1
|
Liu J, Zhang F, Yan Z, Guo Z, Lu Y, Yao B, Li Y, Lv W. Effects of prolonged NaHCO 3 exposure on the serum immune function, antioxidant capacity, intestinal tight junctions, microbiota, mitochondria, and autophagy in crucian carp (Carassius auratus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117571. [PMID: 39708453 DOI: 10.1016/j.ecoenv.2024.117571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study investigated the effects of long-term NaHCO3 stress on serum immunity, antioxidant capacity, intestinal tight junction, intestinal microbiota, mitochondrial function and autophagy in crucian carp. A total of 240 fish (31.19 ± 1.03 g) were randomly allocated to two groups and treated with 0 mmol/L (CK) and 50 mmol/L NaHCO3 (CA) respectively, to simulate the carbonate alkaline water environment. All of the experimental fish were cultured for 8 weeks. The results showed that compared to the control group, NaHCO3 stress significantly decreased the levels of the serum immunity indices (AKP, ACP, C3, C4, IgM, LZM) and the antioxidant capacity indices (CAT, GSH-PX, SOD, T-AOC), while markedly increasing the content of MDA. Additionally, NaHCO3 influenced the mRNA expression of HSP90, Nrf2, Keap1, and HO-1. Compared to the control group, the levels of ZO-1, Claudin-2, Occludin-a, and Occludin-b mRNA significantly decreased in the NaHCO3 stress group. The levels of ATG5, ATG7, and Beclin1 mRNA and protein were significantly increased along with the levels of LC3b mRNA and the ratio of protein LC3 II /LC3 I. Compared to the control group, intestinal mitochondria in the NaHCO3 stress group were visibly swollen and largely broken, with reductions in ridges and a large proportion of the area dissolved in the matrix. The mitochondrial membrane potential and the activities of ATPase were significantly decreased, leading to mitochondria dysfunction. In addition, 3147 differentially expressed genes were identified from transcriptome sequencing, among which several genes related to mitochondria and autophagy were significantly enriched. Compared to the control group, the NaHCO3 stress decreased the ACE index and increased the abundance of Proteobacteria while decreased the abundance of Actinobacteria and Firmicutes. In conclusion, NaHCO3 induced oxidative damage, microbiota alterations, mitochondria dysfunction, and autophagy in the intestines of crucian carp. The results of this study have characterized the molecular mechanisms of intestinal injury in crucian carp caused by NaHCO3 stress, and thus provide empirical support for aquaculture in saline-alkali waters.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Faye Zhang
- Georgia Institute of Technology, Atlanta, USA
| | - Zihao Yan
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Zhengyao Guo
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuqian Lu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Baolan Yao
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| | - Wenfa Lv
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Lin ZY, Luo Z, Li ZF, Fu ZQ, Han FL, Li EC. Combined exposure effects: Multilevel impact analysis of cycloxaprid and microplastics on Penaeus vannamei. Comp Biochem Physiol C Toxicol Pharmacol 2024; 289:110107. [PMID: 39647643 DOI: 10.1016/j.cbpc.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
In real environments, multiple pollutants often coexist, so studying the impact of a single pollutant does not fully reflect the actual situation. Cycloxaprid, a new neonicotinoid pesticide, poses significant ecological risks due to its unique mechanism and widespread distribution in aquatic environments. Additionally, the ecological effects of microplastics, another common environmental pollutant, cannot be overlooked. This study explored the ecotoxicological effects of cycloxaprid and microplastics, both alone and in combination, on Penaeus vannamei over 28 days. The results revealed significant physiological impacts, with notable changes in the shrimp immune system and hepatopancreatic energy and lipid metabolism. Key findings include alterations in hemocyanin, nitric oxide, and phenol oxidase levels, along with disturbances in Na+/K+-, Ca2+-, and Mg2+-ATPase activities. Additionally, neural signaling disruptions were evidenced by fluctuations in acetylcholine, dopamine, and acetylcholinesterase levels. Transcriptomic analysis revealed the profound influence of these pollutants on gene expression and metabolic processes in the hepatopancreas and nervous system. This comprehensive assessment underlines the potential growth impacts on shrimp and underscores the ecological risks of cycloxaprid and microplastics, offering insights for future risk assessments and biomarker identification.
Collapse
Affiliation(s)
- Zhi-Yu Lin
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Zhi Luo
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China; School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhen-Fei Li
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Zhen-Qiang Fu
- School of Marine Science, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Feng-Lu Han
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Er-Chao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
3
|
Harrill JA, Everett LJ, Haggard DE, Word LJ, Bundy JL, Chambers B, Harris F, Willis C, Thomas RS, Shah I, Judson R. Signature analysis of high-throughput transcriptomics screening data for mechanistic inference and chemical grouping. Toxicol Sci 2024; 202:103-122. [PMID: 39177380 DOI: 10.1093/toxsci/kfae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
High-throughput transcriptomics (HTTr) uses gene expression profiling to characterize the biological activity of chemicals in in vitro cell-based test systems. As an extension of a previous study testing 44 chemicals, HTTr was used to screen an additional 1,751 unique chemicals from the EPA's ToxCast collection in MCF7 cells using 8 concentrations and an exposure duration of 6 h. We hypothesized that concentration-response modeling of signature scores could be used to identify putative molecular targets and cluster chemicals with similar bioactivity. Clustering and enrichment analyses were conducted based on signature catalog annotations and ToxPrint chemotypes to facilitate molecular target prediction and grouping of chemicals with similar bioactivity profiles. Enrichment analysis based on signature catalog annotation identified known mechanisms of action (MeOAs) associated with well-studied chemicals and generated putative MeOAs for other active chemicals. Chemicals with predicted MeOAs included those targeting estrogen receptor (ER), glucocorticoid receptor (GR), retinoic acid receptor (RAR), the NRF2/KEAP/ARE pathway, AP-1 activation, and others. Using reference chemicals for ER modulation, the study demonstrated that HTTr in MCF7 cells was able to stratify chemicals in terms of agonist potency, distinguish ER agonists from antagonists, and cluster chemicals with similar activities as predicted by the ToxCast ER Pathway model. Uniform manifold approximation and projection (UMAP) embedding of signature-level results identified novel ER modulators with no ToxCast ER Pathway model predictions. Finally, UMAP combined with ToxPrint chemotype enrichment was used to explore the biological activity of structurally related chemicals. The study demonstrates that HTTr can be used to inform chemical risk assessment by determining in vitro points of departure, predicting chemicals' MeOA and grouping chemicals with similar bioactivity profiles.
Collapse
Affiliation(s)
- Joshua A Harrill
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Logan J Everett
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Derik E Haggard
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Laura J Word
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Joseph L Bundy
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Bryant Chambers
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Felix Harris
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
- Oak Ridge Associated Universities (ORAU) National Student Services Contractor, Oak Ridge, TN 37831, United States
| | - Clinton Willis
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Russell S Thomas
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Imran Shah
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| | - Richard Judson
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States
| |
Collapse
|
4
|
Wang XL, Li L, Meng X. Interplay between the Redox System and Renal Tubular Transport. Antioxidants (Basel) 2024; 13:1156. [PMID: 39456410 PMCID: PMC11505102 DOI: 10.3390/antiox13101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The kidney plays a critical role in maintaining the homeostasis of body fluid by filtration of metabolic wastes and reabsorption of nutrients. Due to the overload, a vast of energy is required through aerobic metabolism, which inevitably leads to the generation of reactive oxygen species (ROS) in the kidney. Under unstressed conditions, ROS are counteracted by antioxidant systems and maintained at low levels, which are involved in signal transduction and physiological processes. Accumulating evidence indicates that the reduction-oxidation (redox) system interacts with renal tubular transport. Redox imbalance or dysfunction of tubular transport leads to renal disease. Here, we discuss the ROS and antioxidant systems in the kidney and outline the metabolic dysfunction that is a common feature of renal disease. Importantly, we describe the key molecules involved in renal tubular transport and their relationship to the redox system and, finally, summarize the impact of their dysregulation on the pathogenesis and progression of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Lianjian Li
- Department of Vascular Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei Academy of Chinese Medicine, Wuhan 430061, China;
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Kim Y, Ko JY, Kong HK, Lee M, Chung W, Lim S, Son D, Oh S, Park JW, Kim DY, Lee M, Han W, Park WY, Yoo KH, Park JH. Hypomethylation of ATP1A1 Is Associated with Poor Prognosis and Cancer Progression in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:1666. [PMID: 38730618 PMCID: PMC11083557 DOI: 10.3390/cancers16091666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Dysregulated DNA methylation in cancer is critical in the transcription machinery associated with cancer progression. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, but no treatment targeting TNBC biomarkers has yet been developed. To identify specific DNA methylation patterns in TNBC, methyl-binding domain protein 2 (MBD) sequencing data were compared in TNBC and the three other major breast cancer subtypes. Integrated analysis of DNA methylation and gene expression identified a gene set showing a correlation between DNA methylation and gene expression. ATPase Na+/K+-transporting subunit alpha 1 (ATP1A1) was found to be specifically hypomethylated in the coding sequence (CDS) region and to show increased expression in TNBC. The Cancer Genome Atlas (TCGA) database also showed that hypomethylation and high expression of ATP1A1 were strongly associated with poor survival in patients with TNBC. Furthermore, ATP1A1 knockdown significantly reduced the viability and tumor-sphere formation of TNBC cells. These results suggest that the hypomethylation and overexpression of ATP1A1 could be a prognostic marker in TNBC and that the manipulation of ATP1A1 expression could be a therapeutic target in this disease.
Collapse
Affiliation(s)
- Yesol Kim
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| | - Je Yeong Ko
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| | - Hyun Kyung Kong
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| | - Minyoung Lee
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| | - Woosung Chung
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sera Lim
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| | - Dasom Son
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| | - Sumin Oh
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| | - Jee Won Park
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| | - Do Yeon Kim
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| | - Minju Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| | - Jong Hoon Park
- Department of Biological Science, Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (Y.K.); (J.Y.K.)
| |
Collapse
|
6
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Jung H, Zarlenga D, Martin JC, Geldhof P, Hallsworth-Pepin K, Mitreva M. The identification of small molecule inhibitors with anthelmintic activities that target conserved proteins among ruminant gastrointestinal nematodes. mBio 2024; 15:e0009524. [PMID: 38358246 PMCID: PMC10936192 DOI: 10.1128/mbio.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Gastrointestinal nematode (GIN) infections are a major concern for the ruminant industry worldwide and result in significant production losses. Naturally occurring polyparasitism and increasing drug resistance that potentiate disease outcomes are observed among the most prevalent GINs of veterinary importance. Within the five major taxonomic clades, clade Va represents a group of GINs that predominantly affect the abomasum or small intestine of ruminants. However, the development of effective broad-spectrum anthelmintics against ruminant clade Va GINs has been challenged by a lack of comprehensive druggable genome resources. Here, we first assembled draft genomes for three clade Va species (Cooperia oncophora, Trichostrongylus colubriformis, and Ostertagia ostertagi) and compared them with closely related ruminant GINs. Genome-wide phylogenetic reconstruction showed a relationship among ruminant GINs structured by taxonomic classification. Orthogroup (OG) inference and functional enrichment analyses identified 220 clade Va-specific and Va-conserved OGs, enriched for functions related to cell cycle and cellular senescence. Further transcriptomic analysis identified 61 taxonomically and functionally conserved clade Va OGs that may function as drug targets for new broad-spectrum anthelmintics. Chemogenomic screening identified 11 compounds targeting homologs of these OGs, thus having potential anthelmintic activity. In in vitro phenotypic assays, three kinase inhibitors (digitoxigenin, K-252a, and staurosporine) exhibited broad-spectrum anthelmintic activities against clade Va GINs by obstructing the motility of exsheathed L3 (xL3) or molting of xL3 to L4. These results demonstrate valuable applications of the new ruminant GIN genomes in gaining better insights into their life cycles and offer a contemporary approach to discovering the next generation of anthelmintics.IMPORTANCEGastrointestinal nematode (GIN) infections in ruminants are caused by parasites that inhibit normal function in the digestive tract of cattle, sheep, and goats, thereby causing morbidity and mortality. Coinfection and increasing drug resistance to current therapeutic agents will continue to worsen disease outcomes and impose significant production losses on domestic livestock producers worldwide. In combination with ongoing therapeutic efforts, advancing the discovery of new drugs with novel modes of action is critical for better controlling GIN infections. The significance of this study is in assembling and characterizing new GIN genomes of Cooperia oncophora, Ostertagia ostertagi, and Trichostrongylus colubriformis for facilitating a multi-omics approach to identify novel, biologically conserved drug targets for five major GINs of veterinary importance. With this information, we were then able to demonstrate the potential of commercially available compounds as new anthelmintics.
Collapse
Affiliation(s)
- Hyeim Jung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dante Zarlenga
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | - John C. Martin
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peter Geldhof
- Laboratory of Parasitology, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | | | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Huang S, Dong W, Lin X, Xu K, Li K, Xiong S, Wang Z, Nie X, Bian JS. Disruption of the Na +/K +-ATPase-purinergic P2X7 receptor complex in microglia promotes stress-induced anxiety. Immunity 2024; 57:495-512.e11. [PMID: 38395698 DOI: 10.1016/j.immuni.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Na+/K+-ATPase (NKA) plays an important role in the central nervous system. However, little is known about its function in the microglia. Here, we found that NKAα1 forms a complex with the purinergic P2X7 receptor (P2X7R), an adenosine 5'-triphosphate (ATP)-gated ion channel, under physiological conditions. Chronic stress or treatment with lipopolysaccharide plus ATP decreased the membrane expression of NKAα1 in microglia, facilitated P2X7R function, and promoted microglia inflammatory activation via activation of the NLRP3 inflammasome. Accordingly, global deletion or conditional deletion of NKAα1 in microglia under chronic stress-induced aggravated anxiety-like behavior and neuronal hyperexcitability. DR5-12D, a monoclonal antibody that stabilizes membrane NKAα1, improved stress-induced anxiety-like behavior and ameliorated neuronal hyperexcitability and neurogenesis deficits in the ventral hippocampus of mice. Our results reveal that NKAα1 limits microglia inflammation and may provide a target for the treatment of stress-related neuroinflammation and diseases.
Collapse
Affiliation(s)
- Songqiang Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaoqian Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Kangtai Xu
- Department of Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Kun Li
- Department of Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Siping Xiong
- Department of Pathology, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, Guangdong, China
| | - Zilong Wang
- Department of Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xiaowei Nie
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University), Shenzhen 518020, Guangdong, China.
| | - Jin-Song Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
9
|
Tokugawa M, Inoue Y, Aoki H, Miyajima C, Ishiuchi K, Tsurumi K, Kujirai C, Morishita D, Matsuno M, Mizukami H, Ri M, Iida S, Makino T, Aoyama M, Hayashi H. Involvement of cardiac glycosides targeting Na/K-ATPase in their inhibitory effects on c-Myc expression via its transcription, translation and proteasomal degradation. J Biochem 2024; 175:253-263. [PMID: 37948630 DOI: 10.1093/jb/mvad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Cardiac glycosides (CGs) have been used for decades to treat heart failure and arrhythmic diseases. Recent non-clinical and epidemiological findings have suggested that CGs exhibit anti-tumor activities. Therefore, CGs may be repositioned as drugs for the treatment of cancer. A detailed understanding of the anti-cancer mechanisms of CGs is essential for their application to the treatment of targetable cancer types. To elucidate the factors associated with the anti-tumor effects of CGs, we performed transcriptome profiling on human multiple myeloma AMO1 cells treated with periplocin, one of the CGs. Periplocin significantly down-regulated the transcription of MYC (c-Myc), a well-established oncogene. Periplocin also suppressed c-Myc expression at the protein levels. This repression of c-Myc was also observed in several cell lines. To identify target proteins for the inhibition of c-Myc, we generated CG-resistant (C9) cells using a sustained treatment with digoxin. We confirmed that C9 cells acquired resistance to the inhibition of c-Myc expression and cell proliferation by CGs. Moreover, the sequencing of genomic DNA in C9 cells revealed the mutation of D128N in α1-Na/K-ATPase, indicating the target protein. These results suggest that CGs suppress c-Myc expression in cancer cells via α1-Na/K-ATPase, which provides further support for the anti-tumor activities of CGs.
Collapse
Affiliation(s)
- Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kan'ichiro Ishiuchi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kento Tsurumi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Chisane Kujirai
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Chordia Therapeutics Inc., 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Michiyo Matsuno
- Plant research section, The Kochi Prefectural Makino Botanical Garden, 4200-6 Godaiyama, Kochi 781-8125, Japan
| | - Hajime Mizukami
- Plant research section, The Kochi Prefectural Makino Botanical Garden, 4200-6 Godaiyama, Kochi 781-8125, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
10
|
McKenna MJ, Renaud JM, Ørtenblad N, Overgaard K. A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na +,K +-ATPase, Na + and K + ions, and on plasma K + concentration-historical developments. Eur J Appl Physiol 2024; 124:681-751. [PMID: 38206444 PMCID: PMC10879387 DOI: 10.1007/s00421-023-05335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024]
Abstract
This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.
Collapse
Affiliation(s)
- Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia.
- College of Physical Education, Southwest University, Chongqing, China.
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China.
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, ON, Canada
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Silva AR, de Souza e Souza KFC, Souza TBD, Younes-Ibrahim M, Burth P, de Castro Faria Neto HC, Gonçalves-de-Albuquerque CF. The Na/K-ATPase role as a signal transducer in lung inflammation. Front Immunol 2024; 14:1287512. [PMID: 38299144 PMCID: PMC10827986 DOI: 10.3389/fimmu.2023.1287512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Thamires Bandeira De Souza
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mauricio Younes-Ibrahim
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Krampert L, Ossner T, Schröder A, Schatz V, Jantsch J. Simultaneous Increases in Intracellular Sodium and Tonicity Boost Antimicrobial Activity of Macrophages. Cells 2023; 12:2816. [PMID: 38132136 PMCID: PMC10741518 DOI: 10.3390/cells12242816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Inflamed and infected tissues can display increased local sodium (Na+) levels, which can have various effects on immune cells. In macrophages, high salt (HS) leads to a Na+/Ca2+-exchanger 1 (NCX1)-dependent increase in intracellular Na+ levels. This results in augmented osmoprotective signaling and enhanced proinflammatory activation, such as enhanced expression of type 2 nitric oxide synthase and antimicrobial function. In this study, the role of elevated intracellular Na+ levels in macrophages was investigated. Therefore, the Na+/K+-ATPase (NKA) was pharmacologically inhibited with two cardiac glycosides (CGs), ouabain (OUA) and digoxin (DIG), to raise intracellular Na+ without increasing extracellular Na+ levels. Exposure to HS conditions and treatment with both inhibitors resulted in intracellular Na+ accumulation and subsequent phosphorylation of p38/MAPK. The CGs had different effects on intracellular Ca2+ and K+ compared to HS stimulation. Moreover, the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) was not upregulated on RNA and protein levels upon OUA and DIG treatment. Accordingly, OUA and DIG did not boost nitric oxide (NO) production and showed heterogeneous effects toward eliminating intracellular bacteria. While HS environments cause hypertonic stress and ionic perturbations, cardiac glycosides only induce the latter. Cotreatment of macrophages with OUA and non-ionic osmolyte mannitol (MAN) partially mimicked the HS-boosted antimicrobial macrophage activity. These findings suggest that intracellular Na+ accumulation and hypertonic stress are required but not sufficient to mimic boosted macrophage function induced by increased extracellular sodium availability.
Collapse
Affiliation(s)
- Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Thomas Ossner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Agnes Schröder
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
- Institute of Orthodontics, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, 93053 Regensburg, Germany; (L.K.)
- Institute for Medical Microbiology, Immunology, and Hygiene, Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne and Faculty of Medicine, University of Cologne, 50935 Cologne, Germany
| |
Collapse
|
13
|
Fidelis EM, Savall ASP, Mello JD, Quines CB, Comis-Neto AA, Sampaio TB, Denardin CC, de Ávila DS, Rosa SG, Pinton S. Purple pitanga extract (Eugenia uniflora) attenuates oxidative stress induced by MPTP. Metab Brain Dis 2023; 38:2615-2625. [PMID: 37921949 DOI: 10.1007/s11011-023-01318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2023]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely used due to its specific and reproducible neurotoxic effect on the nigrostriatal system, being considered a convenient model of dopaminergic neurodegeneration to study interventions therapeutics. The purple pitanga (Eugenia uniflora) is a polyphenol-rich fruit with antioxidant and antidepressant properties, among others. Therefore, this study investigated the effect of purple pitanga extract (PPE) on acute early oxidative stress induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats. Male Wistar rats were pre-treated orally with PPE (1000 mg/kg) or vehicle. After 24 h, MPTP (0.1 mg/10µL/nostril) or vehicle was administered bilaterally into the animal's nostrils, and 6 h later, the olfactory bulb (OB), striatum (ST), and substantia nigra (SN) were collected to evaluate the oxidative stress parameters. Our findings revealed that OB and SN were the most affected areas after 6 h of MPTP infusion; an early increase in reactive oxygen species (ROS) levels was observed, while pretreatment with a single dose of PPE prevented this increment. No differences in thiobarbituric acid reactive species (TBARS) and 3-nitrotyrosine (3-NT) formation were observed, although 4-hydroxy-2-nonenal (4-HNE) levels increased, which is the most toxic form of lipid peroxidation, in the MPTP group. The PPE pretreatment could prevent this increase by increasing the NPSH levels previously decreased by MPTP. Furthermore, PPE prevents the Na+/K + ATPase strongly inhibited by MPTP, showing the neuroprotective capacity of the PPE by inhibiting the MPTP-generated oxidation. Thus, we demonstrated for the first time the antioxidant and neuroprotective effects of PPE against the early MPTP neurotoxicity.
Collapse
Affiliation(s)
| | - Anne Suely P Savall
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Jhuly Dornelles Mello
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Caroline Brandão Quines
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
- Regional University of the Northwest of the State of Rio Grande do Sul - Campus Ijuí, Ijuí, CEP 98700-000, RS, Brazil
| | | | | | | | - Daiana Silva de Ávila
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Suzan Gonçalves Rosa
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil
| | - Simone Pinton
- Federal University of Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil.
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970, RS, Brazil.
| |
Collapse
|
14
|
Staehr C, Aalkjaer C, Matchkov V. The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clin Sci (Lond) 2023; 137:1595-1618. [PMID: 37877226 PMCID: PMC10600256 DOI: 10.1042/cs20220796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Danish Cardiovascular Academy, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| | - Vladimir V. Matchkov
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| |
Collapse
|
15
|
Gurler B, Gencay G, Baloglu E. Hypoxia and HIF-1α Regulate the Activity and Expression of Na,K-ATPase Subunits in H9c2 Cardiomyoblasts. Curr Issues Mol Biol 2023; 45:8277-8288. [PMID: 37886965 PMCID: PMC10605391 DOI: 10.3390/cimb45100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The optimal function of the Na,K-ATPase (NKA) pump is essential for the heart. In ischemic heart disease, NKA activity decreases due to the decreased expression of the pump subunits. Here, we tested whether the hypoxia-inducible transcription factor (HIF-1α), the key signaling molecule regulating the adaptation of cells to hypoxia, is involved in controlling the expression and cellular dynamics of α1- and β1-NKA isoforms and of NKA activity in in-vitro hypoxic H9c2 cardiomyoblasts. HIF-1α was silenced through adenoviral infection, and cells were kept in normoxia (19% O2) or hypoxia (1% O2) for 24 h. We investigated the mRNA and protein expression of α1-, β1-NKA using RT-qPCR and Western blot in whole-cell lysates, cell membranes, and cytoplasmic fractions after labeling the cell surface with NHS-SS-biotin and immunoprecipitation. NKA activity and intracellular ATP levels were also measured. We found that in hypoxia, silencing HIF-1α prevented the decreased mRNA expression of α1-NKA but not of β1-NKA. Hypoxia decreased the plasma membrane expression of α1-NKA and β1- NKA compared to normoxic cells. In hypoxic cells, HIF-1α silencing prevented this effect by inhibiting the internalization of α1-NKA. Total protein expression was not affected. The decreased activity of NKA in hypoxic cells was fully prevented by silencing HIF-1α independent of cellular ATP levels. This study is the first to show that in hypoxic H9c2 cardiomyoblasts, HIF-1α controls the internalization and membrane insertion of α1-NKA subunit and of NKA activity. The mechanism behind this regulation needs further investigation.
Collapse
Affiliation(s)
- Beyza Gurler
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
| | - Gizem Gencay
- Department of Molecular and Translational Biomedicine, Institute of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
| | - Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| |
Collapse
|
16
|
Sumiyoshi S, Shiozaki A, Kosuga T, Simizu H, Kudo M, Kiuchi J, Arita T, Konishi H, Komatsu S, Kuriu Y, Kubota T, Fujiwara H, Morinaga Y, Konishi E, Otsuji E. Functional Analysis and Clinical Importance of ATP1A1 in Colon Cancer. Ann Surg Oncol 2023; 30:6898-6910. [PMID: 37407874 DOI: 10.1245/s10434-023-13779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Na+/K+-ATPase α1 subunit (ATP1A1) exhibits aberrant expression in various types of cancer. Moreover, its levels in specific tissues are associated with the development of cancer. Nevertheless, the mechanism and signaling pathways underlying the effects of ATP1A1 in colon cancer (CC) have not been elucidated, and its prognostic impact remains unknown. METHODS Knockdown of ATP1A1 expression was performed in human CC cell lines HT29 and Caco2 using small interfering RNA. The roles of ATP1A1 in various biological processes of cells (i.e., proliferation, cell cycle, apoptosis, migration, and invasion) were assessed. Microarray analysis was utilized for gene expression profiling. Samples obtained from 200 patients with CC who underwent curative colectomy were analyzed through immunohistochemistry. RESULTS ATP1A1 knockdown suppressed cell proliferation, migration, and invasion and induced apoptosis. The results of the microarray analysis revealed that the upregulated or downregulated gene expression in ATP1A1-depleted cells was related to the extracellular signal-regulated kinase 5 (ERK5) signaling pathway [epidermal growth factor receptor (EGFR), mitogen-activated protein kinase kinase 5 (MAP2K5), mitogen-activated protein kinase 7 (MAPK7), FOS, MYC, and BCL2 associated agonist of cell death (BAD)]. Immunohistochemical analysis demonstrated a correlation between ATP1A1 expression and pathological T stage (p = 0.0054), and multivariate analysis identified high ATP1A1 expression as an independent predictor of poor recurrence-free survival in patients with CC (p = 0.0040, hazard ratio: 2.807, 95% confidence interval 1.376-6.196). CONCLUSIONS ATP1A1 regulates tumor progression through the ERK5 signaling pathway. High ATP1A1 expression is associated with poor long-term outcomes in patients with CC.
Collapse
Affiliation(s)
- Shutaro Sumiyoshi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Simizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihiro Kudo
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Kuriu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Morinaga
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Luo D, Ratnayake R, Atanasova KR, Paul VJ, Luesch H. Targeted and functional genomics approaches to the mechanism of action of lagunamide D, a mitochondrial cytotoxin from marine cyanobacteria. Biochem Pharmacol 2023; 213:115608. [PMID: 37201874 PMCID: PMC10353561 DOI: 10.1016/j.bcp.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Lagunamide D, a cyanobacterial cyclodepsipeptide, exhibits potent antiproliferative activity against HCT116 colorectal cancer cells (IC50 5.1 nM), which were used to probe the mechanism of action. Measurements of metabolic activity, mitochondrial membrane potential, caspase 3/7 activity and cell viability indicate the rapid action of lagunamide D on mitochondrial function and downstream cytotoxic effects in HCT116 cells. Lagunamide D preferentially targets the G1 cell cycle population and arrests cells in G2/M phase at high concentration (32 nM). Transcriptomics and subsequent Ingenuity Pathway Analysis identified networks related to mitochondrial functions. Lagunamide D induced mitochondrial network redistribution at 10 nM, suggesting a mechanism shared with the structurally related aurilide family, previously reported to target mitochondrial prohibitin 1 (PHB1). Knockdown and chemical inhibition of ATP1A1 sensitized the cells to lagunamide D, as also known for aurilide B. We interrogated potential mechanisms behind this synergistic effect between lagunamide D and ATP1A1 knockdown by using pharmacological inhibitors and extended the functional analysis to a global level by performing a chemogenomic screen with a siRNA library targeting the human druggable genome, revealing targets that modulate susceptibility to lagunamide D. In addition to mitochondrial targets, the screen revealed hits involved in the ubiquitin/proteasome pathway, suggesting lagunamide D might exert its effects by additionally affecting proteostasis. Our analysis illuminated cellular processes of lagunamide D that can be modulated in parallel to mitochondrial functions. The identification of potential synergistic drug combinations that can alleviate undesirable toxicity may open possibilities to resurrect this class of compounds for anticancer therapy.
Collapse
Affiliation(s)
- Danmeng Luo
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Kalina R Atanasova
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Fort Pierce, FL 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
18
|
Rajanathan R, Riera CVI, Pedersen TM, Staehr C, Bouzinova EV, Nyengaard JR, Thomsen MB, Bøtker HE, Matchkov VV. Hypercontractile Cardiac Phenotype in Mice with Migraine-Associated Mutation in the Na +,K +-ATPase α 2-Isoform. Cells 2023; 12:cells12081108. [PMID: 37190017 DOI: 10.3390/cells12081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Two α-isoforms of the Na+,K+-ATPase (α1 and α2) are expressed in the cardiovascular system, and it is unclear which isoform is the preferential regulator of contractility. Mice heterozygous for the familial hemiplegic migraine type 2 (FHM2) associated mutation in the α2-isoform (G301R; α2+/G301R mice) have decreased expression of cardiac α2-isoform but elevated expression of the α1-isoform. We aimed to investigate the contribution of the α2-isoform function to the cardiac phenotype of α2+/G301R hearts. We hypothesized that α2+/G301R hearts exhibit greater contractility due to reduced expression of cardiac α2-isoform. Variables for contractility and relaxation of isolated hearts were assessed in the Langendorff system without and in the presence of ouabain (1 µM). Atrial pacing was performed to investigate rate-dependent changes. The α2+/G301R hearts displayed greater contractility than WT hearts during sinus rhythm, which was rate-dependent. The inotropic effect of ouabain was more augmented in α2+/G301R hearts than in WT hearts during sinus rhythm and atrial pacing. In conclusion, cardiac contractility was greater in α2+/G301R hearts than in WT hearts under resting conditions. The inotropic effect of ouabain was rate-independent and enhanced in α2+/G301R hearts, which was associated with increased systolic work.
Collapse
Affiliation(s)
| | - Clàudia Vilaseca I Riera
- Department of Basic Science, School of Medicine and Health Sciences, International University of Catalonia, 08195 Barcelona, Spain
| | | | - Christian Staehr
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Jens Randel Nyengaard
- Department of Clinical Medicine, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, 8000 Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Morten B Thomsen
- Biomedical Sciences, University of Copenhagen, 1168 Copenhagen, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | |
Collapse
|
19
|
Dashti F, Jamshed F, Ouyang X, Mehal WZ, Banini BA. Digoxin as an emerging therapy in noncardiac diseases. Trends Pharmacol Sci 2023; 44:199-203. [PMID: 36396496 DOI: 10.1016/j.tips.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
The cardiac glycoside (CG) digoxin is a generic drug approved for the treatment of heart failure and supraventricular arrhythmias. Over the past few decades, substantial strides have been made toward repurposing digoxin to treat various noncardiac diseases. Here, we evaluate recent insights into basic and clinical work related to noncardiac use of digoxin.
Collapse
Affiliation(s)
- Farzaneh Dashti
- Section of Digestive Diseases, Yale School of Medicine, PO Box 208019, New Haven, CT 06520, USA
| | - Fatima Jamshed
- Section of Digestive Diseases, Yale School of Medicine, PO Box 208019, New Haven, CT 06520, USA; Griffin Hospital-Yale University, 130 Division Street, Derby, CT 06418, USA
| | - Xinshou Ouyang
- Section of Digestive Diseases, Yale School of Medicine, PO Box 208019, New Haven, CT 06520, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Yale School of Medicine, PO Box 208019, New Haven, CT 06520, USA; West Haven Veterans Medical Center, West Haven, CT 06516, USA
| | - Bubu A Banini
- Section of Digestive Diseases, Yale School of Medicine, PO Box 208019, New Haven, CT 06520, USA.
| |
Collapse
|
20
|
Takada Y, Kaneko K, Kawakami Y. Interaction of Odoroside A, A Known Natural Cardiac Glycoside, with Na +/K +-ATPase. J Membr Biol 2023; 256:229-241. [PMID: 36840763 DOI: 10.1007/s00232-023-00281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
The nature of odoroside A, a cardiac glycoside (CG) extracted from Nerium oleander, as well as its chemical structure is quite similar to a well-known CG, ouabain possessing a steroid skeleton, a five-membered unsaturated lactone ring, and a sugar moiety as a common structure. Like ouabain, odoroside A inhibits the activity of Na+/K+-ATPase (NKA) and shows significant anticancer activity, however its inhibitory mechanism remains unknown. CGs show various physiological activities, including cardiotonic and anticancer activities, through the inhibition of NKA by direct interaction. Additionally, X-ray crystallographic analysis revealed the inhibitory mechanism of ouabain and digoxin in relation to NKA. By using different molecular modeling techniques, docking simulation of odoroside A and NKA was conducted based on the results of these X-ray crystallographic analyses. Furthermore, a comparison of the results with the binding characteristics of three known CGs (ouabain, digoxin, and digitoxin) was also conducted. Odoroside A fitted into the CG binding pocket on the α-subunit of NKA revealed by X-ray crystallography. It had key interactions with Thr797 and Phe783. Also, three known CGs showed similar interactions with Thr797 and Phe783. Interaction modes of odoroside A were quite similar to those of ouabain, digoxin, and digitoxin. Docking simulations indicated that the sugar moiety enhanced the interaction between NKA and CGs, but did not show enhanced NKA inhibitory activity because the sugar moiety was placed outside the entrance of active site. Thus, these results suggest that the inhibitory mechanism of odoroside A to NKA is the same as the known CGs.
Collapse
Affiliation(s)
- Yohei Takada
- Corporate Planning Department, Otsuka Holdings Co., Ltd, Shinagawa Grand Central Tower 2-16-4 Konan, Minato-Ku, Tokyo, 108-8241, Japan.
| | - Kazuhiro Kaneko
- Headquarters of Clinical Development, Otsuka Pharmaceutical Co., Ltd, Shinagawa Grand Central Tower 2-16-4 Konan, Minato-Ku, Tokyo, 108-8241, Japan
| | | |
Collapse
|
21
|
Kang EJ, Prager O, Lublinsky S, Oliveira-Ferreira AI, Reiffurth C, Major S, Müller DN, Friedman A, Dreier JP. Stroke-prone salt-sensitive spontaneously hypertensive rats show higher susceptibility to spreading depolarization (SD) and altered hemodynamic responses to SD. J Cereb Blood Flow Metab 2023; 43:210-230. [PMID: 36329390 PMCID: PMC9903222 DOI: 10.1177/0271678x221135085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spreading depolarization (SD) occurs in a plethora of clinical conditions including migraine aura, delayed ischemia after subarachnoid hemorrhage and malignant hemispheric stroke. It describes waves of near-breakdown of ion homeostasis, particularly Na+ homeostasis in brain gray matter. SD induces tone alterations in resistance vessels, causing either hyperperfusion in healthy tissue; or hypoperfusion (inverse hemodynamic response = spreading ischemia) in tissue at risk. Observations from mice with genetic dysfunction of the ATP1A2-encoded α2-isoform of Na+/K+-ATPase (α2NaKA) suggest a mechanistic link between (1) SD, (2) vascular dysfunction, and (3) salt-sensitive hypertension via α2NaKA. Thus, α2NaKA-dysfunctional mice are more susceptible to SD and show a shift toward more inverse hemodynamic responses. α2NaKA-dysfunctional patients suffer from familial hemiplegic migraine type 2, a Mendelian model disease of SD. α2NaKA-dysfunctional mice are also a genetic model of salt-sensitive hypertension. To determine whether SD thresholds and hemodynamic responses are also altered in other genetic models of salt-sensitive hypertension, we examined these variables in stroke-prone spontaneously hypertensive rats (SHRsp). Compared with Wistar Kyoto control rats, we found in SHRsp that electrical SD threshold was significantly reduced, propagation speed was increased, and inverse hemodynamic responses were prolonged. These results may have relevance to both migraine with aura and stroke.
Collapse
Affiliation(s)
- Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ofer Prager
- Department of Physiology & Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Svetlana Lublinsky
- Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alon Friedman
- Department of Physiology & Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
22
|
Mesenchymal Stem/Stromal Cells in Three-Dimensional Cell Culture: Ion Homeostasis and Ouabain-Induced Apoptosis. Biomedicines 2023; 11:biomedicines11020301. [PMID: 36830836 PMCID: PMC9953635 DOI: 10.3390/biomedicines11020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
This study describes the changes in ion homeostasis of human endometrial mesenchymal stem/stromal cells (eMSCs) during the formation of three-dimensional (3D) cell structures (spheroids) and investigates the conditions for apoptosis induction in 3D eMSCs. Detached from the monolayer culture, (2D) eMSCs accumulate Na+ and have dissipated transmembrane ion gradients, while in compact spheroids, eMSCs restore the lower Na+ content and the high K/Na ratio characteristic of functionally active cells. Organized as spheroids, eMSCs are non-proliferating cells with an active Na/K pump and a lower K+ content per g cell protein, which is typical for quiescent cells and a mean lower water content (lower hydration) in 3D eMSCs. Further, eMSCs in spheroids were used to evaluate the role of K+ depletion and cellular signaling context in the induction of apoptosis. In both 2D and 3D eMSCs, treatment with ouabain (1 µM) results in inhibition of pump-mediated K+ uptake and severe K+ depletion as well as disruption of the mitochondrial membrane potential. In 3D eMSCs (but not in 2D eMSCs), ouabain initiates apoptosis via the mitochondrial pathway. It is concluded that, when blocking the Na/K pump, cardiac glycosides prime mitochondria to apoptosis, and whether a cell enters the apoptotic pathway depends on the cell-specific signaling context, which includes the type of apoptotic protein expressed.
Collapse
|
23
|
Lopatina EV, Gavrichenko AV, Pasatetskaya NA. Involvement of Acetylcholine and Na+,K+-ATPase in the Regulation of Skeletal Muscle Growth in a Chicken Embryo. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
24
|
Blaustein MP, Gottlieb SS, Hamlyn JM, Leenen FHH. Whither digitalis? What we can still learn from cardiotonic steroids about heart failure and hypertension. Am J Physiol Heart Circ Physiol 2022; 323:H1281-H1295. [PMID: 36367691 DOI: 10.1152/ajpheart.00362.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cloning of the "Na+ pump" (Na+,K+-ATPase or NKA) and identification of a circulating ligand, endogenous ouabain (EO), a cardiotonic steroid (CTS), triggered seminal discoveries regarding EO and its NKA receptor in cardiovascular function and the pathophysiology of heart failure (HF) and hypertension. Cardiotonic digitalis preparations were a preferred treatment for HF for two centuries, but digoxin was only marginally effective in a large clinical trial (1997). This led to diminished digoxin use. Missing from the trial, however, was any consideration that endogenous CTS might influence digitalis' efficacy. Digoxin, at therapeutic concentrations, acutely inhibits NKA but, remarkably, antagonizes ouabain's action. Prolonged treatment with ouabain, but not digoxin, causes hypertension in rodents; in this model, digoxin lowers blood pressure (BP). Furthermore, NKA-bound ouabain and digoxin modulate different protein kinase signaling pathways and have disparate long-term cardiovascular effects. Reports of "brain ouabain" led to the elucidation of a new, slow neuromodulatory pathway in the brain; locally generated EO and the α2 NKA isoform help regulate sympathetic drive to the heart and vasculature. The roles of EO and α2 NKA have been studied by EO assay, ouabain-resistant mutation of α2 NKA, and immunoneutralization of EO with ouabain-binding Fab fragments. The NKA α2 CTS binding site and its endogenous ligand are required for BP elevation in many common hypertension models and full expression of cardiac remodeling and dysfunction following pressure overload or myocardial infarction. Understanding how endogenous CTS impact hypertension and HF pathophysiology and therapy should foster reconsideration of digoxin's therapeutic utility.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen S Gottlieb
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
26
|
Zhuang D, Riera M, Zhou R, Deary A, Paesani F. Hydration Structure of Na + and K + Ions in Solution Predicted by Data-Driven Many-Body Potentials. J Phys Chem B 2022; 126:9349-9360. [PMID: 36326071 DOI: 10.1021/acs.jpcb.2c05674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hydration structure of Na+ and K+ ions in solution is systematically investigated using a hierarchy of molecular models that progressively include more accurate representations of many-body interactions. We found that a conventional empirical pairwise additive force field that is commonly used in biomolecular simulations is unable to reproduce the extended X-ray absorption fine structure (EXAFS) spectra for both ions. In contrast, progressive inclusion of many-body effects rigorously derived from the many-body expansion of the energy allows the MB-nrg potential energy functions (PEFs) to achieve nearly quantitative agreement with the experimental EXAFS spectra, thus enabling the development of a molecular-level picture of the hydration structure of both Na+ and K+ in solution. Since the MB-nrg PEFs have already been shown to accurately describe isomeric equilibria and vibrational spectra of small ion-water clusters in the gas phase, the present study demonstrates that the MB-nrg PEFs effectively represent the long-sought-after models able to correctly predict the properties of ionic aqueous systems from the gas to the liquid phase, which has so far remained elusive.
Collapse
Affiliation(s)
- Debbie Zhuang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Ruihan Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Alexander Deary
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
27
|
Kinoshita PF, Orellana AM, Andreotti DZ, de Souza GA, de Mello NP, de Sá Lima L, Kawamoto EM, Scavone C. Consequences of the Lack of TNFR1 in Ouabain Response in the Hippocampus of C57BL/6J Mice. Biomedicines 2022; 10:biomedicines10112937. [PMID: 36428505 PMCID: PMC9688030 DOI: 10.3390/biomedicines10112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1β in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Giovanna Araujo de Souza
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Natalia Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence:
| |
Collapse
|
28
|
Na,K-ATPase Acts as a Beta-Amyloid Receptor Triggering Src Kinase Activation. Cells 2022; 11:cells11172753. [PMID: 36078160 PMCID: PMC9455167 DOI: 10.3390/cells11172753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Beta-amyloid (Aβ) has a dual role, both as an important factor in the pathology of Alzheimer's disease and as a regulator in brain physiology. The inhibitory effect of Aβ42 oligomers on Na,K-ATPase contributes to neuronal dysfunction in Alzheimer's disease. Still, the physiological role of the monomeric form of Aβ42 interaction with Na,K-ATPase remains unclear. We report that Na,K-ATPase serves as a receptor for Aβ42 monomer, triggering Src kinase activation. The co-localization of Aβ42 with α1- and β1-subunits of Na,K-ATPase, and Na,K-ATPase with Src kinase in SH-SY5Y neuroblastoma cells, was observed. Treatment of cells with 100 nM Aβ42 causes Src kinase activation, but does not alter Na,K-ATPase transport activity. The interaction of Aβ42 with α1β1 Na,K-ATPase isozyme leads to activation of Src kinase associated with the enzyme. Notably, prevention of Na,K-ATPase:Src kinase interaction by a specific inhibitor pNaKtide disrupts the Aβ-induced Src kinase activation. Stimulatory effect of Aβ42 on Src kinase was lost under hypoxic conditions, which was similar to the effect of specific Na,K-ATPase ligands, the cardiotonic steroids. Our findings identify Na,K-ATPase as a Aβ42 receptor, thus opening a prospect on exploring the physiological and pathological Src kinase activation caused by Aβ42 in the nervous system.
Collapse
|
29
|
Leite JA, Pôças E, Maia GS, Barbosa L, Quintas LEM, Kawamoto EM, da Silva MLC, Scavone C, de Carvalho LED. Effect of ouabain on calcium signaling in rodent brain: A systematic review of in vitro studies. Front Pharmacol 2022; 13:916312. [PMID: 36105192 PMCID: PMC9465813 DOI: 10.3389/fphar.2022.916312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
The Na+/K+-ATPase is an integral membrane ion pump, essential to maintaining osmotic balance in cells in the presence of cardiotonic steroids; more specifically, ouabain can be an endogenous modulator of the Na+/K+-ATPase. Here, we conducted a systematic review of the in vitro effects of cardiotonic steroids on Ca2+ in the brain of rats and mice. Methods: The review was carried out using the PubMed, Virtual Health Library, and EMBASE databases (between 12 June 2020 and 30 June 2020) and followed the guidelines described in the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). Results: in total, 829 references were identified in the electronic databases; however, only 20 articles were considered, on the basis of the inclusion criteria. The studies demonstrated the effects of ouabain on Ca2+ signaling in synaptosomes, brain slices, and cultures of rat and mouse cells. In addition to the well-known cytotoxic effects of high doses of ouabain, resulting from indirect stimulation of the reverse mode of the Na+/Ca2+ exchanger and increased intracellular Ca2+, other effects have been reported. Ouabain-mediated Ca2+ signaling was able to act increasing cholinergic, noradrenergic and glutamatergic neurotransmission. Furthermore, ouabain significantly increased intracellular signaling molecules such as InsPs, IP3 and cAMP. Moreover treatment with low doses of ouabain stimulated myelin basic protein synthesis. Ouabain-induced intracellular Ca2+ increase may promote the activation of important cell signaling pathways involved in cellular homeostasis and function. Thus, the study of the application of ouabain in low doses being promising for application in neurological diseases. Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020204498, identifier CRD42020204498.
Collapse
Affiliation(s)
- Jacqueline Alves Leite
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elisa Pôças
- Campus Realengo, Instituto Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Silva Maia
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, São Paulo, Brazil
| | - Leandro Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, São Paulo, Brazil
| | - Luis Eduardo M. Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa Mitiko Kawamoto
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Cristoforo Scavone
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana E. Drumond de Carvalho
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, São Paulo, Brazil
- *Correspondence: Luciana E. Drumond de Carvalho,
| |
Collapse
|
30
|
Pro-Apoptotic and Pro-Autophagic Properties of Cardenolides from Aerial Parts of Pergularia tomentosa. Molecules 2022; 27:molecules27154874. [PMID: 35956822 PMCID: PMC9369610 DOI: 10.3390/molecules27154874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Pergularia tomentosa L., a milkweed tropical plant belonging to the family Asclepiadaceae, is a rich source of unusual cardiac glycosides, characterised by transfused A/B rings and a sugar moiety linked by a double link, generating a dioxanoid structure. In the present report, five cardenolides isolated from the aerial parts of the plant (calactin, calotropin, 12β-hydroxycalactin, 12β,6'-dihydroxycalotropin, and 16α-hydroxycalotropin) were investigated for their biological effects on a human hepatocarcinoma cell line. Cell viability was monitored by an MTT assay. The occurrence of apoptosis was evaluated by detecting caspase-3 activation and chromatin fragmentation. The ability of these compounds to induce autophagy was analysed by monitoring two markers of the autophagic process, LC3 and p62. Our results indicated that all cardenolides had cytotoxic effects, with IC50 ranging from 0.127 to 6.285 μM. All compounds were able to induce apoptosis and autophagy, calactin being the most active one. Some of them also caused a reduction in cell migration and a partial block of the cell cycle into the S-phase. The present study suggests that selected cardenolides from aerial parts of P. tomentosa, particularly calactin, possess potentially desirable properties for further investigation as anticancer agents.
Collapse
|
31
|
Sahoo DK, Borcherding DC, Chandra L, Jergens AE, Atherly T, Bourgois-Mochel A, Ellinwood NM, Snella E, Severin AJ, Martin M, Allenspach K, Mochel JP. Differential Transcriptomic Profiles Following Stimulation with Lipopolysaccharide in Intestinal Organoids from Dogs with Inflammatory Bowel Disease and Intestinal Mast Cell Tumor. Cancers (Basel) 2022; 14:3525. [PMID: 35884586 PMCID: PMC9322748 DOI: 10.3390/cancers14143525] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well-characterized, little is known about LPS and the intestinal epithelium interactions. In this study, we explored the differential effects of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases including inflammatory bowel disease (IBD) and intestinal mast cell tumor. The study objective was to analyze the LPS-induced modulation of signaling pathways involving the intestinal epithelia and contributing to colorectal cancer development in the context of an inflammatory (IBD) or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, downregulation of several cancer-associated genes such as Gpatch4, SLC7A1, ATP13A2, and TEX45 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), nucleocytoplasmic transport (EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed the opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the crosstalk between LPS/TLR4 signal transduction pathway and several metabolic pathways such as primary bile acid biosynthesis and secretion, peroxisome, renin-angiotensin system, glutathione metabolism, and arachidonic acid pathways may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Dana C. Borcherding
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Lawrance Chandra
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - N. Matthew Ellinwood
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Elizabeth Snella
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Andrew J. Severin
- Office of Biotechnology’s Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA;
| | | | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Jonathan P. Mochel
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
32
|
Tiwari S, Rajamanickam G, Unnikrishnan V, Ojaghi M, Kastelic JP, Thundathil JC. Testis-Specific Isoform of Na +-K + ATPase and Regulation of Bull Fertility. Int J Mol Sci 2022; 23:7936. [PMID: 35887284 PMCID: PMC9317330 DOI: 10.3390/ijms23147936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
An advanced understanding of sperm function is relevant for evidence-based male fertility prediction and addressing male infertility. A standard breeding soundness evaluation (BSE) merely identifies gross abnormalities in bulls, whereas selection based on single nucleotide polymorphisms and genomic estimated breeding values overlooks sub-microscopic differences in sperm. Molecular tools are important for validating genomic selection and advancing knowledge on the regulation of male fertility at an interdisciplinary level. Therefore, research in this field is now focused on developing a combination of in vitro sperm function tests and identifying biomarkers such as sperm proteins with critical roles in fertility. The Na+-K+ ATPase is a ubiquitous transmembrane protein and its α4 isoform (ATP1A4) is exclusively expressed in germ cells and sperm. Furthermore, ATP1A4 is essential for male fertility, as it interacts with signaling molecules in both raft and non-raft fractions of the sperm plasma membrane to regulate capacitation-associated signaling, hyperactivation, sperm-oocyte interactions, and activation. Interestingly, ATP1A4 activity and expression increase during capacitation, challenging the widely accepted dogma of sperm translational quiescence. This review discusses the literature on the role of ATP1A4 during capacitation and fertilization events and its prospective use in improving male fertility prediction.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob C. Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.T.); (G.R.); (V.U.); (M.O.); (J.P.K.)
| |
Collapse
|
33
|
Adzhubei AA, Tolstova AP, Strelkova MA, Mitkevich VA, Petrushanko IY, Makarov AA. Interaction Interface of Aβ 42 with Human Na,K-ATPase Studied by MD and ITC and Inhibitor Screening by MD. Biomedicines 2022; 10:biomedicines10071663. [PMID: 35884966 PMCID: PMC9313104 DOI: 10.3390/biomedicines10071663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by progressive cognitive and memory dysfunction due to disruption of normal electrotonic properties of neurons and neuronal loss. The Na,K-ATPase interaction with beta amyloid (Aβ) plays an important role in AD pathogenesis. It has been shown that Na,K-ATPase activity in the AD brain was significantly lower than those in age-matched control brain. The interaction of Aβ42 with Na,K-ATPase and subsequent oligomerization leads to inhibition of the enzyme activity. In this study interaction interfaces between three common Aβ42 isoforms, and different conformations of human Na,K-ATPase (α1β1) have been obtained using molecular modeling, including docking and molecular dynamics (MD). Interaction sites of Na,K-ATPase with Aβ42 are localized between extracellular parts of α- and β- subunits and are practically identical for Na,K-ATPase at different conformations. Thermodynamic parameters for the formation of Na,K-ATPase:Aβ42 complex at different conformations acquired by isothermal titration calorimetry (ITC) are similar, which is in line with the data of molecular modeling. Similarity of Na,K-ATPase interaction interfaces with Aβ in all conformations allowed us to cross-screen potential inhibitors for this interaction and find pharmaceutical compounds that could block it.
Collapse
Affiliation(s)
| | - Anna P. Tolstova
- Correspondence: (A.P.T.); (A.A.M.); Tel.: +7-499-135-4095 (A.A.M.)
| | | | | | | | | |
Collapse
|
34
|
Schmitz F, Ferreira FS, Silveira JS, V. R. Júnior O, T. S. Wyse A. Effects of methylphenidate after a long period of discontinuation include changes in exploratory behavior and increases brain activities of Na+,K+-ATPase and acetylcholinesterase. Neurobiol Learn Mem 2022; 192:107637. [DOI: 10.1016/j.nlm.2022.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022]
|
35
|
Heger T, Zatloukal M, Kubala M, Strnad M, Gruz J. Procyanidin C1 from Viola odorata L. inhibits Na +,K +-ATPase. Sci Rep 2022; 12:7011. [PMID: 35487935 PMCID: PMC9055044 DOI: 10.1038/s41598-022-11086-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/13/2022] [Indexed: 01/30/2023] Open
Abstract
Members of the Viola genus play important roles in traditional Asian herbal medicine. This study investigates the ability of Viola odorata L. extracts to inhibit Na+,K+-ATPase, an essential animal enzyme responsible for membrane potential maintenance. The root extract of V. odorata strongly inhibited Na+,K+-ATPase, while leaf and seeds extracts were basically inactive. A UHPLC-QTOF-MS/MS metabolomic approach was used to identify the chemical principle of the root extract’s activity, resulting in the detection of 35,292 features. Candidate active compounds were selected by correlating feature area with inhibitory activity in 14 isolated fractions. This yielded a set of 15 candidate compounds, of which 14 were preliminarily identified as procyanidins. Commercially available procyanidins (B1, B2, B3 and C1) were therefore purchased and their ability to inhibit Na+,K+-ATPase was investigated. Dimeric procyanidins B1, B2 and B3 were found to be inactive, but the trimeric procyanidin C1 strongly inhibited Na+,K+-ATPase with an IC50 of 4.5 µM. This newly discovered inhibitor was docked into crystal structures mimicking the Na3E1∼P·ADP and K2E2·Pi states to identify potential interaction sites within Na+,K+-ATPase. Possible binding mechanisms and the principle responsible for the observed root extract activity are discussed.
Collapse
Affiliation(s)
- Tomas Heger
- Department of Experimental Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Martin Kubala
- Department of Experimental Physics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University, Olomouc, Czech Republic
| | - Jiri Gruz
- Department of Experimental Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
36
|
Banerjee S, Kundu A, Dhak P. Bioremediation of uranium from waste effluents using novel biosorbents: a review. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08304-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
El-Mallakh RS, Gao Y, Roberts M, Hamlyn J. Sleep deprivation is associated with increased circulating levels of endogenous ouabain: Potential role in bipolar disorder. Psychiatry Res 2022; 309:114399. [PMID: 35078006 DOI: 10.1016/j.psychres.2022.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
Abstract
Endogenously produced cardiac glycosides, like endogenous ouabain (EO), are putative hormones that have been implicated in the pathophysiology of bipolar disorder. Individuals with bipolar disorder appear to be unable to sufficiently upregulate production of EO in situations of increased need. This study was performed to determine the effect of sleep deprivation on the circulating levels of EO. Plasma EO concentrations were measured by ouabain-radioimmunoassay in heterozygote Na,K-ATPase a2 knockout (KO) mice, which have been used as an animal model of mania, and wildtype siblings at baseline and after sleep fragmentation utilizing the moving bar method. a2 KO animals had elevated endogenous ouabain concentrations compared to wild type controls (0.82 ± SD 0.22 nM vs 0.26 ± 0.02, P = 0.03). Sleep fragmentation increased ouabain concentrations in wild type mice (0.53 ± 0.08 nM sleep fragmentation vs 0.26 ± 0.02 nM baseline, P = 0.04), but not in a2 KO mice (0.60 ± 0.07 nM sleep fragmentation vs 0.82 ± 0.22 nM baseline, P > 0.05). These studies demonstrate that sleep disturbance can increase EO in control mice but animals that exhibit some manic behaviors are unable to increase EO production.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY 40202, USA.
| | - Yonglin Gao
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY 40202, USA
| | - Michael Roberts
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY 40202, USA
| | - John Hamlyn
- Department of Physiology, School of Medicine, University of Maryland Baltimore, 685 West Baltimore Street, Baltimore, MS 21201, USA
| |
Collapse
|
38
|
Mázala-de-Oliveira T, de Figueiredo CS, de Rezende Corrêa G, da Silva MS, Miranda RL, de Azevedo MA, Cossenza M, Dos Santos AA, Giestal-de-Araujo E. Ouabain-Na +/K +-ATPase Signaling Regulates Retinal Neuroinflammation and ROS Production Preventing Neuronal Death by an Autophagy-Dependent Mechanism Following Optic Nerve Axotomy In Vitro. Neurochem Res 2022; 47:723-738. [PMID: 34783975 DOI: 10.1007/s11064-021-03481-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022]
Abstract
Ouabain is a classic Na+K+ATPase ligand and it has been described to have neuroprotective effects on neurons and glial cells at nanomolar concentrations. In the present work, the neuroprotective and immunomodulatory potential of ouabain was evaluated in neonatal rat retinal cells using an optic nerve axotomy model in vitro. After axotomy, cultured retinal cells were treated with ouabain (3 nM) at different periods. The levels of important inflammatory receptors in the retina such as TNFR1/2, TLR4, and CD14 were analyzed. We observed that TNFR1, TLR4, and CD14 were decreased in all tested periods (15 min, 45 min, 24 h, and 48 h). On the other hand, TNFR2 was increased after 24 h, suggesting an anti-inflammatory potential for ouabain. Moreover, we showed that ouabain also decreased Iba-1 (microglial marker) density. Subsequently, analyses of retrograde labeling of retinal ganglion cells (RGC) were performed after 48 h and showed that ouabain-induced RGC survival depends on autophagy. Using an autophagy inhibitor (3-methyladenine), we observed a complete blockage of the ouabain effect. Western blot analyses showed that ouabain increases the levels of autophagy proteins (LC3 and Beclin-1) coupled to p-CREB transcription factor and leads to autophagosome formation. Additionally, we found that the ratio of cleaved/pro-caspase-3 did not change after ouabain treatment; however, p-JNK density was enhanced. Also, ouabain decreased reactive oxygen species production immediately after axotomy. Taken together, our results suggest that ouabain controls neuroinflammation in the retina following optic nerve axotomy and promotes RGC neuroprotection through activation of the autophagy pathway.
Collapse
Affiliation(s)
- Thalita Mázala-de-Oliveira
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Camila Saggioro de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Gustavo de Rezende Corrêa
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Mayra Santos da Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
- Souza Marques School of Medicine, Souza Marques Technical-Educational Foundation, Rio de Janeiro, 21310-310, Brazil
| | - Renan Lyra Miranda
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Mariana Almeida de Azevedo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Aline Araujo Dos Santos
- Department of Physiology and Pharmacology and Program of Neurosciences, Laboratory of Neurochemical I`nteractions & Laboratory of Molecular Pharmacology, Biomedical Institute, Federal Fluminense University, Niterói, 24020-141, Brazil
| | - Elizabeth Giestal-de-Araujo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, 24020-141, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
39
|
Shandell MA, Capatina AL, Lawrence SM, Brackenbury WJ, Lagos D. Inhibition of the Na +/K +-ATPase by cardiac glycosides suppresses expression of the IDO1 immune checkpoint in cancer cells by reducing STAT1 activation. J Biol Chem 2022; 298:101707. [PMID: 35150740 PMCID: PMC8902613 DOI: 10.1016/j.jbc.2022.101707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
Despite extensive basic and clinical research on immune checkpoint regulatory pathways, little is known about the effects of the ionic tumor microenvironment on immune checkpoint expression and function. Here we describe a mechanistic link between Na+/K+-ATPase (NKA) inhibition and activity of the immune checkpoint protein indoleamine-pyrrole 2',3'-dioxygenase 1 (IDO1). We found that IDO1 was necessary and sufficient for production of kynurenine, a downstream tryptophan metabolite, in cancer cells. We developed a spectrophotometric assay to screen a library of 31 model ion transport-targeting compounds for potential effects on IDO1 function in A549 lung and MDA-MB-231 breast cancer cells. This revealed that the cardiac glycosides ouabain and digoxin inhibited kynurenine production at concentrations that did not affect cell survival. NKA inhibition by ouabain and digoxin resulted in increased intracellular Na+ levels and downregulation of IDO1 mRNA and protein levels, which was consistent with the reduction in kynurenine levels. Knockdown of ATP1A1, the ɑ1 subunit of the NKA and target of cardiac glycosides, increased Na+ levels to a lesser extent than cardiac glycoside treatment and did not affect IDO1 expression. However, ATP1A1 knockdown significantly enhanced the effect of cardiac glycosides on IDO1 expression and kynurenine production. Mechanistically, we show that cardiac glycoside treatment resulted in curtailing the length of phosphorylation-mediated stabilization of STAT1, a transcriptional regulator of IDO1 expression, an effect enhanced by ATP1A1 knockdown. Our findings reveal cross talk between ionic modulation via cardiac glycosides and immune checkpoint protein expression in cancer cells with broad mechanistic and clinical implications.
Collapse
Affiliation(s)
- Mia A Shandell
- Department of Biology, University of York, York, United Kingdom; Hull York Medical School, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alina L Capatina
- Department of Biology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Dimitris Lagos
- Hull York Medical School, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom.
| |
Collapse
|
40
|
Zhai J, Dong X, Yan F, Guo H, Yang J. Oleandrin: A Systematic Review of its Natural Sources, Structural Properties, Detection Methods, Pharmacokinetics and Toxicology. Front Pharmacol 2022; 13:822726. [PMID: 35273501 PMCID: PMC8902680 DOI: 10.3389/fphar.2022.822726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oleandrin is a highly lipid-soluble cardiac glycoside isolated from the plant Nerium oleander (Apocynaceae) and is used as a traditional herbal medicine due to its excellent pharmacological properties. It is widely applied for various disease treatments, such as congestive heart failure. Recently, oleandrin has attracted widespread attention due to its extensive anti-cancer and novel anti-viral effects. However, oleandrin has a narrow therapeutic window and exhibits various toxicities, especially typical cardiotoxicity, which is often fatal. This severe toxicity and low polarity have significantly hindered its application in the clinic. This review describes natural sources, structural properties, and detection methods of oleandrin. Based on reported poisoning cases and sporadic animal experiments, the pharmacokinetic characteristics of oleandrin are summarized, so as to infer some possible phenomena, such as enterohepatic circulation. Moreover, the relevant factors affecting the pharmacokinetics of oleandrin are analyzed, and some research approaches that may ameliorate the pharmacokinetic behavior of oleandrin are proposed. With the toxicology of oleandrin being thoroughly reviewed, the development of safe clinical applications of oleandrin may be possible given potential research strategies to decrease toxicity.
Collapse
Affiliation(s)
- Jinxiao Zhai
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- *Correspondence: Xiaoru Dong,
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hongsong Guo
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Jinling Yang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
41
|
Luo P, Cheng S, Zhang F, Feng R, Xu K, Jing W, Xu P. A large-scale genetic correlation scan between rheumatoid arthritis and human plasma protein. Bone Joint Res 2022; 11:134-142. [PMID: 35200038 PMCID: PMC8882322 DOI: 10.1302/2046-3758.112.bjr-2021-0270.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims The aim of this study was to explore the genetic correlation and causal relationship between blood plasma proteins and rheumatoid arthritis (RA). Methods Based on the genome-wide association studies (GWAS) summary statistics of RA from European descent and the GWAS summary datasets of 3,622 plasma proteins, we explored the relationship between RA and plasma proteins from three aspects. First, linkage disequilibrium score regression (LD score regression) was applied to detect the genetic correlation between RA and plasma proteins. Mendelian randomization (MR) analysis was then used to evaluate the causal association between RA and plasma proteins. Finally, GEO2R was used to screen the differentially expressed genes (DEGs) between patients with RA and healthy controls. Results We found that seven kinds of plasma proteins had genetic correlations with RA, such as Soluble Receptor for Advanced Glycation End Products (sRAGE) (correlation coefficient = 0.2582, p = 0.049), vesicle transport protein USE1 (correlation coefficient = 0.1337, p = 0.018), and spermatogenesis-associated protein 20 (correlation coefficient = 0.3706, p = 0.018). There was a significant causal relationship between sRAGE and RA. By comparing the genes encoding seven plasma proteins, we found that only USE1 was a DEG associated with RA. Conclusion Our study identified a set of candidate plasma proteins that showed signals correlated with RA. Since the results of this study need further experimental verification, they should be interpreted with caution. However, we hope that this paper will provide new insights for the discovery of pathogenic genes and RA pathogenesis in the future. Cite this article: Bone Joint Res 2022;11(2):134–142.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ruoyang Feng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wensen Jing
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
42
|
Khadrawy YA, Khoder NM, Sawie HG, Sharada HM, Hosny EN, Abdulla MS. The Neuroprotective Effect of α-Lipoic Acid and/or Metformin against the Behavioral and Neurochemical Changes Induced by Hypothyroidism in Rat. Neuroendocrinology 2022; 112:1129-1142. [PMID: 35354137 DOI: 10.1159/000524367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The present study evaluates the neuroprotective effect of α-lipoic acid (ALA) and/or metformin (MET) on the behavioral and neurochemical changes induced by hypothyroidism. METHODS Rats were divided into control, rat model of hypothyroidism induced by propylthiouracil, and rat model of hypothyroidism treated with ALA, MET, or their combination. RESULTS Behaviorally, hypothyroid rats revealed impaired memory and reduced motor activity as indicated from the novel object recognition test and open-field test, respectively. Hypothyroidism induced a significant increase in lipid peroxidation (malondialdehyde [MDA]) and a significant decrease in reduced glutathione (GSH) and nitric oxide (NO) in the cortex and hippocampus. These were associated with a significant increase in tumor necrosis factor-α (TNF-α) and a significant decrease in brain-derived neurotrophic factor (BDNF). Hypothyroidism decreased significantly the levels of serotonin (5-HT), norepinephrine (NE), and dopamine (DA) and reduced the activities of acetylcholinesterase (AchE) and Na+, K+-ATPase in the cortex and hippocampus. Treatment of hypothyroid rats with ALA and/or MET showed an improvement in memory function and motor activity. Moreover, ALA and/or MET prevented the increase in MDA and TNF-α, and the decline in GSH, NO, BDNF, 5-HT, NE, and DA. It also restored AchE and Na+, K+-ATPase activities in the studied brain regions. CONCLUSION ALA and/or MET has a potential neuroprotective effect against the adverse behavioral and neurochemical changes induced by hypothyroidism in rats.
Collapse
Affiliation(s)
- Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Noha M Khoder
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hussein G Sawie
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hayat M Sharada
- Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Eman N Hosny
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mohga S Abdulla
- Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt
| |
Collapse
|
43
|
Tverskoi AM, Poluektov YM, Klimanova EA, Mitkevich VA, Makarov AA, Orlov SN, Petrushanko IY, Lopina OD. Depth of the Steroid Core Location Determines the Mode of Na,K-ATPase Inhibition by Cardiotonic Steroids. Int J Mol Sci 2021; 22:ijms222413268. [PMID: 34948068 PMCID: PMC8708600 DOI: 10.3390/ijms222413268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiotonic steroids (CTSs) are specific inhibitors of Na,K-ATPase (NKA). They induce diverse physiological effects and were investigated as potential drugs in heart diseases, hypertension, neuroinflammation, antiviral and cancer therapy. Here, we compared the inhibition mode and binding of CTSs, such as ouabain, digoxin and marinobufagenin to NKA from pig and rat kidneys, containing CTSs-sensitive (α1S) and -resistant (α1R) α1-subunit, respectively. Marinobufagenin in contrast to ouabain and digoxin interacted with α1S-NKA reversibly, and its binding constant was reduced due to the decrease in the deepening in the CTSs-binding site and a lower number of contacts between the site and the inhibitor. The formation of a hydrogen bond between Arg111 and Asp122 in α1R-NKA induced the reduction in CTSs’ steroid core deepening that led to the reversible inhibition of α1R-NKA by ouabain and digoxin and the absence of marinobufagenin’s effect on α1R-NKA activity. Our results elucidate that the difference in signaling, and cytotoxic effects of CTSs may be due to the distinction in the deepening of CTSs into the binding side that, in turn, is a result of a bent-in inhibitor steroid core (marinobufagenin in α1S-NKA) or the change of the width of CTSs-binding cavity (all CTSs in α1R-NKA).
Collapse
Affiliation(s)
- Artem M. Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
- Correspondence: (A.M.T.); (O.D.L.)
| | - Yuri M. Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Elizaveta A. Klimanova
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leniskie Gory Street, 119234 Moscow, Russia;
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Sergei N. Orlov
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leniskie Gory Street, 119234 Moscow, Russia;
| | - Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Olga D. Lopina
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leniskie Gory Street, 119234 Moscow, Russia;
- Correspondence: (A.M.T.); (O.D.L.)
| |
Collapse
|
44
|
Petrič M, Vidović A, Dolinar K, Miš K, Chibalin AV, Pirkmajer S. Phosphorylation of Na +,K +-ATPase at Tyr10 of the α1-Subunit is Suppressed by AMPK and Enhanced by Ouabain in Cultured Kidney Cells. J Membr Biol 2021; 254:531-548. [PMID: 34748042 PMCID: PMC8595181 DOI: 10.1007/s00232-021-00209-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Na+,K+-ATPase (NKA) is essential for maintenance of cellular and whole-body water and ion homeostasis. In the kidney, a major site of ion transport, NKA consumes ~ 50% of ATP, indicating a tight coordination of NKA and energy metabolism. AMP-activated protein kinase (AMPK), a cellular energy sensor, regulates NKA by modulating serine phosphorylation of the α1-subunit, but whether it modulates other important regulatory phosphosites, such as Tyr10, is unknown. Using human kidney (HK-2) cells, we determined that the phosphorylation of Tyr10 was stimulated by the epidermal growth factor (EGF), which was opposed by inhibitors of Src kinases (PP2), tyrosine kinases (genistein), and EGF receptor (EGFR, gefitinib). AMPK activators AICAR and A-769662 suppressed the EGF-stimulated phosphorylation of EGFR (Tyr1173) and NKAα1 at Tyr10. The phosphorylation of Src (Tyr416) was unaltered by AICAR and increased by A-769662. Conversely, ouabain (100 nM), a pharmacological NKA inhibitor and a putative adrenocortical hormone, enhanced the EGF-stimulated Tyr10 phosphorylation without altering the phosphorylation of EGFR (Tyr1173) or Src (Tyr416). Ouabain (100–1000 nM) increased the ADP:ATP ratio, while it suppressed the lactate production and the oxygen consumption rate in a dose-dependent manner. Treatment with ouabain or gene silencing of NKAα1 or NKAα3 subunit did not activate AMPK. In summary, AMPK activators and ouabain had antagonistic effects on the phosphorylation of NKAα1 at Tyr10 in cultured HK-2 cells, which implicates a role for Tyr10 in coordinated regulation of NKA-mediated ion transport and energy metabolism.
Collapse
Affiliation(s)
- Metka Petrič
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Vidović
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Miš
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexander V Chibalin
- National Research Tomsk State University, Tomsk, Russia. .,Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
45
|
Na/K-ATPase Ion Transport and Receptor-Mediated Signaling Pathways. J Membr Biol 2021; 254:443-446. [PMID: 34724099 DOI: 10.1007/s00232-021-00207-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
|
46
|
Chen L, Zhang M, Wang X, Liu Y, Bian J, Yan D, Yin W. Cardiac steroid ouabain transcriptionally increases human leukocyte antigen DR expression on monocytes. Steroids 2021; 175:108915. [PMID: 34508735 DOI: 10.1016/j.steroids.2021.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023]
Abstract
Sepsis is a life-threatening disease characterized by acute multiple organ dysfunction and immunosuppression that is also called as immunoparalysis. Increasing evidence suggests that immunoparalysis largely contributes to the high mortality of sepsis, but the effective remedies are lacking. As an important antigen presentation molecule, human leukocyte antigen DR (HLA-DR) is remarkably down-regulated in sepsis-induced immunoparalysis, therefore, re-stimulation of HLA-DR expression is expected to be useful in reversing immunoparalysis. We previously described that ouabain, as a Na+, K+-ATPase ligand, is able to counteract immunoparalysis by regulating TH1 cytokines expression. Here, we expanded the finding that ouabain not only prevents LPS-induced down-regulation of HLA-DR on monocytes, but also transcriptionally activates HLA-DR α/β expression mediated by CIITA4, IRF1, c-Src, and Stat1 phosphorylation. Since ouabain can improve sepsis-induced immunoparalysis by multiple mechanisms, we propose that ouabain may be a promising agent in septic therapy that deserves further investigation.
Collapse
Affiliation(s)
- Lili Chen
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Manli Zhang
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiya Wang
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yongjian Liu
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Jinjun Bian
- Department of Anesthesiology and Critical Care, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Dong Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, China.
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
47
|
Silva LND, Garcia IJP, Valadares JMM, Pessoa MTC, Toledo MM, Machado MV, Busch MS, Rocha I, Villar JAFP, Atella GC, Santos HL, Cortes VF, Barbosa LA. Evaluation of Cardiotonic Steroid Modulation of Cellular Cholesterol and Phospholipid. J Membr Biol 2021; 254:499-512. [PMID: 34716469 DOI: 10.1007/s00232-021-00203-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/09/2021] [Indexed: 02/05/2023]
Abstract
We have previously shown that 21-benzylidene digoxin (21-BD) increases the total cholesterol and phospholipid content on the membrane of HeLa cells. Lipid modulation caused by cardiotonic steroids (CTS) is still unexplored. Therefore, the aim of the present study was to evaluate the cholesterol and phospholipid modulation of the cell membrane caused by ouabain and 21-BD and the possible involvement of the caveolae on this modulation. For this, one cell line containing caveolae (HeLa) and other not containing (Caco-2) were used. The modulation of the lipid profile was evaluated by total cholesterol and phospholipids measurements, and identification of membrane phospholipids by HPTLC. The cholesterol distribution was evaluated by filipin staining. The caveolin-1 expression was evaluated by Western Blotting. Ouabain had no effect on the total membrane lipid content in both cell lines. However, 21-BD increased total membrane phospholipid content and had no effect on the membrane cholesterol content in Caco-2 cells. CTS were not able to alter the specific phospholipids content. In the filipin experiments, 21-BD provoked a remarkable redistribution of cholesterol to the perinuclear region of HeLa cells. In Caco-2 cells, it was observed only a slight increase in cholesterol, especially as intracellular vesicles. The caveolin-1 expression was not altered by any of the compounds. Our data mainly show different effects of two cardiotonic steroids. Ouabain had no effect on the lipid profile of cells, whereas 21-BD causes important changes in cholesterol and phospholipid content. Therefore, the modulation of cholesterol content in the plasma membrane of HeLa cells is not correlated with the expression of caveolin-1.
Collapse
Affiliation(s)
- Lilian N D Silva
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Israel J P Garcia
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Jessica M M Valadares
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Marco Tulio C Pessoa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Marina Marques Toledo
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Matheus V Machado
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Mileane Souza Busch
- Laboratório de Bioquímica de Lipídios, Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Rocha
- Laboratório de Bioquímica de Lipídios, Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Augusto F P Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídios, Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herica L Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Vanessa F Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil. .,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil.
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil. .,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil.
| |
Collapse
|
48
|
Some Kinetic Features of Na,K-ATPase and Sensitivity to Noradrenaline. Cell Biochem Biophys 2021; 80:23-29. [PMID: 34436718 DOI: 10.1007/s12013-021-01032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
A comparative kinetic analysis of albino rat brain synaptic and kidney plasma membrane fraction Na,K-ATPase was performed to comprehend the different levels of sensitivity of these fractions to the neurotransmitter noradrenaline. Noradrenaline (NA) inhibits the rat brain synaptic membrane Na,K-ATPase, changes the stoichiometry of Na+ and K+ and shifts the enzyme system from an MgATP to an Mg2+ dependent cycle. While the kidney plasma membrane fraction Na,K-ATPase is not sensitive to noradrenaline. To investigate the mechanism underlying this difference, we studied enzyme velocity dependence on the concentration of Mg2+. The 1/V = f(Mg2+) function has shown different kinetic features for the synaptic and kidney plasma membrane Na,K-ATPase. With the addition of ethylene glycol tetraacetic acid (EGTA) to the reaction medium the geometric form of 1/V = f(Mg2+) function is affected differently. We thereafter measured the essential activator number for Na+ and K+ with, in excess Mg2+. The results of these experiments reveal that, contrary to the synaptic membrane Na,K-ATPase, the kidney plasma membrane fraction Na,K-ATPase does not possess an Mg2+ dependent cycle and noradrenaline exhibits different modulatory effects on the enzyme system.
Collapse
|
49
|
Cotman SL, Lefrancois S. CLN3, at the crossroads of endocytic trafficking. Neurosci Lett 2021; 762:136117. [PMID: 34274435 DOI: 10.1016/j.neulet.2021.136117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
The CLN3 gene was identified over two decades ago, but the primary function of the CLN3 protein remains unknown. Recessive inheritance of loss of function mutations in CLN3 are responsible for juvenile neuronal ceroid lipofuscinosis (Batten disease, or CLN3 disease), a fatal childhood onset neurodegenerative disease causing vision loss, seizures, progressive dementia, motor function loss and premature death. CLN3 is a multipass transmembrane protein that primarily localizes to endosomes and lysosomes. Defects in endocytosis, autophagy, and lysosomal function are common findings in CLN3-deficiency model systems. However, the molecular mechanisms underlying these defects have not yet been fully elucidated. In this mini-review, we will summarize the current understanding of the CLN3 protein interaction network and discuss how this knowledge is starting to delineate the molecular pathogenesis of CLN3 disease. Accumulating evidence strongly points towards CLN3 playing a role in regulation of the cytoskeleton and cytoskeletal associated proteins to tether cellular membranes, regulation of membrane complexes such as channels/transporters, and modulating the function of small GTPases to effectively mediate vesicular movement and membrane dynamics.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Mass General Research Institute, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, United States.
| | - Stéphane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval H7V 1B7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada.
| |
Collapse
|
50
|
Kravtsova VV, Krivoi II. Molecular and Functional Heterogeneity of Na,K-ATPase in the Skeletal Muscle. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|