PE and 12 preterm PE. In the normotensive group, log10 corin levels were associated with gestational age (P < 0.01), whereas log10 MR-PANP levels were not. In the preterm-PE group, compared with the normotensive group, corin was significantly lower until 20 weeks' gestation (P = 0.001). In the GH and term-PE groups, corin did not differ significantly from the normotensive group (P = 0.637 and P = 0.161, respectively). Compared with the normotensive group, MR-PANP levels were significantly higher in the pregnancies that developed preterm PE and GH (P = 0.046 and P = 0.019, respectively), but not term PE (P = 0.467). CONCLUSION Maternal-plasma corin and MR-PANP could potentially be useful biomarkers for the prediction of preterm PE.
Collapse
Affiliation(s)
- A Khalil
- Department of Fetal Medicine, St George's University of London, London, UK
| | | | | | | | | |
Collapse
|
38
|
Wang H, Zhou T, Peng J, Xu P, Dong N, Chen S, Wu Q. Distinct roles of N-glycosylation at different sites of corin in cell membrane targeting and ectodomain shedding. J Biol Chem 2014; 290:1654-63. [PMID: 25451932 DOI: 10.1074/jbc.m114.606442] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corin is a membrane-bound protease essential for activating natriuretic peptides and regulating blood pressure. Human corin has 19 predicted N-glycosylation sites in its extracellular domains. It has been shown that N-glycans are required for corin cell surface expression and zymogen activation. It remains unknown, however, how N-glycans at different sites may regulate corin biosynthesis and processing. In this study, we examined corin mutants, in which each of the 19 predicted N-glycosylation sites was mutated individually. By Western analysis of corin proteins in cell lysate and conditioned medium from transfected HEK293 cells and HL-1 cardiomyocytes, we found that N-glycosylation at Asn-80 inhibited corin shedding in the juxtamembrane domain. Similarly, N-glycosylation at Asn-231 protected corin from autocleavage in the frizzled-1 domain. Moreover, N-glycosylation at Asn-697 in the scavenger receptor domain and at Asn-1022 in the protease domain is important for corin cell surface targeting and zymogen activation. We also found that the location of the N-glycosylation site in the protease domain was not critical. N-Glycosylation at Asn-1022 may be switched to different sites to promote corin zymogen activation. Together, our results show that N-glycans at different sites may play distinct roles in regulating the cell membrane targeting, zymogen activation, and ectodomain shedding of corin.
Collapse
Affiliation(s)
- Hao Wang
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, and
| | - Tiantian Zhou
- the Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Jianhao Peng
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ping Xu
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ningzheng Dong
- the Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Shenghan Chen
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Qingyu Wu
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, and the Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| |
Collapse
|
39
|
Barré O, Dufour A, Eckhard U, Kappelhoff R, Béliveau F, Leduc R, Overall CM. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries. PLoS One 2014; 9:e105984. [PMID: 25211023 PMCID: PMC4161349 DOI: 10.1371/journal.pone.0105984] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/31/2014] [Indexed: 01/08/2023] Open
Abstract
Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.
Collapse
Affiliation(s)
- Olivier Barré
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Antoine Dufour
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ulrich Eckhard
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Reinhild Kappelhoff
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - François Béliveau
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christopher M. Overall
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
40
|
Abstract
Corin is a serine protease originally isolated from the heart. Functional studies show that corin is the long-sought enzyme responsible for activating cardiac natriuretic peptides. In mice, lack of corin prevents natriuretic peptide processing, causing salt-sensitive hypertension. In humans, corin variants and mutations that reduce corin activity have been identified in patients with hypertension and heart failure. Decreased plasma levels of corin antigen and activity have been reported in patients with heart failure and coronary artery disease. Low levels of urinary corin also have been found in patients with chronic kidney disease. Most recent studies show that corin also acts in the uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Here, we review the role of corin in natriuretic peptide processing and cardiovascular diseases such as hypertension, heart disease, pre-eclampsia, and chronic kidney disease.
Collapse
|
41
|
Dong N, Zhou T, Zhang Y, Liu M, Li H, Huang X, Liu Z, Wu Y, Fukuda K, Qin J, Wu Q. Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. [Corrected]. J Biol Chem 2014; 289:17909-16. [PMID: 24828501 DOI: 10.1074/jbc.m114.551424] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Corin is a membrane-bound serine protease that acts as the atrial natriuretic peptide (ANP) convertase in the heart. Recent studies show that corin also activates ANP in the pregnant uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Two CORIN gene mutations, K317E and S472G, were identified in preeclamptic patients and shown to have reduced activity in vitro. In this study, we carried out molecular modeling and biochemical experiments to understand how these mutations impair corin function. By molecular modeling, the mutation K317E was predicted to alter corin LDL receptor-2 module conformation. Western blot analysis of K317E mutant in HEK293 cells showed that the mutation did not block corin expression on the cell surface but inhibited corin zymogen activation. In contrast, the mutation S472G was predicted to abolish a β-sheet critical for corin frizzled-2 module structure. In Western blot analysis and flow cytometry, S472G mutant was not detected on the cell surface in transfected HEK293 cells. By immunostaining, the S472G mutant was found in the ER, indicating that the mutation S472G disrupted the β-sheet, causing corin misfolding and ER retention. Thus, these results show that mutations in the CORIN gene may impair corin function by entirely different mechanisms. Together, our data provide important insights into the molecular basis underlying corin mutations that may contribute to preeclampsia in patients.
Collapse
Affiliation(s)
- Ningzheng Dong
- From the Cyrus Tang Hematology Center and MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Tiantian Zhou
- From the Cyrus Tang Hematology Center and MOE Engineering Center of Hematological Disease
| | - Yue Zhang
- From the Cyrus Tang Hematology Center and MOE Engineering Center of Hematological Disease
| | - Meng Liu
- From the Cyrus Tang Hematology Center and MOE Engineering Center of Hematological Disease
| | - Hui Li
- From the Cyrus Tang Hematology Center and MOE Engineering Center of Hematological Disease
| | - Xiaoyi Huang
- the International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China, and
| | - Zhenzhen Liu
- From the Cyrus Tang Hematology Center and MOE Engineering Center of Hematological Disease
| | - Yi Wu
- From the Cyrus Tang Hematology Center and MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Koichi Fukuda
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jun Qin
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Qingyu Wu
- From the Cyrus Tang Hematology Center and MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China, Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
42
|
Zhou H, Liu W, Zhu J, Liu M, Fang C, Wu Q, Dong N. Reduced serum corin levels in patients with osteoporosis. Clin Chim Acta 2013; 426:152-6. [DOI: 10.1016/j.cca.2013.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/02/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
|
43
|
Clinckemalie L, Spans L, Dubois V, Laurent M, Helsen C, Joniau S, Claessens F. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol Endocrinol 2013; 27:2028-40. [PMID: 24109594 DOI: 10.1210/me.2013-1098] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
More than 50% of prostate cancers have undergone a genomic reorganization that juxtaposes the androgen-regulated promoter of TMPRSS2 and the protein coding parts of several ETS oncogenes. These gene fusions lead to prostate-specific and androgen-induced ETS expression and are associated with aggressive lesions, poor prognosis, and early-onset prostate cancer. In this study, we showed that an enhancer at 13 kb upstream of the TMPRSS2 transcription start site is crucial for the androgen regulation of the TMPRSS2 gene when tested in bacterial artificial chromosomal vectors. Within this enhancer, we identified the exact androgen receptor binding sequence. This newly identified androgen response element is situated next to two binding sites for the pioneer factor GATA2, which were identified by DNase I footprinting. Both the androgen response element and the GATA-2 binding sites are involved in the enhancer activity. Importantly, a single nucleotide polymorphism (rs8134378) within this androgen response element reduces binding and transactivation by the androgen receptor. The presence of this SNP might have implications on the expression and/or formation levels of TMPRSS2 fusions, because both have been shown to be influenced by androgens.
Collapse
Affiliation(s)
- Liesbeth Clinckemalie
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine KU Leuven, Campus Gasthuisberg O&N1, PO Box 901, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
44
|
Jiang K, Shah K, Daniels L, Maisel AS. Review on natriuretic peptides: where we are, where we are going. ACTA ACUST UNITED AC 2013; 2:1137-53. [PMID: 23496424 DOI: 10.1517/17530059.2.10.1137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Tremendous advances have been made in our understanding of the pathophysiology and treatment of congestive heart failure. However, diagnosis of the disease still remains difficult, even with a comprehensive physical examination. Symptoms such as dyspnea are nonspecific and insensitive indicators for heart failure, which can go largely undetected. Several studies have suggested the need for new diagnostic capabilities, especially with the increasing prevalence of heart failure in the US. The discovery of natriuretic peptides as diagnostic biomarkers has been one of the most critical advances for the management of heart failure. Both B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide have the potential to diagnose heart failure, assess prognostic risk of rehospitalization and mortality, and even help guide treatment. Their relative cost-effectiveness and availability have also facilitated their acceptance into many emergency departments, clinics and in-patient units as standard care when evaluating patients with suspected heart failure. Our understanding of the natriuretic peptide system is still in its infancy, but natriuretic peptides have emerged as important diagnostic and prognostic tools that have generated interest in finding broader applications for their use. OBJECTIVE The purpose of this review is to discuss the clinical approaches and future applications of natriuretic peptides in diagnosing and managing treatment of congestive heart failure. METHOD A comprehensive review of studies to assess the utility of natriuretic peptides for diagnosis and prognosis of heart failure and other conditions. CONCLUSION Natriuretic peptides are powerful tools to aid the physician in the diagnosis, prognosis and management of heart failure in both in-patient and out-patient settings. However, natriuretic peptides should be used as an adjunct test as many circumstances can also influence changes in natriuretic peptide levels.
Collapse
Affiliation(s)
- Kevin Jiang
- VA San Diego Medical Center and the University of California, Division of Cardiology, Department of Medicine, VAMC, 3350 La Jolla Village Dr, San Diego, CA 92161, USA +1 858 552 8585 ; +1 858 552 7490 ;
| | | | | | | |
Collapse
|
45
|
Abstract
Corin is a cardiac protease that regulates BP (blood pressure) by activating natriuretic peptides. Recent animal studies identified corin expression in the kidney where it may regulate renal function. In the present study, we tested the hypothesis that corin may be present in human urine and that urinary corin levels may be altered in patients with kidney disease. We obtained urine and kidney tissue samples from normal individuals and CKD (chronic kidney disease) patients. Using ELISA, we detected corin protein in human urine. In normal individuals, urinary corin levels did not correlate with that of plasma, indicating that urinary corin is probably of kidney origin. Compared with normal controls, CKD patients had markedly reduced urinary corin levels and this reduction correlated with disease severity. By immunostaining, human corin protein was identified on the epithelial cell surface in renal tubules. The renal corin mRNA and protein levels were significantly lower in CKD patients than non-CKD controls. The results indicate that renal tubular corin may be shed into urine and that urinary and renal corin levels were reduced in CKD patients. These data suggest that reduced corin levels in the kidney may reflect the underlying pathology in CKD.
Collapse
|
46
|
Ichiki T, Huntley BK, Burnett JC. BNP molecular forms and processing by the cardiac serine protease corin. Adv Clin Chem 2013; 61:1-31. [PMID: 24015598 DOI: 10.1016/b978-0-12-407680-8.00001-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cardiac hormone, B-type natriuretic peptide (BNP), is one of human natriuretic peptides which possesses cardiorenal protective actions and is used as a therapeutic and a biomarker for heart failure (HF). Its prohormone, proBNP1_108, is processed by the proNPs convertases, corin or furin, to inactive NT-proBNP1_76 and active BNP1-32. Paradoxically, circulating NT-proBNP and BNP are elevated in HF leading to the use of BNP as a sensitive and predictive marker of HF. This paradox may be explained by the "nonspecific" nature of conventional assays and/or a relative deficiency state of "active BNP" as characterized by an increase in inactive proBNP_108 and a decrease in active BNP1-32. Therefore, understanding the regulation of proBNP1_108 processing and the role of the convertase corin may be important in understanding the physiology of HF. Corin is expressed in heart and kidney and may play an important role in regulating blood pressure and remodeling of the heart. The processing of proBNP1_108 by corin may be controlled by O-linked glycosylation of proBNP1-108. A potential impairment of proBNP1lo8 processing in HF may be linked to dysregulation of the convertase corin, which may offer therapeutic opportunities to control proBNPlo0s processing and its activation in HF.
Collapse
|
47
|
Gladysheva IP, Wang D, McNamee RA, Houng AK, Mohamad AA, Fan TM, Reed GL. Corin overexpression improves cardiac function, heart failure, and survival in mice with dilated cardiomyopathy. Hypertension 2012; 61:327-32. [PMID: 23232642 DOI: 10.1161/hypertensionaha.112.193631] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heart failure, caused by dilated cardiomyopathy and other cardiac disorders such as hypertension, is a major public health problem with high morbidity and mortality. Corin, a cardiac enzyme that cleaves natriuretic peptides, is a promising biomarker of cardiomyopathy and heart failure, but its functional role in these processes is not understood. We evaluated the potential effects of corin in mice with a well-characterized model of dilated cardiomyopathy. Mice with dilated cardiomyopathy developed heart failure, reduced contractile function, cardiac fibrosis, and accelerated mortality in the setting of low corin expression. In wild-type mice, transgenic, cardiac-targeted, overexpression of corin enhanced cyclic guanosine monophosphate and blood pressure responses to pro-atrial natriuretic peptide, but did not affect heart size, contractility, body weights, survival, and blood pressure. In mice with dilated cardiomyopathy, corin overexpression significantly reduced the development of myocardial fibrosis (P<0.05). Corin overexpression also enhanced heart contractile function (fractional shortening and ejection fraction; P<0.01) and it significantly reduced heart failure as assessed by lung water (P<0.05) and alveolar congestion (P<0.001). Consistent with these observations, corin overexpression significantly prolonged life in mice with dilated cardiomyopathy (P<0.0001). These results provide the first experimental evidence that corin expression plays a role in cardiomyopathy by modulating myocardial fibrosis, cardiac function, heart failure, and survival.
Collapse
Affiliation(s)
- Inna P Gladysheva
- Department of Medicine, University of Tennessee Health Science Center, Coleman, D334, 956 Court Ave, Memphis, TN 38163, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhou Y, Wu Q. Role of corin and atrial natriuretic peptide in preeclampsia. Placenta 2012; 34:89-94. [PMID: 23211473 DOI: 10.1016/j.placenta.2012.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/28/2012] [Accepted: 11/19/2012] [Indexed: 01/15/2023]
Abstract
In pregnancy, uterine spiral artery remodeling is an adaptive morphological change at the maternal and fetal interface, which is critical for dilating the artery and promoting blood flow to the fetus. Incompletely remodeled spiral arteries have been recognized as a common pathological feature in preeclamptic patients. To date, the molecular mechanism that controls spiral artery remodeling is not well defined. Corin is a transmembrane serine protease discovered in the heart, where it converts pro-atrial natriuretic peptide (pro-ANP) to active ANP, a cardiac hormone that regulates salt-water balance and blood pressure. Recent studies show that corin is up-regulated in the decidua of the pregnant uterus, suggesting a potential role of corin in pregnancy. In mice lacking corin or ANP, high blood pressure and proteinuria were found at late gestational stages. Histological analysis indicated delayed trophoblast invasion and impaired spiral artery remodeling in the uterus. In humans, CORIN gene mutations were identified in patients with preeclampsia. In this review, we discuss the function of corin and ANP in regulating blood pressure and their potential role in preeclampsia.
Collapse
Affiliation(s)
- Y Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital, Soochow University, Suzhou, China
| | | |
Collapse
|
49
|
Corin in clinical laboratory diagnostics. Clin Chim Acta 2011; 413:378-83. [PMID: 22093942 DOI: 10.1016/j.cca.2011.10.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 12/11/2022]
Abstract
Corin is a transmembrane serine protease identified in the heart, where it converts natriuretic peptides from inactive precursors to mature active forms. Studies in animal models and patients with hypertension and heart disease demonstrate that corin is critical in maintaining normal blood pressure and cardiac function. Like many proteolytic enzymes, corin expression and activity are regulated. Cell biology experiments indicate that transcriptional control, intracellular protein trafficking, cell surface targeting, zymogen activation and ectodomain shedding are important mechanisms in regulating corin expression and activity in the heart. More recently, soluble corin was detected in human blood and its levels were found to be reduced in patients with heart failure (HF). These findings indicate that corin deficiency may be involved in the pathogenesis of HF and suggest that soluble corin may be used as a biomarker for the disease. In this review, we describe the function and regulation of corin and discuss recent studies of soluble corin in human blood and its potential use as a biomarker for HF.
Collapse
|
50
|
Antalis TM, Bugge TH, Wu Q. Membrane-anchored serine proteases in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:1-50. [PMID: 21238933 PMCID: PMC3697097 DOI: 10.1016/b978-0-12-385504-6.00001-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Serine proteases of the trypsin-like family have long been recognized to be critical effectors of biological processes as diverse as digestion, blood coagulation, fibrinolysis, and immunity. In recent years, a subgroup of these enzymes has been identified that are anchored directly to plasma membranes, either by a carboxy-terminal transmembrane domain (Type I), an amino-terminal transmembrane domain with a cytoplasmic extension (Type II or TTSP), or through a glycosylphosphatidylinositol (GPI) linkage. Recent biochemical, cellular, and in vivo analyses have now established that membrane-anchored serine proteases are key pericellular contributors to processes vital for development and the maintenance of homeostasis. This chapter reviews our current knowledge of the biological and physiological functions of these proteases, their molecular substrates, and their contributions to disease.
Collapse
Affiliation(s)
- Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|