1
|
Khazaee M, Guardian MGE, Aga DS, Ng CA. Impacts of Sex and Exposure Duration on Gene Expression in Zebrafish Following Perfluorooctane Sulfonate Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:437-449. [PMID: 31652359 DOI: 10.1002/etc.4628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/19/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a member of the anthropogenic class of perfluorinated alkyl acids (PFAAs) and one of the most frequently detected PFAAs in water, humans, mammals, and fish around the world. The zebrafish (Danio rerio) is a small freshwater fish considered an appropriate vertebrate model for investigating the toxicity of compounds. Previous investigations showed tissue-specific bioaccumulation and alterations in the expression of fatty acid-binding proteins (fabps) in male and female zebrafish, potentially due to interactions between PFAA and fatty acid transporters. In addition, a number of neurological impacts have been reported as a result of human and animal exposure to PFAAs. Therefore, the present comprehensive study was designed to investigate whether PFOS exposure affects the expression of genes associated with fatty acid metabolism (fabp1a, fabp2, and fabp10a) in zebrafish liver, intestine, heart, and ovary and genes involved in the nervous system (acetylcholinesterase, brain-derived neurotrophic factor, choline acetyltransferase, histone deacetylase 6, and nerve growth factor) in brain and muscle. The results indicate alterations in expression of genes associated with fatty acid metabolism and neural function that vary with both exposure concentration and sex. In addition, our findings highlight that expression of these genes differs according to exposure duration. The present results extend the knowledge base on PFOS effects to other tissues less often studied than the liver. The findings of the present investigation provide a basis for future studies on the potential risks of PFOS as one of the most abundant PFAAs in the environment. Environ Toxicol Chem 2020;39:437-449. © 2019 SETAC.
Collapse
Affiliation(s)
- Manoochehr Khazaee
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Grace E Guardian
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Carla A Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Zhang Y, Zhao X, Deng L, Li X, Wang G, Li Y, Chen M. High expression of FABP4 and FABP6 in patients with colorectal cancer. World J Surg Oncol 2019; 17:171. [PMID: 31651326 PMCID: PMC6814121 DOI: 10.1186/s12957-019-1714-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
Objective To explore the relationship between FABP4 and FABP6 expression and the pathogenesis of colorectal cancer (CRC) and their potential as biomarkers in the diagnosis of CRC. Methods In total, 100 CRC patients and 100 controls were enrolled. The serum levels of FABP4 and FABP6 were detected by enzyme-linked immunosorbent assay (ELISA) before and 2 weeks after radical resection of CRC. The protein expressions of FABP4 and FABP6 were observed in colorectal tumor tissues and adjacent tissues by immunohistochemistry and western blot, respectively. The diagnostic performance of FABP4 and FABP6 in patients with CRC was evaluated by receiver operating characteristic (ROC) curve analysis. Results The serum levels of FABP4 and FABP6 in patients with CRC were higher than the levels in the controls before surgery (P < 0.001), and significantly decreased at 2 weeks after operation (P < 0.001). Immunohistochemistry showed that FABP4 and FABP6 were mainly distributed in the cytoplasm of human colorectal tumor tissues, and only a small amount distributed in adjacent tissues. Western blot revealed that the protein expressions of FABP4 and FABP6 were significantly higher in tumor tissues than in adjacent tissues (P < 0.001, P = 0.002, respectively). Tumors with high and low FABP4 and FABP6 expression have no significant correlation in tumor size, tumor site, distant organ and lymph node metastasis, histologic grade, lymphatic permeation, neurological invasion, vascular invasion, and Duke’s and TNM classification. Multivariate logistic regression analysis showed that FABP4 and FABP6 were independent risk factors for CRC (adjusted odds ratio 1.916; 95%CI 1.340–2.492; P < 0.001; adjusted odds ratio 2.162; 95%CI 1.046, 1.078); P < 0.001, respectively). In discriminating CRC from the normal control, the optimal sensitivity of FABP4 and FABP6 were 93.20% (95%CI 87.8–96.7) and 83.70% (95%CI 76.7–89.3), respectively, while the optimal specificity of FABP4 and FABP6 were 48.8% (95%CI 39.8–57.9) and 58.4% (95%CI 49.2–67.1), respectively. When combined detection of serum carcinoembryonic (CEA) and FABP4 and FABP6, the optimal sensitivity and specificity were 61.33% (95%CI 53.0–69.2) and 79.82% (95%CI 71.3–86.8), respectively. Conclusion Increased expression of FABP4 and FABP6 not only were strong risk factors for the development of CRC but could also represent a potential biomarker for CRC diagnosis in Chinese patients. Combined detection of CEA with FABP4 and FABP6 could improve the diagnostic efficacy of CRC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, 210 JiXi Road, Hefei, 230032, People's Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, 210 JiXi Road, Hefei, 230032, People's Republic of China
| | - Lili Deng
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, 210 JiXi Road, Hefei, 230032, People's Republic of China
| | - Xueting Li
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, 210 JiXi Road, Hefei, 230032, People's Republic of China
| | - Ganbiao Wang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yongxing Li
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Mingwei Chen
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, 210 JiXi Road, Hefei, 230032, People's Republic of China. .,Institute of Diabetes Prevention and Control, Academy of Traditional Chinese Medicine, Hefei, 230032, People's Republic of China.
| |
Collapse
|
3
|
Vidal A, Lafay F, Daniele G, Vulliet E, Rochard E, Garric J, Babut M. Does water temperature influence the distribution and elimination of perfluorinated substances in rainbow trout (Oncorhynchus mykiss)? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16355-16365. [PMID: 30980373 DOI: 10.1007/s11356-019-05029-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Perfluorinated and polyfluorinated substances (PFASs) are widely found in freshwater ecosystems because of their resistance to degradation and their ability to accumulate in aquatic organisms. While water temperature controls many physiological processes in fish, knowledge of the effects of this factor on PFAS toxicokinetic is still limited. This study presents experimental results of internal distribution and elimination rates of two perfluorinated acid compounds, namely perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) in adult rainbow trout (Oncorhynchus mykiss) exposed to three temperatures. Dietary exposure experiments were conducted at 7 °C, 11 °C, and 19 °C and liver, blood, muscle, brain, and kidney were sampled for analysis. PFOS concentrations were comparable to or exceeded those of PFHxS, while PFHxS was eliminated faster than PFOS, whatever the temperature. Internal distribution changed significantly for both substances when fish were exposed to a range of temperatures from 7 to 19 °C. Indeed, PFOS and PFHxS relative distribution increased in blood, liver, and brain while they decreased in muscle when the water temperature rose. The water temperature variation affected the elimination half-lives, depending on the substances and organs.
Collapse
Affiliation(s)
- Alice Vidal
- Irstea, RIVERLY Research Unit, 5 rue de la Doua CS 20244, 69625, Villeurbanne Cedex, France
| | - Florent Lafay
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Gaelle Daniele
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Emmanuelle Vulliet
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Eric Rochard
- Irstea, EABX Research Unit, 50 avenue de Verdun, 33612, Cestas, France
| | - Jeanne Garric
- Irstea, RIVERLY Research Unit, 5 rue de la Doua CS 20244, 69625, Villeurbanne Cedex, France
| | - Marc Babut
- Irstea, RIVERLY Research Unit, 5 rue de la Doua CS 20244, 69625, Villeurbanne Cedex, France.
| |
Collapse
|
4
|
Breton TS, Kenter LW, Greenlaw K, Montgomery J, Goetz GW, Berlinsky DL, Luckenbach JA. Initiation of sex change and gonadal gene expression in black sea bass (Centropristis striata) exposed to exemestane, an aromatase inhibitor. Comp Biochem Physiol A Mol Integr Physiol 2018; 228:51-61. [PMID: 30414915 DOI: 10.1016/j.cbpa.2018.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
Many teleost fishes exhibit sequential hermaphroditism, where male or female gonads develop first and later undergo sex change. Model sex change species are characterized by social hierarchies and coloration changes, which enable experimental manipulations to better understand these processes. However, other species such as the protogynous black sea bass (Centropristis striata) do not exhibit these characteristics and instead receive research attention due to their importance in fisheries or aquaculture. Black sea bass social structure is unknown, which makes sex change sampling difficult, and few molecular resources are available. The purpose of the present study was to induce sex change using exemestane, an aromatase inhibitor, and assess gonadal gene expression using sex markers (amh, zpc2) and genes involved in steroidogenesis (cyp19a1a, cyp11b), estrogen signaling (esr1, esr2b), and apoptosis or atresia (aen, casp9, fabp11, parg, pdcd4, rif1). Overall, dietary exemestane treatment was effective, and most exposed females exhibited early histological signs of sex change and significantly higher rates of ovarian atresia relative to control females. Genes associated with atresia did not reflect this, however, as expression patterns in sex changing gonads were overall similar to those of ovaries, likely due to a whole ovary dilution effect of the RNA. Still, small but insignificant expression decreases during early sex change were detected for ovary-related genes (aen, casp9, fabp11, zpc2) and anti-apoptotic factors (parg, rif1). Exemestane treatment did not impact spermatogenesis or testicular gene expression, but testes were generally characterized by elevated steroidogenic enzyme and estrogen receptor mRNAs. Further research will be needed to understand these processes in black sea bass, using isolated ovarian follicles and multiple stages of sex change.
Collapse
Affiliation(s)
- Timothy S Breton
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME 04938, USA.
| | - Linas W Kenter
- Department of Biological Sciences, University of New Hampshire, 38 College Road, Durham, NH 03824, USA
| | - Katherine Greenlaw
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME 04938, USA
| | - Jacob Montgomery
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME 04938, USA
| | - Giles W Goetz
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - David L Berlinsky
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, 46 College Road, Durham, NH 03824, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Chen W, Wang K, Liu S. Molecular cloning and tissue distribution of fatty acid binding protein-3 in goldfish (Carassius auratus) and its mRNA expression in response to cadmium and PAMPs. Comp Biochem Physiol A Mol Integr Physiol 2018; 224:68-75. [PMID: 30008387 DOI: 10.1016/j.cbpa.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Fatty acid binding proteins (FABPs) are members of the conserved, multigene family of intracellular lipid binding proteins. In this study, the full-length cDNA of goldfish (Carassius auratus) FABP-3 (gfFABP-3) was successfully cloned. gfFABP-3 had an open reading frame of 402 bp and encoded a 133 amino acid polypeptide. The predicted gfFABP-3 protein included a lipocalin domain and displayed typical conserved FABP tertiary structures. Reverse transcription-PCR (RT-PCR) revealed that the gfFABP-3 gene was expressed in all tested tissues, with higher levels of expression in the testis, liver, heart, fat and kidney. After 24 h of cadmium exposure, gfFABP-3 was significantly upregulated in the gill, liver and spleen, but downregulated in the intestine, as compared to unexposed controls. gfFABP-3 expression was significantly downregulated in the spleen in goldfish challenged with LPS and Poly I:C. Our study provides a molecular characterization of goldfish FABP-3 and indicated that gfFABP-3 was potentially associated with the toxic effects of cadmium on lipid metabolism, and with the immune response to pathogenic infection.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China.
| | - Kaimeng Wang
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| | - Shiyu Liu
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| |
Collapse
|
6
|
Venkatachalam AB, Parmar MB, Wright JM. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes. Mol Genet Genomics 2017; 292:699-727. [PMID: 28389698 DOI: 10.1007/s00438-017-1313-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.
Collapse
Affiliation(s)
- Ananda B Venkatachalam
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Manoj B Parmar
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Jonathan M Wright
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
7
|
Ubiquitous distribution of fluorescent protein in muscles of four species and two subspecies of eel (genus Anguilla). J Genet 2017; 96:127-133. [PMID: 28360397 DOI: 10.1007/s12041-017-0751-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, the localization of fluorescent protein (FP) was characterized in the muscles of four species and two subspecies of eels Anguilla anguilla, A. australis, A. bicolor bicolor (b.), A. bicolor pacifica (p.) and A. mossambica in addition to the previously reported A. japonica. The open reading frame of each eel FP was 417 bp encoding 139 amino acid residues. The deduced amino acid sequences among the four species and two subspecies exhibited 91.4-100% identity, and belonged to the fatty-acid-binding protein (FABP) family. The gene structure of eel FPs in A. japonica, A. anguilla, A. australis, A. bicolor b., A. bicolor p. and A. mossambica have four exons and three introns, and were common to that of FABP family. The apo eel FPs expressed by Escherichia coli with recombinant eel FP genes were analysed for the fluorescent properties in the presence of bilirubin. The excitation and emission spectra of holo eel FPs had the maximum wavelengths of 490-496 and 527-530 nm, respectively. The holo eel FPs indicated that the fluorescent intensities were stronger in A. japonica and A. bicolor than in A. mossambica, A. australis and A. anguilla. The comparison of amino acid sequences revealed two common substitutions in A. mossambica, A. australis and A. anguilla with weak fluorescent intensity.
Collapse
|
8
|
Pauletto M, Milan M, Huvet A, Corporeau C, Suquet M, Planas JV, Moreira R, Figueras A, Novoa B, Patarnello T, Bargelloni L. Transcriptomic features of Pecten maximus oocyte quality and maturation. PLoS One 2017; 12:e0172805. [PMID: 28253290 PMCID: PMC5333834 DOI: 10.1371/journal.pone.0172805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/09/2017] [Indexed: 11/19/2022] Open
Abstract
The king scallop Pecten maximus is a high valuable species of great interest in Europe for both fishery and aquaculture. Notably, there has been an increased investment to produce seed for enhancement programmes of wild scallop populations. However, hatchery production is a relatively new industry and it is still underdeveloped. Major hurdles are spawning control and gamete quality. In the present study, a total of 14 scallops were sampled in the bay of Brest (Brittany, France) to compare transcriptomic profiles of mature oocytes collected by spawning induction or by stripping. To reach such a goal, a microarray analysis was performed by using a custom 8x60K oligonucleotide microarray representing 45,488 unique scallop contigs. First we identified genes that were differentially expressed depending on oocyte quality, estimated as the potential to produce D-larvae. Secondly, we investigated the transcriptional features of both stripped and spawned oocytes. Genes coding for proteins involved in cytoskeletal dynamics, serine/threonine kinases signalling pathway, mRNA processing, response to DNA damage, apoptosis and cell-cycle appeared to be of crucial importance for both oocyte maturation and developmental competence. This study allowed us to dramatically increase the knowledge about transcriptional features of oocyte quality and maturation, as well as to propose for the first time putative molecular markers to solve a major bottleneck in scallop aquaculture.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Arnaud Huvet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin (LEMAR), Plouzané, France
| | - Charlotte Corporeau
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin (LEMAR), Plouzané, France
| | - Marc Suquet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin (LEMAR), Plouzané, France
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona i Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Pontevedra, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Pontevedra, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Pontevedra, Spain
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| |
Collapse
|
9
|
Liver Transcriptome Analysis of the Large Yellow Croaker (Larimichthys crocea) during Fasting by Using RNA-Seq. PLoS One 2016; 11:e0150240. [PMID: 26967898 PMCID: PMC4788198 DOI: 10.1371/journal.pone.0150240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022] Open
Abstract
The large yellow croaker (Larimichthys crocea) is an economically important fish species in Chinese mariculture industry. To understand the molecular basis underlying the response to fasting, Illumina HiSeqTM 2000 was used to analyze the liver transcriptome of fasting large yellow croakers. A total of 54,933,550 clean reads were obtained and assembled into 110,364 contigs. Annotation to the NCBI database identified a total of 38,728 unigenes, of which 19,654 were classified into Gene Ontology and 22,683 were found in Kyoto Encyclopedia of Genes and Genomes (KEGG). Comparative analysis of the expression profiles between fasting fish and normal-feeding fish identified a total of 7,623 differentially expressed genes (P < 0.05), including 2,500 upregulated genes and 5,123 downregulated genes. Dramatic differences were observed in the genes involved in metabolic pathways such as fat digestion and absorption, citrate cycle, and glycolysis/gluconeogenesis, and the similar results were also found in the transcriptome of skeletal muscle. Further qPCR analysis confirmed that the genes encoding the factors involved in those pathways significantly changed in terms of expression levels. The results of the present study provide insights into the molecular mechanisms underlying the metabolic response of the large yellow croaker to fasting as well as identified areas that require further investigation.
Collapse
|
10
|
Shimada Y, Kuninaga S, Ariyoshi M, Zhang B, Shiina Y, Takahashi Y, Umemoto N, Nishimura Y, Enari H, Tanaka T. E2F8 promotes hepatic steatosis through FABP3 expression in diet-induced obesity in zebrafish. Nutr Metab (Lond) 2015; 12:17. [PMID: 26052340 PMCID: PMC4456805 DOI: 10.1186/s12986-015-0012-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Background Diet-induced hepatic steatosis is highly associated with nonalcoholic fatty liver disease, which is related to the development of metabolic syndrome. While advanced stage nonalcoholic hepatic steatosis and steatohepatitis (NASH) result ultimately in fibrosis and cirrhosis, the molecular basis for lipid droplet formation is poorly understood. Common pathways underlie the pathology of mammalian obesity and the zebrafish diet-induced obesity model (DIO-zebrafish) used in this study. Methods Our analysis involved a combination of transcriptome (DNA microarray) and proteome (two-dimensional electrophoresis) methods using liver tissue from DIO-zebrafish to find candidate genes involved in hepatic steatosis. We conducted intraperitoneal injection (i.p.) of morpholino antisense oligonucleotides (MOs) for each gene into DIO-zebrafish. We also conducted in vitro overexpression in human cells. Additionally, we examined gene expression during feeding experiments involving anti-obesity compounds, creatine and anserine. Results We found that fatty acid binding protein 3 (fabp3) and E2F transcription factors were upregulated in hepatic steatosis. E2f8 MO i.p. suppressed fabp3 expression in liver, and ameliorated hepatic steatosis. In human cells (HepG2), E2F8 overexpression promoted FABP3 expression. Additionally, co-administration of creatine and anserine suppressed obesity associated phenotypes including hepatic steatosis as indicated by e2f8 and fabp3 down regulation. Conclusion We discovered that the e2f8–fabp3 axis is important in the promotion of hepatic steatosis in DIO-zebrafish. The combination of transcriptome and proteome analyses using the disease model zebrafish allow identification of novel pathways involved in human diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0012-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasuhito Shimada
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan ; Mie University Medical Zebrafish Research Center, Mie, Japan ; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| | - Shisei Kuninaga
- Central Research Institute, Maruha Nichiro Corporation, Ibaraki, Japan
| | - Michiko Ariyoshi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan
| | - Beibei Zhang
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan
| | - Yasuhiko Shiina
- Central Research Institute, Maruha Nichiro Corporation, Ibaraki, Japan
| | | | - Noriko Umemoto
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan ; Mie University Medical Zebrafish Research Center, Mie, Japan ; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| | - Hiroyuki Enari
- Central Research Institute, Maruha Nichiro Corporation, Ibaraki, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan ; Mie University Medical Zebrafish Research Center, Mie, Japan ; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| |
Collapse
|
11
|
Thirumaran A, Wright JM. Fatty acid-binding protein (fabp) genes of spotted green pufferfish (Tetraodon nigroviridis): comparative genomics and spatial transcriptional regulation. Genome 2014; 57:289-301. [DOI: 10.1139/gen-2014-0059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Aruloli Thirumaran
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Jonathan M. Wright
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
12
|
Wang X, Zhou L, Jin J, Yang Y, Song G, Shen Y, Liu H, Liu M, Shi C, Qian L. Knockdown of FABP3 impairs cardiac development in Zebrafish through the retinoic acid signaling pathway. Int J Mol Sci 2013; 14:13826-41. [PMID: 23823803 PMCID: PMC3742220 DOI: 10.3390/ijms140713826] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/01/2013] [Accepted: 06/26/2013] [Indexed: 11/16/2022] Open
Abstract
Fatty acid-binding protein 3 (FABP3) is a member of the intracellular lipid-binding protein family, and is primarily expressed in cardiac muscle tissue. Previously, we found that FABP3 is highly expressed in patients with ventricular-septal defects and is often used as a plasma biomarker in idiopathic dilated cardiomyopathy, and may play a significant role in the development of these defects in humans. In the present study, we aimed to investigate the role of FABP3 in the embryonic development of the zebrafish heart, and specifically how morpholino (MO) mediated knockdown of FABP3 would affect heart development in this species. Our results revealed that knockdown of FABP3 caused significant impairment of cardiac development observed, including developmental delay, pericardial edema, a linear heart tube phenotype, incomplete cardiac loop formation, abnormal positioning of the ventricles and atria, downregulated expression of cardiac-specific markers and decreased heart rate. Mechanistically, our data showed that the retinoic acid (RA) catabolizing enzyme Cyp26a1 was upregulated in FABP3-MO zebrafish, as indicated by in situ hybridization and real-time PCR. On the other hand, the expression level of the RA synthesizing enzyme Raldh2 did not significantly change in FABP3-MO injected zebrafish. Collectively, our results indicated that FABP3 knockdown had significant effects on cardiac development, and that dysregulated RA signaling was one of the mechanisms underlying this effect. As a result, these studies identify FABP3 as a candidate gene underlying the etiology of congenital heart defects.
Collapse
Affiliation(s)
- Xuejie Wang
- Department of Emergency, Subei People Hospital, Yangzhou, Jiangsu 225001, China; E-Mail:
| | - Lijuan Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Jin Jin
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Yang Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Guixian Song
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Yahui Shen
- State Key Laboratory of Reproductive Medicine, Department of Pediatrics, Nanjing Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China; E-Mail:
| | - Hailang Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Ming Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
| | - Chunmei Shi
- State Key Laboratory of Reproductive Medicine, Department of Pediatrics, Nanjing Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (L.Q.); Tel.: +86-25-5222-6266 (C.S.); +86-25-8686-2994(L.Q.); Fax: +86-25-8446-0509 (C.S.); +86-25-8446-0507 (L.Q.)
| | - Lingmei Qian
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; E-Mails: (L.Z.); (J.J.); (Y.Y.); (G.S.); (H.L.); (M.L.)
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (L.Q.); Tel.: +86-25-5222-6266 (C.S.); +86-25-8686-2994(L.Q.); Fax: +86-25-8446-0509 (C.S.); +86-25-8446-0507 (L.Q.)
| |
Collapse
|
13
|
Ng CA, Hungerbühler K. Bioconcentration of perfluorinated alkyl acids: how important is specific binding? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7214-23. [PMID: 23734664 DOI: 10.1021/es400981a] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Perfluorinated alkyl acids (PFAAs) are important global pollutants with unique pharmacokinetics. Evidence is accumulating that their behavior within organisms is affected by interaction with a number of proteins. In mammals, serum albumin, fatty acid binding proteins (FABPs) and organic anion transporters (OATs) have been identified as important to the tissue distribution, species-specific accumulation, and species- and gender-specific elimination rates of perfluoroalkyl carboxylates and perfluoroalkane sulfonates. Similar pharmacokinetics has been identified in fish. Yet, no mechanistic model exists for the bioaccumulation of PFAAs in fish that explicitly considers protein interactions. In this work, we present the first mechanistic protein-binding bioconcentration model for PFAAs in fish. Our model considers PFAA uptake via passive diffusion at the gills, association with serum albumin in the circulatory and extracellular spaces, association with FABP in the liver, and renal elimination and reabsorption facilitated by OAT proteins. The model is evaluated using measured bioconcentration and tissue distribution data collected in two previous studies of rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Comparing our model with previous attempts to describe PFAA bioconcentration using a nonspecific (partitioning-type) approach shows that inclusion of protein interactions is key to accurately predicting tissue-specific PFAA distribution and bioconcentration.
Collapse
Affiliation(s)
- Carla A Ng
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10 CH-8093 Zurich, Switzerland.
| | | |
Collapse
|
14
|
Venkatachalam AB, Sawler DL, Wright JM. Tissue-specific transcriptional modulation of fatty acid-binding protein genes, fabp2, fabp3 and fabp6, by fatty acids and the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). Gene 2013; 520:14-21. [PMID: 23466978 DOI: 10.1016/j.gene.2013.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 12/28/2022]
Abstract
All fabp genes, except fabp2, fabp3 and fabp6, exist as duplicates in the zebrafish genome owing to a whole genome duplication event ~230-400 million years ago. Transcription of some duplicated fabp genes is modulated by fatty acids (FAs) and/or clofibrate, a peroxisome proliferator-activated receptor (PPAR) agonist. We had also shown previously that the steady-state level of acyl-CoA oxidase 1 (acox1) mRNA, a marker of PPARα activation, was elevated in liver, intestine, heart and muscle of fish fed clofibrate demonstrating that zebrafish, unlike some fishes, is responsive to this drug. acox1 transcripts were not induced in the brain of fish fed clofibrate, which suggests this drug may not cross the blood brain barrier. Here, we investigated the effect of dietary FAs and clofibrate on the transcription of single copy fabp genes, fabp2, fabp3 and fabp6, in five tissues of inbred zebrafish. The steady-state level of fabp2 transcripts increased in intestine, while fabp3 mRNA increased in liver of fish fed diets differing in FA content. In fish fed clofibrate, fabp3 mRNA in intestine, and fabp6 mRNA in intestine and heart, were elevated. Based on these findings, modulation of fabp2, fabp3 and fabp6 transcription by FAs and/or clofibrate in zebrafish implicates control of these genes by PPAR interaction with peroxisome proliferator response elements (PPRE) most likely in fabp promoters. Moreover, transcriptional induction of these fabp genes by dietary FAs and/or clofibrate is over-ridden by a tissue-specific mechanism(s), e.g., transcriptional activator or repressor proteins.
Collapse
|
15
|
Venkatachalam AB, Lall SP, Denovan-Wright EM, Wright JM. Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). BMC Evol Biol 2012; 12:112. [PMID: 22776158 PMCID: PMC3483278 DOI: 10.1186/1471-2148-12-112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/31/2012] [Indexed: 01/03/2023] Open
Abstract
Background Force, Lynch and Conery proposed the duplication-degeneration-complementation (DDC) model in which partitioning of ancestral functions (subfunctionalization) and acquisition of novel functions (neofunctionalization) were the two primary mechanisms for the retention of duplicated genes. The DDC model was tested by analyzing the transcriptional induction of the duplicated fatty acid-binding protein (fabp) genes by clofibrate in zebrafish. Clofibrate is a specific ligand of the peroxisome proliferator-activated receptor (PPAR); it activates PPAR which then binds to a peroxisome proliferator response element (PPRE) to induce the transcriptional initiation of genes primarily involved in lipid homeostasis. Zebrafish was chosen as our model organism as it has many duplicated genes owing to a whole genome duplication (WGD) event that occurred ~230-400 million years ago in the teleost fish lineage. We assayed the steady-state levels of fabp mRNA and heterogeneous nuclear RNA (hnRNA) transcripts in liver, intestine, muscle, brain and heart for four sets of duplicated fabp genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, fabp10a/fabp10b and fabp11a/fabp11b in zebrafish fed different concentrations of clofibrate. Result Electron microscopy showed an increase in the number of peroxisomes and mitochondria in liver and heart, respectively, in zebrafish fed clofibrate. Clofibrate also increased the steady-state level of acox1 mRNA and hnRNA transcripts in different tissues, a gene with a functional PPRE. These results demonstrate that zebrafish is responsive to clofibrate, unlike some other fishes. The levels of fabp mRNA and hnRNA transcripts for the four sets of duplicated fabp genes was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR). The level of hnRNA coded by a gene is an indirect estimate of the rate of transcriptional initiation of that gene. Clofibrate increased the steady-state level of fabp mRNAs and hnRNAs for both the duplicated copies of fabp1a/fabp1b.1, and fabp7a/fabp7b, but in different tissues. Clofibrate also increased the steady-state level of fabp10a and fabp11a mRNAs and hnRNAs in liver, but not for fabp10b and fabp11b. Conclusion Some duplicated fabp genes have, most likely, retained PPREs, but induction by clofibrate is over-ridden by an, as yet, unknown tissue-specific mechanism(s). Regardless of the tissue-specific mechanism(s), transcriptional control of duplicated zebrafish fabp genes by clofibrate has markedly diverged since the WGD event.
Collapse
|
16
|
Smathers RL, Petersen DR. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 2011; 5:170-91. [PMID: 21504868 PMCID: PMC3500171 DOI: 10.1186/1479-7364-5-3-170] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.
Collapse
Affiliation(s)
- Rebecca L Smathers
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | |
Collapse
|
17
|
Chen YC, Wu BK, Chu CY, Cheng CH, Han HW, Chen GD, Lee MT, Hwang PP, Kawakami K, Chang CC, Huang CJ. Identification and characterization of alternative promoters of zebrafish Rtn-4/Nogo genes in cultured cells and zebrafish embryos. Nucleic Acids Res 2010; 38:4635-50. [PMID: 20378713 PMCID: PMC2919723 DOI: 10.1093/nar/gkq230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In mammals, the Nogo family consists of Nogo-A, Nogo-B and Nogo-C. However, there are three Rtn-4/Nogo-related transcripts were identified in zebrafish. In addition to the common C-terminal region, the N-terminal regions of Rtn4-n/Nogo-C1, Rtn4-m/Nogo-C2 and Rtn4-l/Nogo-B, respectively, contain 9, 25 and 132 amino acid residues. In this study, we isolated the 5'-upstream region of each gene from a BAC clone and demonstrated that the putative promoter regions, P1-P3, are functional in cultured cells and zebrafish embryos. A transgenic zebrafish Tg(Nogo-B:GFP) line was generated using P1 promoter region to drive green fluorescent protein (GFP) expression through Tol2-mediated transgenesis. This line recapitulates the endogenous expression pattern of Rtn4-l/Nogo-B mRNA in the brain, brachial arches, eyes, muscle, liver and intestines. In contrast, GFP expressions by P2 and P3 promoters were localized to skeletal muscles of zebrafish embryos. Several GATA and E-box motifs are found in these promoter regions. Using morpholino knockdown experiments, GATA4 and GATA6 were involved in the control of P1 promoter activity in the liver and intestine, while Myf5 and MyoD for the control of P1 and P3 promoter activities in muscles. These data demonstrate that zebrafish Rtn4/Nogo transcripts might be generated by coupling mechanisms of alternative first exons and alternative promoter usage.
Collapse
Affiliation(s)
- Yi-Chung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Genomic organization of Atlantic salmon (Salmo salar) fatty acid binding protein (fabp2) genes reveals independent loss of duplicate loci in teleosts. Mar Genomics 2009; 2:193-200. [PMID: 21798188 DOI: 10.1016/j.margen.2009.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 12/15/2022]
Abstract
Gene and genome duplications are considered to be driving forces of evolution. The relatively recent genome duplication in the common ancestor of salmonids makes this group of fish an excellent system for studying the re-diploidization process and the fates of duplicate genes. We characterized the structure and genome organization of the intestinal fatty acid binding protein (fabp2) genes in Atlantic salmon as a means of understanding the evolutionary fates of members of this protein family in teleosts. A survey of EST databases identified three unique salmonid fabp2 transcripts (fabp2aI, fabp2aII and fabp2b) compared to one transcript in zebrafish. We screened the CHORI-214 Atlantic salmon BAC library and identified BACs containing each of the three fabp2 genes. Physical mapping, genetic mapping and fluorescence in situ hybridization of Atlantic salmon chromosomes revealed that Atlantic salmon fabp2aI, fabp2aII and fabp2b correspond to separate genetic loci that reside on different chromosomes. Comparative genomic analyses indicated that these genes are related to one another by two genome duplications and a gene loss. The first genome duplication occurred in the common ancestor of all teleosts, giving rise to fabp2a and fabp2b, and the second in the common ancestor of salmonids, producing fabp2aI, fabp2aII, fabp2bI and fabp2bII. A subsequent loss of fabp2bI or fabp2bII gave the complement of fabp2 genes seen in Atlantic salmon today. There is also evidence for independent losses of fabp2b genes in zebrafish and tetraodon. Although there is no evidence for partitioning of tissue expression of fabp2 genes (i.e., sub-functionalization) in Atlantic salmon, the pattern of amino acid substitutions in Atlantic salmon and rainbow trout fabp2aI and fabp2aII suggests that neo-functionalization is occurring.
Collapse
|
19
|
Karanth S, Lall SP, Denovan-Wright EM, Wright JM. Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio): evidence for subfunctionalization or neofunctionalization of duplicated genes. BMC Evol Biol 2009; 9:219. [PMID: 19725974 PMCID: PMC2754478 DOI: 10.1186/1471-2148-9-219] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 09/02/2009] [Indexed: 12/25/2022] Open
Abstract
Background In the Duplication-Degeneration-Complementation (DDC) model, subfunctionalization and neofunctionalization have been proposed as important processes driving the retention of duplicated genes in the genome. These processes are thought to occur by gain or loss of regulatory elements in the promoters of duplicated genes. We tested the DDC model by determining the transcriptional induction of fatty acid-binding proteins (Fabps) genes by dietary fatty acids (FAs) in zebrafish. We chose zebrafish for this study for two reasons: extensive bioinformatics resources are available for zebrafish at zfin.org and zebrafish contains many duplicated genes owing to a whole genome duplication event that occurred early in the ray-finned fish lineage approximately 230-400 million years ago. Adult zebrafish were fed diets containing either fish oil (12% lipid, rich in highly unsaturated fatty acid), sunflower oil (12% lipid, rich in linoleic acid), linseed oil (12% lipid, rich in linolenic acid), or low fat (4% lipid, low fat diet) for 10 weeks. FA profiles and the steady-state levels of fabp mRNA and heterogeneous nuclear RNA in intestine, liver, muscle and brain of zebrafish were determined. Result FA profiles assayed by gas chromatography differed in the intestine, brain, muscle and liver depending on diet. The steady-state level of mRNA for three sets of duplicated genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, and fabp11a/fabp11b, was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR). In brain, the steady-state level of fabp7b mRNAs was induced in fish fed the linoleic acid-rich diet; in intestine, the transcript level of fabp1b.1 and fabp7b were elevated in fish fed the linolenic acid-rich diet; in liver, the level of fabp7a mRNAs was elevated in fish fed the low fat diet; and in muscle, the level of fabp7a and fabp11a mRNAs were elevated in fish fed the linolenic acid-rich or the low fat diets. In all cases, induction of the steady-state level of fabp mRNAs by dietary FAs correlated with induced levels of hnRNA for a given fabp gene. As such, up-regulation of the steady-state level of fabp mRNAs by FAs occurred at the level of initiation of transcription. None of the sister duplicates of these fabp genes exhibited an increase in their steady-state transcript levels in a specific tissue following feeding zebrafish any of the four experimental diets. Conclusion Differential induction of only one of the sister pair of duplicated fabp genes by FAs provides evidence to support the DDC model for retention of duplicated genes in the zebrafish genome by either subfunctionalization or neofunctionalization.
Collapse
Affiliation(s)
- Santhosh Karanth
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada.
| | | | | | | |
Collapse
|
20
|
Kolditz CI, Paboeuf G, Borthaire M, Esquerré D, SanCristobal M, Lefèvre F, Médale F. Changes induced by dietary energy intake and divergent selection for muscle fat content in rainbow trout (Oncorhynchus mykiss), assessed by transcriptome and proteome analysis of the liver. BMC Genomics 2008; 9:506. [PMID: 18959775 PMCID: PMC2612026 DOI: 10.1186/1471-2164-9-506] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/29/2008] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Growing interest is turned to fat storage levels and allocation within body compartments, due to their impact on human health and quality properties of farm animals. Energy intake and genetic background are major determinants of fattening in most animals, including humans. Previous studies have evidenced that fat deposition depends upon balance between various metabolic pathways. Using divergent selection, we obtained rainbow trout with differences in fat allocation between visceral adipose tissue and muscle, and no change in overall body fat content. Transcriptome and proteome analysis were applied to characterize the molecular changes occurring between these two lines when fed a low or a high energy diet. We focused on the liver, center of intermediary metabolism and the main site for lipogenesis in fish, as in humans and most avian species. RESULTS The proteome and transcriptome analyses provided concordant results. The main changes induced by the dietary treatment were observed in lipid metabolism. The level of transcripts and proteins involved in intracellular lipid transport, fatty acid biosynthesis and anti-oxidant metabolism were lower with the lipid rich diet. In addition, genes and proteins involved in amino-acid catabolism and proteolysis were also under expressed with this diet. The major changes related to the selection effect were observed in levels of transcripts and proteins involved in amino-acid catabolism and proteolysis that were higher in the fat muscle line than in the lean muscle line. CONCLUSION The present study led to the identification of novel genes and proteins that responded to long term feeding with a high energy/high fat diet. Although muscle was the direct target, the selection procedure applied significantly affected hepatic metabolism, particularly protein and amino acid derivative metabolism. Interestingly, the selection procedure and the dietary treatment used to increase muscle fat content exerted opposite effects on the expression of the liver genes and proteins, with little interaction between the two factors. Some of the molecules we identified could be used as markers to prevent excess muscle fat accumulation.
Collapse
Affiliation(s)
- Catherine-Ines Kolditz
- INRA, UMR 1067 Nutrition Aquaculture & Genomics - Pôle d'Hydrobiologie, F-64310 Saint-Pée-sur-Nivelle, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu RZ, Li X, Godbout R. A novel fatty acid-binding protein (FABP) gene resulting from tandem gene duplication in mammals: transcription in rat retina and testis. Genomics 2008; 92:436-45. [PMID: 18786628 DOI: 10.1016/j.ygeno.2008.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 02/02/2023]
Abstract
We have identified a new member of the FABP gene family, designated FABP12. FABP12 has the same structure as other FABP genes and resides in a cluster with FABP4/5/8/9 within 300,000 bp chromosomal region. FABP12 orthologs are found in mammals, but not in the zebrafish or chicken genomes. We demonstrate that FABP12 is expressed in rodent retina and testis, as well as in human retinoblastoma cell lines. In situ hybridization of adult rat retinal tissue indicates that FABP12 mRNA is expressed in ganglion and inner nuclear layer cells. Analysis of adult rat testis reveals a pattern of expression that is different from that of the known testis FABP (FABP9) in the testicular germ cells, suggesting distinct roles for these two genes during mammalian spermatogenesis. We propose that FABP12 arose as the result of tandem gene duplication, a mechanism that may have been instrumental to the expansion of the FABP family.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2
| | | | | |
Collapse
|
22
|
Alves-Costa FA, Denovan-Wright EM, Thisse C, Thisse B, Wright JM. Spatio-temporal distribution of fatty acid-binding protein 6 (fabp6) gene transcripts in the developing and adult zebrafish (Danio rerio). FEBS J 2008; 275:3325-34. [PMID: 18492067 DOI: 10.1111/j.1742-4658.2008.06480.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have determined the structure of the fatty acid-binding protein 6 (fabp6) gene and the tissue-specific distribution of its transcripts in embryos, larvae and adult zebrafish (Danio rerio). Like most members of the vertebrate FABP multigene family, the zebrafish fabp6 gene contains four exons separated by three introns. The coding region of the gene and expressed sequence tags code for a polypeptide of 131 amino acids (14 kDa, pI 6.59). The putative zebrafish Fabp6 protein shared greatest sequence identity with human FABP6 (55.3%) compared to other orthologous mammalian FABPs and paralogous zebrafish Fabps. Phylogenetic analysis showed that the zebrafish Fabp6 formed a distinct clade with the mammalian FABP6s. The zebrafish fabp6 gene was assigned to linkage group (chromosome) 21 by radiation hybrid mapping. Conserved gene synteny was evident between the zebrafish fabp6 gene on chromosome 21 and the FABP6/Fabp6 genes on human chromosome 5, rat chromosome 10 and mouse chromosome 11. Zebrafish fabp6 transcripts were first detected in the distal region of the intestine of embryos at 72 h postfertilization. This spatial distribution remained constant to 7-day-old larvae, the last stage assayed during larval development. In adult zebrafish, fabp6 transcripts were detected by RT-PCR in RNA extracted from liver, heart, intestine, ovary and kidney (most likely adrenal tissue), but not in RNA from skin, brain, gill, eye or muscle. In situ hybridization of a fabp6 riboprobe to adult zebrafish sections revealed intense hybridization signals in the adrenal homolog of the kidney and the distal region of the intestine, and to a lesser extent in ovary and liver, a transcript distribution that is similar, but not identical, to that seen for the mammalian FABP6/Fabp6 gene.
Collapse
|
23
|
Salem M, Silverstein J, Rexroad CE, Yao J. Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics 2007; 8:328. [PMID: 17880706 PMCID: PMC2040161 DOI: 10.1186/1471-2164-8-328] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 09/19/2007] [Indexed: 12/20/2022] Open
Abstract
Background Fast, efficiently growing animals have increased protein synthesis and/or reduced protein degradation relative to slow, inefficiently growing animals. Consequently, minimizing the energetic cost of protein turnover is a strategic goal for enhancing animal growth. Characterization of gene expression profiles associated with protein turnover would allow us to identify genes that could potentially be used as molecular biomarkers to select for germplasm with improved protein accretion. Results We evaluated changes in hepatic global gene expression in response to 3-week starvation in rainbow trout (Oncorhynchus mykiss). Microarray analysis revealed a coordinated, down-regulated expression of protein biosynthesis genes in starved fish. In addition, the expression of genes involved in lipid metabolism/transport, aerobic respiration, blood functions and immune response were decreased in response to starvation. However, the microarray approach did not show a significant increase of gene expression in protein catabolic pathways. Further studies, using real-time PCR and enzyme activity assays, were performed to investigate the expression of genes involved in the major proteolytic pathways including calpains, the multi-catalytic proteasome and cathepsins. Starvation reduced mRNA expression of the calpain inhibitor, calpastatin long isoform (CAST-L), with a subsequent increase in the calpain catalytic activity. In addition, starvation caused a slight but significant increase in 20S proteasome activity without affecting mRNA levels of the proteasome genes. Neither the mRNA levels nor the activities of cathepsin D and L were affected by starvation. Conclusion These results suggest a significant role of calpain and 20S proteasome pathways in protein mobilization as a source of energy during fasting and a potential association of the CAST-L gene with fish protein accretion.
Collapse
Affiliation(s)
- Mohamed Salem
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Jeff Silverstein
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| | - Caird E Rexroad
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| | - Jianbo Yao
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
24
|
Agulleiro MJ, André M, Morais S, Cerdà J, Babin PJ. High Transcript Level of Fatty Acid-Binding Protein 11 but Not of Very Low-Density Lipoprotein Receptor Is Correlated to Ovarian Follicle Atresia in a Teleost Fish (Solea senegalensis)1. Biol Reprod 2007; 77:504-16. [PMID: 17554079 DOI: 10.1095/biolreprod.107.061598] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transcripts encoding a fatty acid-binding protein (FABP), Fabp11, and two isoforms of very low-density lipoprotein receptor (Vldlr; vitellogenin receptor) were characterized from the ovary of Senegalese sole (Solea senegalensis). Phylogenetic analyses of vertebrate FABPs demonstrated that Senegalese sole Fabp11, as zebrafish (Danio rerio) homologous sequences, is part of a newly defined teleost fish FABP subfamily that is a sister clade of tetrapod FABP4/FABP5/FABP8/FABP9. RT-PCR revealed high levels of vldlr transcript splicing variants in the ovaries and, to a lesser extent, in somatic tissues, whereas fabp11 was highly expressed in the ovaries, liver, and adipose tissue. In situ hybridization analysis showed vldlr and fabp11 mRNAs in previtellogenic oocytes, whereas no hybridization signals were detected in the larger vitellogenic oocytes. Transcript expression of fabp11 was strongly upregulated in somatic cells surrounding atretic follicles. Real-time quantitative RT-PCR demonstrated that ovarian transcript levels of vldlr and fabp11 had a significant positive correlation with the percentage of follicles in previtellogenesis and atresia, respectively. These results suggest that the expression level of vldlr transcripts may be used as a precocious functional marker to quantify the number of oocytes recruited for vitellogenesis and that fabp11 mRNA may be a very useful molecular marker for determining cellular events and environmental factors that regulate follicular atresia in fish.
Collapse
Affiliation(s)
- Maria J Agulleiro
- Institut de Recerca i Tecnologia Agroalimentàries Center of Aquaculture, Sant Carles de la Ràpita, Tarragona 43540, Spain
| | | | | | | | | |
Collapse
|
25
|
Liu RZ, Saxena V, Sharma MK, Thisse C, Thisse B, Denovan-Wright EM, Wright JM. The fabp4 gene of zebrafish (Danio rerio)--genomic homology with the mammalian FABP4 and divergence from the zebrafish fabp3 in developmental expression. FEBS J 2007; 274:1621-33. [PMID: 17480210 DOI: 10.1111/j.1742-4658.2007.05711.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Teleost fishes differ from mammals in their fat deposition and distribution. The gene for adipocyte-type fatty acid-binding protein (A-FABP or FABP4) has not been identified thus far in fishes. We have determined the cDNA sequence and defined the structure of a fatty acid-binding protein gene (designated fabp4) from the zebrafish genome. The polypeptide sequence encoded by zebrafish fabp4 showed highest identity to the H(ad)-FABP or H6-FABP from Antarctic fishes and the putative orthologs from other teleost fishes (83-88%). Phylogenetic analysis clustered the zebrafish FABP4 with all Antarctic fish H6-FABPs and putative FABP4s from other fishes in a single clade, and then with the mammalian FABP4s in an extended clade. Zebrafish fabp4 was assigned to linkage group 19 at a distinct locus from fabp3. A number of closely linked syntenic genes surrounding the zebrafish fabp4 locus were found to be conserved with human FABP4. The zebrafish fabp4 transcripts showed sequential distribution in the developing eye, diencephalon and brain vascular system, from the middle somitogenesis stage to 48 h postfertilization, whereas fabp3 mRNA was located widely in the embryonic and/or larval central nervous system, retina, myotomes, pancreas and liver from middle somitogenesis to 5 days postfertilization. Differentiation in developmental regulation of zebrafish fabp4 and fabp3 gene transcription suggests distinct functions for these two paralogous genes in vertebrate development.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Sharma MK, Liu RZ, Thisse C, Thisse B, Denovan-Wright EM, Wright JM. Hierarchical subfunctionalization of fabp1a, fabp1b and fabp10 tissue-specific expression may account for retention of these duplicated genes in the zebrafish (Danio rerio) genome. FEBS J 2006; 273:3216-29. [PMID: 16857010 DOI: 10.1111/j.1742-4658.2006.05330.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fatty acid-binding protein type 1 (FABP1), commonly termed liver-type fatty acid-binding protein (L-FABP), is encoded by a single gene in mammals. We cloned and sequenced cDNAs for two distinct FABP1s in zebrafish coded by genes designated fabp1a and fabp1b. The zebrafish proteins, FABP1a and FABP1b, show highest sequence identity and similarity to the human protein FABP1. Zebrafish fabp1a and fabp1b genes were assigned to linkage groups 5 and 8, respectively. Both linkage groups show conserved syntenies to a segment of mouse chromosome 6, rat chromosome 4 and human chromosome 2 harboring the FABP1 locus. Phylogenetic analysis further suggests that zebrafish fabp1a and fabp1b genes are orthologs of mammalian FABP1 and most likely arose by a whole-genome duplication event in the ray-finned fish lineage, estimated to have occurred 200-450 million years ago. The paralogous fabp10 gene encoding basic L-FABP, found to date in only nonmammalian vertebrates, was assigned to zebrafish linkage group 16. RT-PCR amplification of mRNA in adults, and in situ hybridization to whole-mount embryos to fabp1a, fabp1b and fapb10 mRNAs, revealed a distinct and differential pattern of expression for the fabp1a, fabp1b and fabp10 genes in zebrafish, suggesting a division of function for these orthogolous and paralogous gene products following their duplication in the vertebrate genome. The differential and complementary expression patterns of the zebrafish fabp1a, fapb1b and fabp10 genes imply a hierarchical subfunctionalization that may account for the retention of both the duplicated fabp1a and fabp1b genes, and the fabp10 gene in the zebrafish genome.
Collapse
Affiliation(s)
- Mukesh K Sharma
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Massicotte L, Coenen K, Mourot M, Sirard MA. Maternal housekeeping proteins translated during bovine oocyte maturation and early embryo development. Proteomics 2006; 6:3811-20. [PMID: 16739132 DOI: 10.1002/pmic.200500803] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein synthesis from maternal mRNA is needed to sustain oocyte maturation and embryo development prior to the maternal-embryonic transition (MET). Therefore, proteins that are expressed throughout this time are important and may be considered as maternal housekeeping proteins (MHKP). Our objectives were first, identify the translated protein patterns of bovine embryo development and secondly, determine the MHKP. Proteins synthesized during oocyte maturation and embryo development (2, 4 and 8-cell stages) were labeled using [S(35)]-Met and [S(35)]-Cys, and visualized by 2-DE. Embryos were cultured with alpha-amanitine to inhibit new transcription. Only 46 proteins were present throughout all stages. Ten spots were identified by MALDI-TOF and MS/MS: HSC71; HSP70; CypA; UCH-L1; GSTM5; Cct5; E-FABP; 2,3-BPGM, ubiquitin-conjugating enzyme E2D3; and beta-actin/gamma-actin. A new method called in silico protein identification confirmation was developed using EST databases. This method is a promising approach for use in rare tissue or from species with an incomplete protein database. This study has revealed that the translated protein patterns show a transition that brings the embryo to the MET. The needs in translated proteins between oocyte maturation and embryo development are different. In summary, this study represents the bases for future proteomics studies on bovine oocytes and embryos.
Collapse
Affiliation(s)
- Lyne Massicotte
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Ste-Foy, Québec, Canada
| | | | | | | |
Collapse
|
28
|
Jordal AEO, Hordvik I, Pelsers M, Bernlohr DA, Torstensen BE. FABP3 and FABP10 in Atlantic salmon (Salmo salar L.)--general effects of dietary fatty acid composition and life cycle variations. Comp Biochem Physiol B Biochem Mol Biol 2006; 145:147-58. [PMID: 16905349 DOI: 10.1016/j.cbpb.2006.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 05/23/2006] [Accepted: 05/24/2006] [Indexed: 11/20/2022]
Abstract
The increased use of dietary plant oil supplementation combined with high dietary lipid loads challenges the lipid transport systems of cultivated fish species. Fatty acid binding proteins (FABPs) have been thoroughly studied as intracellular fatty acid transporters in vertebrates, but no data have been reported in Atlantic salmon. In the present study, comparative characterizations were performed, and dietary influence of plant oil supplementation on FABP3 and FABP10 expression was studied for several tissues in two separate dietary trials. In trial I, groups (6 fish each) were fed diets for 42 weeks (body mass 142+/-1 to 1463+/-83 g) (mean+/-S.D.), containing graded levels of rapeseed oil substituting for fish oil using a linear regression design. In trial II, groups (3 fish each) were fed 100% fish oil or 100% plant oil for 22 months (0.160+/-0.052 to 2523+/-590 g) (mean+/-S.D.) and sampled at regular intervals. Liver and muscle tissues appeared to express several FABPs possibly linked to different metabolic functions. FABPs mRNA expression did not change with dietary inclusion of 75% rapeseed oil, whereas FABP3 protein expression seemed to be affected by dietary rapeseed oil inclusion. Significant changes in red muscle FABP3 mRNA expression correlate to significant changes in total beta-oxidation capacity during the energy consuming process of smoltification.
Collapse
Affiliation(s)
- Ann-Elise O Jordal
- National Institute of Nutrition and Seafood Research, P.O. Box 2029 Nordnes, N-5817 Bergen, Norway.
| | | | | | | | | |
Collapse
|
29
|
Adolf B, Chapouton P, Lam CS, Topp S, Tannhäuser B, Strähle U, Götz M, Bally-Cuif L. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol 2006; 295:278-93. [PMID: 16828638 DOI: 10.1016/j.ydbio.2006.03.023] [Citation(s) in RCA: 314] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 03/16/2006] [Indexed: 12/24/2022]
Abstract
Our understanding of the cellular and molecular mechanisms underlying the adult neural stem cell state remains fragmentary. To provide new models on this issue, we searched for stem cells in the adult brain of the zebrafish. Using BrdU tracing and immunodetection of cell-type-specific markers, we demonstrate that the adult zebrafish telencephalon contains self-renewing progenitors, which show features of adult mammalian neural stem cells but distribute along the entire dorso-ventral extent of the telencephalic ventricular zone. These progenitors give rise to newborn neurons settling close to the ventricular zone within the telencephalon proper. They have no equivalent in mammals and therefore constitute a new model of adult telencephalic neural stem cells. In addition, progenitors from the ventral subpallium generate rapidly dividing progenitors and neuroblasts that reach the olfactory bulb (OB) via a rostral migratory stream and differentiate into GABAergic and TH-positive neurons. These ventral progenitors are comparable to the mammalian neural stem cells of the subependymal zone. Interestingly, dorsal and ventral progenitors in the adult telencephalon express a different combination of transcription factors than their embryonic counterparts. In the case of neurogenin1, this is due to the usage of different enhancer elements. Together, our results highlight the conserved and unique phylogenic and ontogenic features of adult neurogenesis in the zebrafish telencephalon and open the way to the identification of adult neural stem cell characters in cross-species comparative studies.
Collapse
Affiliation(s)
- Birgit Adolf
- Institute of Virology, Technical University-Munich, Trogerstrasse 4b, D-81675, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Esteves A, Ehrlich R. Invertebrate intracellular fatty acid binding proteins. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:262-274. [PMID: 16423563 DOI: 10.1016/j.cbpc.2005.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/24/2005] [Accepted: 10/30/2005] [Indexed: 02/02/2023]
Abstract
Fatty acid binding proteins are multigenic cytosolic proteins largely distributed along the zoological scale. Their overall identity at primary and tertiary structure is conserved. They are involved in the uptake and transport of hydrophobic ligands to different cellular fates. The precise functions of each FABP type remain imperfectly understood, since sub-specialization of functions is suggested. Evolutionary studies have distinguished major subfamilies that could have been derived from a common ancestor close to vertebrate/invertebrate split. Since the isolation of the first invertebrate FABP from Schistocerca gregaria in 1990, the number of FABPs isolated from invertebrates has been increasing. Differences at the sequence level are appreciable and relationships with vertebrate FABPs are not clear, and lesser among invertebrate proteins, introducing some uncertainty to infer functional relatedness and phylogenetic relationships. The objective of this review is to summarize the information available on invertebrate FABPs to elucidate their mutual relationships, the relationship with their vertebrate counterparts and putative functions. Structure, gene structure, putative functions, expression studies and phylogenetic relationships with vertebrate counterparts are analyzed. Previous suggestions of the ancestral position concerning the heart-type of FABPs are reinforced by evidence from invertebrate models.
Collapse
Affiliation(s)
- Adriana Esteves
- Sección Bioquímica, Dpto. de Biología Celular y Molecular, Facultad de Ciencias Montevideo, Uruguay.
| | - Ricardo Ehrlich
- Sección Bioquímica, Dpto. de Biología Celular y Molecular, Facultad de Ciencias Montevideo, Uruguay
| |
Collapse
|
31
|
Liu RZ, Sharma MK, Sun Q, Thisse C, Thisse B, Denovan-Wright EM, Wright JM. Retention of the duplicated cellular retinoic acid-binding protein 1 genes (crabp1a and crabp1b) in the zebrafish genome by subfunctionalization of tissue-specific expression. FEBS J 2005; 272:3561-71. [PMID: 16008556 DOI: 10.1111/j.1742-4658.2005.04775.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cellular retinoic acid-binding protein type I (CRABPI) is encoded by a single gene in mammals. We have characterized two crabp1 genes in zebrafish, designated crabp1a and crabp1b. These two crabp1 genes share the same gene structure as the mammalian CRABP1 genes and encode proteins that show the highest amino acid sequence identity to mammalian CRABPIs. The zebrafish crabp1a and crabp1b were assigned to linkage groups 25 and 7, respectively. Both linkage groups show conserved syntenies to a segment of the human chromosome 15 harboring the CRABP1 locus. Phylogenetic analysis suggests that the zebrafish crabp1a and crabp1b are orthologs of the mammalian CRABP1 genes that likely arose from a teleost fish lineage-specific genome duplication. Embryonic whole mount in situ hybridization detected zebrafish crabp1b transcripts in the posterior hindbrain and spinal cord from early stages of embryogenesis. crabp1a mRNA was detected in the forebrain and midbrain at later developmental stages. In adult zebrafish, crabp1a mRNA was localized to the optic tectum, whereas crabp1b mRNA was detected in several tissues by RT-PCR but not by tissue section in situ hybridization. The differential and complementary expression patterns of the zebrafish crabp1a and crabp1b genes imply that subfunctionalization may be the mechanism for the retention of both crabp1 duplicated genes in the zebrafish genome.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Sharma MK, Saxena V, Liu RZ, Thisse C, Thisse B, Denovan-Wright EM, Wright JM. Differential expression of the duplicated cellular retinoic acid-binding protein 2 genes (crabp2a and crabp2b) during zebrafish embryonic development. Gene Expr Patterns 2005; 5:371-9. [PMID: 15661643 DOI: 10.1016/j.modgep.2004.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/16/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
The cellular retinoic acid-binding protein 2 (CRABP2) is believed to be involved in regulating access of retinoic acid to nuclear retinoic acid receptors. We have determined the cDNA sequence and the genomic organization of the duplicated crabp2 gene (crabp2b) in zebrafish. The crabp2b cDNA was 522bp in length and encodes a polypeptide consisting of 146 amino acids. Radiation hybrid mapping assigned the crabp2b gene to zebrafish linkage group 19. The comparison of the mapped human CRABP2 gene, zebrafish crabp2a and zebrafish crabp2b genes revealed that human chromosome 1 has a syntenic relationship to zebrafish linkage groups 16 and 19. Reverse transcription-polymerase chain reaction (RT-PCR) detected crabp2b mRNA in total RNA extracted from whole adult zebrafish, but not in any of the adult zebrafish tissues examined. The crabp2a mRNA was detected in total RNA extracted from whole adult zebrafish, adult zebrafish muscle, testes, and skin and to a lesser extent in heart, ovary and brain. No crabp2a mRNA-specific product was detected in kidney, liver or intestine of the adult zebrafish. Whole mount in situ hybridization detected crabp2b and crabp2a mRNA in a number of structures known to require retinoic acid signaling during embryonic development. The crabp2b mRNA was detected in the central nervous system, branchial arches, pectoral fins, retina (dorsal to the lens), epidermis and otic vesicle of the developing zebrafish. The crabp2a transcripts were detected by whole mount in situ hybridization in the central nervous system, epidermis, proliferative zone of the retina, intestinal bulb, oesophagus, pectoral fins and branchial arches during zebrafish embryonic development.
Collapse
Affiliation(s)
- Mukesh K Sharma
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada B3H 4J1
| | | | | | | | | | | | | |
Collapse
|
33
|
Liu RZ, Denovan-Wright EM, Degrave A, Thisse C, Thisse B, Wright JM. Differential expression of duplicated genes for brain-type fatty acid-binding proteins (fabp7a and fabp7b) during early development of the CNS in zebrafish (Danio rerio). Gene Expr Patterns 2005; 4:379-87. [PMID: 15183304 DOI: 10.1016/j.modgep.2004.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 01/12/2004] [Accepted: 01/14/2004] [Indexed: 01/18/2023]
Abstract
A gene for the zebrafish brain-type fatty acid-binding protein (fabp7b) was identified and its structure defined. The zebrafish fabp7b gene spans 1479 bp and consists of four exons encoding 24, 58, 34 and 16 amino acids, respectively, which is identical to the structure of the fabp7a gene previously described. The complete fabp7b cDNA was isolated by 5' and 3' RACE and its nucleotide sequence determined. The deduced amino acid sequence of FABP7B encoded by the zebrafish fabp7b gene shares 82% identity with that of FABP7A encoded by the zebrafish fabp7a gene. A single transcription start site for the fabp7b gene was mapped by 5' RNA ligase-mediated RACE. Phylogenetic analysis indicated that the duplication of the fabp7 genes occurred in the fish lineage after their divergence from mammals. The zebrafish fabp7b gene was assigned to linkage group 20 by radiation hybrid mapping. Reverse transcription-polymerase chain reaction detected fabp7b transcripts in the same adult tissues as fabp7a transcripts. In the brain, levels of fabp7b transcripts were lower than fabp7a transcripts. Whole-mount in situ hybridization showed that the zebrafish fabp7a transcripts were distributed in the early developing central nervous system. In addition to being expressed in the developing brain and retina, zebrafish fabp7b mRNA was also detected in the swim bladder and pharynx during the embryonic to larval transitory phase.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1
| | | | | | | | | | | |
Collapse
|
34
|
Leung AYH, Mendenhall EM, Kwan TTF, Liang R, Eckfeldt C, Chen E, Hammerschmidt M, Grindley S, Ekker SC, Verfaillie CM. Characterization of expanded intermediate cell mass in zebrafish chordin morphant embryos. Dev Biol 2005; 277:235-54. [PMID: 15572152 DOI: 10.1016/j.ydbio.2004.09.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/30/2004] [Accepted: 09/24/2004] [Indexed: 11/30/2022]
Abstract
We investigated the mechanisms of intermediate cell mass (ICM) expansion in zebrafish chordin (Chd) morphant embryos and examined the role of BMPs in relation to this phenotype. At 24 h post-fertilization (hpf), the expanded ICM of embryos injected with chd morpholino (MO) (ChdMO embryos) contained a monotonous population of hematopoietic progenitors. In situ hybridization showed that hematopoietic transcription factors were ubiquitously expressed in the ICM whereas vascular gene expression was confined to the periphery. BMP4 (but not BMP2b or 7) and smad5 mRNA were ectopically expressed in the ChdMO ICM. At 48 hpf, monocytic cells were evident in both the ICM and circulation of ChdMO but not WT embryos. While injection of BMP4 MO had no effect on WT hematopoiesis, co-injecting BMP4 with chd MOs significantly reduced ICM expansion. Microarray studies revealed a number of genes that were differentially expressed in ChdMO and WT embryos and their roles in hematopoiesis has yet to be determined. In conclusion, the expanded ICM in ChdMO embryos represented an expansion of embryonic hematopoiesis that was skewed towards a monocytic lineage. BMP4, but not BMP2b or 7, was involved in this process. The results provide ground for further research into the mechanisms of embryonic hematopoietic cell expansion.
Collapse
Affiliation(s)
- Anskar Y H Leung
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu RZ, Sun Q, Thisse C, Thisse B, Wright JM, Denovan-Wright EM. The cellular retinol-binding protein genes are duplicated and differentially transcribed in the developing and adult zebrafish (Danio rerio). Mol Biol Evol 2004; 22:469-77. [PMID: 15509725 DOI: 10.1093/molbev/msi030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
There are single copies of the genes encoding the cellular retinol-binding protein type I and II (CRBPI and CRBPII) in the human and rodent genomes. We have identified duplicate genes for both CRBPI and CRBPII in the zebrafish (Danio rerio) genome (rbp1b and rbp2b). The zebrafish rbp1b and rbp2b have conserved gene structures, amino acid sequence similarities, gene phylogenies, and syntenic relationships with their mammalian orthologs and zebrafish paralogs, rbp1a and rbp2a. Like the mammalian genes for CRBPI and CRBPII, the zebrafish rbp1b and rbp2b genes are closely linked on a single linkage group. Comparative analysis suggests that the duplicate genes of rbp1 and rbp2 in the zebrafish genome may have arisen by chromosomal or whole-genome duplication. During embryonic development, rbp1b transcripts were detected in the gall bladder of 5-day postfertilization (5 dpf) larvae. The rbp2b mRNA was abundant in the developing liver through 48 hours postfertilization (48 hpf) to 5 dpf. Using reverse transcription-polymerase chain reaction (RT-PCR), rbp1b transcripts were detected in the ovary, and rbp2b mRNA was observed predominantly in the adult liver. Tissue section in situ hybridization and emulsion autoradiography localized rbp1b mRNA to primary oocytes within the zebrafish ovary. The differential mRNA distribution patterns of the rbp1a, rbp1b, rbp2a, and rbp2b genes in the developing and adult zebrafish suggest that shuffling of subfunctions among duplicate copies of paralogous genes may be a mechanism for the retention of duplicated genes in vertebrates.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Fatty acid-binding proteins (FABPs) belong to the conserved multigene family of the intracellular lipid-binding proteins (iLBPs). These proteins are ubiquitously expressed in vertebrate tissues, with distinct expression patterns for the individual FABPs. Various functions have been proposed for these proteins, including the promotion of cellular uptake and transport of fatty acids, the targeting of fatty acids to specific metabolic pathways, and the participation in the regulation of gene expression and cell growth. Novel genetic tools that have become available in recent years, such as transgenic cell lines, animals, and knock-out mice, have provided the opportunity to test these concepts in physiological settings. Such studies have helped to define essential cellular functions of individual FABP-types or of combinations of several different FABPs. The deletion of particular FABP genes, however, has not led to gross phenotypical changes, most likely because of compensatory overexpression of other members of the iLBP gene family, or even of unrelated fatty acid transport proteins. This review summarizes the properties of the various FABPs expressed in mammalian tissues, and discusses the transgenic and ablation studies carried out to date in a functional context.
Collapse
Affiliation(s)
- Norbert H Haunerland
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
37
|
Liu RZ, Denovan-Wright EM, Degrave A, Thisse C, Thisse B, Wright JM. Spatio-temporal distribution of cellular retinol-binding protein gene transcripts (CRBPI and CRBPII) in the developing and adult zebrafish (Danio rerio). ACTA ACUST UNITED AC 2004; 271:339-48. [PMID: 14717701 DOI: 10.1046/j.1432-1033.2003.03932.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have cloned and determined the nucleotide sequence of the cDNA coding for a cellular retinol-binding protein type I (CRBPI) from zebrafish. The deduced amino acid sequence of the zebrafish CRBPI showed highest sequence identity ( approximately 59%) to the mammalian CRBPIs of the intracellular lipid-binding protein (iLBP) multigene family. Phylogenetic analysis clustered the zebrafish CRBPI to the CRBPI clade. The zebrafish CRBPI gene (rbp1) and CRBPII gene (rbp2) both consist of four exons separated by three introns, identical to all other iLBP genes in vertebrates. Two transcription start sites were identified in the rbp1 promoter and a single transcription start site was identified for rbp2. Radiation hybrid mapping assigned the zebrafish rbp1 gene to linkage group 16 and conserved syntenic genes were found by comparative analysis of mammalian orthologous rbp1 genes. RT-PCR detected mRNA transcripts in the adult intestine, liver, brain, ovary and testis for rbp1 gene and in the intestine and liver for rbp2 gene. Whole mount in situ hybridization of zebrafish embryos revealed rbp1 mRNA expression in the developing zebrafish central nervous system at specific sites that are known to have abundant retinoic acid distribution and significant retinoic acid action. Whole mount in situ hybridization also showed that the zebrafish rbp2 mRNA was localized specifically in the embryonic intestinal bulb and the developing intestine during the larval stage, implying a novel function for the rbp2 gene product during organogenesis and development of the zebrafish intestine.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|