1
|
Mori K, Golding BT, Toraya T. The action of coenzyme B12-dependent diol dehydratase on 3,3,3-trifluoro-1,2-propanediol results in elimination of all the fluorides with formation of acetaldehyde. J Biochem 2024; 176:245-254. [PMID: 38987935 DOI: 10.1093/jb/mvae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
3,3,3-Trifluoro-1,2-propanediol undergoes complete defluorination in two distinct steps: first, the conversion into 3,3,3-trifluoropropionaldehyde catalyzed by adenosylcobalamin (coenzyme B12)-dependent diol dehydratase; second, non-enzymatic elimination of all three fluorides from this aldehyde to afford malonic semialdehyde (3-oxopropanoic acid), which is decarboxylated to acetaldehyde. Diol dehydratase accepts 3,3,3-trifluoro-1,2-propanediol as a relatively poor substrate, albeit without significant mechanism-based inactivation of the enzyme during catalysis. Optical and electron paramagnetic resonance (EPR) spectra revealed the steady-state formation of cob(II)alamin and a substrate-derived intermediate organic radical (3,3,3-trifluoro-1,2-dihydroxyprop-1-yl). The coenzyme undergoes Co-C bond homolysis initiating a sequence of reaction by the generally accepted pathway via intermediate radicals. However, the greater steric size of trifluoromethyl and especially its negative impact on the stability of an adjacent radical centre compared to a methyl group has implications for the mechanism of the diol dehydratase reaction. Nevertheless, 3,3,3-trifluoropropionaldehyde is formed by the normal diol dehydratase pathway, but then undergoes non-enzymatic conversion into acetaldehyde, probably via 3,3-difluoropropenal and malonic semialdehyde.
Collapse
Affiliation(s)
- Koichi Mori
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Bernard T Golding
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tetsuo Toraya
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Lin Z, Xiao Y, Zhang L, Li L, Dong C, Ma J, Liu GQ. Biochemical and molecular characterization of a novel glycerol dehydratase from Klebsiella pneumoniae 2e with high tolerance against crude glycerol impurities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:175. [PMID: 37974275 PMCID: PMC10655381 DOI: 10.1186/s13068-023-02427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The direct bioconversion of crude glycerol, a byproduct of biodiesel production, into 1,3-propanediol by microbial fermentation constitutes a remarkably promising value-added applications. However, the low activity of glycerol dehydratase, which is the key and rate-limiting enzyme in the 1,3-propanediol synthetic pathway, caused by crude glycerol impurities is one of the main factors affecting the 1,3-propanediol yield. Hence, the exploration of glycerol dehydratase resources suitable for crude glycerol bioconversion is required for the development of 1,3-propanediol-producing engineered strains. RESULTS In this study, the novel glycerol dehydratase 2eGDHt, which has a tolerance against crude glycerol impurities from Klebsiella pneumoniae 2e, was characterized. The 2eGDHt exhibited the highest activity toward glycerol, with Km and Vm values of 3.42 mM and 58.15 nkat mg-1, respectively. The optimum pH and temperature for 2eGDHt were 7.0 and 37 °C, respectively. 2eGDHt displayed broader pH stability than other reported glycerol dehydratases. Its enzymatic activity was increased by Fe2+ and Tween-20, with 294% and 290% relative activities, respectively. The presence of various concentrations of the crude glycerol impurities, including NaCl, methanol, oleic acid, and linoleic acid, showed limited impact on the 2eGDHt activity. In addition, the enzyme activity was almost unaffected by the presence of an impurity mixture that mimicked the crude glycerol environment. Structural analyses revealed that 2eGDHt possesses more coil structures than reported glycerol dehydratases. Moreover, molecular dynamics simulations and site-directed mutagenesis analyses implied that the existence of unique Val744 from one of the increased coil regions played a key role in the tolerance characteristic by increasing the protein flexibility. CONCLUSIONS This study provides insight into the mechanism for enzymatic action and the tolerance against crude glycerol impurities, of a novel glycerol dehydratase 2eGDHt, which is a promising glycerol dehydratase candidate for biotechnological conversion of crude glycerol into 1,3-PDO.
Collapse
Affiliation(s)
- Zifeng Lin
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- Microbial Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, 410004, China
| | - Yuting Xiao
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- Microbial Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, 410004, China
| | - Lu Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- Microbial Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, 410004, China
| | - Le Li
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- Microbial Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, 410004, China
| | - Congying Dong
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- Microbial Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, 410004, China
| | - Jiangshan Ma
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
- Microbial Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, 410004, China.
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
- Microbial Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, 410004, China.
| |
Collapse
|
3
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
4
|
Hanževački M, Croft AK, Jäger CM. Activation of Glycyl Radical Enzymes─Multiscale Modeling Insights into Catalysis and Radical Control in a Pyruvate Formate-Lyase-Activating Enzyme. J Chem Inf Model 2022; 62:3401-3414. [PMID: 35771966 PMCID: PMC9326890 DOI: 10.1021/acs.jcim.2c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) playing a pivotal role in the metabolism of strict and facultative anaerobes. Its activation is carried out by a PFL-activating enzyme, a member of the radical S-adenosylmethionine (rSAM) superfamily of metalloenzymes, which introduces a glycyl radical into the Gly radical domain of PFL. The activation mechanism is still not fully understood and is structurally based on a complex with a short model peptide of PFL. Here, we present extensive molecular dynamics simulations in combination with quantum mechanics/molecular mechanics (QM/MM)-based kinetic and thermodynamic reaction evaluations of a more complete activation model comprising the 49 amino acid long C-terminus region of PFL. We reveal the benefits and pitfalls of the current activation model, providing evidence that the bound peptide conformation does not resemble the bound protein-protein complex conformation with PFL, with implications for the activation process. Substitution of the central glycine with (S)- and (R)-alanine showed excellent binding of (R)-alanine over unstable binding of (S)-alanine. Radical stabilization calculations indicate that a higher radical stability of the glycyl radical might not be the sole origin of the evolutionary development of GREs. QM/MM-derived radical formation kinetics further demonstrate feasible activation barriers for both peptide and C-terminus activation, demonstrating why the crystalized model peptide system is an excellent inhibitory system for natural activation. This new evidence supports the theory that GREs converged on glycyl radical formation due to the better conformational accessibility of the glycine radical loop, rather than the highest radical stability of the formed peptide radicals.
Collapse
Affiliation(s)
- Marko Hanževački
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Anna K Croft
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
5
|
Toraya T, Tobimatsu T, Mori K, Yamanishi M, Shibata N. Coenzyme B 12-dependent eliminases: Diol and glycerol dehydratases and ethanolamine ammonia-lyase. Methods Enzymol 2022; 668:181-242. [PMID: 35589194 DOI: 10.1016/bs.mie.2021.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenosylcobalamin (AdoCbl) or coenzyme B12-dependent enzymes catalyze intramolecular group-transfer reactions and ribonucleotide reduction in a wide variety of organisms from bacteria to animals. They use a super-reactive primary-carbon radical formed by the homolysis of the coenzyme's Co-C bond for catalysis and thus belong to the larger class of "radical enzymes." For understanding the general mechanisms of radical enzymes, it is of great importance to establish the general mechanism of AdoCbl-dependent catalysis using enzymes that catalyze the simplest reactions-such as diol dehydratase, glycerol dehydratase and ethanolamine ammonia-lyase. These enzymes are often called "eliminases." We have studied AdoCbl and eliminases for more than a half century. Progress has always been driven by the development of new experimental methodologies. In this chapter, we describe our investigations on these enzymes, including their metabolic roles, gene cloning, preparation, characterization, activity assays, and mechanistic studies, that have been conducted using a wide range of biochemical and structural methodologies we have developed.
Collapse
Affiliation(s)
- Tetsuo Toraya
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan.
| | - Takamasa Tobimatsu
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Koichi Mori
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Mamoru Yamanishi
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Naoki Shibata
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, Japan
| |
Collapse
|
6
|
Cooper CL, Panitz N, Edwards TA, Goyal P. Role of the CarH photoreceptor protein environment in the modulation of cobalamin photochemistry. Biophys J 2021; 120:3688-3696. [PMID: 34310939 DOI: 10.1016/j.bpj.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/17/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
The photochemistry of cobalamins has recently been found to have biological importance, with the discovery of bacterial photoreceptor proteins, such as CarH and AerR. CarH and AerR, are involved in the light regulation of carotenoid biosynthesis and bacteriochlorophyll biosynthesis, respectively, in bacteria. Experimental transient absorption spectroscopic studies have indicated unusual photochemical behavior of 5'-deoxy-5'-adenosylcobalamin (AdoCbl) in CarH, with excited-state charge separation between cobalt and adenosyl and possible heterolytic cleavage of the Co-adenosyl bond, as opposed to the homolytic cleavage observed in aqueous solution and in many AdoCbl-based enzymes. We employ molecular dynamics and hybrid quantum mechanical/molecular mechanical calculations to obtain a microscopic understanding of the modulation of the excited electronic states of AdoCbl by the CarH protein environment, in contrast to aqueous solution and AdoCbl-based enzymes. Our results indicate a progressive stabilization of the electronic states involving charge transfer (CT) from cobalt/corrin to adenine on changing the environment from gas phase to water to solvated CarH. The solvent exposure of the adenosyl ligand in CarH, the π-stacking interaction between a tryptophan and the adenine moiety, and the hydrogen-bonding interaction between a glutamate and the lower axial ligand of cobalt are found to contribute to the stabilization of the states involving CT to adenine. The combination of these three factors, the latter two of which can be experimentally tested via mutagenesis studies, is absent in an aqueous solvent environment and in AdoCbl-based enzymes. The favored CT from metal and/or corrin to adenine in CarH may promote heterolytic cleavage of the cobalt-adenosyl bond proposed by experimental studies. Overall, this work provides novel, to our knowledge, physical insights into the mechanism of CarH function and directions for future experimental investigations. The fundamental understanding of the mechanism of CarH functioning will serve the development of optogenetic tools based on the new class of B12-dependent photoreceptors.
Collapse
Affiliation(s)
- Courtney L Cooper
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York
| | - Naftali Panitz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York
| | - Travyse A Edwards
- Department of Physics, State University of New York at Binghamton, Binghamton, New York
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York.
| |
Collapse
|
7
|
Identification of a Novel Cobamide Remodeling Enzyme in the Beneficial Human Gut Bacterium Akkermansia muciniphila. mBio 2020; 11:mBio.02507-20. [PMID: 33293380 PMCID: PMC7733943 DOI: 10.1128/mbio.02507-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cobamides, comprising the vitamin B12 family of cobalt-containing cofactors, are required for metabolism in all domains of life, including most bacteria. Cobamides have structural variability in the lower ligand, and selectivity for particular cobamides has been observed in most organisms studied to date. The beneficial human gut bacterium Akkermansia muciniphila provides metabolites to other members of the gut microbiota by breaking down host mucin, but most of its other metabolic functions have not been investigated. A. muciniphila strain MucT is known to use cobamides, the vitamin B12 family of cofactors with structural diversity in the lower ligand. However, A. muciniphila MucT is unable to synthesize cobamides de novo, and the specific forms that can be used by A. muciniphila have not been examined. We found that the levels of growth of A. muciniphila MucT were nearly identical with each of seven cobamides tested, in contrast to nearly all bacteria that had been studied previously. Unexpectedly, this promiscuity is due to cobamide remodeling—the removal and replacement of the lower ligand—despite the absence of the canonical remodeling enzyme CbiZ in A. muciniphila. We identified a novel enzyme, CbiR, that is capable of initiating the remodeling process by hydrolyzing the phosphoribosyl bond in the nucleotide loop of cobamides. CbiR does not share similarity with other cobamide remodeling enzymes or B12-binding domains and is instead a member of the apurinic/apyrimidinic (AP) endonuclease 2 enzyme superfamily. We speculate that CbiR enables bacteria to repurpose cobamides that they cannot otherwise use in order to grow under cobamide-requiring conditions; this function was confirmed by heterologous expression of cbiR in Escherichia coli. Homologs of CbiR are found in over 200 microbial taxa across 22 phyla, suggesting that many bacteria may use CbiR to gain access to the diverse cobamides present in their environment.
Collapse
|
8
|
Nasir A, Ashok S, Shim JY, Park S, Yoo TH. Recent Progress in the Understanding and Engineering of Coenzyme B 12-Dependent Glycerol Dehydratase. Front Bioeng Biotechnol 2020; 8:500867. [PMID: 33224925 PMCID: PMC7674605 DOI: 10.3389/fbioe.2020.500867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Coenzyme B12-dependent glycerol dehydratase (GDHt) catalyzes the dehydration reaction of glycerol in the presence of adenosylcobalamin to yield 3-hydroxypropanal (3-HPA), which can be converted biologically to versatile platform chemicals such as 1,3-propanediol and 3-hydroxypropionic acid. Owing to the increased demand for biofuels, developing biological processes based on glycerol, which is a byproduct of biodiesel production, has attracted considerable attention recently. In this review, we will provide updates on the current understanding of the catalytic mechanism and structure of coenzyme B12-dependent GDHt, and then summarize the results of engineering attempts, with perspectives on future directions in its engineering.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Jeung Yeop Shim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
9
|
Sokolovskaya OM, Mok KC, Park JD, Tran JLA, Quanstrom KA, Taga ME. Cofactor Selectivity in Methylmalonyl Coenzyme A Mutase, a Model Cobamide-Dependent Enzyme. mBio 2019; 10:e01303-19. [PMID: 31551329 PMCID: PMC6759758 DOI: 10.1128/mbio.01303-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Cobamides, a uniquely diverse family of enzyme cofactors related to vitamin B12, are produced exclusively by bacteria and archaea but used in all domains of life. While it is widely accepted that cobamide-dependent organisms require specific cobamides for their metabolism, the biochemical mechanisms that make cobamides functionally distinct are largely unknown. Here, we examine the effects of cobamide structural variation on a model cobamide-dependent enzyme, methylmalonyl coenzyme A (CoA) mutase (MCM). The in vitro binding affinity of MCM for cobamides can be dramatically influenced by small changes in the structure of the lower ligand of the cobamide, and binding selectivity differs between bacterial orthologs of MCM. In contrast, variations in the lower ligand have minor effects on MCM catalysis. Bacterial growth assays demonstrate that cobamide requirements of MCM in vitro largely correlate with in vivo cobamide dependence. This result underscores the importance of enzyme selectivity in the cobamide-dependent physiology of bacteria.IMPORTANCE Cobamides, including vitamin B12, are enzyme cofactors used by organisms in all domains of life. Cobamides are structurally diverse, and microbial growth and metabolism vary based on cobamide structure. Understanding cobamide preference in microorganisms is important given that cobamides are widely used and appear to mediate microbial interactions in host-associated and aquatic environments. Until now, the biochemical basis for cobamide preferences was largely unknown. In this study, we analyzed the effects of the structural diversity of cobamides on a model cobamide-dependent enzyme, methylmalonyl-CoA mutase (MCM). We found that very small changes in cobamide structure could dramatically affect the binding affinity of cobamides to MCM. Strikingly, cobamide-dependent growth of a model bacterium, Sinorhizobium meliloti, largely correlated with the cofactor binding selectivity of S. meliloti MCM, emphasizing the importance of cobamide-dependent enzyme selectivity in bacterial growth and cobamide-mediated microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California, USA
| | - Kenny C Mok
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jong Duk Park
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jennifer L A Tran
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Kathryn A Quanstrom
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
10
|
Bilić L, Barić D, Banhatti RD, Smith DM, Kovačević B. Computational Study of Glycerol Binding within the Active Site of Coenzyme B12-Dependent Diol Dehydratase. J Phys Chem B 2019; 123:6178-6187. [DOI: 10.1021/acs.jpcb.9b04071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Luka Bilić
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Barić
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Radha Dilip Banhatti
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - David M. Smith
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Borislav Kovačević
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Jers C, Kalantari A, Garg A, Mijakovic I. Production of 3-Hydroxypropanoic Acid From Glycerol by Metabolically Engineered Bacteria. Front Bioeng Biotechnol 2019; 7:124. [PMID: 31179279 PMCID: PMC6542942 DOI: 10.3389/fbioe.2019.00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
3-hydroxypropanoic acid (3-HP) is a valuable platform chemical with a high demand in the global market. 3-HP can be produced from various renewable resources. It is used as a precursor in industrial production of a number of chemicals, such as acrylic acid and its many derivatives. In its polymerized form, 3-HP can be used in bioplastic production. Several microbes naturally possess the biosynthetic pathways for production of 3-HP, and a number of these pathways have been introduced in some widely used cell factories, such as Escherichia coli and Saccharomyces cerevisiae. Latest advances in the field of metabolic engineering and synthetic biology have led to more efficient methods for bio-production of 3-HP. These include new approaches for introducing heterologous pathways, precise control of gene expression, rational enzyme engineering, redirecting the carbon flux based on in silico predictions using genome scale metabolic models, as well as optimizing fermentation conditions. Despite the fact that the production of 3-HP has been extensively explored in established industrially relevant cell factories, the current production processes have not yet reached the levels required for industrial exploitation. In this review, we explore the state of the art in 3-HP bio-production, comparing the yields and titers achieved in different microbial cell factories and we discuss possible methodologies that could make the final step toward industrially relevant cell factories.
Collapse
Affiliation(s)
- Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Aida Kalantari
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Abhroop Garg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Abstract
Covering: up to the end of 2017 The human body is composed of an equal number of human and microbial cells. While the microbial community inhabiting the human gastrointestinal tract plays an essential role in host health, these organisms have also been connected to various diseases. Yet, the gut microbial functions that modulate host biology are not well established. In this review, we describe metabolic functions of the human gut microbiota that involve metalloenzymes. These activities enable gut microbial colonization, mediate interactions with the host, and impact human health and disease. We highlight cases in which enzyme characterization has advanced our understanding of the gut microbiota and examples that illustrate the diverse ways in which metalloenzymes facilitate both essential and unique functions of this community. Finally, we analyze Human Microbiome Project sequencing datasets to assess the distribution of a prominent family of metalloenzymes in human-associated microbial communities, guiding future enzyme characterization efforts.
Collapse
|
13
|
Kovačević B, Barić D, Babić D, Bilić L, Hanževački M, Sandala GM, Radom L, Smith DM. Computational Tale of Two Enzymes: Glycerol Dehydration With or Without B12. J Am Chem Soc 2018; 140:8487-8496. [DOI: 10.1021/jacs.8b03109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Borislav Kovačević
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Danijela Barić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Darko Babić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Luka Bilić
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Marko Hanževački
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Gregory M. Sandala
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick E4L 1G8, Canada
| | - Leo Radom
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - David M. Smith
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Shibata N, Sueyoshi Y, Higuchi Y, Toraya T. Direct Participation of a Peripheral Side Chain of a Corrin Ring in Coenzyme B12
Catalysis. Angew Chem Int Ed Engl 2018; 57:7830-7835. [DOI: 10.1002/anie.201803591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Naoki Shibata
- Department of Picobiology/Life Science; Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
- The RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho, Sato-gun Hyogo 678-5248 Japan
| | - Yui Sueyoshi
- Department of Picobiology/Life Science; Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Yoshiki Higuchi
- Department of Picobiology/Life Science; Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
- The RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho, Sato-gun Hyogo 678-5248 Japan
| | - Tetsuo Toraya
- Department of Bioscience and Biotechnology; Graduate School of Natural Science and Technology; Okayama University; Tsushima-naka Okayama 700-8530 Japan
| |
Collapse
|
15
|
Shibata N, Sueyoshi Y, Higuchi Y, Toraya T. Direct Participation of a Peripheral Side Chain of a Corrin Ring in Coenzyme B12
Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Naoki Shibata
- Department of Picobiology/Life Science; Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
- The RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho, Sato-gun Hyogo 678-5248 Japan
| | - Yui Sueyoshi
- Department of Picobiology/Life Science; Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
| | - Yoshiki Higuchi
- Department of Picobiology/Life Science; Graduate School of Life Science; University of Hyogo; 3-2-1 Koto Kamigori-cho, Ako-gun Hyogo 678-1297 Japan
- The RIKEN SPring-8 Center; 1-1-1 Koto Sayo-cho, Sato-gun Hyogo 678-5248 Japan
| | - Tetsuo Toraya
- Department of Bioscience and Biotechnology; Graduate School of Natural Science and Technology; Okayama University; Tsushima-naka Okayama 700-8530 Japan
| |
Collapse
|
16
|
Maddock DJ, Gerth ML, Patrick WM. An Engineered Glycerol Dehydratase With Improved Activity for the Conversion ofmeso-2,3-butanediol to Butanone. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/30/2017] [Indexed: 11/09/2022]
Affiliation(s)
| | - Monica L. Gerth
- Department of Biochemistry; University of Otago; Dunedin 9054 New Zealand
| | - Wayne M. Patrick
- Department of Biochemistry; University of Otago; Dunedin 9054 New Zealand
| |
Collapse
|
17
|
Park ES, Park S, Shin JS. Spectrophotometric assay for sensitive detection of glycerol dehydratase activity using aldehyde dehydrogenase. J Biosci Bioeng 2017; 123:528-533. [PMID: 28052817 DOI: 10.1016/j.jbiosc.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/08/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
Abstract
Glycerol dehydratase (GDHt) is a pivotal enzyme for fermentative utilization of glycerol by catalyzing radical-mediated conversion of glycerol into 3-hydroxypropionaldehyde (3-HPA). Precise and sensitive monitoring of cellular GDHt activity during the fermentation process is a prerequisite for reliable metabolic analysis to afford efficient cellular engineering and process optimization. Here we report a new spectrophotometric assay for the sensitive measurement of the GDHt activity with a sub-nanomolar limit of detection (LOD). The assay method employs aldehyde dehydrogenase (ALDH) as a reporter enzyme, so the readout of the GDHt activity is recorded at 340 nm as an increase in UV absorbance which results from NADH generation accompanied by oxidation of 3-HPA to 3-hydroxypropionic acid (3-HP). The GDHt assay was performed under the reaction conditions where the ALDH activity overwhelms the GDHt activity (i.e., 50-fold higher activity of ALDH relative to GDHt activity), affording sensitive detection of GDHt with 360 pM LOD. The ALDH-coupled assay was used to determine kinetic parameters of GDHt for glycerol, leading to KM = 0.73 ± 0.09 mM and kcat = 400 ± 20 s-1 which are in reasonable agreements with the previous reports. Our assay method allowed measurement of even a 104-fold decrease in the cellular GDHt activity during fermentative production of 3-HP, which demonstrates the detection sensitivity much higher than the previous methods.
Collapse
Affiliation(s)
- Eul-Soo Park
- Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Sunghoon Park
- Department of Chemical and Biomolecular Engineering, Pusan National University, Busan 609-735, South Korea
| | - Jong-Shik Shin
- Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea.
| |
Collapse
|
18
|
Lim HG, Noh MH, Jeong JH, Park S, Jung GY. Optimum Rebalancing of the 3-Hydroxypropionic Acid Production Pathway from Glycerol in Escherichia coli. ACS Synth Biol 2016; 5:1247-1255. [PMID: 27056171 DOI: 10.1021/acssynbio.5b00303] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
3-Hydroxypropionic acid (3-HP) can be biologically produced from glycerol by two consecutive enzymatic reactions, dehydration of glycerol to 3-hydroxypropionaldehyde (3-HPA) and oxidation of 3-HPA. The pathway has been proved efficient, but imbalance between the rates of the two enzymatic reactions often results in the accumulation of the toxic 3-HPA, which severely reduces cell viability and 3-HP production. In this study, we used UTR engineering to maximally increase the activities of glycerol dehydratase (GDHt) and aldehyde dehydrogenase (ALDH) for the high conversion of glycerol to 3-HP. Thereafter, the activity of GDHt was precisely controlled to avoid the accumulation of 3-HPA by varying expression of dhaB1, a gene encoding a main subunit of GDHt. The optimally balanced E. coli HGL_DBK4 showed a substantially enhanced 3-HP titer and productivity compared with the parental strain. The yield on glycerol, 0.97 g 3-HP/g glycerol, in a fed-batch experiment, was the highest ever reported.
Collapse
Affiliation(s)
- Hyun Gyu Lim
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Myung Hyun Noh
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Jun Hong Jeong
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sunghoon Park
- School
of Chemical and Biomolecular Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Gyoo Yeol Jung
- Department
of Chemical Engineering and School of Interdisciplinary Bioscience
and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
19
|
Gohara DW, Di Cera E. Molecular Mechanisms of Enzyme Activation by Monovalent Cations. J Biol Chem 2016; 291:20840-20848. [PMID: 27462078 DOI: 10.1074/jbc.r116.737833] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Regulation of enzymes through metal ion complexation is widespread in biology and underscores a physiological need for stability and high catalytic activity that likely predated proteins in the RNA world. In addition to divalent metals such as Ca2+, Mg2+, and Zn2+, monovalent cations often function as efficient and selective promoters of catalysis. Advances in structural biology unravel a rich repertoire of molecular mechanisms for enzyme activation by Na+ and K+ Strategies range from short-range effects mediated by direct participation in substrate binding, to more distributed effects that propagate long-range to catalytic residues. This review addresses general considerations and examples.
Collapse
Affiliation(s)
- David W Gohara
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
20
|
Senge MO, MacGowan SA, O'Brien JM. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles. Chem Commun (Camb) 2016; 51:17031-63. [PMID: 26482230 DOI: 10.1039/c5cc06254c] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tetrapyrrole-containing proteins are one of the most fundamental classes of enzymes in nature and it remains an open question to give a chemical rationale for the multitude of biological reactions that can be catalyzed by these pigment-protein complexes. There are many fundamental processes where the same (i.e., chemically identical) porphyrin cofactor is involved in chemically quite distinct reactions. For example, heme is the active cofactor for oxygen transport and storage (hemoglobin, myoglobin) and for the incorporation of molecular oxygen in organic substrates (cytochrome P450). It is involved in the terminal oxidation (cytochrome c oxidase) and the metabolism of H2O2 (catalases and peroxidases) and catalyzes various electron transfer reactions in cytochromes. Likewise, in photosynthesis the same chlorophyll cofactor may function as a reaction center pigment (charge separation) or as an accessory pigment (exciton transfer) in light harvesting complexes (e.g., chlorophyll a). Whilst differences in the apoprotein sequences alone cannot explain the often drastic differences in physicochemical properties encountered for the same cofactor in diverse protein complexes, a critical factor for all biological functions must be the close structural interplay between bound cofactors and the respective apoprotein in addition to factors such as hydrogen bonding or electronic effects. Here, we explore how nature can use the same chemical molecule as a cofactor for chemically distinct reactions using the concept of conformational flexibility of tetrapyrroles. The multifaceted roles of tetrapyrroles are discussed in the context of the current knowledge on distorted porphyrins. Contemporary analytical methods now allow a more quantitative look at cofactors in protein complexes and the development of the field is illustrated by case studies on hemeproteins and photosynthetic complexes. Specific tetrapyrrole conformations are now used to prepare bioengineered designer proteins with specific catalytic or photochemical properties.
Collapse
Affiliation(s)
- Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland and Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Stuart A MacGowan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jessica M O'Brien
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
21
|
Wagner T, Ermler U, Shima S. MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode. Sci Rep 2016; 6:28226. [PMID: 27324530 PMCID: PMC4915002 DOI: 10.1038/srep28226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
In the three domains of life, vitamin B12 (cobalamin) is primarily used in methyltransferase and isomerase reactions. The methyltransferase complex MtrA–H of methanogenic archaea has a key function in energy conservation by catalysing the methyl transfer from methyl-tetrahydromethanopterin to coenzyme M and its coupling with sodium-ion translocation. The cobalamin-binding subunit MtrA is not homologous to any known B12-binding proteins and is proposed as the motor of the sodium-ion pump. Here, we present crystal structures of the soluble domain of the membrane-associated MtrA from Methanocaldococcus jannaschii and the cytoplasmic MtrA homologue/cobalamin complex from Methanothermus fervidus. The MtrA fold corresponds to the Rossmann-type α/β fold, which is also found in many cobalamin-containing proteins. Surprisingly, the cobalamin-binding site of MtrA differed greatly from all the other cobalamin-binding sites. Nevertheless, the hydrogen-bond linkage at the lower axial-ligand site of cobalt was equivalently constructed to that found in other methyltransferases and mutases. A distinct polypeptide segment fixed through the hydrogen-bond linkage in the relaxed Co(III) state might be involved in propagating the energy released upon corrinoid demethylation to the sodium-translocation site by a conformational change.
Collapse
Affiliation(s)
- Tristan Wagner
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Ulrich Ermler
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, 332-0012 Saitama, Japan
| |
Collapse
|
22
|
Wheatley RW, Juers DH, Lev BB, Huber RE, Noskov SY. Elucidating factors important for monovalent cation selectivity in enzymes: E. coli β-galactosidase as a model. Phys Chem Chem Phys 2016; 17:10899-909. [PMID: 25820412 DOI: 10.1039/c4cp04952g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many enzymes require a specific monovalent cation (M(+)), that is either Na(+) or K(+), for optimal activity. While high selectivity M(+) sites in transport proteins have been extensively studied, enzyme M(+) binding sites generally have lower selectivity and are less characterized. Here we study the M(+) binding site of the model enzyme E. coli β-galactosidase, which is about 10 fold selective for Na(+) over K(+). Combining data from X-ray crystallography and computational models, we find the electrostatic environment predominates in defining the Na(+) selectivity. In this lower selectivity site rather subtle influences on the electrostatic environment become significant, including the induced polarization effects of the M(+) on the coordinating ligands and the effect of second coordination shell residues on the charge distribution of the primary ligands. This work expands the knowledge of ion selectivity in proteins to denote novel mechanisms important for the selectivity of M(+) sites in enzymes.
Collapse
Affiliation(s)
- Robert W Wheatley
- Division of Biochemistry, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
23
|
Liu JZ, Xu W, Chistoserdov A, Bajpai RK. Glycerol Dehydratases: Biochemical Structures, Catalytic Mechanisms, and Industrial Applications in 1,3-Propanediol Production by Naturally Occurring and Genetically Engineered Bacterial Strains. Appl Biochem Biotechnol 2016; 179:1073-100. [DOI: 10.1007/s12010-016-2051-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
24
|
Jiang W, Wang S, Wang Y, Fang B. Key enzymes catalyzing glycerol to 1,3-propanediol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:57. [PMID: 26966462 PMCID: PMC4785665 DOI: 10.1186/s13068-016-0473-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/24/2016] [Indexed: 05/27/2023]
Abstract
Biodiesel can replace petroleum diesel as it is produced from animal fats and vegetable oils, and it produces about 10 % (w/w) glycerol, which is a promising new industrial microbial carbon, as a major by-product. One of the most potential applications of glycerol is its biotransformation to high value chemicals such as 1,3-propanediol (1,3-PD), dihydroxyacetone (DHA), succinic acid, etc., through microbial fermentation. Glycerol dehydratase, 1,3-propanediol dehydrogenase (1,3-propanediol-oxydoreductase), and glycerol dehydrogenase, which were encoded, respectively, by dhaB, dhaT, and dhaD and with DHA kinase are encompassed by the dha regulon, are the three key enzymes in glycerol bioconversion into 1,3-PD and DHA, and these are discussed in this review article. The summary of the main research direction of these three key enzyme and methods of glycerol bioconversion into 1,3-PD and DHA indicates their potential application in future enzymatic research and industrial production, especially in biodiesel industry.
Collapse
Affiliation(s)
- Wei Jiang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
| | - Shizhen Wang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
| | - Yuanpeng Wang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Baishan Fang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
- />The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005 Fujian China
| |
Collapse
|
25
|
Vašák M, Schnabl J. Sodium and Potassium Ions in Proteins and Enzyme Catalysis. Met Ions Life Sci 2016; 16:259-90. [DOI: 10.1007/978-3-319-21756-7_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Jiang W, Li W, Hong Y, Wang S, Fang B. Cloning, Expression, Mutagenesis Library Construction of Glycerol Dehydratase, and Binding Mode Simulation of Its Reactivase with Ligands. Appl Biochem Biotechnol 2015; 178:739-52. [PMID: 26547853 DOI: 10.1007/s12010-015-1906-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022]
Abstract
The production of 1, 3-propanediol (1, 3-PD) and 3-hydroxypropionaldehyde (3-HPA) by enzyme reaction has been a hot field, and glycerol dehydratase (GDHt) is the key and rate-limiting enzyme involved in their biosynthesis. The gldABC gene encoding GDHt was cloned from Klebsiella pneumoniae, and the activity of the corresponding proteins expressed extracellularly and intracellularly was 6.8 and 3.2 U/mg, respectively, about six and three times higher than that of the wild strain. The change of amino acids for the β subunit can adjust the length of the Co-N bond and affect the homolysis rate of the Co-C bond to change GDHt activity. The expression plasmid, pET-32a-gldAC (containing no gldB which encodes the β subunit of GDHt), was constructed to build the mutagenesis library to improve the GDHt activity. The binding models of glycerol dehydratase reactivation factor (GDHtR) with ATP, CTP, or GTP were simulated by semi-flexible docking, respectively, and there was almost no difference between them. This research provided the basis for studying the quantitative structure-activity relationships between GDHtR and its ligands, as well as searching inexpensive ligands to replace ATP. These results and methods are of great use in economical and highly efficient production of 3-HPA and 1, 3-PD by the enzyme method.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Wenjun Li
- Hangzhou DAC Biotech Co., Ltd, Hangzhou, 310000, China
| | - Yan Hong
- Jingdezhen Ceramic Institute of Materials Science and Engineering, Jingde Zhen, 333000, China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China.
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
27
|
Shibata N, Toraya T. Molecular architectures and functions of radical enzymes and their (re)activating proteins. J Biochem 2015; 158:271-92. [PMID: 26261050 DOI: 10.1093/jb/mvv078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023] Open
Abstract
Certain proteins utilize the high reactivity of radicals for catalysing chemically challenging reactions. These proteins contain or form a radical and therefore named 'radical enzymes'. Radicals are introduced by enzymes themselves or by (re)activating proteins called (re)activases. The X-ray structures of radical enzymes and their (re)activases revealed some structural features of these molecular apparatuses which solved common enigmas of radical enzymes—i.e. how the enzymes form or introduce radicals at the active sites, how they use the high reactivity of radicals for catalysis, how they suppress undesired side reactions of highly reactive radicals and how they are (re)activated when inactivated by extinction of radicals. This review highlights molecular architectures of radical B12 enzymes, radical SAM enzymes, tyrosyl radical enzymes, glycyl radical enzymes and their (re)activating proteins that support their functions. For generalization, comparisons of the recently reported structures of radical enzymes with those of canonical radical enzymes are summarized here.
Collapse
Affiliation(s)
- Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan and
| | - Tetsuo Toraya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
28
|
Menon BRK, Menon N, Fisher K, Rigby SEJ, Leys D, Scrutton NS. Glutamate 338 is an electrostatic facilitator of C-Co bond breakage in a dynamic/electrostatic model of catalysis by ornithine aminomutase. FEBS J 2015; 282:1242-55. [PMID: 25627283 PMCID: PMC4413051 DOI: 10.1111/febs.13215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 01/04/2023]
Abstract
How cobalamin-dependent enzymes promote C–Co homolysis to initiate radical catalysis has been debated extensively. For the pyridoxal 5′-phosphate and cobalamin-dependent enzymes lysine 5,6-aminomutase and ornithine 4,5-aminomutase (OAM), large-scale re-orientation of the cobalamin-binding domain linked to C–Co bond breakage has been proposed. In these models, substrate binding triggers dynamic sampling of the B12-binding Rossmann domain to achieve a catalytically competent ‘closed’ conformational state. In ‘closed’ conformations of OAM, Glu338 is thought to facilitate C–Co bond breakage by close association with the cobalamin adenosyl group. We investigated this using stopped-flow continuous-wave photolysis, viscosity dependence kinetic measurements, and electron paramagnetic resonance spectroscopy of a series of Glu338 variants. We found that substrate-induced C–Co bond homolysis is compromised in Glu388 variant forms of OAM, although photolysis of the C–Co bond is not affected by the identity of residue 338. Electrostatic interactions of Glu338 with the 5′-deoxyadenosyl group of B12 potentiate C–Co bond homolysis in ‘closed’ conformations only; these conformations are unlocked by substrate binding. Our studies extend earlier models that identified a requirement for large-scale motion of the cobalamin domain. Our findings indicate that large-scale motion is required to pre-organize the active site by enabling transient formation of ‘closed’ conformations of OAM. In ‘closed’ conformations, Glu338 interacts with the 5′-deoxyadenosyl group of cobalamin. This interaction is required to potentiate C–Co homolysis, and is a crucial component of the approximately 1012 rate enhancement achieved by cobalamin-dependent enzymes for C–Co bond homolysis.
Collapse
Affiliation(s)
- Binuraj R K Menon
- Biotechnology and Biological Sciences Research Council/Engineering and Physical Sciences Research Council Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, Faculty of Life Sciences, The University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
29
|
Cobalamin-dependent dehydratases and a deaminase: Radical catalysis and reactivating chaperones. Arch Biochem Biophys 2014; 544:40-57. [DOI: 10.1016/j.abb.2013.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 01/12/2023]
|
30
|
Yoneda H, Tantillo DJ, Atsumi S. Biological production of 2-butanone in Escherichia coli. CHEMSUSCHEM 2014; 7:92-95. [PMID: 24193695 DOI: 10.1002/cssc.201300853] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Indexed: 06/02/2023]
Abstract
An Escherichia coli (E. coli) strain was engineered to synthesize 2-butanone from glucose by extending the 2,3-butanediol synthesis reaction sequence catalyzed by exogenous enzymes. To convert 2,3-butanediol to 2-butanone, B12-dependent glycerol dehydratase from Klebsiella pneumoniae was introduced into E. coli. It has been proposed that the enzyme has a weak activity toward 2,3-butanediol. The activity in E. coli is confirmed in this study. Furthermore, co-expressing coenzyme B12 reactivators increased the 2-butanone titer. This demonstration of 2-butanone production by extending the 2,3-butanediol biosynthetic pathway provides the possibility to produce this valuable chemical renewably.
Collapse
Affiliation(s)
- Hisanari Yoneda
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616 (USA), Fax: (+1) 530-752-8995; Central R&D laboratories, New Business Development, Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan)
| | | | | |
Collapse
|
31
|
Kwak S, Park YC, Seo JH. Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH. BIORESOURCE TECHNOLOGY 2013; 135:432-439. [PMID: 23246300 DOI: 10.1016/j.biortech.2012.11.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 06/01/2023]
Abstract
3-Hydroxypropionic acid (3-HP) is a value-added chemical for polymer synthesis. For biosynthesis of 3-HP from glycerol, two dhaB and dhaR clusters encoding glycerol dehydratase and its reactivating factor, respectively, were cloned from Lactobacillus brevis KCTC33069 and expressed in Escherichia coli. Coexpression of dhaB and dhaR allowed the recombinant E. coli to convert glycerol to 3-hydroxypropionaldehyde, an intermediate of 3-HP biosynthesis. To produce 3-HP from glycerol, fed-batch fermentation with a two-step feeding strategy was designed to separate the cell growth from the 3-HP production stages. Finally, E. coli JHS00947 expressing L .brevis dhaB and dhaR, and E. coli aldH produced 14.3g/L 3-HP with 0.26 g/L-h productivity, which were 14.6 and 8.53 times higher than those of the batch culture. In conclusion, overexpression of L. brevis dhaB and dhaR clusters and E. coli aldH, and implementation of the two-step feeding strategy enabled recombinant E. coli to convert glycerol to 3-HP efficiently.
Collapse
Affiliation(s)
- Suryang Kwak
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | |
Collapse
|
32
|
Dowling DP, Croft AK, Drennan CL. Radical use of Rossmann and TIM barrel architectures for controlling coenzyme B12 chemistry. Annu Rev Biophys 2013; 41:403-27. [PMID: 22577824 DOI: 10.1146/annurev-biophys-050511-102225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of enzymes to harness free-radical chemistry allows for some of the most amazing transformations in nature, including reduction of ribonucleotides and carbon skeleton rearrangements. Enzyme cofactors involved in this chemistry can be large and complex, such as adenosylcobalamin (coenzyme B(12)), simpler, such as S-adenosylmethionine and an iron-sulfur cluster (i.e., poor man's B(12)), or very small, such as one nonheme iron atom coordinated by protein ligands. Although the chemistry catalyzed by these enzyme-bound cofactors is unparalleled, it does come at a price. The enzyme must be able to control these radical reactions, preventing unwanted chemistry and protecting the enzyme active site from damage. Here, we consider a set of radical folds: the (β/α)(8) or TIM barrel, combined with a Rossmann domain for coenzyme B(12)-dependent chemistry. Using specific enzyme examples, we consider how nature employs the common TIM barrel fold and its Rossmann domain partner for radical-based chemistry.
Collapse
Affiliation(s)
- Daniel P Dowling
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
33
|
Sukumar N. Crystallographic studies on B12 binding proteins in eukaryotes and prokaryotes. Biochimie 2013; 95:976-88. [PMID: 23395752 DOI: 10.1016/j.biochi.2013.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/28/2013] [Indexed: 01/22/2023]
Abstract
The X-ray crystal structures of several important vitamin B12 binding proteins that have been solved in recent years have enhanced our current understanding in the vitamin B12 field. These structurally diverse groups of B12 binding proteins perform various important biological activities, both by transporting B12 as well as catalyzing various biological reactions. An in-depth comparative analysis of these structures was carried out using PDB coordinates of a carefully chosen database of B12 binding proteins to correlate the overall folding of the molecule with phylogeny, the B12 interactions, and with their biological function. The structures of these proteins are discussed in the context of this comparative analysis.
Collapse
Affiliation(s)
- Narayanasami Sukumar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439, USA.
| |
Collapse
|
34
|
Newmister SA, Chan CH, Escalante-Semerena JC, Rayment I. Structural insights into the function of the nicotinate mononucleotide:phenol/p-cresol phosphoribosyltransferase (ArsAB) enzyme from Sporomusa ovata. Biochemistry 2012; 51:8571-82. [PMID: 23039029 DOI: 10.1021/bi301142h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cobamides (Cbas) are cobalt (Co) containing tetrapyrrole-derivatives involved in enzyme-catalyzed carbon skeleton rearrangements, methyl-group transfers, and reductive dehalogenation. The biosynthesis of cobamides is complex and is only performed by some bacteria and achaea. Cobamides have an upper (Coβ) ligand (5'-deoxyadenosyl or methyl) and a lower (Coα) ligand base that contribute to the axial Co coordinations. The identity of the lower Coα ligand varies depending on the organism synthesizing the Cbas. The homoacetogenic bacterium Sporomusa ovata synthesizes two unique phenolic cobamides (i.e., Coα-(phenolyl/p-cresolyl)cobamide), which are used in the catabolism of methanol and 3,4-dimethoxybenzoate by this bacterium. The S. ovata ArsAB enzyme activates a phenolic lower ligand prior to its incorporation into the cobamide. ArsAB consists of two subunits, both of which are homologous (∼35% identity) to the well-characterized Salmonella enterica CobT enzyme, which transfers nitrogenous bases such as 5,6-dimethylbenzimidazole (DMB) and adenine, but cannot utilize phenolics. Here we report the three-dimensional structure of ArsAB, which shows that the enzyme forms a pseudosymmetric heterodimer, provide evidence that only the ArsA subunit has base:phosphoribosyl-transferase activity, and propose a mechanism by which phenolic transfer is facilitated by an activated water molecule.
Collapse
Affiliation(s)
- Sean A Newmister
- Departments of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
35
|
Takahashi-Iñiguez T, García-Hernandez E, Arreguín-Espinosa R, Flores ME. Role of vitamin B12 on methylmalonyl-CoA mutase activity. J Zhejiang Univ Sci B 2012; 13:423-37. [PMID: 22661206 DOI: 10.1631/jzus.b1100329] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vitamin B(12) is an organometallic compound with important metabolic derivatives that act as cofactors of certain enzymes, which have been grouped into three subfamilies depending on their cofactors. Among them, methylmalonyl-CoA mutase (MCM) has been extensively studied. This enzyme catalyzes the reversible isomerization of L-methylmalonyl-CoA to succinyl-CoA using adenosylcobalamin (AdoCbl) as a cofactor participating in the generation of radicals that allow isomerization of the substrate. The crystal structure of MCM determined in Propionibacterium freudenreichii var. shermanii has helped to elucidate the role of this cofactor AdoCbl in the reaction to specify the mechanism by which radicals are generated from the coenzyme and to clarify the interactions between the enzyme, coenzyme, and substrate. The existence of human methylmalonic acidemia (MMA) due to the presence of mutations in MCM shows the importance of its role in metabolism. The recent crystallization of the human MCM has shown that despite being similar to the bacterial protein, there are significant differences in the structural organization of the two proteins. Recent studies have identified the involvement of an accessory protein called MMAA, which interacts with MCM to prevent MCM's inactivation or acts as a chaperone to promote regeneration of inactivated enzyme. The interdisciplinary studies using this protein as a model in different organisms have helped to elucidate the mechanism of action of this isomerase, the impact of mutations at a functional level and their repercussion in the development and progression of MMA in humans. It is still necessary to study the mechanisms involved in more detail using new methods.
Collapse
Affiliation(s)
- Tóshiko Takahashi-Iñiguez
- Department of Molecular Biology and Biotechnology, Institute of Biomedical Research, National Autonomous University of Mexico, D.F. 04510, Mexico.
| | | | | | | |
Collapse
|
36
|
Molecular Cloning, Co-expression, and Characterization of Glycerol Dehydratase and 1,3-Propanediol Dehydrogenase from Citrobacter freundii. Mol Biotechnol 2012; 54:469-74. [DOI: 10.1007/s12033-012-9585-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Adenosylcobalamin enzymes: theory and experiment begin to converge. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1154-64. [PMID: 22516318 DOI: 10.1016/j.bbapap.2012.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/04/2012] [Accepted: 03/27/2012] [Indexed: 11/21/2022]
Abstract
Adenosylcobalamin (coenzyme B(12)) serves as the cofactor for a group of enzymes that catalyze unusual rearrangement or elimination reactions. The role of the cofactor as the initiator of reactive free radicals needed for these reactions is well established. Less clear is how these enzymes activate the coenzyme towards homolysis and control the radicals once generated. The availability of high resolution X-ray structures combined with detailed kinetic and spectroscopic analyses have allowed several adenosylcobalamin enzymes to be computationally modeled in some detail. Computer simulations have generally obtained good agreement with experimental data and provided valuable insight into the mechanisms of these unusual reactions. Importantly, atomistic modeling of the enzymes has allowed the role of specific interactions between protein, substrate and coenzyme to be explored, leading to mechanistic predictions that can now be tested experimentally. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.
Collapse
|
38
|
Abstract
The density functional calculations suggest that the expansion of the corrin macrocycle's N(4) core by 0.06-0.10 Å leads to an appreciable lowering of 100-150 mV vs. saturated calomel electrode in the reduction potentials of two biologically important B(12) cofactors namely methylcobalamin and adenosylcobalamin respectively. This redox tuning of B(12) cofactors may encourage the electron transfer-based activation mechanism for B(12)-dependent enzymes.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | | |
Collapse
|
39
|
Yamanishi M, Kinoshita K, Fukuoka M, Saito T, Tanokuchi A, Ikeda Y, Obayashi H, Mori K, Shibata N, Tobimatsu T, Toraya T. Redesign of coenzyme B12 dependent diol dehydratase to be resistant to the mechanism-based inactivation by glycerol and act on longer chain 1,2-diols. FEBS J 2012; 279:793-804. [DOI: 10.1111/j.1742-4658.2012.08470.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Speranza G, Buckel W, Golding BT. CoenzymeB12-dependent enzymatic dehydration of 1,2-diols: simple reaction, complex mechanism! J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424604000271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The conversion of glycerol to acrolein is an undesirable event in whisky production, caused by infection of the broth with Klebsiella pneumoniae. This organism uses glycerol dehydratase to transform glycerol into 3-hydroxypropanal, which affords acrolein on distillation. The enzyme requires adenosylcobalamin (coenzyme B12) as cofactor and a monovalent cation (e.g. K+). Diol dehydratase is a similar enzyme that converts 1,2-diols ( C2- C4) including glycerol into an aldehyde and water. The subtle stereochemical features of these enzymes are exemplified by propane-1,2-diol: both enantiomers are substrates but different hydrogen and oxygen atoms are abstracted. The mechanism of action of the dehydratases has been elucidated by protein crystallography and ab initio molecular orbital calculations, aided by stereochemical and model studies. The 5'-deoxyadenosyl (adenosyl) radical from homolysis of the coenzyme's Co - C σ-bond abstracts a specific hydrogen atom from C -1 of diol substrate giving a substrate radical that rearranges to a product radical by 1,2-shift of hydroxyl from C -2 to C -1. The rearrangement mechanism involves an acid-base 'push-pull' in which migration of OH is facilitated by partial protonation by Hisα143, synergistically assisted by partial deprotonation of the non-migrating ( C -1) OH by the carboxylate of Gluα170. The active site K+ion holds the two hydroxyl groups in the correct conformation, whilst not significantly contributing to catalysis. Recently, diol dehydratases not dependent on coenzyme B12have been discovered. These enzymes utilize the same kind of diol radical chemistry as the coenzyme B12-dependent enzymes and they also use the adenosyl radical as initiator, but this is generated from S-adenosylmethionine.
Collapse
Affiliation(s)
- Giovanna Speranza
- Dipartimento di Chimica Organica e Industriale, Università di Milano, via Venezian 21, 20133 Milano, Italia
| | - Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, D-35032 Marburg, Germany
| | - Bernard T. Golding
- School of Natural Sciences - Chemistry, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
41
|
Qi X, Guo Q, Wei Y, Xu H, Huang R. Enhancement of pH stability and activity of glycerol dehydratase from Klebsiella pneumoniae by rational design. Biotechnol Lett 2011; 34:339-46. [DOI: 10.1007/s10529-011-0775-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/06/2011] [Indexed: 12/28/2022]
|
42
|
Abstract
Vitamin B₁₂ is produced only by prokaryotes and utilized by animals as an essential micronutrient. Genetic complementation analysis of cell lines from patients indicated that at least eight gene products are involved in intracellular B₁₂ metabolism and utilization. We have investigated bacterial adenosylcobalamin-dependent enzymes and elucidated their structure-based fine mechanisms. They tend to undergo mechanism-based inactivation during catalysis, because they use highly reactive radicals for catalyzing chemically difficult reactions. We have discovered molecular chaperone-like reactivating factors for these enzymes that release a damaged cofactor forming apoenzyme. Methylcobalamin-dependent methionine synthase also undergoes inactivation, because it utilizes cob (I) alamin, a super nucleophile, for catalysis. Methionine synthase reductase is a reactivating partner for this enzyme. Recent studies suggested that activity-maintaining systems for B₁₂ enzymes are present in animal cells as well, and thus hints for designing therapeutic agents for B₁₂-related metabolic disorders might be obtained from the investigations of microbial B₁₂ metabolism.
Collapse
Affiliation(s)
- Tetsuo Toraya
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
43
|
Escobar AJG, Castaño DM. Classifying glycerol dehydratase by its functional residues and purifying selection in its evolution. Bioinformation 2010; 5:173-6. [PMID: 21364782 PMCID: PMC3041002 DOI: 10.6026/97320630005173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 08/25/2010] [Indexed: 11/23/2022] Open
Abstract
Glycerol dehydratase (GD) catalyses glycerol reductive conversion to 3-hydroxypropanaldehyde (3-HPA), this being the first step required for the microbial conversion of glycerol to 1, 3 -propanodiol. GD has been functionally characterised to date and two main groups have been determined, one of them being vitamin B(12)-dependent and the other B(12)-independent. GD evolutionary history has been described and an exhaustive analysis made for detecting the functional residues responsible for type I divergence. GD phylogenetic tree topology was seen to be statistically robust and the data indicated strong purifying selection operating on the GD proteins within it. Two clades were indentified, one for vitamin B(12)-dependent and the other for B(12)- independent classes. The ancient hot-pot residues responsible for protein divergency for each clade were also identified. The basic evolutionary biology for GD proteins has been described, thereby opening the way forward for developing rational mutagenesis studies.
Collapse
Affiliation(s)
- Andres Julian Gutierrez Escobar
- Universidad Nacional de Colombia, Bioprocesses and Bioprospecting Research Group, Instituto de Biotecnología Bogotá, Colombia
| | - Dolly Montoya Castaño
- Universidad Nacional de Colombia, Bioprocesses and Bioprospecting Research Group, Instituto de Biotecnología Bogotá, Colombia
| |
Collapse
|
44
|
Shibata N, Tamagaki H, Hieda N, Akita K, Komori H, Shomura Y, Terawaki SI, Mori K, Yasuoka N, Higuchi Y, Toraya T. Crystal structures of ethanolamine ammonia-lyase complexed with coenzyme B12 analogs and substrates. J Biol Chem 2010; 285:26484-93. [PMID: 20519496 PMCID: PMC2924083 DOI: 10.1074/jbc.m110.125112] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/17/2010] [Indexed: 11/06/2022] Open
Abstract
N-terminal truncation of the Escherichia coli ethanolamine ammonia-lyase beta-subunit does not affect the catalytic properties of the enzyme (Akita, K., Hieda, N., Baba, N., Kawaguchi, S., Sakamoto, H., Nakanishi, Y., Yamanishi, M., Mori, K., and Toraya, T. (2010) J. Biochem. 147, 83-93). The binary complex of the truncated enzyme with cyanocobalamin and the ternary complex with cyanocobalamin or adeninylpentylcobalamin and substrates were crystallized, and their x-ray structures were analyzed. The enzyme exists as a trimer of the (alphabeta)(2) dimer. The active site is in the (beta/alpha)(8) barrel of the alpha-subunit; the beta-subunit covers the lower part of the cobalamin that is bound in the interface of the alpha- and beta-subunits. The structure complexed with adeninylpentylcobalamin revealed the presence of an adenine ring-binding pocket in the enzyme that accommodates the adenine moiety through a hydrogen bond network. The substrate is bound by six hydrogen bonds with active-site residues. Argalpha(160) contributes to substrate binding most likely by hydrogen bonding with the O1 atom. The modeling study implies that marked angular strains and tensile forces induced by tight enzyme-coenzyme interactions are responsible for breaking the coenzyme Co-C bond. The coenzyme adenosyl radical in the productive conformation was modeled by superimposing its adenine ring on the adenine ring-binding site followed by ribosyl rotation around the N-glycosidic bond. A major structural change upon substrate binding was not observed with this particular enzyme. Glualpha(287), one of the substrate-binding residues, has a direct contact with the ribose group of the modeled adenosylcobalamin, which may contribute to the substrate-induced additional labilization of the Co-C bond.
Collapse
Affiliation(s)
- Naoki Shibata
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- the RIKEN Harima Institute, SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan, and
| | - Hiroko Tamagaki
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Naoki Hieda
- the Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Keita Akita
- the Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Hirofumi Komori
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yasuhito Shomura
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shin-ichi Terawaki
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Koichi Mori
- the Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Noritake Yasuoka
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- the RIKEN Harima Institute, SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan, and
| | - Tetsuo Toraya
- the Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| |
Collapse
|
45
|
Toraya T, Honda S, Mori K. Coenzyme B12-Dependent Diol Dehydratase Is a Potassium Ion-Requiring Calcium Metalloenzyme: Evidence That the Substrate-Coordinated Metal Ion Is Calcium. Biochemistry 2010; 49:7210-7. [DOI: 10.1021/bi100561m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tetsuo Toraya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Department of Industrial Biochemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Susumu Honda
- Department of Industrial Biochemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koichi Mori
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
46
|
Kozlowski PM, Kamachi T, Kumar M, Nakayama T, Yoshizawa K. Theoretical Analysis of the Diradical Nature of Adenosylcobalamin Cofactor−Tyrosine Complex in B12-Dependent Mutases: Inspiring PCET-Driven Enzymatic Catalysis. J Phys Chem B 2010; 114:5928-39. [DOI: 10.1021/jp100573b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Kamachi
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Manoj Kumar
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomonori Nakayama
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, and Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
47
|
Abstract
An increasing number of enzymes are being discovered that contain radicals or catalyze reactions via radical intermediates. These radical enzymes are able to open reaction pathways that two-electron steps cannot achieve. Recently, organic chemists started to apply related radical chemistry for synthetic purposes, whereby an electron energized by light is recycled in every turnover. This Minireview compares this new type of reaction with enzymes that use recycling radicals and single electrons as cofactors.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, 35032 Marburg, Germany.
| |
Collapse
|
48
|
Tsoy O, Ravcheev D, Mushegian A. Comparative genomics of ethanolamine utilization. J Bacteriol 2009; 191:7157-64. [PMID: 19783625 PMCID: PMC2786565 DOI: 10.1128/jb.00838-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/18/2009] [Indexed: 11/20/2022] Open
Abstract
Ethanolamine can be used as a source of carbon and nitrogen by phylogenetically diverse bacteria. Ethanolamine-ammonia lyase, the enzyme that breaks ethanolamine into acetaldehyde and ammonia, is encoded by the gene tandem eutBC. Despite extensive studies of ethanolamine utilization in Salmonella enterica serovar Typhimurium, much remains to be learned about EutBC structure and catalytic mechanism, about the evolutionary origin of ethanolamine utilization, and about regulatory links between the metabolism of ethanolamine itself and the ethanolamine-ammonia lyase cofactor adenosylcobalamin. We used computational analysis of sequences, structures, genome contexts, and phylogenies of ethanolamine-ammonia lyases to address these questions and to evaluate recent data-mining studies that have suggested an association between bacterial food poisoning and the diol utilization pathways. We found that EutBC evolution included recruitment of a TIM barrel and a Rossmann fold domain and their fusion to N-terminal alpha-helical domains to give EutB and EutC, respectively. This fusion was followed by recruitment and occasional loss of auxiliary ethanolamine utilization genes in Firmicutes and by several horizontal transfers, most notably from the firmicute stem to the Enterobacteriaceae and from Alphaproteobacteria to Actinobacteria. We identified a conserved DNA motif that likely represents the EutR-binding site and is shared by the ethanolamine and cobalamin operons in several enterobacterial species, suggesting a mechanism for coupling the biosyntheses of apoenzyme and cofactor in these species. Finally, we found that the food poisoning phenotype is associated with the structural components of metabolosome more strongly than with ethanolamine utilization genes or with paralogous propanediol utilization genes per se.
Collapse
Affiliation(s)
- Olga Tsoy
- Department of Bioengineering and Bioinformatics, Moscow State University, Vorob'evy gory 1-73, Moscow 119992, Russia, Institute for Information Transmission Problems, RAS, Bolshoi Karetny Pereulok 19, Moscow 127994, Russia, Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, Missouri 64110, Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Dmitry Ravcheev
- Department of Bioengineering and Bioinformatics, Moscow State University, Vorob'evy gory 1-73, Moscow 119992, Russia, Institute for Information Transmission Problems, RAS, Bolshoi Karetny Pereulok 19, Moscow 127994, Russia, Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, Missouri 64110, Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Arcady Mushegian
- Department of Bioengineering and Bioinformatics, Moscow State University, Vorob'evy gory 1-73, Moscow 119992, Russia, Institute for Information Transmission Problems, RAS, Bolshoi Karetny Pereulok 19, Moscow 127994, Russia, Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, Missouri 64110, Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
49
|
Qi X, Chen Y, Jiang K, Zuo W, Luo Z, Wei Y, Du L, Wei H, Huang R, Du Q. Saturation-mutagenesis in two positions distant from active site of a Klebsiella pneumoniae glycerol dehydratase identifies some highly active mutants. J Biotechnol 2009; 144:43-50. [DOI: 10.1016/j.jbiotec.2009.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/27/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
|
50
|
|