1
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
2
|
Shao J, Zhao Y, Wei W, Vaisman II. AGRAMP: machine learning models for predicting antimicrobial peptides against phytopathogenic bacteria. Front Microbiol 2024; 15:1304044. [PMID: 38516021 PMCID: PMC10955071 DOI: 10.3389/fmicb.2024.1304044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/12/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics for combating plant pathogenic bacteria in agriculture and the environment. However, identifying potent AMPs through laborious experimental assays is resource-intensive and time-consuming. To address these limitations, this study presents a bioinformatics approach utilizing machine learning models for predicting and selecting AMPs active against plant pathogenic bacteria. Methods N-gram representations of peptide sequences with 3-letter and 9-letter reduced amino acid alphabets were used to capture the sequence patterns and motifs that contribute to the antimicrobial activity of AMPs. A 5-fold cross-validation technique was used to train the machine learning models and to evaluate their predictive accuracy and robustness. Results The models were applied to predict putative AMPs encoded by intergenic regions and small open reading frames (ORFs) of the citrus genome. Approximately 7% of the 10,000-peptide dataset from the intergenic region and 7% of the 685,924-peptide dataset from the whole genome were predicted as probable AMPs. The prediction accuracy of the reported models range from 0.72 to 0.91. A subset of the predicted AMPs was selected for experimental test against Spiroplasma citri, the causative agent of citrus stubborn disease. The experimental results confirm the antimicrobial activity of the selected AMPs against the target bacterium, demonstrating the predictive capability of the machine learning models. Discussion Hydrophobic amino acid residues and positively charged amino acid residues are among the key features in predicting AMPs by the Random Forest Algorithm. Aggregation propensity appears to be correlated with the effectiveness of the AMPs. The described models would contribute to the development of effective AMP-based strategies for plant disease management in agricultural and environmental settings. To facilitate broader accessibility, our model is publicly available on the AGRAMP (Agricultural Ngrams Antimicrobial Peptides) server.
Collapse
Affiliation(s)
- Jonathan Shao
- Statistics and Bioinformatics Group - Northeast Area, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Wei Wei
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Iosif I. Vaisman
- School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
3
|
Moussa DG, Kung RW, Tse JS, Siqueira WL. Mechanistic Insights into Bioengineered Antibiofilm Enamel Pellicles. J Dent Res 2023:220345231162336. [PMID: 37082872 DOI: 10.1177/00220345231162336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Dental caries remains the most widespread chronic disease worldwide. Basically, caries originates within biofilms accumulated on dental enamel. Despite the nonrenewable nature of the enamel tissue, targeted preventive strategies are still very limited. We previously introduced customized multifunctional proteinaceous pellicles (coatings) for controlling bacterial attachment and subsequent biofilm succession. Stemmed from our whole proteome/peptidome analysis of the in vivo acquired enamel pellicle, we designed these pellicles using hybrid mixtures of the most abundant and complementary-acting antimicrobial and antifouling proteins/peptides for synergetic suppression of early biofilms. In conjugating these domains synthetically, their bioinhibitory efficacy was remarkably boosted. Herein, we sought to explore the key structure-function relationship of these potent de novo hybridized conjugates in comparison with their individual domains, solely or in physical mixtures. Specifically, we interrelated the following facets: physicochemical and 3-dimensional folding characteristics via molecular dynamics simulations, adopted secondary structure by circular dichroism, immobilization capacity on enamel through high-spatial resolution multiphoton microscopy, and biofilm suppression potency. Our data showed consistent associations among the increased preference for protein folding structures, α-helix content, and enamel-immobilization capacity; all were inversely correlated with the attached bioburden. The expressed phenotypes could be explained by the adopted strongly amphipathic helical conformation upon conjugation, mediated by the highly anionic and acidic N-terminal pentapeptide shared region/motif for enhanced immobilization on enamel. In conclusion, conjugating bioactive proteins/peptides is a novel translational approach to engineer robust antibiofilm pellicles for caries prevention. The adopted α-helical conformation is key to enhance the antibiofilm efficacy and immobilization capacity on enamel that are promoted by certain physicochemical properties of the constituent domains. These data are valuable for bioengineering versatile therapeutics to prevent/arrest dental caries, a condition that otherwise requires invasive treatments with substantial health care expenditures.
Collapse
Affiliation(s)
- D G Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, Canada
| | - R W Kung
- Department of Physics and Engineering Physics, College of Art and Science, University of Saskatchewan, Saskatoon, Canada
| | - J S Tse
- Department of Physics and Engineering Physics, College of Art and Science, University of Saskatchewan, Saskatoon, Canada
| | - W L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
4
|
Cardoso PHDO, Boleti APDA, Silva PSE, Mukoyama LTH, Guindo AS, de Moraes LFRN, de Oliveira CFR, Macedo MLR, Carvalho CME, de Castro AP, Migliolo L. Evaluation of a Novel Synthetic Peptide Derived from Cytolytic Mycotoxin Candidalysin. Toxins (Basel) 2022; 14:toxins14100696. [PMID: 36287965 PMCID: PMC9610734 DOI: 10.3390/toxins14100696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
The importance of neuroinflammation in neurology is becoming increasingly apparent. In addition to neuroinflammatory diseases such as multiple sclerosis, the role of neuroinflammation has been identified in many non-inflammatory neurological disorders such as stroke, epilepsy, and cancer. The immune response within the brain involves the presence of CNS resident cells; mainly glial cells, such as microglia, the CNS resident macrophages. We evaluated the peptide Ca-MAP1 bioinspired on the C. albicans immature cytolytic toxin candidalysin to develop a less hemolytic peptide with anti-neuroinflammatory, antibacterial, and cytotoxic activity against tumor cells. In silico and in vitro studies were performed at various concentrations. Ca-MAP1 exhibits low hemolytic activity at lower concentrations and was not cytotoxic to MRC-5 and BV-2 cells. Ca-MAP1 showed activity against Acinetobacter baumannii, Escherichia coli ATCC, E. coli KPC, Klebsiella pneumoniae ATCC, Pseudomonas aeruginosa, and Staphylococcus aureus ATCC. Furthermore, Ca-MAP1 exhibits anti-neuroinflammatory activity in the BV-2 microglia model, with 93.78% inhibition of nitrate production at 18.1 µM. Ca-MAP1 presents cytotoxic activity against tumor cell line NCI-H292 at 36.3 μM, with an IC50 of 38.4 µM. Ca-MAP1 demonstrates results that qualify it to be evaluated in the next steps to promote the control of infections and provide an alternative antitumor therapy.
Collapse
Affiliation(s)
- Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Patrícia Souza e Silva
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Lincoln Takashi Hota Mukoyama
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Alexya Sandim Guindo
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Luiz Filipe Ramalho Nunes de Moraes
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Maria Ligia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Cristiano Marcelo Espínola Carvalho
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Alinne Pereira de Castro
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
- Correspondence: ; Tel.: +55-67-33123473
| |
Collapse
|
5
|
He S, Yang Z, Li X, Wu H, Zhang L, Wang J, Shan A. Optimized proteolytic resistance motif (DabW)-based U1-2WD: A membrane-induced self-aggregating peptide to trigger bacterial agglutination and death. Acta Biomater 2022; 153:540-556. [PMID: 36162762 DOI: 10.1016/j.actbio.2022.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022]
Abstract
The biggest application bottleneck of antimicrobial peptides (AMPs) is the low oral bioavailability caused by the poor stability of digestive enzymes in the gastrointestinal tract. However, the research methods and evaluation criteria of available studies about anti-proteolytic strategies are not uniform and far from the actual environment in vivo. Here, we developed a research system and evaluation criteria for proteolytic resistance and systematically evaluated the effectiveness of different strategies for improving the protease stability of AMPs on the same platform for the first time. After a comprehensive analysis, Dab modification is identified as the most effective strategy to improve the trypsin stability of AMPs. By further modulating the proteolytic resistance optimization motif (DabW)n, U1-2WD is obtained with ideal stability and antimicrobial properties in vivo and in vitro. Notably, U1-2WD has a unique antibacterial mechanism, which forms amorphous aggregates in the bacteria environment to trigger the agglutination of bacterial cells to prevent bacterial escape. It then kills bacteria by disrupting bacterial membranes and inhibiting bacterial energy metabolism. Overall, our work has led to a new understanding of the effectiveness of proteolytic resistance strategies and accelerated the development of anti-proteolytic AMPs to combat multidrug-resistant bacterial infections. STATEMENT OF SIGNIFICANCE: We developed research system and evaluation criteria for proteolytic resistance and systematically evaluated the effectiveness of different strategies for improving protease stability of AMPs on the same platform for the first time. we found effective strategies to resist trypsin hydrolysis: modification with backbone (β-Arg), D-enantiomer (D-Arg) and L-2,4-diaminobutanoic acid (Dab). Further, the proteolytic resistance optimization motif (DabW)n was designed. When n=3, derivative U1-2WD was obtained with desirable stability and antimicrobial properties in vivo and in vitro. Notably, U1-2WD has a unique antibacterial mechanism, which can self-aggregate into amorphous aggregates in the bacteria environment to mediate the agglutination and sedimentation of bacterial cells to prevent bacterial escape, and then kill bacteria by destroying bacterial membranes and inhibiting bacterial energy metabolism.
Collapse
Affiliation(s)
- Shiqi He
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhanyi Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuefeng Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hua Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
6
|
Ghosh S, Chatterjee S, Satpati P. Effect of Leu/Val Mutation on the Energetics of Antimicrobial Peptide:Micelle Binding. J Phys Chem B 2022; 126:5262-5273. [PMID: 35815580 DOI: 10.1021/acs.jpcb.2c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, we had reported a synthetic positively charged leucine-rich 14-residue-long antimicrobial peptide (AMP, LL-14: NH3+-LKWLKKLLKWLKKL-CONH2), which was highly active and cytotoxic relative to its valine analogue (VV-14). However, the thermodynamics underlying this differential toxicity and antimicrobial activity was unclear. Understanding the energetics of peptide binding to micelles (simplest membrane mimic, viz., SDS as a bacterial membrane and DPC as a eukaryotic membrane) and the effect of Leu → Val peptide mutations on the stability of the peptide:micelle complexes are of great academic interest and relevant for the rational design of potent and selective AMPs for therapeutic use. Here, we have reported the molecular dynamics free energy simulations that allowed us to quantitatively estimate the strength of peptide discrimination (based on single- or multiple-site Leu/Val mutations in LL-14) by membrane mimetic micelles (SDS and DPC) and decipher the energetics underlying peptide selectivity by micelles. The Leu-containing peptide (LL-14) was found to be preferred for micelle (SDS and DPC) binding relative to its Val analogues (single or multiple Val mutants). The strength of the preference depended on the position of the Leu/Val mutation in the peptide. Surprisingly, the N-terminal LL-14 single mutation (Leu → Val: L1V) was found to fine-tune the electrostatic interactions, resulting in the highest peptide selectivity (ΔΔG ∼ 8 kcal/mol for both SDS and DPC). However, the mechanism of L1V peptide selectivity was distinctly different for SDS and DPC micelles. SDS ensured high selectivity by disrupting the peptide:micelle salt bridge, whereas DPC desolvated the broken-peptide-backbone hydrogen bond in the V1 peptide:micelle complex. Mutations (Leu → Val) in the middle positions of the LL-14 (4th, 7th, 8th, and 11th) were disfavored by the micelles primarily due to the loss of peptide:micelle hydrophobic interactions. Peptides differing at the C-terminal (i.e., L14V) were recognized by SDS micelles (ΔΔG ∼ 4 kcal/mol) by altering peptide:micelle interactions. L14V mutation, on the other hand, did not play any role in the peptide:DPC binding, as no direct interactions between the C-terminal and DPC micelle were observed due to obvious electrostatic reasons. The strength of selectivity favoring LL-14 binding against VV-14 was found to be much higher for DPC micelles (ΔΔG ∼ 25 kcal/mol) relative to SDS micelles (ΔΔG ∼ 19 kcal/mol). The loss of the peptide:micelle hydrophobic contact in response to LL-14 → VV-14 mutation was found to be significantly larger for DPC relative to SDS micelles, resulting in higher discriminatory power for the former. Peptide:SDS salt bridges seemed to prevent the loss of peptide:micelle hydrophobic contact to some extent, leading to weaker selectivity for SDS micelles. High selectivity of DPC micelles provided an efficient mechanism for VV-14 dissociation from DPC micelles, whereas low-selectivity of SDS micelles ensured binding of both LL-14 and VV-14. To the best of our knowledge, this is the first study in which the experimental observations (antimicrobial activity and toxicity) between leucine-rich and valine-rich peptides have been explained by establishing a direct link between the energetics and structures.
Collapse
Affiliation(s)
- Suvankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
7
|
Silva do Nascimento E, Anaya K, de Oliveira JMC, de Lacerda JTJG, Miller ME, Dias M, Mendes MA, de Azevedo Lima Pallone J, Weis Arns C, Juliano MA, Santi Gadelha T, Bertoldo Pacheco MT, de Almeida Gadelha CA. Identification of bioactive peptides released from in vitro gastrointestinal digestion of yam proteins (Dioscorea cayennensis). Food Res Int 2021; 143:110286. [PMID: 33992386 DOI: 10.1016/j.foodres.2021.110286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Bioactive peptides have been broadly studied for their contribution to human health. This study aimed to identify bioactive peptides generated by in vitro gastrointestinal digestion of yam proteins. Yam protein concentrate (YPC) was submitted to simulated digestion. Gastric phase hydrolysate (GPH) and total gastrointestinal phase hydrolysate (GIPH) had their peptides identified by nanoLC-ESI-MS/MS. Peptide sequences were subjected to a database-driven (BIOPEP) bioactivity search. In vitro tests included: Antioxidant activity, DNA damage protection, ACE-inhibitory activity and antibacterial activity against the bacteria Escherichia coli, Salmonella sp. and Lysteria monocytogenes. Simulated digestion generated small peptides (mostly MW < 3500 Da), several of them with potential bioactive sequences predicted in silico. In both GPH and GIPH biological activities were detected, although GIPH displayed stronger DNA damage protection and antibacterial activity against Escherichia coli. The digestion of yam proteins releases promising biologically active peptides which can contribute to the prevention of bacterial infection and chronic degenerative diseases, with beneficial effects to human health.
Collapse
Affiliation(s)
- Edilza Silva do Nascimento
- Department of Food Engineering, Post-Graduate Program in Food Science and Technology, Technology Center, Federal University of Paraiba, João Pessoa, PB, Brazil; Department of Molecular Biology, Laboratory of Structural Proteomics, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | - Katya Anaya
- Faculty of Health Sciences of Trari, Federal University of Rio Grande do Norte, Santa Cruz, RN, Brazil.
| | - Julia Mariano Caju de Oliveira
- Department of Molecular Biology, Laboratory of Structural Proteomics, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | | | - Michael Edward Miller
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
| | - Meriellen Dias
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil.
| | - Maria Anita Mendes
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Clarice Weis Arns
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
| | | | - Tatiane Santi Gadelha
- Department of Molecular Biology, Laboratory of Genetic Biochemistry and Radiology, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | | | - Carlos Alberto de Almeida Gadelha
- Department of Food Engineering, Post-Graduate Program in Food Science and Technology, Technology Center, Federal University of Paraiba, João Pessoa, PB, Brazil; Department of Molecular Biology, Laboratory of Structural Proteomics, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
8
|
Yan Y, Li Y, Zhang Z, Wang X, Niu Y, Zhang S, Xu W, Ren C. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces 2021; 202:111682. [PMID: 33714188 DOI: 10.1016/j.colsurfb.2021.111682] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
In the past few decades, peptide antibacterial products with unique antibacterial mechanisms have attracted widespread interest. They can effectively reduce the probability of drug resistance of bacteria and are biocompatible, so they possess tremendous development prospects. This review provides recent research and analysis on the basic types of antimicrobial peptides (including poly (amino acid)s, short AMPs, and lipopeptides) and factors to optimize antimicrobial effects. It also summarizes the two most important modes of action of antimicrobial peptides and the latest developments in the application of AMPs, including antimicrobial agent, wound healing, preservative, antibacterial coating and others. Finally, we discuss the remaining challenges to improve the antibacterial peptides and propose prospects in the field.
Collapse
Affiliation(s)
- Yuhan Yan
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuanze Li
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Zhiwen Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Xinhao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Shaohua Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai, 264000, China.
| |
Collapse
|
9
|
Strandberg E, Wadhwani P, Ulrich AS. Antibiotic Potential and Biophysical Characterization of Amphipathic β-Stranded [XZ]n Peptides With Alternating Cationic and Hydrophobic Residues. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:622096. [PMID: 35047904 PMCID: PMC8757834 DOI: 10.3389/fmedt.2021.622096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cationic membrane-active peptides are considered to be promising candidates for antibiotic treatment. Many natural and artificial sequences show an antimicrobial activity when they are able to take on an amphipathic fold upon membrane binding, which in turn perturbs the integrity of the lipid bilayer. Most known structures are α-helices and β-hairpins, but also cyclic knots and other irregular conformations are known. Linear β-stranded antimicrobial peptides are not so common in nature, but numerous model sequences have been designed. Interestingly, many of them tend to be highly membranolytic, but also have a significant tendency to self-assemble into β-sheets by hydrogen-bonding. In this minireview we examine the literature on such amphipathic peptides consisting of simple repetitive sequences of alternating cationic and hydrophobic residues, and discuss their advantages and disadvantages. Their interactions with lipids have been characterized with a number of biophysical techniques—especially circular dichroism, fluorescence, and infrared—in order to determine their secondary structure, membrane binding, aggregation tendency, and ability to permeabilize vesicles. Their activities against bacteria, biofilms, erythrocytes, and human cells have also been studied using biological assays. In line with the main scope of this Special Issue, we attempt to correlate the biophysical results with the biological data, and in particular we discuss which properties (length, charge, aggregation tendency, etc.) of these simple model peptides are most relevant for their biological function. The overview presented here offers ideas for future experiments, and also suggests a few design rules for promising β-stranded peptides to develop efficient antimicrobial agents.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology, Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology, Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology, Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Karlsruhe, Germany
- *Correspondence: Anne S. Ulrich
| |
Collapse
|
10
|
He S, Yang Z, Yu W, Li J, Li Z, Wang J, Shan A. Systematically Studying the Optimal Amino Acid Distribution Patterns of the Amphiphilic Structure by Using the Ultrashort Amphiphiles. Front Microbiol 2020; 11:569118. [PMID: 33324358 PMCID: PMC7725003 DOI: 10.3389/fmicb.2020.569118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023] Open
Abstract
Amphipathicity has traditionally been considered to be essential for the de novo design or systematic optimization of antimicrobial peptides (AMPs). However, the current research methods to study the relationship between amphiphilicity and antimicrobial activity are inappropriate, because the key parameters (hydrophobicity, positive charge, etc.) and secondary structure of AMPs are changed. To systematically and accurately study the effects of amphiphilicity on antimicrobial properties of AMPs, we designed parallel series of AMPs with a different order of amino acids in a sequence composed only of Arg and either Trp (WR series) or Leu (LR series), under conditions in which other vital parameters were fixed. Furthermore, based on the WR and LR peptides that can form stable amphiphilic β-sheet structures in the anionic membrane-mimetic environment, we found that high β-sheet amphipathic was accompanied by strong antimicrobial activity. Of such peptides, W5 ([RW]4W) and L5 ([RL]4L) with a nicely amphipathic β-sheet structure possessed the optimal therapeutic index. W5 and L5 also exhibited high stability in vitro and a potent membrane-disruptive mechanism. These results suggest that the alternate arrangement of hydrophobic and hydrophilic residues to form a stable amphipathic β-sheet structure is an essential factor that significantly affects the antimicrobial properties.
Collapse
Affiliation(s)
- Shiqi He
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhanyi Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Weikang Yu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jiawei Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhongyu Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Lachowicz JI, Szczepski K, Scano A, Casu C, Fais S, Orrù G, Pisano B, Piras M, Jaremko M. The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. Int J Mol Sci 2020; 21:E7349. [PMID: 33027928 PMCID: PMC7583890 DOI: 10.3390/ijms21197349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Health-care systems that develop rapidly and efficiently may increase the lifespan of humans. Nevertheless, the older population is more fragile, and is at an increased risk of disease development. A concurrently growing number of surgeries and transplantations have caused antibiotics to be used much more frequently, and for much longer periods of time, which in turn increases microbial resistance. In 1945, Fleming warned against the abuse of antibiotics in his Nobel lecture: "The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant". After 70 years, we are witnessing the fulfilment of Fleming's prophecy, as more than 700,000 people die each year due to drug-resistant diseases. Naturally occurring antimicrobial peptides protect all living matter against bacteria, and now different peptidomimetic strategies to engineer innovative antibiotics are being developed to defend humans against bacterial infections.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Alessandra Scano
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Cinzia Casu
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
12
|
Phosphate-dependent aggregation of [KL] n peptides affects their membranolytic activity. Sci Rep 2020; 10:12300. [PMID: 32704013 PMCID: PMC7378186 DOI: 10.1038/s41598-020-69162-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/25/2020] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigate how the length of amphiphilic β-sheet forming peptides affects their interaction with membranes. Four polycationic model peptides with lengths from 6 to 18 amino acids were constructed from simple Lys-Leu repeats, giving [KL]n=3,5,7,9. We found that (1) they exhibit a pronounced antimicrobial activity with an intriguing length dependent maximum for [KL]5 with 10 amino acids; (2) their hemolytic effect, on the other hand, increases steadily with peptide length. CD analysis (3) and TEM (4) show that all peptides-except for the short [KL]3-aggregate into amyloid-like fibrils in the presence of phosphate ions, which in turn has a critical effect on the results in (1) and (2). In fact, (5) vesicle leakage reveals an intrinsic membrane-perturbing activity (at constant peptide mass) of [KL]5 > [KL]9 > [KL]7 in phosphate buffer, which changes to [KL]5 ≈ [KL]7 ≈ [KL]9 in PIPES. A specific interaction with phosphate ions thus explains the subtle balance between two counteracting effects: phosphate-induced unproductive pre-aggregation in solution versus monomeric membrane binding and vigorous lipid perturbation due to self-assembly of the bound peptides within the bilayer. This knowledge can now be used to control and optimize the peptides in further applications.
Collapse
|
13
|
Pandit G, Biswas K, Ghosh S, Debnath S, Bidkar AP, Satpati P, Bhunia A, Chatterjee S. Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183177. [PMID: 31954105 DOI: 10.1016/j.bbamem.2020.183177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023]
Abstract
The widespread abuse of antibiotics has led to the use of antimicrobial peptides (AMPs) as a replacement for the existing conventional therapeutic agents for combating microbial infections. The broad-spectrum activity and the resilient nature of AMPs has mainly aggrandized their utilization. Here, we report the design of non-toxic, non-hemolytic and salt tolerant undecapeptides (AMP21-24), derived by modification of a peptide P5 (NH2-LRWLRRLCONH2) reported earlier by our group. Our results depict that the designed peptides show potency against several bacterial as well as fungal strains. Circular dichroism (CD) spectroscopy in combination with molecular dynamic (MD) simulations confirm that the peptides are unstructured. Intrinsic tryptophan fluorescence quenching as well as interaction studies using isothermal calorimetry (ITC) of these peptides in the presence of biological microbial membrane mimics establish the strong microbial membrane affinity of these AMPs. Membrane permeabilization assay and cytoplasmic membrane depolarization studies of Pseudomonas aeruginosa and Candida albicans in the presence of AMPs also hint towards the AMP-membrane interactions. Leakage of calcein dye from membrane mimic liposomes, live cell NMR and field emission scanning electron microscopy (FESEM) studies suggest that the AMPs may be primarily involved in membrane perturbation leading to release of intracellular substances resulting in subsequent microbial cell death. Confocal laser scanning microscopy (CLSM) shows localization of the peptides throughout the cell, indicating the possibility of secondary mode of actions. Electrostatic interactions seem to govern the preferential binding of the AMPs to the microbial membranes in comparison to the mammalian membranes as seen from the MD simulations.
Collapse
Affiliation(s)
- Gopal Pandit
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, India
| | - Karishma Biswas
- Department of Biophysics, Bose Institute, P-1/12 CIT scheme, VII (M), Kolkata, India
| | - Suvankar Ghosh
- Department of Biosciences and bioengineering, IIT Guwahati, Guwahati, India
| | - Swapna Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, India
| | - Anil P Bidkar
- Department of Biosciences and bioengineering, IIT Guwahati, Guwahati, India
| | - Priyadarshi Satpati
- Department of Biosciences and bioengineering, IIT Guwahati, Guwahati, India.
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT scheme, VII (M), Kolkata, India.
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, India.
| |
Collapse
|
14
|
Chernov VM, Chernova OA, Mouzykantov AA, Medvedeva ES, Baranova NB, Malygina TY, Aminov RI, Trushin MV. Antimicrobial resistance in mollicutes: known and newly emerging mechanisms. FEMS Microbiol Lett 2019; 365:5057471. [PMID: 30052940 DOI: 10.1093/femsle/fny185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
This review is devoted to the mechanisms of antibiotic resistance in mollicutes (class Bacilli, subclass Mollicutes), the smallest self-replicating bacteria, that can cause diseases in plants, animals and humans, and also contaminate cell cultures and vaccine preparations. Research in this area has been mainly based on the ubiquitous mollicute and the main contaminant of cell cultures, Acholeplasma laidlawii. The omics technologies applied to this and other bacteria have yielded a complex picture of responses to antimicrobials, including their removal from the cell, the acquisition of antibiotic resistance genes and mutations that potentially allow global reprogramming of many cellular processes. This review provides a brief summary of well-known resistance mechanisms that have been demonstrated in several mollicutes species and, in more detail, novel mechanisms revealed in A. laidlawii, including the least explored vesicle-mediated transfer of short RNAs with a regulatory potency. We hope that this review highlights new avenues for further studies on antimicrobial resistance in these bacteria for both a basic science and an application perspective of infection control and management in clinical and research/production settings.
Collapse
Affiliation(s)
- Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Elena S Medvedeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Natalia B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Tatiana Y Malygina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation
| | - Rustam I Aminov
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Maxim V Trushin
- Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| |
Collapse
|
15
|
Lyu C, Fang F, Li B. Anti-Tumor Effects of Melittin and Its Potential Applications in Clinic. Curr Protein Pept Sci 2019; 20:240-250. [PMID: 29895240 DOI: 10.2174/1389203719666180612084615] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
Melittin, a major component of bee venom, is a water-soluble toxic peptide of which a various biological effects have been identified to be useful in anti-tumor therapy. In addition, Melittin also has anti-parasitic, anti-bacterial, anti-viral, and anti-inflammatory activities. Therefore, it is a very attractive therapeutic candidate for human diseases. However, melittin induces extensive hemolysis, a severe side effect that dampens its future development and clinical application. Thus, studies of melittin derivatives and new drug delivery systems have been conducted to explore approaches for optimizing the efficacy of this compound, while reducing its toxicity. A number of reviews have focused on each side, respectively. In this review, we summarize the research progress on the anti-tumor effects of melittin and its derivatives, and discuss its future potential clinical applications.
Collapse
Affiliation(s)
- Can Lyu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Fry HC, Silveira GDQ, Cohn HM, Lee B. Diverse Bilayer Morphologies Achieved via α-Helix-to-β-Sheet Transitions in a Short Amphiphilic Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8961-8967. [PMID: 31192607 DOI: 10.1021/acs.langmuir.9b00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transmembrane proteins are functional macromolecules that direct the flow of small molecules and ions across a lipid bilayer. Here, we propose the development of helical peptide amphiphiles that will serve as both the bilayer and the functional unit of a self-assembled peptide bilayer membrane. The peptide, K3L12, was designed not only to possess dimensions similar to that of a lipid bilayer but also to yield a structurally robust, α-helical bilayer. The formation of α-helices is pH-dependent, and upon annealing the sample, a transition from α-helices to β-sheets can be controlled, as indicated by optical and vibrational spectroscopies. Imaging the materials confirms morphologies similar to that of a lipid bilayer but rich in α-helices. Annealing the samples yields a shift in the morphology from bilayers to curled disks, fibers, and sheets. The structural robustness of the material can facilitate the incorporation of many functions into the bilayer assembly.
Collapse
|
17
|
Hädicke A, Blume A. Interaction of Short Pentavalent Cationic Peptides with Negatively Charged DPPG Monolayers and Bilayers: Influence of Peptide Modifications on Binding. J Phys Chem B 2018; 122:10522-10534. [PMID: 30371093 DOI: 10.1021/acs.jpcb.8b08667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of oligopeptides with the structure (RX)4R and (KXX)4K, with X being the amino acid G or A, to lipid monolayers and bilayers of dipalmitoyl-phosphatidylglycerol (DPPG) was studied and compared to the binding effects of peptides with the structure (KX)4K. The monolayer adsorption experiments again showed the superposition of condensation effects due to charge compensation and insertion of amino acid side chains leading to expansion of the monolayer. The latter effect was enhanced when glycine was replaced by alanine. The thermotropic phase behavior of dipalmitoyl-phosphatidylglycerol (DPPG) bilayer membranes and their mixtures with short cationic model peptides was investigated by differential scanning calorimetry and infrared spectroscopy. Increasing the charge distance of the lysine residues in the series (K)5, (KG)4K, and (KGG)4K results in an upshift of the main phase transition of DPPG up to 5 K, as predicted for pure electrostatic binding. All peptides exhibit only unordered structures in bulk solution as well as when bound to DPPG bilayers. (KGG)4K additionally shows a high propensity of turn structures due to its flexibility. The exchange of glycine by alanine in (KAA)4K leads only to a marginal increase in Tm, in contrast to the binding of (KA)4K where the formation of intervesicular antiparallel β-sheets occurs, leading to a much more pronounced stabilization of the gel phase. This shows that the sequence and flexibility of the oligopeptides has an important influence on the formation of secondary structures bound to the bilayers. Binding of (RX)4R peptides to DPPG bilayers has almost no influence on the lipid phase transition in bilayers. Here, condensation and insertion effects almost compensate, as the results of monolayer experiments show. This is due to the higher propensity of arginine side chains to insert into the lipid headgroup region.
Collapse
Affiliation(s)
- André Hädicke
- Institute of Chemistry , MLU Halle-Wittenberg , von-Danckelmann-Platz 4 , 06120 Halle/Saale , Germany
| | - Alfred Blume
- Institute of Chemistry , MLU Halle-Wittenberg , von-Danckelmann-Platz 4 , 06120 Halle/Saale , Germany
| |
Collapse
|
18
|
Szkudlarek M, Heine E, Keul H, Beginn U, Möller M. Synthesis, Characterization, and Antimicrobial Properties of Peptides Mimicking Copolymers of Maleic Anhydride and 4-Methyl-1-pentene. Int J Mol Sci 2018; 19:E2617. [PMID: 30181456 PMCID: PMC6163474 DOI: 10.3390/ijms19092617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
Synthetic amphiphilic copolymers with strong antimicrobial properties mimicking natural antimicrobial peptides were obtained via synthesis of an alternating copolymer of maleic anhydride and 4-methyl-1-pentene. The obtained copolymer was modified by grafting with 3-(dimethylamino)-1-propylamine (DMAPA) and imidized in a one-pot synthesis. The obtained copolymer was modified further to yield polycationic copolymers by means of quaternization with methyl iodide and dodecyl iodide, as well as by being sequentially quaternized with both of them. The antimicrobial properties of obtained copolymers were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. Both tested quaternized copolymers were more active against the Gram-negative E. coli than against the Gram-positive S. aureus. The copolymer modified with both iodides was best when tested against E. coli and, comparing all three copolymers, also exhibited the best effect against S. aureus. Moreover, it shows (limited) selectivity to differentiate between mammalian cells and bacterial cell walls. Comparing the minimum inhibitory concentration (MIC) of Nisin against the Gram-positive bacteria on the molar basis instead on the weight basis, the difference between the effect of Nisin and the copolymer is significantly lower.
Collapse
Affiliation(s)
- Marian Szkudlarek
- DWI Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Elisabeth Heine
- DWI Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Helmut Keul
- DWI Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Uwe Beginn
- Institut für Chemie, Universität Osnabrück, OMC, Barbarastraße 7, D-49076 Osnabrück, Germany.
| | - Martin Möller
- DWI Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| |
Collapse
|
19
|
Pandit G, Ilyas H, Ghosh S, Bidkar AP, Mohid SA, Bhunia A, Satpati P, Chatterjee S. Insights into the Mechanism of Antimicrobial Activity of Seven-Residue Peptides. J Med Chem 2018; 61:7614-7629. [DOI: 10.1021/acs.jmedchem.8b00353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gopal Pandit
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Humaira Ilyas
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme, VII (M), Kolkata 700054, India
| | - Suvankar Ghosh
- Department of Biosciences and Bioengineering, IIT, Guwahati 781039, India
| | - Anil P. Bidkar
- Department of Biosciences and Bioengineering, IIT, Guwahati 781039, India
| | - Sk. Abdul Mohid
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme, VII (M), Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme, VII (M), Kolkata 700054, India
| | | | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| |
Collapse
|
20
|
Chung YC, Kim HY, Choi JW, Chun BC. Graft polymerization of 4-imidazole acrylic acid onto polyurethane for the improvement of water compatibility and antifungal activity. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yong-Chan Chung
- Department of Chemistry; The University of Suwon; Hwaseong 18323 Korea
| | - Ha Youn Kim
- School of Nano Engineering; Inje University; Gimhae 50834 Korea
| | - Jae Won Choi
- School of Nano Engineering; Inje University; Gimhae 50834 Korea
| | | |
Collapse
|
21
|
Kim MK, Kang HK, Ko SJ, Hong MJ, Bang JK, Seo CH, Park Y. Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Sci Rep 2018; 8:1763. [PMID: 29379033 PMCID: PMC5789083 DOI: 10.1038/s41598-018-19434-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/28/2017] [Indexed: 01/06/2023] Open
Abstract
Hp1404, identified from the venom of the scorpion Heterometrus petersii, displays antimicrobial activity with cytotoxicity. Several synthetic peptides were designed based on the parent peptide Hp1404 to reduce cytotoxicity and improve activity (deletion of glycine and phenylalanine, substitution with leucine and lysine). The analogue peptides generated comprised 12 amino acids and displayed amphipathic α-helical structures, with higher hydrophobic moments and net positive charge than those of the Hp1404. The analogues showed less hemolytic and toxic effects toward mammalian cells than the Hp1404, especially Hp1404-T1e, which exhibited particularly potent antibacterial and antibiofilm activities against multidrug-resistant Pseudomonas aeruginosa (MRPA) strains. The analogue peptide Hp1404-T1e was more stable against salt and trypsin than the Hp1404. Hp1404's mechanism of action involves binding to lipopolysaccharide (LPS), thereby killing bacteria through membrane disruption. Hp1404-T1e kills bacteria more rapidly than Hp1404 and not only seems to bind more strongly to LPS but may also be able to enter bacterial cells and interact with their DNA. Additionally, Hp1404-T1e can effectively kill bacteria in vivo. The results of this study indicate that Hp1404-T1e not only displays antimicrobial activity, but is also functional in physiological conditions, confirming its potential use as an effective therapeutic agent against MRPA.
Collapse
Affiliation(s)
- Min Kyung Kim
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Hee Kyoung Kang
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Su Jin Ko
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Min Ji Hong
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, 314-701, South Korea
| | - Yoonkyung Park
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea.
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea.
| |
Collapse
|
22
|
Genome Sequences of Acholeplasma laidlawii Strains with Increased Resistance to Tetracycline and Melittin. GENOME ANNOUNCEMENTS 2018; 6:6/2/e01446-17. [PMID: 29326221 PMCID: PMC5764945 DOI: 10.1128/genomea.01446-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acholeplasma laidlawii is a well-suited model for studying the molecular basis for adapting mollicutes to environmental conditions. Here, we present the whole-genome sequences of two strains of A. laidlawii with increased resistance to tetracycline and melittin.
Collapse
|
23
|
Hu B, Owh C, Chee PL, Leow WR, Liu X, Wu YL, Guo P, Loh XJ, Chen X. Supramolecular hydrogels for antimicrobial therapy. Chem Soc Rev 2018; 47:6917-6929. [DOI: 10.1039/c8cs00128f] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The programmable nature of supramolecular interactions enables various supramolecular hydrogels to perform antimicrobial therapy.
Collapse
Affiliation(s)
- Benhui Hu
- Innovative Center for Flexible Devices (iFLEX)
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE)
- Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE)
- Singapore
| | - Wan Ru Leow
- Innovative Center for Flexible Devices (iFLEX)
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Xuan Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Science
- Xiamen University
- Xiamen
- China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research
- School of Pharmaceutical Science
- Xiamen University
- Xiamen
- China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment
- School of Materials Science and Engineering
- Qingdao University
- Qingdao
- China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX)
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
24
|
Wang Y, Fan Y, Zhou Z, Tu H, Ren Q, Wang X, Ding L, Zhou X, Zhang L. De novo synthetic short antimicrobial peptides against cariogenic bacteria. Arch Oral Biol 2017; 80:41-50. [DOI: 10.1016/j.archoralbio.2017.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/17/2017] [Accepted: 03/23/2017] [Indexed: 01/10/2023]
|
25
|
Bhowmick S, Mohanty S, Koul V. Fabrication of transparent quaternized PVA/silver nanocomposite hydrogel and its evaluation as an antimicrobial patch for wound care systems. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:160. [PMID: 27638099 DOI: 10.1007/s10856-016-5772-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Grafting of quaternary nitrogen atoms into the backbone of polymer is an efficient way of developing new generation antimicrobial polymeric wound dressing. In this study, an elastic, non-adhesive and antimicrobial transparent hydrogel based dressing has been designed, which might be helpful for routine observation of wound area without removing the dressing material along with maintaining a sterile environment for a longer period of time. Green synthesized silver nanoparticles have been loaded into the quaternized PVA hydrogel matrix to improve its antimicrobial property. Silver nanoparticles loaded quaternized PVA hydrogel showed enhanced mechanical and swelling properties compared to native quaternized PVA hydrogel. Release kinetics evaluated by atomic absorption spectroscopy revealed that the release mechanism of silver nanoparticles from the hydrogel follows Fickian diffusion. Antimicrobial efficacy of the hydrogels was evaluated by disk diffusion test on Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. After 96 h of release in phosphate buffer, the growth inhibition zone created by silver nanoparticless loaded quaternized PVA hydrogel is comparable to that created by ampicillin. These observations assert that the silver nanoparticles loaded quaternized PVA hydrogel acts as a reservoir of silver nanoparticles, which helps in maintaining a sterile environment for longer time duration by releasing Ag nanocrystallite in sustained manner.
Collapse
Affiliation(s)
- Sirsendu Bhowmick
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Straße 27, Dresden, 01069, Germany
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
26
|
Hädicke A, Blume A. Binding of cationic peptides (KX) 4 K to DPPG bilayers. Increasing the hydrophobicity of the uncharged amino acid X drives formation of membrane bound β-sheets: A DSC and FT-IR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1196-206. [DOI: 10.1016/j.bbamem.2016.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/29/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
27
|
Bhowmick S, Koul V. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:109-119. [DOI: 10.1016/j.msec.2015.10.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022]
|
28
|
Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci 2015; 72:4501-22. [PMID: 26286896 PMCID: PMC11113828 DOI: 10.1007/s00018-015-2016-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.
Collapse
Affiliation(s)
- Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Higher School of Economics, 20 Myasnitskaya, Moscow, 101000, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
29
|
Dalgicdir C, Sayar M. Conformation and Aggregation of LKα14 Peptide in Bulk Water and at the Air/Water Interface. J Phys Chem B 2015; 119:15164-75. [PMID: 26551581 DOI: 10.1021/acs.jpcb.5b08871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Historically, the protein folding problem has mainly been associated with understanding the relationship between amino acid sequence and structure. However, it is known that both the conformation of individual molecules and their aggregation strongly depend on the environmental conditions. Here, we study the aggregation behavior of the model peptide LKα14 (with amino acid sequence LKKLLKLLKKLLKL) in bulk water and at the air/water interface. We start by a quantitative analysis of the conformational space of a single LKα14 in bulk water. Next, in order to analyze the aggregation tendency of LKα14, by using the umbrella sampling technique we calculate the potential of mean force for pulling a single peptide from an n-molecule aggregate. In agreement with the experimental results, our calculations yield the optimal aggregate size as four. This equilibrium state is achieved by two opposing forces: Coulomb repulsion between the lysine side chains and the reduction of solvent accessible hydrophobic surface area upon aggregation. At the vacuum/water interface, however, even dimers of LKα14 become marginally stable, and any larger aggregate falls apart instantaneously. Our results indicate that even though the interface is highly influential in stabilizing the α-helix conformation for a single molecule, it significantly reduces the attraction between two LKα14 peptides, along with their aggregation tendency.
Collapse
Affiliation(s)
- Cahit Dalgicdir
- College of Engineering and ¶Chemical & Biological Engineering and Mechanical Engineering Departments, Koç University , Istanbul, Turkey 34450
| | - Mehmet Sayar
- College of Engineering and ¶Chemical & Biological Engineering and Mechanical Engineering Departments, Koç University , Istanbul, Turkey 34450
| |
Collapse
|
30
|
Tipping the Scale from Disorder to Alpha-helix: Folding of Amphiphilic Peptides in the Presence of Macroscopic and Molecular Interfaces. PLoS Comput Biol 2015; 11:e1004328. [PMID: 26295346 PMCID: PMC4546688 DOI: 10.1371/journal.pcbi.1004328] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
Secondary amphiphilicity is inherent to the secondary structural elements of proteins. By forming energetically favorable contacts with each other these amphiphilic building blocks give rise to the formation of a tertiary structure. Small proteins and peptides, on the other hand, are usually too short to form multiple structural elements and cannot stabilize them internally. Therefore, these molecules are often found to be structurally ambiguous up to the point of a large degree of intrinsic disorder in solution. Consequently, their conformational preference is particularly susceptible to environmental conditions such as pH, salts, or presence of interfaces. In this study we use molecular dynamics simulations to analyze the conformational behavior of two synthetic peptides, LKKLLKLLKKLLKL (LK) and EAALAEALAEALAE (EALA), with built-in secondary amphiphilicity upon forming an alpha-helix. We use these model peptides to systematically study their aggregation and the influence of macroscopic and molecular interfaces on their conformational preferences. We show that the peptides are neither random coils in bulk water nor fully formed alpha helices, but adopt multiple conformations and secondary structure elements with short lifetimes. These provide a basis for conformation-selection and population-shift upon environmental changes. Differences in these peptides' response to macroscopic and molecular interfaces (presented by an aggregation partner) can be linked to their inherent alpha-helical tendencies in bulk water. We find that the peptides' aggregation behavior is also strongly affected by presence or absence of an interface, and rather subtly depends on their surface charge and hydrophobicity.
Collapse
|
31
|
Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Sci Rep 2015; 5:9388. [PMID: 25807192 PMCID: PMC5224518 DOI: 10.1038/srep09388] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/20/2015] [Indexed: 11/16/2022] Open
Abstract
Hydrophobic mismatch is a well-recognized principle in the interaction of transmembrane proteins with lipid bilayers. This concept was extended here to amphipathic membranolytic α-helices. Nine peptides with lengths between 14 and 28 amino acids were designed from repeated KIAGKIA motifs, and their helical nature was confirmed by circular dichroism spectroscopy. Biological assays for antimicrobial activity and hemolysis, as well as fluorescence vesicle leakage and solid-state NMR spectroscopy, were used to correlate peptide length with membranolytic activity. These data show that the formation of transmembrane pores is only possible under the condition of hydrophobic matching: the peptides have to be long enough to span the hydrophobic bilayer core to be able to induce vesicle leakage, kill bacteria, and cause hemolysis. By correlating the threshold lengths for biological activity with the biophysical results on model vesicles, the peptides could be utilized as molecular rulers to measure the membrane thickness in different cells.
Collapse
|
32
|
Shin SY. Effect of Double Replacement of L-Pro, D-Pro, D-Leu or Nleu in Hydrophobic Face of Amphipathic α-Helical Model Antimicrobial Peptide on Structure, Cell Selectivity and Mechanism of Action. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Dong N, Zhu X, Lv YF, Ma QQ, Jiang JG, Shan AS. Cell specificity and molecular mechanism of antibacterial and antitumor activities of carboxyl-terminal RWL-tagged antimicrobial peptides. Amino Acids 2014; 46:2137-54. [DOI: 10.1007/s00726-014-1761-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
34
|
Alkotaji M, Pluen A, Zindy E, Hamrang Z, Aojula H. On the Cellular Uptake and Membrane Effect of the Multifunctional Peptide, TatLK15. J Pharm Sci 2014; 103:293-304. [DOI: 10.1002/jps.23778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/26/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022]
|
35
|
Bobone S, Roversi D, Giordano L, De Zotti M, Formaggio F, Toniolo C, Park Y, Stella L. The Lipid Dependence of Antimicrobial Peptide Activity Is an Unreliable Experimental Test for Different Pore Models. Biochemistry 2012; 51:10124-6. [DOI: 10.1021/bi3015086] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sara Bobone
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Daniela Roversi
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Lorenzo Giordano
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marta De Zotti
- ICB,
Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Fernando Formaggio
- ICB,
Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Claudio Toniolo
- ICB,
Padova Unit, CNR, Department
of Chemistry, University of Padova, 35131
Padova, Italy
| | - Yoonkyung Park
- Department
of Biotechnology and
Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea
| | - Lorenzo Stella
- Department of Chemical Sciences
and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
36
|
Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ. Antimicrobial peptides for therapeutic applications: a review. Molecules 2012; 17:12276-86. [PMID: 23079498 PMCID: PMC6268056 DOI: 10.3390/molecules171012276] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/08/2012] [Accepted: 10/17/2012] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.
Collapse
Affiliation(s)
- Min-Duk Seo
- College of Pharmacy, Ajou University, Suwon 443-749, Korea
| | - Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Ji-Hun Kim
- Center for Structural Biology and Departments of Biochemistry and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
- Author to whom correspondence should be addressed; ; Tel.: +82-2-880-7869; Fax: +82-2-872-3632
| |
Collapse
|
37
|
Ramalingam A, Palombo EA, Bhave M. The Pinb-2 genes in wheat comprise a multigene family with great sequence diversity and important variants. J Cereal Sci 2012. [DOI: 10.1016/j.jcs.2012.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
|
39
|
Wang J, Xiong Z, Meng H, Wang Y, Wang Y. Synthetic biology triggers new era of antibiotics development. Subcell Biochem 2012; 64:95-114. [PMID: 23080247 DOI: 10.1007/978-94-007-5055-5_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a discipline to design and construct organisms with desired properties, synthetic biology has generated rapid progresses in the last decade. Combined synthetic biology with the traditional process, a new universal workflow for drug development has been becoming more and more attractive. The new methodology exhibits more efficient and inexpensive comparing to traditional methods in every aspect, such as new compounds discovery & screening, process design & drug manufacturing. This article reviews the application of synthetic biology in antibiotics development, including new drug discovery and screening, combinatorial biosynthesis to generate more analogues and heterologous expression of biosynthetic gene clusters with systematic engineering the recombinant microbial systems for large scale production.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|
40
|
Lee SH, Kim SJ, Lee YS, Song MD, Kim IH, Won HS. De novo generation of short antimicrobial peptides with simple amino acid composition. ACTA ACUST UNITED AC 2011; 166:36-41. [DOI: 10.1016/j.regpep.2010.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/27/2010] [Accepted: 08/11/2010] [Indexed: 01/12/2023]
|
41
|
Wu G, Wu H, Fan X, Zhao R, Li X, Wang S, Ma Y, Shen Z, Xi T. Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Peptides 2010; 31:1669-73. [PMID: 20600431 DOI: 10.1016/j.peptides.2010.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/13/2010] [Accepted: 06/14/2010] [Indexed: 11/18/2022]
Abstract
S-thanatin, an analog of thanatin, was synthesized by substituting the 15th amino acid of threonine with serine, which showed a broad antimicrobial activity against bacteria. We reported earlier that membrane phospholipid was found to be the target for S-thanatin with different mechanism from other antimicrobial peptides. In this study, we have performed its structural characterization by circular dichroism (CD) spectroscopy. The CD analysis showed that S-thanatin retained its overall conformation beta-sheet in aqueous buffer, beta-turn in 50% trifluoroethanol (TFE) and beta-hairpin in 0.4 mM POPC-LUVs. In hemolysis assay, S-thanatin exhibited low hemolytic activity and bacteria selectivity. We investigated the effect of the presence of 33 mol percent cholesterol on the interactions of the antimicrobial peptide S-thanatin with phosphatidylcholine (PC) model membrane systems. The results showed that S-thanatin was more potent at disrupting cholesterol-free bacterial than cholesterol-containing eukaryotic membranes. Thus, in all respects, fluorescence dye leakage experiments indicated that cholesterol inhibited the S-thanatin-induced permeabilization of PC vesicles. Finally, flow cytometry was used to monitor changes in bacterial cell membrane potential and cell membrane integrity, with specific fluorescent dyes DiBAC(4)(3) and PI. Adding the respiratory poison CCCP seemed to prevent peptide-induced membrane damage, which suggested that S-thanatin acted at the metabolic level on respiratory chain. These findings might explain why S-thanatin was selective toxicity towards bacteria, but low toxicity towards erythrocytes. It might be due to three factors at least: electrostatic interaction (namely anionic phospholipids); cholesterol; respiratory chain.
Collapse
Affiliation(s)
- Guoqiu Wu
- Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing 210009, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Weidner T, Apte JS, Gamble LJ, Castner DG. Probing the orientation and conformation of alpha-helix and beta-strand model peptides on self-assembled monolayers using sum frequency generation and NEXAFS spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3433-40. [PMID: 20175575 PMCID: PMC2922880 DOI: 10.1021/la903267x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The structure and orientation of amphiphilic alpha-helix and beta-strand model peptide films on self-assembled monolayers (SAMs) have been studied with sum frequency generation (SFG) vibrational spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The alpha-helix peptide is a 14-mer, and the beta-strand is a 15-mer of hydrophilic lysine and hydrophobic leucine residues with hydrophobic periodicities of 3.5 and 2, respectively. These periodicities result in the leucine side chains located on one side of the peptides and the lysine side chains on the other side. The SAMs were prepared from the assembly of either carboxylic acid- or methyl-terminated alkyl thiols onto gold surfaces. For SFG studies, the deuterated analog of the methyl SAM was used. SFG vibrational spectra in the C-H region of air-dried peptides films on both SAMs exhibit strong peaks near 2965, 2940, and 2875 cm(-1) related to ordered leucine side chains. The orientation of the leucine side chains was determined from the phase of these features relative to the nonresonant gold background. The relative phase for both the alpha-helix and beta-strand peptides showed that the leucine side chains were oriented away from the carboxylic acid SAM surface and oriented toward the methyl SAM surface. Amide I peaks observed near 1656 cm(-1) for the alpha-helix peptide confirm that the secondary structure is preserved on both SAMs. Strong linear dichroism related to the amide pi* orbital at 400.8 eV was observed in the nitrogen K-edge NEXAFS spectra for the adsorbed beta-strand peptides, suggesting that the peptide backbones are oriented parallel to the SAM surface with the side chains pointing toward or away from the interface. For the alpha-helix the dichroism of the amide pi* is significantly weaker, probably because of the broad distribution of amide bond orientations in the alpha-helix secondary structure.
Collapse
Affiliation(s)
- Tobias Weidner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195
| | - Julia S. Apte
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195
| | - Lara J. Gamble
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195
| | - David G. Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, Box 351750, University of Washington, Seattle, Washington 98195
| |
Collapse
|
43
|
Weidner T, Samuel NT, McCrea K, Gamble LJ, Ward RS, Castner DG. Assembly and structure of alpha-helical peptide films on hydrophobic fluorocarbon surfaces. Biointerphases 2010; 5:9-16. [PMID: 20408730 PMCID: PMC3912757 DOI: 10.1116/1.3317116] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The structure, orientation, and formation of amphiphilic alpha-helix model peptide films on fluorocarbon surfaces has been monitored with sum frequency generation (SFG) vibrational spectroscopy, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The alpha-helix peptide is a 14-mer of hydrophilic lysine and hydrophobic leucine residues with a hydrophobic periodicity of 3.5. This periodicity yields a rigid amphiphilic peptide with leucine and lysine side chains located on opposite sides. XPS composition analysis confirms the formation of a peptide film that covers about 75% of the surface. NEXAFS data are consistent with chemically intact adsorption of the peptides. A weak linear dichroism of the amide pi( *) is likely due to the broad distribution of amide bond orientations inherent to the alpha-helical secondary structure. SFG spectra exhibit strong peaks near 2865 and 2935 cm(-1) related to aligned leucine side chains interacting with the hydrophobic surface. Water modes near 3200 and 3400 cm(-1) indicate ordering of water molecules in the adsorbed-peptide fluorocarbon surface interfacial region. Amide I peaks observed near 1655 cm(-1) confirm that the secondary structure is preserved in the adsorbed peptide. A kinetic study of the film formation process using XPS and SFG showed rapid adsorption of the peptides followed by a longer assembly process. Peptide SFG spectra taken at the air-buffer interface showed features related to well-ordered peptide films. Moving samples through the buffer surface led to the transfer of ordered peptide films onto the substrates.
Collapse
Affiliation(s)
- Tobias Weidner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Newton T. Samuel
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Keith McCrea
- The Polymer Technology Group, Berkeley, CA 94710, USA
| | - Lara J. Gamble
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - David G. Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Chen JY, Lin WJ, Wu JL, Her GM, Hui CF. Epinecidin-1 peptide induces apoptosis which enhances antitumor effects in human leukemia U937 cells. Peptides 2009; 30:2365-73. [PMID: 19720101 DOI: 10.1016/j.peptides.2009.08.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 08/23/2009] [Accepted: 08/23/2009] [Indexed: 10/20/2022]
Abstract
Epinecidin-1 is an antimicrobial peptide present in the grouper (Epinephelus coioides). In this study, the antitumor activity of a synthetic epinecidin-1 peptide was tested. The in vitro results showed that epinecidin-1 inhibited the proliferation of human leukemia U937 cells and increased the ADP/ATP ratio after 24h of treatment. The DNA fragmentation assay, flow cytometric assay, and caspases-3, -8, and -9 assays indicated that epinecidin-1 could induce apoptosis in U937 cells. Real-time RT-PCR results showed regular increases in tumor necrosis factor (TNF)-alpha after treatment with 4 microg/ml epinecidin-1 from 4 to 24h; interleukin (IL)-10, interferon (INF)-r, p53, IL-15, and IL-6 increased after treatment with 2 microg/ml epinecidin-1 for 4-12h. These results suggest that the epinecidn-1 inhibited U937 cells, induced apoptosis in response to cytokine production, and may have pleiotropic effects on different cells.
Collapse
Affiliation(s)
- Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan 262, Taiwan.
| | | | | | | | | |
Collapse
|
45
|
Kang SJ, Won HS, Choi WS, Lee BJ. De novo generation of antimicrobial LK peptides with a single tryptophan at the critical amphipathic interface. J Pept Sci 2009; 15:583-8. [PMID: 19544481 DOI: 10.1002/psc.1149] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
De novo design of amphipathic model peptides has been successful for generating many antimicrobial peptides with various lengths and amino acid compositions. Here, we suggest a very simple strategy to design antimicrobial peptides with a short length and a simple amino acid composition. Amphipathic helical properties were conferred by using only leucines and lysines and a single tryptophan was positioned at the critical amphipathic interface between the hydrophilic ending side and the hydrophobic starting side, in the helical wheel projection. According to this rule, the model peptides with 7 to 13 residues exhibited antimicrobial activity. Among them, the most potent activity against both Gram-positive and Gram-negative bacteria, covering all of the nine bacterial strains tested in this study, was found for the 11-mer sequences having a 1:1 (L(5)K(5)W(6)) or a 3:2 (L(6)K(4)W(6)) ratio of leucines to lysines. In particular, the former peptide L(5)K(5)W(6) could be evaluated as the most useful agent, as it showed no significant hemolytic activity with a broad-spectrum of antimicrobial activity.
Collapse
Affiliation(s)
- Su-Jin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
46
|
Bechinger B. Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Curr Opin Colloid Interface Sci 2009. [DOI: 10.1016/j.cocis.2009.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
47
|
Park KH, Nan YH, Park Y, Kim JI, Park IS, Hahm KS, Shin SY. Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1193-203. [PMID: 19285481 DOI: 10.1016/j.bbamem.2009.02.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/29/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
Abstract
To develop novel short Trp-rich antimicrobial peptides (AMPs) with potent cell specificity (targeting bacteria but not eukaryotic cells) and anti-inflammatory activity, a series of 11-meric Trp-rich model peptides with different ratios of Leu and Lys/Arg residues, XXWXXWXXWXX-NH(2) (X indicates Leu or Lys/Arg), was synthesized. K(6)L(2)W(3) displayed an approximately 40-fold increase in cell specificity, compared with the natural Trp-rich AMP indolicidin (IN). Lys-containing peptides (K(8)W(3), K(7)LW(3) and K(6)L(2)W(3)) showed approximately 2- to 4-fold higher cell specificities than did their counterparts, the Arg-containing peptides (R(8)W(3), R(7)LW(3) and R(6)L(2)W(3)), indicating that multiple Lys residues are more important than multiple Arg residues in the design of AMPs with good cell specificity. The excellent resistance of d-enantiomers (K(6)L(2)W(3)-D and R(6)L(2)W(3)-D) and Orn/Nle-containing peptides (O(6)L(2)W(3) and O(6)L(2)W(3)) to trypsin digestion compared with the rapid breakdown of the l-enantiomers (K(6)L(2)W(3) and R(6)L(2)W(3)), highlights the clinical potential of such peptides. K(6)L(2)W(3), R(6)L(2)W(3), K(6)L(2)W(3)-D and R(6)L(2)W(3)-D caused weak dye leakage from bacterial membrane-mimicking negatively charged EYPG/EYPE (7:3, v/v) liposomes. Confocal microscopy showed that these peptides penetrated the cell membrane of Escherichia coli and accumulated in the cytoplasm, as observed for buforin-2. Gel retardation studies revealed that the peptides bound more strongly to DNA than did IN. These results suggested that one possible peptide bactericidal mechanism may relate to the inhibition of intracellular functions via interference with DNA/RNA synthesis. Furthermore, some model peptides, containing K(6)L(2)W(3), K(5)L(3)W(3), R(6)L(2)W(3), O(6)L(2)W(3), O(6)L(2)W(3), and K(6)L(2)W(3)-D inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA expression, the release of nitric oxide (NO) following LPS stimulation in RAW264.7 cells and had powerful LPS binding activities at bactericidal concentrations. Collectively, our results indicated that these peptides have potential for future development as novel antimicrobial and anti-inflammatory agents.
Collapse
Affiliation(s)
- Ka Hyon Park
- Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
On the basis of previous evidence that amphipathic helical peptides accelerate Factor IXa activation of Factor X [Blostein, Rigby, Furie, Furie and Gilbert (2000) Biochemistry 39, 12000–12006], the present study was designed to assess the procoagulant activity of an IAP (ideal amphipathic peptide) of Lys7Leu15 composition. The results show that IAP accelerates Factor X activation by Factor IXa in a concentration-dependent manner and accelerates thrombin generation by Factor Xa with a comparable peptide- and substrate-concentration-dependence. A scrambled helical peptide with the same amino acid composition as IAP, but with its amphipathicity abolished, eliminated most of the aforementioned effects. The Gla (γ-carboxyglutamic acid)-rich domain of Factor X is required for IAP activity, suggesting that this peptide behaves as a phospholipid membrane. This hypothesis was confirmed, using fluorescence spectroscopy, by demonstrating direct binding between IAP and the Gla-rich domain of Factor X. In addition, the catalytic efficiencies of the tenase and prothrombinase enzymatic complexes, containing cofactors Factor VIIIa and Factor Va respectively, are enhanced by IAP. Finally, we show that IAP delays clot lysis in vitro. In summary, these observations demonstrate that IAP not only enhances essential procoagulant reactions required for fibrin generation, but also inhibits fibrinolysis, suggesting a potential role for IAP as a haemostatic agent.
Collapse
|
49
|
Rosenfeld Y, Sahl HG, Shai Y. Parameters Involved in Antimicrobial and Endotoxin Detoxification Activities of Antimicrobial Peptides. Biochemistry 2008; 47:6468-78. [DOI: 10.1021/bi800450f] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yosef Rosenfeld
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel, and Institute for Medical Microbiology, Immunology and Parasitology, Pharmaceutical Microbiology Section, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Hans-Georg Sahl
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel, and Institute for Medical Microbiology, Immunology and Parasitology, Pharmaceutical Microbiology Section, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel, and Institute for Medical Microbiology, Immunology and Parasitology, Pharmaceutical Microbiology Section, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| |
Collapse
|
50
|
Guiffo-Soh G, Hernández B, Coïc YM, Boukhalfa-Heniche FZ, Fadda G, Ghomi M. Vibrational Analysis of Amino Acids and Short Peptides in Hydrated Media. 3. Successive KL Repeats Induce Highly Stable β-Strands Capable of Forming Non-H-Bonded Aggregates. J Phys Chem B 2008; 112:1282-9. [DOI: 10.1021/jp0767967] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guy Guiffo-Soh
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Belén Hernández
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Yves-Marie Coïc
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Fatima-Zohra Boukhalfa-Heniche
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Giulia Fadda
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Mahmoud Ghomi
- UMR CNRS 7033, BioMoCeTi, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Université Pierre et Marie Curie, Case 138, 4 Place Jussieu, 75252 Paris cedex 05, France, and Unité de Chimie Organique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| |
Collapse
|