1
|
Blaylock RL. Immunoexcitoxicity as the possible major pathophysiology behind multiple sclerosis and other autoimmune disorders. Surg Neurol Int 2025; 16:26. [PMID: 39926461 PMCID: PMC11799683 DOI: 10.25259/sni_1114_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025] Open
Abstract
Autoimmune disorders are destructive processes considered to be an attack on "self " antigens by the immune system CD-+4 T-cells that are directed toward antigens, in the case of multiple sclerosis (MS), particularly myelin antigens. Yet, there is growing evidence that the major destructive events in MS, as well as other non-central nervous system (CNS) autoimmune disorders, are much more than an immune attack on the CNS initiated by a misdirected immune system that attacks a "self " antigen or antigens by a process called molecular mimicry. Extensive evidence suggests that inflammation, in turn, initiates excitotoxicity, which is responsible for the majority of pathological findings in all stages of the disease, especially a loss of oligodendroglia (source of myelin) and axon injury in MS. Excitotoxicity also is a better explanation for progressive MS, in which the immune attack has either slowed or is halted; yet, the destructive pathology continues to progress. It also explains the destructive lesions seen in gray matter, which is essentially devoid of inflammation. It has recently been shown that most of the damage to the oligodendrocytes, as well as axonal injury, is secondary to excitotoxicity. While there is a growing appreciation that excitotoxicity plays a major role, there has been little effort to link the immune changes to the excitotoxic process, recently named immunoexcitotoxicity, even though the role of excitotoxicity has been shown to occur in the inflammatory stage in the beginning and throughout the process of the disease, particularly the chronic progressive stage. It is also known that peripheral glutamate receptors exist throughout the body, thus making the process of immunoexcitotoxicity a possible integral part of all or most autoimmune disorders in which the immune system is intimately linked to enhancing the excitotoxic process. This is of special concern now that peripheral glutamate receptors have been isolated in many peripheral tissues and are known to be fully functional.
Collapse
|
2
|
Li X, Deng J, Long Y, Ma Y, Wu Y, Hu Y, He X, Yu S, Li D, Li N, He F. Focus on brain-lung crosstalk: Preventing or treating the pathological vicious circle between the brain and the lung. Neurochem Int 2024; 178:105768. [PMID: 38768685 DOI: 10.1016/j.neuint.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Recently, there has been increasing attention to bidirectional information exchange between the brain and lungs. Typical physiological data is communicated by channels like the circulation and sympathetic nervous system. However, communication between the brain and lungs can also occur in pathological conditions. Studies have shown that severe traumatic brain injury (TBI), cerebral hemorrhage, subarachnoid hemorrhage (SAH), and other brain diseases can lead to lung damage. Conversely, severe lung diseases such as acute respiratory distress syndrome (ARDS), pneumonia, and respiratory failure can exacerbate neuroinflammatory responses, aggravate brain damage, deteriorate neurological function, and result in poor prognosis. A brain or lung injury can have adverse effects on another organ through various pathways, including inflammation, immunity, oxidative stress, neurosecretory factors, microbiome and oxygen. Researchers have increasingly concentrated on possible links between the brain and lungs. However, there has been little attention given to how the interaction between the brain and lungs affects the development of brain or lung disorders, which can lead to clinical states that are susceptible to alterations and can directly affect treatment results. This review described the relationships between the brain and lung in both physiological and pathological conditions, detailing the various pathways of communication such as neurological, inflammatory, immunological, endocrine, and microbiological pathways. Meanwhile, this review provides a comprehensive summary of both pharmacological and non-pharmacological interventions for diseases related to the brain and lungs. It aims to support clinical endeavors in preventing and treating such ailments and serve as a reference for the development of relevant medications.
Collapse
Affiliation(s)
- Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei He
- Department of Geratology, Yongchuan Hospital of Chongqing Medical University(the Fifth Clinical College of Chongqing Medical University), Chongqing, 402160, China.
| |
Collapse
|
3
|
Shi H, Chen M. The brain-bone axis: unraveling the complex interplay between the central nervous system and skeletal metabolism. Eur J Med Res 2024; 29:317. [PMID: 38849920 PMCID: PMC11161955 DOI: 10.1186/s40001-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The brain-bone axis has emerged as a captivating field of research, unveiling the intricate bidirectional communication between the central nervous system (CNS) and skeletal metabolism. This comprehensive review delves into the current state of knowledge surrounding the brain-bone axis, exploring the complex mechanisms, key players, and potential clinical implications of this fascinating area of study. The review discusses the neural regulation of bone metabolism, highlighting the roles of the sympathetic nervous system, hypothalamic neuropeptides, and neurotransmitters in modulating bone remodeling. In addition, it examines the influence of bone-derived factors, such as osteocalcin and fibroblast growth factor 23, on brain function and behavior. The therapeutic potential of targeting the brain-bone axis in the context of skeletal and neurological disorders is also explored. By unraveling the complex interplay between the CNS and skeletal metabolism, this review aims to provide a comprehensive resource for researchers, clinicians, and students interested in the brain-bone axis and its implications for human health and disease.
Collapse
Affiliation(s)
- Haojun Shi
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China.
| |
Collapse
|
4
|
Saito J, Zao H, Wu L, Iwasaki M, Sun Q, Hu C, Ishikawa M, Hirota K, Ma D. "Anti-cancer" effect of ketamine in comparison with MK801 on neuroglioma and lung cancer cells. Eur J Pharmacol 2023; 945:175580. [PMID: 36758782 DOI: 10.1016/j.ejphar.2023.175580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, is commonly used to induce anaesthesia during cancer surgery and relieve neuropathic and cancer pain. This study was conducted to assess whether ketamine has any inhibiting effects on neuroglioma (H4) and lung cancer cells (A549) in vitro. The cultured H4 and A549 cells were treated with ketamine and MK801 (0.1, 1, 10, 100, or 1000 μM) for 24 h. The expressions of glutamate receptors on both types of cancer cells were assessed with qRT-PCR. In addition, cell proliferation and migration were assessed with cell counting Kit-8 and wound healing assays. Cyclin D1, matrix metalloproteinase 9 (MMP9), phosphorylation of extracellular signal-regulated kinase (pERK), and cleaved-caspase-3 expression together with reactive oxygen species (ROS) were also assessed with Western blot, immunostaining, and/or flowcytometry. NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors were expressed on both H4 and A549 cells. Ketamine inhibited cancer cell proliferation and migration in a dose-dependent manner by suppressing the cell cycle and inducing apoptosis. Ketamine decreased cyclin D1, pERK, and MMP9 expression. In addition, ketamine increased ROS and cleaved caspase-3 expression and induced apoptosis. The anti-cancer effect of ketamine was more pronounced in A549 cells when compared with H4 cells. MK801 showed similar effects to those of ketamine. Ketamine suppressed cell proliferation and migration in both neuroglioma and lung cancer cells, likely through the antagonization of NMDA receptors.
Collapse
Affiliation(s)
- Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Hailin Zao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Masae Iwasaki
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Masashi Ishikawa
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; National Clinical Research Center for Child Health, Hangzhou, China.
| | | |
Collapse
|
5
|
Litvak YV, Harapko T, Lytvak V, Foros AI. MORPHOLOGICAL PECULIARITIES OF THE PANCREAS OF MALE RATS AFTER PROLONGED ADMINISTRATION OF MONOSODIUM GLUTAMATE DURING THE RECOVERY PERIOD. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 75:3102-3108. [PMID: 36723334 DOI: 10.36740/wlek202212135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim: To study changes in the exocrine and endocrine parts of the pancreas of rats after abolition of monosodium glutamate (MSG) administered in the diet. PATIENTS AND METHODS Materials and methods: White male laboratory rats with a baseline weight of 120 ± 5 g were randomized into 3 groups: 1 - control, 2 - animals with daily feeding of 70 mg/ kg MSG for 8 weeks, 3 - abolition of MSG with transfer of animals to a standard diet and pancreatic examination after 8 weeks. We used histological studies with morphometric analysis and statistical processing of acini and acinar cell areas, Langerhans islets, connective tissue (according to Stolte M.) and adipose tissue. Preparations of pancreas were stained with hematoxylin and eosin and azan. RESULTS Results: The animals of groups 2 and 3 showed atrophic, degenerative and inflammatory disturbances in the exocrine and endocrine parts of the pancreas, which worsened after 8 weeks of MSG withdrawal (3 rd group). In the preparations, the Langerhans islets were of different shapes and sizes. Small islets predominated, as well as islets with low density of α- and β-cells, different capillary filling with blood and overgrowth of connective tissue in the capillary areas. The acinar cells and acini were reduced, and degenerative abnormalities were detected in the structures. CONCLUSION Conclusions: After daily administration of 70 mg/kg MSG for 8 weeks, atrophic and degenerative changes in the exocrine and endocrine parts of the pancreas were revealed. No recovery of pancreatic structures was observed 8 weeks after MSG withdrawal.
Collapse
|
6
|
Li RT, Li Y, Wang BW, Gao XQ, Zhang JX, Li F, Zhang XY, Fang ZZ. Relationship between plasma glutamate and cardiovascular disease risk in Chinese patients with type 2 diabetes mellitus by gender. Front Endocrinol (Lausanne) 2023; 14:1095550. [PMID: 37124739 PMCID: PMC10130405 DOI: 10.3389/fendo.2023.1095550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 05/02/2023] Open
Abstract
Objectives This study aimed to assess the association between plasma glutamate (Glu) and the risk of cardiovascular disease (CVD) in patients with type 2 diabetes mellitus (T2DM) and whether this association differs by gender. Material and methods We retrieved clinical information on 1032 consecutive patients with T2DM from a same tertiary care center from May 2015 to August 2016. Glu was quantified by liquid chromatography-tandem mass spectrometry analysis. Glu was converted into a categorical variable based on the median concentration in the whole population, while logistic regression was used to obtain the odds ratio (OR) and 95% confidence interval (CI), and the correlation between Glu and various biochemical indices was analyzed. Results We found that Glu was positively associated with the risk of CVD in patients with T2DM. This correlation was more significant in women. In T2DM patients, the higher the age, body mass index (BMI), weight and systolic blood pressure (SBP), the lower the glycosylated hemoglobin (HbA1C) concentration and the higher the Glu. In female patients, the correlation between age, weight, BMI, SBP, and plasma Triglycerides (TG), and Glu was also statistically significant. Conclusion In conclusion, female T2DM patients with high levels of Glu have a higher risk of developing CVD.
Collapse
Affiliation(s)
- Ru-Tao Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Bo-Wen Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiao-Qian Gao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing-Xi Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Fan Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xiang-Yu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- *Correspondence: Zhong-Ze Fang, ; Xiang-Yu Zhang,
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- *Correspondence: Zhong-Ze Fang, ; Xiang-Yu Zhang,
| |
Collapse
|
7
|
Lee A, Klinkradt S, McCombe P, Pow D. Cloning of a new form of EAAT2/GLT-1 from human and rodent brains. Neurosci Lett 2022; 780:136637. [DOI: 10.1016/j.neulet.2022.136637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2022]
|
8
|
Daly CA, Hall ET, Ogden SK. Regulatory mechanisms of cytoneme-based morphogen transport. Cell Mol Life Sci 2022; 79:119. [PMID: 35119540 PMCID: PMC8816744 DOI: 10.1007/s00018-022-04148-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/07/2023]
Abstract
During development and tissue homeostasis, cells must communicate with their neighbors to ensure coordinated responses to instructional cues. Cues such as morphogens and growth factors signal at both short and long ranges in temporal- and tissue-specific manners to guide cell fate determination, provide positional information, and to activate growth and survival responses. The precise mechanisms by which such signals traverse the extracellular environment to ensure reliable delivery to their intended cellular targets are not yet clear. One model for how this occurs suggests that specialized filopodia called cytonemes extend between signal-producing and -receiving cells to function as membrane-bound highways along which information flows. A growing body of evidence supports a crucial role for cytonemes in cell-to-cell communication. Despite this, the molecular mechanisms by which cytonemes are initiated, how they grow, and how they deliver specific signals are only starting to be revealed. Herein, we discuss recent advances toward improved understanding of cytoneme biology. We discuss similarities and differences between cytonemes and other types of cellular extensions, summarize what is known about how they originate, and discuss molecular mechanisms by which their activity may be controlled in development and tissue homeostasis. We conclude by highlighting important open questions regarding cytoneme biology, and comment on how a clear understanding of their function may provide opportunities for treating or preventing disease.
Collapse
Affiliation(s)
- Christina A Daly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, MS 1500, Memphis, TN, 38105, USA
| | - Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl. MS340, Memphis, TN, 38105, USA.
| |
Collapse
|
9
|
Blyufer A, Lhamo S, Tam C, Tariq I, Thavornwatanayong T, Mahajan SS. Riluzole: A neuroprotective drug with potential as a novel anti‑cancer agent (Review). Int J Oncol 2021; 59:95. [PMID: 34713302 PMCID: PMC8562386 DOI: 10.3892/ijo.2021.5275] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Riluzole, a glutamate release inhibitor, has been in use for the treatment of amyotrophic lateral sclerosis for over two decades since its approval by the Food and Drug Administration. Recently, riluzole has been evaluated in cancer cells and indicated to block cell proliferation and/or induce cell death. Riluzole has been proven effective as an anti-neoplastic drug in cancers of various tissue origins, including the skin, breast, pancreas, colon, liver, bone, brain, lung and nasopharynx. While cancer cells expressing glutamate receptors frequently respond to riluzole treatment, numerous types of cancer cell lacking glutamate receptors unexpectedly responded to riluzole treatment as well. Riluzole was demonstrated to interfere with glutamate secretion, growth signaling pathways, Ca2+ homeostasis, glutathione synthesis, reactive oxygen species generation and integrity of DNA, as well as autophagic and apoptotic pathways. Of note, riluzole is highly effective in inducing cell death in cisplatin-resistant lung cancer cells. Furthermore, riluzole pretreatment sensitizes glioma and melanoma to radiation therapy. In addition, in triple-negative breast cancer, colorectal cancer, melanoma and glioblastoma, riluzole has synergistic effects in combination with select drugs. In an effort to highlight the therapeutic potential of riluzole, the current study reviewed the effect and outcome of riluzole treatment on numerous cancer types investigated thus far. The mechanism of action and the various molecular pathways affected by riluzole are discussed.
Collapse
Affiliation(s)
- Angelina Blyufer
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY 10010, USA
| | - Sonam Lhamo
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY 10010, USA
| | - Cassey Tam
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY 10010, USA
| | - Iffat Tariq
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY 10010, USA
| | | | - Shahana S Mahajan
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY 10010, USA
| |
Collapse
|
10
|
Acetylation-dependent glutamate receptor GluR signalosome formation for STAT3 activation in both transcriptional and metabolism regulation. Cell Death Discov 2021; 7:11. [PMID: 33446662 PMCID: PMC7809112 DOI: 10.1038/s41420-020-00389-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Besides their original regulating roles in the brain, spinal cord, retina, and peripheral nervous system for mediating fast excitatory synaptic transmission, glutamate receptors consisting of metabotropic glutamate receptors (GluRs) and ionotropic glutamate receptors (iGluRs) have emerged to have a critical role in the biology of cancer initiation, progression, and metastasis. However, the precise mechanism underpinning the signal transduction mediated by ligand-bound GluRs is not clearly elucidated. Here, we show that iGluRs, GluR1 and GluR2, are acetylated by acetyltransferase CREB-binding protein upon glutamate stimulation of cells, and are targeted by lysyl oxidase-like 2 for deacetylation. Acetylated GluR1/2 recruit β-arrestin1/2 and signal transducer and activator of transcription 3 (STAT3) to form a protein complex. Both β-arrestin1/2 and STAT3 are subsequently acetylated and activated. Simultaneously, activated STAT3 acetylated at lysine 685 translocates to mitochondria to upregulate energy metabolism-related gene transcription. Our results reveal that acetylation-dependent formation of GluR1/2-β-arrestin1/2-STAT3 signalosome is critical for glutamate-induced cell proliferation.
Collapse
|
11
|
Huizing MJ, Borges-Luján M, Cavallaro G, González-Luis GE, Raffaeli G, Bas-Suárez P, Bakker JA, Moonen RM, Villamor E. Plasma Amino Acid Concentrations at Birth and Patent Ductus Arteriosus in Very and Extremely Preterm Infants. Front Pediatr 2021; 9:647018. [PMID: 33643980 PMCID: PMC7905031 DOI: 10.3389/fped.2021.647018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Amino acids are increasingly recognized as bioactive molecules in numerous physiological and pathophysiological pathways. The non-essential amino acid glutamate is vasoactive in the rat ductus arteriosus (DA) and a decrease in its levels within the 1st days of life has been associated with the presence of patent DA (PDA) in extremely preterm infants. However, these findings have not been confirmed in other studies. Objective: To investigate the possible association between amino acid concentrations in the 1st day of life and the presence of PDA in a cohort of 121 newborns with gestational age (GA) below 30 weeks and birth weight (BW) below 1,500 g. Methods: Plasma samples were collected 6-12 h after birth and amino acid concentrations were determined by tandem mass spectrometry. Besides PDA, we analyzed the potential association of amino acid concentrations with infant sex, small for GA (SGA, defined as BW < third percentile), antenatal corticosteroids, chorioamnionitis, and preeclampsia. Group differences were analyzed by ANOVA adjusted for GA and BW. A Bonferroni significance threshold of P < 0.0024 was used to correct for multiple testing. Results: PDA was found in 48 of the 121 infants examined. We observed higher mean levels of glutamate in infants with PDA (147.0 μmol/L, SD 84.0) as compared with those without (106.7 μmol/L, SD 49.1, P = 0.0006). None of the other amino acid concentrations in the PDA group reached the level of statistical significance that was pre-set to correct for multiple comparisons. Glutamate levels were not significantly affected by infant sex, being SGA, or by exposure to antenatal corticosteroids, clinical chorioamnionitis, or preeclampsia. Conclusion: Our study not only does not confirm the previous findings of low glutamate levels in preterm infants with PDA, but we have even found elevated glutamate concentrations associated with PDA. Nevertheless, despite the high statistical significance, the difference in glutamate levels may lack clinical significance or may be an epiphenomenon associated with the particular clinical condition of infants with PDA.
Collapse
Affiliation(s)
- Maurice J Huizing
- Department of Pediatrics, Maastricht University Medical Centre (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, Netherlands
| | - Moreyba Borges-Luján
- Department of Neonatology, Complejo Hospitalario Universitario Insular Materno-Infantil (CHUIMI) de Canarias, Las Palmas de Gran Canaria, Spain
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gema E González-Luis
- Department of Neonatology, Complejo Hospitalario Universitario Insular Materno-Infantil (CHUIMI) de Canarias, Las Palmas de Gran Canaria, Spain
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Pilar Bas-Suárez
- Department of Pediatrics, Hospital Vithas Santa Catalina, Las Palmas de Gran Canaria, Spain
| | - Jaap A Bakker
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Rob M Moonen
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, Netherlands
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Centre (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, Netherlands
| |
Collapse
|
12
|
Zaghmi A, Dopico-López A, Pérez-Mato M, Iglesias-Rey R, Hervella P, Greschner AA, Bugallo-Casal A, da Silva A, Gutiérrez-Fernández M, Castillo J, Pérez FC, Gauthier MA. Sustained blood glutamate scavenging enhances protection in ischemic stroke. Commun Biol 2020; 3:729. [PMID: 33273696 PMCID: PMC7713697 DOI: 10.1038/s42003-020-01406-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a major cause of morbidity, mortality, and disability. During ischemic stroke, a marked and prolonged rise of glutamate concentration in the brain causes neuronal cell death. This study explores the protective effect of a bioconjugate form of glutamate oxaloacetate transaminase (hrGOT), which catalyzes the depletion of blood glutamate in the bloodstream for ~6 days following a single administration. When treated with this bioconjugate, a significant reduction of the infarct volume and a better retention of sensorimotor function was observed for ischemic rats compared to those treated with saline. Moreover, the equivalent dose of native hrGOT yielded similar results to the saline treated group for some tests. Targeting the bioconjugate to the blood-brain-barrier did not improve its performance. The data suggest that the bioconjugates draw glutamate out of the brain by displacing homeostasis between the different glutamate pools of the body.
Collapse
Affiliation(s)
- Ahlem Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Qc, J3X 1S2, Canada
| | - Antonio Dopico-López
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Pérez-Mato
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ramón Iglesias-Rey
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Andrea A Greschner
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Qc, J3X 1S2, Canada
| | - Ana Bugallo-Casal
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Andrés da Silva
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Castillo
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos Pérez
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Qc, J3X 1S2, Canada.
| |
Collapse
|
13
|
Bonova P, Jachova J, Nemethova M, Bona M, Kollarova P, Gottlieb M. Accelerated capacity of glutamate uptake via blood elements as a possible tool of rapid remote conditioning mediated tissue protection. Neurochem Int 2020; 142:104927. [PMID: 33259861 DOI: 10.1016/j.neuint.2020.104927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Recently, the function of blood cells in remote ischemic conditioning (RIC) mediated neuroprotection was undoubtedly confirmed. In the present paper, we have focused on the role of blood elements in glutamate homeostasis. The blood of remote conditioned (tolerant) animals was incubated ex vivo with 100 μM glutamate, and the quantitative and qualitative changes of excitatory amino acid transporters (EAAT 1, 2, and 3) were determined. We confirmed RIC mediated accelerated sequestration of extracellular glutamate via EAATs and altered distribution of that amino acid between plasma and cell elements compared to non-tolerant counterparts. The activity of EAATs was elevated in erythrocytes and monocytes, while the density of transporters was not affected. Quantitative changes of EAAT1 density were detected solely in platelets where the forced scavenging was independent of EAATs inhibition. Surprisingly, the trafficking of immunovisualised EAAT2 and 3 raised at tolerant erythrocytes and monocytes. We have found that protein synthesis underlined this process. On the other hand, depletion of protein synthesis did not significantly affect the scavenging capacity of those cell populations. Our work has demonstrated that the elevated blood scavenging of glutamate overdose could be one of the potential mechanisms underlying RIC mediated tissue protection.
Collapse
Affiliation(s)
- Petra Bonova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | - Jana Jachova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Miroslava Nemethova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Kosice, Slovak Republic
| | - Patricia Kollarova
- Department of Pathology, Faculty of Medicine, University of Pavol Jozef Safarik, Kosice, Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovak Republic
| |
Collapse
|
14
|
Reduction in Blood Glutamate Levels Combined With the Genetic Inactivation of A2AR Significantly Alleviate Traumatic Brain Injury-Induced Acute Lung Injury. Shock 2020; 51:502-510. [PMID: 29688987 DOI: 10.1097/shk.0000000000001170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury-induced acute lung injury (TBI-ALI) is a serious complication of traumatic brain injury (TBI). Our previous clinical study found that high levels of blood glutamate after TBI were closely related to the occurrence and severity of TBI-ALI, while it remains unknown whether a high concentration of blood glutamate directly causes or aggravates TBI-ALI. We found that inhibition of the adenosine A2A receptor (A2AR) after brain injury alleviated the TBI-ALI; however, it is unknown whether lowering blood glutamate levels in combination with inhibiting the A2AR would lead to better effects. Using mouse models of moderate and severe TBI, we found that intravenous administration of L-glutamate greatly increased the lung water content, lung-body index, level of inflammatory markers in bronchoalveolar lavage fluid and acute lung injury score and significantly decreased the PaO2/FiO2 ratio. Moreover, the incidence of TBI-ALI and the mortality rate were significantly increased, and the combined administration of A2AR activator and exogenous glutamate further exacerbated the above damaging effects. Conversely, lowering the blood glutamate level through peritoneal dialysis or intravenous administration of oxaloacetate notably improved the above parameters, and a further improvement was seen with concurrent A2AR genetic inactivation. These data suggest that A2AR activation aggravates the damaging effect of high blood glutamate concentrations on the lung and that combined treatment targeting both A2AR and blood glutamate may be an effective way to prevent and treat TBI-ALI.
Collapse
|
15
|
Jamal M, Ito A, Tanaka N, Miki T, Ameno K, Kinoshita H. High Ethanol and Acetaldehyde Inhibit Glutamatergic Transmission in the Hippocampus of Aldh2-Knockout and C57BL/6N Mice: an In Vivo and Ex Vivo Analysis. Neurotox Res 2020; 37:702-713. [PMID: 32062779 DOI: 10.1007/s12640-020-00180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/30/2022]
Abstract
We aimed to investigate whether ethanol (EtOH) and acetaldehyde (AcH) can affect glutamate and its receptors GluN1 and GluA1 in the hippocampus of Aldh2-knockout (Aldh2-KO) and C57BL/6N (wild-type (WT)) mice. To do this, we first examined the effect of local administration of EtOH (100 mM, 200 mM, and 500 mM) and AcH (100 μM, 200 μM, and 500 μM) on extracellular glutamate levels in freely moving mice. Retrodialysis of 200 mM and 500 mM EtOH into the hippocampus of WT and Aldh2-KO mice produced significant decreases in extracellular glutamate levels (p < 0.05). A dose of 500 mM EtOH induced a greater decrease in Aldh2-KO mice (p < 0.05) than in WT mice, indicating the action of AcH. Similarly, perfusion of 200 μM and 500 μM AcH decreased glutamate in Aldh2-KO mice (p < 0.05), but this decrease was not seen in WT mice at any AcH dose. Second, we tested whether the EtOH- and AcH-induced decrease in glutamate was associated with decreases in GluN1 and GluA1 expression, as measured by real-time PCR and Western blot. We found a significant decrease in GluN1 (p < 0.05) and GluA1 (p < 0.05) subunits after a high dose of EtOH (4.0 g/kg) and AcH (200 mg/kg) in WT mice. However, a 2.0 g/kg dose of EtOH did not produce a consistent decrease in GluN1 or GluA1 between messenger RNA and protein. In Aldh2-KO mice, all three doses of EtOH (1.0 g/kg, 2.0 g/kg, and 4.0 g/kg) and AcH (50 mg/kg, 100 mg/kg, and 200 mg/kg) decreased GluN1 expression (p < 0.05), while moderate-to-high doses of EtOH (2.0 g/kg and 4.0 g/kg) and AcH (100 mg/kg and 200 mg/kg) decreased GluA1 expression (p < 0.05). Together, these in vivo and ex vivo data suggest that EtOH and AcH decrease extracellular glutamate in the hippocampus of mice with a concomitant decrease in GluN1 and GluA1 subunits, but these effects require relatively high concentrations and may, therefore, explain the consequences of EtOH intoxication.
Collapse
Affiliation(s)
- Mostofa Jamal
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan.
| | - Asuka Ito
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Naoko Tanaka
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Kiyoshi Ameno
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| |
Collapse
|
16
|
Skiöldebrand E, Ley C, Björklund U, Lindahl A, Hansson E. Serotonin-evoked cytosolic Ca 2+ release and opioid receptor expression are upregulated in articular cartilage chondrocytes from osteoarthritic joints in horses. Vet Anim Sci 2019; 8:100078. [PMID: 32734095 PMCID: PMC7386637 DOI: 10.1016/j.vas.2019.100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis is a pain-associated progressive disease and pain mediators, such as opioid receptors, expressed in articular cartilage could represent novel therapeutic targets. Acute and chronic stages of OA indicate different metabolic abilities of the chondrocytes depending on inflammatory state. This study aimed to investigate the response of healthy and osteoarthritic chondrocytes and their expression and release of pain mediators in response to acute inflammation. Interleukin-1 beta (IL-1β) and lipopolysaccharide (LPS) were used to induce an acute inflammatory response in cultured equine chondrocytes harvested from healthy joints (HC) and osteoarthritic joints (OAC), the latter representing acute exacerbation of a chronic inflammatory state. Intracellular Ca2+ release was determined after exposure to serotonin (5-hydroxytryptamine (5-HT), glutamate or ATP. Protein expression levels of F- and G-actin, representing actin rearrangement, and opioid receptors were investigated. Glutamate concentrations in culture media were measured. Cartilage was immunohistochemically stained for µ (MOR), κ (KOR), and δ (DOR) opioid receptors. Upon exposure to acute inflammatory stimuli, OAC showed increased intracellular Ca2+ release after 5-HT stimulation and increased expression of MOR and KOR. When cells were stimulated by inflammatory mediators, glutamate release was increased in both HC and OAC. Immunostaining for MOR was strong in OA cartilage, whereas KOR was less strongly expressed. DOR was not expressed by cultured HC and OAC and immunostaining of OA cartilage equivocal. We show that chondrocytes in different inflammatory stages react differently to the neurotransmitter 5-HT with respect to intracellular Ca2+ release and expression of peripheral pain mediators. Our findings suggest that opioids and neurotransmitters are important in the progression of equine OA. The inflammatory stage of OA (acute versus chronic) should be taken into consideration when therapeutic strategies are being developed.
Collapse
Affiliation(s)
- Eva Skiöldebrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cecilia Ley
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulrika Björklund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
17
|
Clinicopathological characteristics of dysplastic teratomous neuroglia with anti-N-methyl-d-aspartate receptor encephalitis. Clin Immunol 2019; 210:108271. [PMID: 31756658 DOI: 10.1016/j.clim.2019.108271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Abstract
In this study, we investigated whether unique pathological characteristics exist in teratomas that can trigger autoimmune anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis. We compared a case of retroperitoneal teratoma associated with anti-NMDAR encephalitis and four control cases. The encephalitis-positive case showed that (i) more dysplastic neuroglia with higher Ki-67 labeling index values than the control cases, which met the diagnostic criteria of astrocytoma, (ii) the NMDAR subunit NR1 was expressed more abundantly in neuroglial tissue where many neuroglial cells co-expressed glial fibrillary acidic protein (GFAP) and NR1 and formed abnormally large cellular masses, (iii) intense NR1 expression occurs in squamous epithelium near neuroglial tissue and lymphocyte infiltration. This study showed that dysplastic neuroglial tissue resembling central nervous system tumors, which might promote autoimmunity, distinguished the case with NMDAR encephalitis from the controls. Additionally, abnormal expression of NR1 occurs in non-neural tissues and could be triggered by inflammation and participate in autoimmunity.
Collapse
|
18
|
Does Riluzole Influence Bone Formation?: An In Vitro Study of Human Mesenchymal Stromal Cells and Osteoblast. Spine (Phila Pa 1976) 2019; 44:1107-1117. [PMID: 30896584 DOI: 10.1097/brs.0000000000003022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A post-test design biological experiment. OBJECTIVE The aim of this study was to evaluate the osteogenic effects of riluzole on human mesenchymal stromal cells and osteoblasts. SUMMARY OF BACKGROUND DATA Riluzole may benefit patients with spinal cord injury (SCI) from a neurologic perspective, but little is known about riluzole's effect on bone formation, fracture healing, or osteogenesis. METHODS Human mesenchymal stromal cells (hMSCs) and human osteoblasts (hOB) were obtained and isolated from healthy donors and cultured. The cells were treated with riluzole of different concentrations (50, 150, 450 ng/mL) for 1, 2, 3, and 4 weeks. Cytotoxicity was evaluated as was the induction of osteogenic differentiation of hMSCs. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and with Alizarin red staining. Osteogenic gene expression of type I collagen (Col1), ALP, osteocalcin (Ocn), Runx2, Sox9, Runx2/Sox9 ratio were measured by qRT-PCR. RESULTS No cytotoxicity or increased proliferation was observed in bone marrow derived hMSCs and primary hOBs cultured with riluzole over 7 days. ALP activity was slightly increased in hMSCs after treatment for 2 weeks with riluzole 150 ng/mL and slightly upregulated by 150% (150 ng/mL) and 90% (450 ng/mL) in hMSCs at 3 weeks. In hOBs, ALP activity almost doubled after 2 weeks of culture with riluzole 150 ng/mL (P < 0.05). More pronounced 2.6-fold upregulation was noticed after 3 weeks of culture with riluzole at both 150 ng/mL (P = 0.05) and 450 ng/mL (P = 0.05). No significant influence of riluzole on the mRNA expression of osteocalcin (OCN) was observed. CONCLUSION The effect of riluzole on bone formation is mixed; low-dose riluzole has no effect on the viability or function of either hMSCs or hOBs. The activity of ALP in both cell types is upregulated by high-dose riluzole, which may indicate that high-dose riluzole can increase osteogenic metabolism and subsequently accelerate bone healing process. However, at high concentrations, riluzole leads to a decrease in osteogenic gene expression, including Runx2 and type 1 collagen. LEVEL OF EVIDENCE N/A.
Collapse
|
19
|
Pereira AP, Murakami AE, Stefanello C, Iwaki LCV, Santos TC. Productive performance, bone characteristics, and intestinal morphology of laying hens fed diets formulated with L-glutamic acid. Poult Sci 2019; 98:2500-2508. [PMID: 30668840 DOI: 10.3382/ps/pey595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/26/2018] [Indexed: 01/02/2023] Open
Abstract
This study was conducted to evaluate the effects of L-glutamic acid (Glu) on the productive performance, eggshell quality, bone characteristics, and morphologic parameters of laying hens. Two hundred and forty 53-wk-old Hy-Line W36 laying hens were randomly allocated into 5 treatments, 6 replicates, and 8 birds each. The experimental period was 16 wk. The treatments consisted of a Basal diet (Glu calculated at 2.68%) and 4 L-glutamic acid inclusion levels: 2.88, 3.08, 3.28, and 3.48%. Glu inclusion levels in the hens diet had an increasing linear effect (P < 0.05) on eggshell Ca concentration and bone (tibiotarsus) strength index, and a decreasing linear effect (P < 0.05) on the Seedor index. Serum biochemistry results for total and ionic Ca, inorganic P, and alkaline phosphatase were affected by blood collection time (04:00 Pm, 03:00 Am, and 12:00 Pm) but not by the treatments. Jejunum morphometric variables were not influenced by the treatments except for crypt depth, which demonstrated a quadratic effect (P < 0.05). However, proliferating cell nuclear antigen qualitative immunohistochemical analysis of the jejunum showed more positive nuclei in the villus with the addition of Glu. Both with the basal diet and the lowest Glu inclusion treatment, positive nuclei were observed in the crypts and at the base of the villus, while in the treatments with higher Glu levels, positive cells were common all along the villus mucosa, including its extremity. In conclusion, diets formulated with increased levels of Glu had beneficial effects on eggshell Ca concentration, tibiotarsus structure, and proliferative activity of the jejunum of 69-wk-old laying hens. Therefore, dietary L-glutamic acid can be considered an alternative additive to improve bone characteristics in the productive phase of laying hens.
Collapse
Affiliation(s)
- A P Pereira
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR 87020-900, Brazil
| | - A E Murakami
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR 87020-900, Brazil
| | - C Stefanello
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS 91540-000, Brazil
| | - L C V Iwaki
- Department of Odontology, Universidade Estadual de Maringá, Av. Mandacaru, 1550, CEP 87.080-000, Maringá, PR 87020-900, Brazil
| | - T C Santos
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR 87020-900, Brazil
| |
Collapse
|
20
|
Anton Dib Saleh M, Sousa Dos Santos L, Antonio Berto D, Borges Amorim A, Lívio Panhoza Tse M, Eliodoro Costa V. IRMS as a tool to obtain the carbon turnover (δ 13 C) in organs of weaned piglets fed glutamic acid and nucleotides. J Anim Physiol Anim Nutr (Berl) 2019; 103:906-914. [PMID: 30924561 DOI: 10.1111/jpn.13089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Early weaning of piglets causes stress characterized by a decrease in feed intake followed by a decline in growth rates; thus, a fast recovery represents an essential step for proper growth of these animals. Considering that IRMS is a potential tool for non-destructive sampling and the fact that it provides time-integrated estimate of assimilated and not just ingested nutrients turned possible its application to evaluate the effects of dietary nucleotides and glutamate on carbon turnover (δ13 C) in organs of weanling piglets. At day 0, three piglets were slaughtered (prior to diet switch), the remaining eighty-four piglets weaned at 21-day-old were randomly assigned in a complete block design with a 2 × 2 factorial arrangement of treatments (two Nu levels: 0 and 0.1% and two Glu levels: 0 and 1%), being three piglets per treatment slaughtered on trial days 3, 6, 9, 14, 21, 35 and 49. The samples were analysed by IRMS and adjusted to first-order equation by a non-linear regression analysis using NLIN of SAS, in order to establish exponential graphics. After that, the turnover data were submitted to analysis of variance using GLM of SAS. The turnover value (t95% ) verified for spleen was faster (p < 0.05) when glutamate was supplemented in diets. For pancreas and liver, the turnover rates were faster (p < 0.05) for the mixture of additives. However, for renal tissue, the turnover rate (t95% ) was greater (p < 0.05) for the free additive diet. The results obtained suggest that the mixture of additives was more efficient to develop the digestive tract at post-weaning phase, taking into account the functional importance of pancreas and liver for nutrients' digestion and processing.
Collapse
Affiliation(s)
- Mayra Anton Dib Saleh
- Department of Animal Production, UNESP - São Paulo State University, Botucatu, Brazil
| | - Luan Sousa Dos Santos
- Department of Animal Production, UNESP - São Paulo State University, Botucatu, Brazil
| | - Dirlei Antonio Berto
- Department of Animal Production, UNESP - São Paulo State University, Botucatu, Brazil
| | - Alessandro Borges Amorim
- Institute of Agricultural Sciences and Technologies, Federal University of Mato Grosso, Rondonópolis, Brazil
| | | | - Vladimir Eliodoro Costa
- Institute of Biosciences, Environmental Stable Isotopes Center, UNESP - São Paulo State University, Botucatu, Brazil
| |
Collapse
|
21
|
North WG, Liu F, Dragnev KH, Demidenko E. Small-cell lung cancer growth inhibition: synergism between NMDA receptor blockade and chemotherapy. Clin Pharmacol 2019; 11:15-23. [PMID: 30774453 PMCID: PMC6350832 DOI: 10.2147/cpaa.s183885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Small-cell lung cancer (SCLC) has a poor prognosis since there is currently no effective therapy for commonly recurring disease. In our previous study, both primary and recurrent human tumors have been shown to express functional N-methyl-D-aspartate (NMDA) receptors, and blockade of these receptors with GluN1 and GluN2B antagonists decreased tumor cell viability in vitro, and growth of tumor xenografts in nu/nu mice. Materials and methods In this study, we examine the influence of the GluN2B antagonist ifenprodil and the channel-blocker antagonist memantine, on cell viability and growth of tumor xenografts of recurrent SCLC (rSCLC) in mice. Results Both antagonists significantly reduced cell viability and levels of components of the ERK1/2 pathway, increased apoptosis, and at very safe levels significantly reduced the growth of tumors in mice. Each antagonist and topotecan had additive effects to reduce cell viability with significant synergy demonstrated for the case of memantine. More significantly, combination treatments of xenografts in mice with ifenprodil and the chemotherapeutic agent topotecan produced clear additive effects that completely stopped tumor growth. Moreover, the ifenprodil and topotecan combination showed excellent supra-addition or synergy of inhibition for tumors ≤300 mm in size (P=4.7E−4). Combination treatment of memantine with topotecan also showed clear addition but, unlike ifenprodil, no synergy for the doses chosen. Conclusion Since topotecan is a drug of choice for treatment of rSCLC, our findings suggest that combining this agent with NMDA receptor blockade using the GluN2B antagonist, ifenprodil, will significantly improve patient outcomes.
Collapse
Affiliation(s)
- William G North
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA,
| | - Fuli Liu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA,
| | - Konstantin H Dragnev
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA, .,Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Eugene Demidenko
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| |
Collapse
|
22
|
Çomaklı S, Sevim Ç, Kontadakis G, Doğan E, Taghizadehghalehjoughi A, Özkaraca M, Aschner M, Nikolouzakis TK, Tsatsakis A. Acute glufosinate-based herbicide treatment in rats leads to increased ocular interleukin-1β and c-Fos protein levels, as well as intraocular pressure. Toxicol Rep 2019; 6:155-160. [PMID: 30723690 PMCID: PMC6351388 DOI: 10.1016/j.toxrep.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Glufosinate is a common herbicide with neurotoxic effects, leading to seizures, convulsions and memory loss. Glufosinate indirectly induces glutamate toxicity by inhibiting glutamine synthesis in astrocytes. Here, we studied the acute toxic effects of a glufosinate-based herbicide in rat optic nerve at three doses (40, 80 or 120 μM, equal to 714 or 21 mg/kg bw/day). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, glucose, calcium, as well as creatinine concentrations were analyzed after 24, 48 and 72 h treatment. Intraocular pressure (IOP) (expressed as the average of both eyes) was measured with a rebound tonometer. Interleukin-1β (IL-1β) and c-Fos expression were determined by immunohistochemistry. The results established that the glufosinate-based herbicide significantly increased IL-1β and c-Fos immunopositivity in the optic nerve (p < 0.05), concomitant with increased IOP. These results suggest that commercial formulations of glufosinate acutely affect the optic nerve.
Collapse
Affiliation(s)
- Selim Çomaklı
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
- Corresponding authors.
| | - Çiğdem Sevim
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
- Corresponding authors.
| | - George Kontadakis
- Laboratory of Vision and Optics and Ophthalmology Department, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Elif Doğan
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Ali Taghizadehghalehjoughi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
| | | | - Aristides Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
23
|
NR1 and NR3B Composed Intranuclear N-methyl-d-aspartate Receptor Complexes in Human Melanoma Cells. Int J Mol Sci 2018; 19:ijms19071929. [PMID: 29966365 PMCID: PMC6073738 DOI: 10.3390/ijms19071929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Heterotetrameric N-methyl-d-aspartate type glutamate receptors (NMDAR) are cationic channels primarily permeable for Ca2+. NR1 and NR3 subunits bind glycine, while NR2 subunits bind glutamate for full activation. As NR1 may contain a nuclear localization signal (NLS) that is recognized by importin-α, our aim was to investigate if NMDARs are expressed in the nuclei of melanocytes and melanoma cells. A detailed NMDAR subunit expression pattern was examined by RT-PCRs (reverse transcription followed by polymerase chain reaction), fractionated western blots and immunocytochemistry in human epidermal melanocytes and in human melanoma cell lines A2058, HT199, HT168M1, MEL35/0 and WM35. All kind of NMDAR subunits are expressed as mRNAs in melanocytes, as well as in melanoma cells, while NR2B protein remained undetectable in any cell type. Western blots proved the exclusive presence of NR1 and NR3B in nuclear fractions and immunocytochemistry confirmed NR1-NR3B colocalization inside the nuclei of all melanoma cells. The same phenomenon was not observed in melanocytes. Moreover, protein database analysis revealed a putative NLS in NR3B subunit. Our results support that unusual, NR1-NR3B composed NMDAR complexes are present in the nuclei of melanoma cells. This may indicate a new malignancy-related histopathological feature of melanoma cells and raises the possibility of a glycine-driven, NMDA-related nuclear Ca2+-signalling in these cells.
Collapse
|
24
|
Wudick MM, Michard E, Oliveira Nunes C, Feijó JA. Comparing Plant and Animal Glutamate Receptors: Common Traits but Different Fates? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4976335. [PMID: 29684179 DOI: 10.1093/jxb/ery153] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 06/08/2023]
Abstract
Animal ionotropic glutamate receptors (iGluRs) are ligand-gated channels whose evolution is intimately linked to the one of the nervous system, where the agonist glutamate and co-agonists glycine/D-serine act as neuro-transmitters or -modulators. While iGluRs are specialized in neuronal communication, plant glutamate receptor-like (GLR) homologues have evolved many plant-specific physiological functions, such as sperm signaling in moss, pollen tube growth, root meristem proliferation, innate immune and wound responses. GLRs have been associated with Ca2+ signaling by directly channeling its extracellular influx into the cytosol. Nevertheless, very limited information on functional properties of GLRs is available, and we mostly rely on structure/function data obtained for animal iGluRs to interpret experimental results obtained for plant GLRs. Yet, a deeper characterization and better understanding of plant GLRs is progressively unveiling original and different mode of functions when compared to their mammalian counterparts. Here, we review the function of plant GLRs comparing their predicted structure and physiological roles to the well-documented ones of iGluRs. We conclude that interpreting GLR function based on comparison to their animal counterparts calls for caution, especially when presuming physiological roles and mode of action for plant GLRs from comparison to iGluRs in peripheral, non-neuronal tissues.
Collapse
Affiliation(s)
- Michael M Wudick
- University of Maryland Dept. of Cell Biology and Molecular Genetics, MD, U.S.A
| | - Erwan Michard
- University of Maryland Dept. of Cell Biology and Molecular Genetics, MD, U.S.A
| | | | - José A Feijó
- University of Maryland Dept. of Cell Biology and Molecular Genetics, MD, U.S.A
| |
Collapse
|
25
|
Arese M, Bussolino F, Pergolizzi M, Bizzozero L, Pascal D. Tumor progression: the neuronal input. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:89. [PMID: 29666812 DOI: 10.21037/atm.2018.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the challenges of cancer is its heterogeneity and rapid capacity to adapt. Notwithstanding significant progress in the last decades in genomics and precision medicine, new molecular targets and therapies appear highly necessary. One way to approach this complex problem is to consider cancer in the context of its cellular and molecular microenvironment, which includes nerves. The peripheral nerves, the topic of this review, modulate the biological behavior of the cancer cells and influence tumor progression, including the events related to the metastatic spread of the disease. This mechanism involves the release of neurotransmitters directly into the microenvironment and the activation of the corresponding membrane receptors. While this fact appears to complicate further the molecular landscape of cancer, the neurotransmitters are highly investigated molecules, and often are already targeted by well-developed drugs, a fact that can help finding new therapies at a fraction of the cost and time needed for new medicines (through the so-called drug repurposing). Moreover, the modulation of tumor progression by neurotransmitters can probably explain the long-recognized effects of psychological factors on the burden of cancer. We begin with an introduction on the tumor-nervous-connections and a description of the perineural invasion and neoneurogenesis, the two most important interaction patterns of cancer and nerves. Next, we discuss the most recent data that unequivocally demonstrate the necessity of the nervous system for tumor onset and growth. We introduce the molecular players of the tumor-nervous-connections by citing the role of three main families: neurotropic factors, axon guidance molecules, and neurotransmitters. Finally, we review the role the most important neurotransmitters in tumor biology and we conclude by analyzing the significance of the presented data for cancer therapy, with all the potential advantages and caveats.
Collapse
Affiliation(s)
- Marco Arese
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Margherita Pergolizzi
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Laura Bizzozero
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Davide Pascal
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| |
Collapse
|
26
|
Volpi C, Fallarino F, Mondanelli G, Macchiarulo A, Grohmann U. Opportunities and challenges in drug discovery targeting metabotropic glutamate receptor 4. Expert Opin Drug Discov 2018; 13:411-423. [DOI: 10.1080/17460441.2018.1443076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
27
|
Tajbakhsh A, Pasdar A, Rezaee M, Fazeli M, Soleimanpour S, Hassanian SM, FarshchiyanYazdi Z, Younesi Rad T, Ferns GA, Avan A. The current status and perspectives regarding the clinical implication of intracellular calcium in breast cancer. J Cell Physiol 2018; 233:5623-5641. [PMID: 29150934 DOI: 10.1002/jcp.26277] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Calcium ions (Ca2+ ) act as second messengers in intracellular signaling. Ca2+ pumps, channels, sensors, and calcium binding proteins, regulate the concentrations of intracellular Ca2+ as a key regulator of important cellular processes such as gene expression, proliferation, differentiation, DNA repair, apoptosis, metastasis, and hormone secretion. Intracellular Ca2+ also influences the functions of several organelles, that include: the endoplasmic reticulum, mitochondria, the Golgi, and cell membrane both in normal and breast cancer cells. In breast cancer, the disruption of intracellular: Ca2+ homeostasis may cause tumor progression by affecting key factors/pathways including phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3), calmodulin (CaM), nuclear factor of activated T-cells (NFAT), calpain, calmodulin-dependent protein kinase II (CaMKII), mitogen-activated protein kinase (MAPK), epithelial-mesenchymal transition (EMT), vascular endothelial growth factor (VEGF), poly (ADP-Ribose) polymerase-1 (PARP1), estrogen, and estrogen receptor. Because the foregoing molecules play crucial roles in breast cancer, the factors/pathways influencing intracellular Ca2+ concentrations are putative targets for cancer treatment, using drugs such as Mephebrindole, Tilapia piscidin 4, Nifetepimine, Paricalcitol, and Prednisolone. We have explored the factors/pathways which are related to breast cancer and Ca2+ homeostasis and signaling in this review, and also discussed their potential as biomarkers for breast cancer staging, prognosis, and therapy.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Fazeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra FarshchiyanYazdi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Laboratory Sciences, Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebe Younesi Rad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Laboratory Sciences, Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Sørensen LB, Gazerani P, Wåhlén K, Ghafouri N, Gerdle B, Ghafouri B. Investigation of biomarkers alterations after an acute tissue trauma in human trapezius muscle, using microdialysis. Sci Rep 2018; 8:3034. [PMID: 29445230 PMCID: PMC5813028 DOI: 10.1038/s41598-018-21185-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
Alterations in muscle milieu are suggested as important activity of peripheral drive in patients with chronic musculoskeletal pain (CMP). Microdialysis (MD) has been used in monitoring altered metabolic response pattern in muscles. However, the insertion of MD probe causes a local tissue trauma. Whether and how metabolites in trapezius muscle are affected by acute tissue trauma is unknown. Hence, this study investigated the metabolic response and nociceptive reaction of the tissue following MD probe insertion in patients with CMP and healthy individuals. Fifty-nine patients and forty pain-free volunteers were recruited. Pressure pain thresholds (PPTs) were obtained at the trapezius and tibialis muscles. Pain questionnaires determined the levels of pain related aspects. MD (20 kDa cut-off) was performed in the trapezius and samples were collected within 40 min. Interstitial concentration of the metabolites was analyzed by a two-way-mixed-ANOVA. The metabolic response pattern changed over time and alterations in the level of metabolites could be seen in both CMP and healthy controls. Pain questionnaires and pain intensities manifested clinical aspects of pain closely to what CMP patients describe. Analyzing metabolites due to acute tissue trauma by aid of MD may be a useful model to investigate altered metabolic response effect in CMP.
Collapse
Affiliation(s)
- Line Bay Sørensen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, School of Medicine and Health, Aalborg University, Aalborg, Denmark.
| | - Parisa Gazerani
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, School of Medicine and Health, Aalborg University, Aalborg, Denmark
| | - Karin Wåhlén
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Nazdar Ghafouri
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
29
|
Clinical significance of germline copy number variation in susceptibility of human diseases. J Genet Genomics 2018; 45:3-12. [PMID: 29396143 DOI: 10.1016/j.jgg.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Germline copy number variation (CNV) is considered to be an important form of human genetic polymorphisms. Previous studies have identified amounts of CNVs in human genome by advanced technologies, such as comparative genomic hybridization, single nucleotide genotyping, and high-throughput sequencing. CNV is speculated to be derived from multiple mechanisms, such as nonallelic homologous recombination (NAHR) and nonhomologous end-joining (NHEJ). CNVs cover a much larger genome scale than single nucleotide polymorphisms (SNPs), and may alter gene expression levels by means of gene dosage, gene fusion, gene disruption, and long-range regulation effects, thus affecting individual phenotypes and playing crucial roles in human pathogenesis. The number of studies linking CNVs with common complex diseases has increased dramatically in recent years. Here, we provide a comprehensive review of the current understanding of germline CNVs, and summarize the association of germline CNVs with the susceptibility to a wide variety of human diseases that were identified in recent years. We also propose potential issues that should be addressed in future studies.
Collapse
|
30
|
Adverse effects in kidney function, antioxidant systems and histopathology in rats receiving monosodium glutamate diet. ACTA ACUST UNITED AC 2017; 69:547-556. [DOI: 10.1016/j.etp.2017.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/24/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
|
31
|
Lasky-Su J, Dahlin A, Litonjua AA, Rogers AJ, McGeachie MJ, Baron RM, Gazourian L, Barragan-Bradford D, Fredenburgh LE, Choi AMK, Mogensen KM, Quraishi SA, Amrein K, Christopher KB. Metabolome alterations in severe critical illness and vitamin D status. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:193. [PMID: 28750641 PMCID: PMC5532782 DOI: 10.1186/s13054-017-1794-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/12/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Metabolic homeostasis is substantially disrupted in critical illness. Given the pleiotropic effects of vitamin D, we hypothesized that metabolic profiles differ between critically ill patients relative to their vitamin D status. METHODS We performed a metabolomics study on biorepository samples collected from a single academic medical center on 65 adults with systemic inflammatory response syndrome or sepsis treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to vitamin D status in critical illness, we first generated metabolomic data using gas and liquid chromatography mass spectroscopy. We followed this by partial least squares-discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis to identify groups of metabolites and pathways that were differentiates of vitamin D status. Finally we performed logistic regression to construct a network model of chemical-protein target interactions important in vitamin D status. RESULTS Metabolomic profiles significantly differed in critically ill patients with 25(OH)D ≤ 15 ng/ml relative to those with levels >15 ng/ml. In particular, increased 1,5-anhydroglucitol, tryptophan betaine, and 3-hydroxyoctanoate as well as decreased 2-arachidonoyl-glycerophosphocholine and N-6-trimethyllysine were strong predictors of 25(OH)D >15 ng/ml. The combination of these five metabolites led to an area under the curve for discrimination for 25(OH)D > 15 ng/ml of 0.82 (95% CI 0.71-0.93). The metabolite pathways related to glutathione metabolism and glutamate metabolism are significantly enriched with regard to vitamin D status. CONCLUSION Vitamin D status is associated with differential metabolic profiles during critical illness. Glutathione and glutamate pathway metabolism, which play principal roles in redox regulation and immunomodulation, respectively, were significantly altered with vitamin D status.
Collapse
Affiliation(s)
- Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Amber Dahlin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Augusto A Litonjua
- Pulmonary and Critical Care Division, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Angela J Rogers
- Pulmonary & Critical Care Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rebecca M Baron
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lee Gazourian
- Pulmonary and Critical Care Medicine, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Diana Barragan-Bradford
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Laura E Fredenburgh
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Augustine M K Choi
- Department of Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Kris M Mogensen
- Department of Nutrition, Brigham and Women's Hospital, Boston, MA, USA
| | - Sadeq A Quraishi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Karin Amrein
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Kenneth B Christopher
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Renal Division, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, MRB 418, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
North WG, Liu F, Lin LZ, Tian R, Akerman B. NMDA receptors are important regulators of pancreatic cancer and are potential targets for treatment. Clin Pharmacol 2017; 9:79-86. [PMID: 28761381 PMCID: PMC5522667 DOI: 10.2147/cpaa.s140057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer, particularly adenocarcinoma of the pancreas, is a common disease with a poor prognosis. In this study, the importance of N-methyl-D-aspartate (NMDA) receptors for the growth and survival of pancreatic cancer was investigated. Immunohistochemistry performed with antibodies against GluN1 and GluN2B revealed that all invasive adenocarcinoma and neuroendocrine pancreatic tumors likely express these two NMDA receptor proteins. These proteins were found to be membrane components of pancreatic cancer cell lines, and both channel-blocker antagonist and GluN2B antagonist significantly reduced cell viability in vitro. Both types of antagonists caused an internalization of the receptors. Dizocilpine maleate (MK-801) and ifenprodil hemitartrate both significantly inhibited the growth of pancreatic tumor xenografts in nu/nu mice. These findings predict that, as for other solid tumors investigated by us, pancreatic cancer could be successfully treated, alone or in combination, with NMDA receptor antagonists or other receptor-inhibiting blocking agents.
Collapse
Affiliation(s)
- William G North
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College.,Woomera Therapeutics Inc, Lebanon, NH, USA
| | - Fuli Liu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College
| | - Liz Z Lin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College
| | | | - Bonnie Akerman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College
| |
Collapse
|
33
|
Levite M. Glutamate, T cells and multiple sclerosis. J Neural Transm (Vienna) 2017; 124:775-798. [PMID: 28236206 DOI: 10.1007/s00702-016-1661-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/25/2016] [Indexed: 12/18/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the nervous system, where it induces multiple beneficial and essential effects. Yet, excess glutamate, evident in a kaleidoscope of acute and chronic pathologies, is absolutely catastrophic, since it induces excitotoxicity and massive loss of brain function. Both the beneficial and the detrimental effects of glutamate are mediated by a large family of glutamate receptors (GluRs): the ionotropic glutamate receptors (iGluRs) and the metabotropic glutamate receptors (mGluRs), expressed by most/all cells of the nervous system, and also by many non-neural cells in various peripheral organs and tissues. T cells express on their cell surface several types of functional GluRs, and so do few other immune cells. Furthermore, glutamate by itself activates resting normal human T cells, and induces/elevates key T cell functions, among them: T cell adhesion, chemotactic migration, cytokine secretion, gene expression and more. Glutamate has also potent effects on antigen/mitogen/cytokine-activated T cells. Furthermore, T cells can even produce and release glutamate, and affect other cells and themselves via their own glutamate. Multiple sclerosis (MS) and its animal model Experimental Autoimmune Encephalomyelitis (EAE) are mediated by autoimmune T cells. In MS and EAE, there are excess glutamate levels, and multiple abnormalities in glutamate degrading enzymes, glutamate transporters, glutamate receptors and glutamate signaling. Some GluR antagonists block EAE. Enhancer of mGluR4 protects from EAE via regulatory T cells (Tregs), while mGluR4 deficiency exacerbates EAE. The protective effect of mGluR4 on EAE calls for testing GluR4 enhancers in MS patients. Oral MS therapeutics, namely Fingolimod, dimethyl fumarate and their respective metabolites Fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. Furthermore, Fingolimod reduce glutamate-mediated intracortical excitability in relapsing-remitting MS. Glatiramer acetate -COPAXONE®, an immunomodulator drug for MS, reverses TNF-α-induced alterations of striatal glutamate-mediated excitatory postsynaptic currents in EAE-afflicted mice. With regard to T cells of MS patients: (1) The cell surface expression of a specific GluR: the AMPA GluR3 is elevated in T cells of MS patients during relapse and with active disease, (2) Glutamate and AMPA (a selective agonist for glutamate/AMPA iGluRs) augment chemotactic migration of T cells of MS patients, (3) Glutamate augments proliferation of T cells of MS patients in response to myelin-derived proteins: MBP and MOG, (4) T cells of MS patients respond abnormally to glutamate, (5) Significantly higher proliferation values in response to glutamate were found in MS patients assessed during relapse, and in those with gadolinium (Gd)+ enhancing lesions on MRI. Furthermore, glutamate released from autoreactive T cells induces excitotoxic cell death of neurons. Taken together, the evidences accumulated thus far indicate that abnormal glutamate levels and signaling in the nervous system, direct activation of T cells by glutamate, and glutamate release by T cells, can all contribute to MS. This may be true also to other neurological diseases. It is postulated herein that the detrimental activation of autoimmune T cells by glutamate in MS could lead to: (1) Cytotoxicity in the CNS: T cell-mediated killing of neurons and glia cells, which would subsequently increase the extracellular glutamate levels, and by doing so increase the excitotoxicity mediated by excess glutamate, (2) Release of proinflammatory cytokines, e.g., TNFα and IFNγ that increase neuroinflammation. Finally, if excess glutamate, abnormal neuronal signaling, glutamate-induced activation of T cells, and glutamate release by T cells are indeed all playing a key detrimental role in MS, then optional therapeutic tolls include GluR antagonists, although these may have various side effects. In addition, an especially attractive therapeutic strategy is the novel and entirely different therapeutic approach to minimize excess glutamate and excitotoxicity, titled: 'brain to blood glutamate scavenging', designed to lower excess glutamate levels in the CNS by 'pumping it out' from the brain to the blood. The glutamate scavanging is achieved by lowering glutamate levels in the blood by intravenous injection of the blood enzyme glutamate oxaloacetate transaminase (GOT). The glutamate-scavenging technology, which is still experimental, validated so far for other brain pathologies, but not tested on MS or EAE yet, may be beneficial for MS too, since it could decrease both the deleterious effects of excess glutamate on neural cells, and the activation of autoimmune T cells by glutamate in the brain. The topic of glutamate scavenging, and also its potential benefit for MS, are discussed towards the end of the review, and call for research in this direction.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, School of Pharmacy, The Hebrew University, Jerusalem, Israel. .,Institute of Gene Therapy, Hadassah Medical Center, 91120, Ein Karem, Jerusalem, Israel.
| |
Collapse
|
34
|
Liao S, Ruiz Y, Gulzar H, Yelskaya Z, Ait Taouit L, Houssou M, Jaikaran T, Schvarts Y, Kozlitina K, Basu-Roy U, Mansukhani A, Mahajan SS. Osteosarcoma cell proliferation and survival requires mGluR5 receptor activity and is blocked by Riluzole. PLoS One 2017; 12:e0171256. [PMID: 28231291 PMCID: PMC5322947 DOI: 10.1371/journal.pone.0171256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/17/2017] [Indexed: 11/18/2022] Open
Abstract
Osteosarcomas are malignant tumors of bone, most commonly seen in children and adolescents. Despite advances in modern medicine, the poor survival rate of metastatic osteosarcoma has not improved in two decades. In the present study we have investigated the effect of Riluzole on a human and mouse metastatic osteosarcoma cells. We show that LM7 cells secrete glutamate in the media and that mGluR5 receptors are required for the proliferation of LM7 cells. Riluzole, which is known to inhibit glutamate release, inhibits proliferation, induces apoptosis and prevents migration of LM7 cells. This is also seen with Fenobam, a specific blocker of mGluR5. We also show that Riluzole alters the phosphorylation status of AKT/P70 S6 kinase, ERK1/2 and JNK1/2. Thus Riluzole is an effective drug to inhibit proliferation and survival of osteosarcoma cells and has therapeutic potential for the treatment of osteosarcoma exhibiting autocrine glutamate signaling.
Collapse
Affiliation(s)
- Sally Liao
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Yuleisy Ruiz
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Hira Gulzar
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Zarina Yelskaya
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Lyes Ait Taouit
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Murielle Houssou
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Trisha Jaikaran
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Yuriy Schvarts
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Kristina Kozlitina
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Upal Basu-Roy
- Department of Microbiology & Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, United States of America
| | - Alka Mansukhani
- Department of Microbiology & Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, United States of America
| | - Shahana S. Mahajan
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
- Brain and Mind Research Institute, Weil Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
35
|
Kan CC, Chung TY, Wu HY, Juo YA, Hsieh MH. Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genomics 2017; 18:186. [PMID: 28212609 PMCID: PMC5316172 DOI: 10.1186/s12864-017-3588-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 02/13/2017] [Indexed: 11/10/2022] Open
Abstract
Background Glutamate is an active amino acid. In addition to protein synthesis and metabolism, increasing evidence indicates that glutamate may also function as a signaling molecule in plants. Still, little is known about the nutritional role of glutamate and genes that are directly regulated by glutamate in rice. Results Exogenous glutamate could serve as a nitrogen nutrient to support the growth of rice seedlings, but it was not as effective as ammonium nitrate or glutamine. In nitrogen-starved rice seedlings, glutamate was the most abundant free amino acid and feeding of glutamate rapidly and significantly increased the endogenous levels of glutamine, but not glutamate. These results indicated that glutamate was quickly metabolized and converted to the other nitrogen-containing compounds in rice. Transcriptome analysis revealed that at least 122 genes involved in metabolism, transport, signal transduction, and stress responses in the roots were rapidly induced by 2.5 mM glutamate within 30 min. Many of these genes were also up-regulated by glutamine and ammonium nitrate. Still, we were able to identify some transcription factor, kinase/phosphatase, and elicitor-responsive genes that were specifically or preferentially induced by glutamate. Conclusions Glutamate is a functional amino acid that plays important roles in plant nutrition, metabolism, and signal transduction. The rapid and specific induction of transcription factor, kinase/phosphatase and elicitor-responsive genes suggests that glutamate may efficiently amplify its signal and interact with other signaling pathways to regulate metabolism, growth and defense responses in rice. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3588-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Cheng Kan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yu Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yan-An Juo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
36
|
Ribeiro MPC, Custódio JBA, Santos AE. Ionotropic glutamate receptor antagonists and cancer therapy: time to think out of the box? Cancer Chemother Pharmacol 2016; 79:219-225. [PMID: 27586965 DOI: 10.1007/s00280-016-3129-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/04/2016] [Indexed: 12/26/2022]
Abstract
Glutamate has a trophic function in the development of the central nervous system, regulating the proliferation and migration of neuronal progenitors. The resemblance between neuronal embryonic and tumor cells has paved the way for the investigation of the effects of glutamate on tumor cells. Indeed, tumor cells derived from neuronal tissue express ionotropic glutamate receptor (iGluRs) subunits and iGluR antagonists decrease cell proliferation. Likewise, iGluRs subunits are expressed in several peripheral cancer cells and blockade of the N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptor subtypes decreases their proliferation and migration. Although these mechanisms are still being investigated, the inhibition of the mitogen-activated protein kinase pathway was shown to play a key role in the antiproliferative activity of iGluR antagonists. Importantly, MK-801, a NMDAR channel blocker, was effective and well tolerated in animal models of melanoma, lung, and breast cancers, suggesting that the blockade of iGluR signaling may represent a new strategy for cancer treatment. In this review, we focus on the significance of NMDA and AMPA receptor expression in tumor cells, as well as possible therapeutic strategies targeting these receptors.
Collapse
Affiliation(s)
- Mariana P C Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal.,Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - José B A Custódio
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal.,Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal. .,Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
37
|
Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation. Clin Sci (Lond) 2016; 130:1939-54. [PMID: 27549113 DOI: 10.1042/cs20160530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice.
Collapse
|
38
|
Abstract
Excellent reviews on central N-methyl-D-aspartate receptor (NMDAR) signaling and function in cardiovascular regulating neuronal pools have been reported. However, much less attention has been given to NMDAR function in peripheral tissues, particularly the heart and vasculature, although a very recent review discusses such function in the kidney. In this short review, we discuss the NMDAR expression and complexity of its function in cardiovascular tissues. In conscious (contrary to anesthetized) rats, activation of the peripheral NMDAR triggers cardiovascular oxidative stress through the PI3K-ERK1/2-NO signaling pathway, which ultimately leads to elevation in blood pressure. Evidence also implicates Ca release, in the peripheral NMDAR-mediated pressor response. Despite evidence of circulating potent ligands (eg, D-aspartate and L-aspartate, L-homocysteic acid, and quinolinic acid) and also their coagonist (eg, glycine or D-serine), the physiological role of peripheral cardiovascular NMDAR remains elusive. Nonetheless, the cardiovascular relevance of the peripheral NMDAR might become apparent when its signaling is altered by drugs, such as alcohol, which interact with the NMDAR or its downstream signaling mechanisms.
Collapse
Affiliation(s)
- Marie A. McGee
- Oak Ridge Institute for Science and Education, Research Triangle Park, NC
| | - Abdel A. Abdel-Rahman
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| |
Collapse
|
39
|
Xie W, Dolder S, Siegrist M, Wetterwald A, Hofstetter W. Glutamate Receptor Agonists and Glutamate Transporter Antagonists Regulate Differentiation of Osteoblast Lineage Cells. Calcif Tissue Int 2016; 99:142-54. [PMID: 27016923 DOI: 10.1007/s00223-016-0129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/08/2016] [Indexed: 11/26/2022]
Abstract
Development and function of osteoblast lineage cells are regulated by a complex microenvironment consisting of the bone extracellular matrix, cells, systemic hormones and cytokines, autocrine and paracrine factors, and mechanical load. Apart from receptors that transduce extracellular signals into the cell, molecular transporters play a crucial role in the cellular response to the microenvironment. Transporter molecules are responsible for cellular uptake of nutritional components, elimination of metabolites, ion transport, and cell-cell communication. In this report, the expression of molecular transporters in osteoblast lineage cells was investigated to assess their roles in cell development and activity. Low-density arrays, covering membrane and vesicular transport molecules, were used to assess gene expression in osteoblasts representing early and late differentiation states. Receptors and transporters for the amino acid glutamate were found to be differentially expressed during osteoblast development. Glutamate is a neurotransmitter in the central nervous system, and the mechanisms of its release, signal transduction, and cellular reabsorption in the synaptic cleft are well understood. Less clear, however, is the control of equivalent processes in peripheral tissues. In primary osteoblasts, inhibition of glutamate transporters with nonselective inhibitors leads to an increase in the concentration of extracellular glutamate. This change was accompanied by a decrease in osteoblast proliferation, stimulation of alkaline phosphatase, and the expression of transcripts encoding osteocalcin. Enzymatic removal of extracellular glutamate abolished these pro-differentiation effects, as did the inhibition of PKC- and Erk1/2-signaling pathways. These findings demonstrate that glutamate signaling promotes differentiation and activation of osteoblast lineage cells. Consequently, the glutamate system may represent a putative therapeutic target to induce an anabolic response in the skeletal system. Known antagonists of glutamate transporters will serve as lead compounds in developing new and specific bioactive molecules.
Collapse
Affiliation(s)
- Wenjie Xie
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Silvia Dolder
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Mark Siegrist
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Antoinette Wetterwald
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Willy Hofstetter
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
40
|
Balázsfi D, Farkas L, Csikota P, Fodor A, Zsebők S, Haller J, Zelena D. Sex-dependent role of vesicular glutamate transporter 3 in stress-regulation and related anxiety phenotype during the early postnatal period. Stress 2016; 19:434-8. [PMID: 27442776 DOI: 10.1080/10253890.2016.1203413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Stress and related disorders are in the focus of interest and glutamate is one of the most important neurotransmitters that can affect these processes. Glutamatergic neurons are characterized by vesicular glutamate transporters (VGluT1-3) among which vGluT3 is unique contributing to the non-canonical, neuromodulatory effect of glutamate. We aimed to study the role of vGluT3 in stress axis regulation and related anxiety during the early postnatal period using knockout (KO) mice with special focus on sex differences. Anxiety was explored on postnatal day (PND) 7-8 by maternal separation-induced ultrasonic vocalization (USV). Stress-hormone levels were detected 60 min after intraperitoneal lipopolysaccharide (LPS) injection 7 days later. Both genotypes gained weight, but on PND 14-15 KO mice pups had smaller body weight compared to wild type (WT). vGluT3 KO mice reacted to an immune stressor with enhanced adrenocorticotropin (ACTH) and corticosterone secretion compared to WT. Although there was a tendency for enhanced anxiety measured by more emitted USV, this did not reach the level of significance. The only sex-related effect was the enhanced corticosterone reactivity in male pups. For the HPA axis regulation in neonates vGluT3 expression seems to be dispensable under basal conditions, but is required for optimal response to immune stressors, most probably through an interaction with other neurotransmitters. Disturbance of the fine balance between these systems may result in a borderline enhanced anxiety-like behavior in vGluT3 KO pups.
Collapse
Affiliation(s)
- Diána Balázsfi
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences, Semmelweis University , Budapest , Hungary
| | - Lívia Farkas
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Péter Csikota
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Anna Fodor
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences, Semmelweis University , Budapest , Hungary
| | - Sándor Zsebők
- c Behaviuor Ecology Research Group, Department of Systematic Zoology and Ecology , Eötvös Loránd University , Budapest , Hungary
| | - József Haller
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| | - Dóra Zelena
- a Hungarian Academy of Sciences, Institute of Experimental Medicine , Budapest , Hungary
| |
Collapse
|
41
|
Glutamate signalling: A multifaceted modulator of oligodendrocyte lineage cells in health and disease. Neuropharmacology 2016; 110:574-585. [PMID: 27346208 DOI: 10.1016/j.neuropharm.2016.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 01/10/2023]
Abstract
Myelin is essential for the mammalian brain to function efficiently. Whilst many factors have been associated with regulating the differentiation of oligodendroglia and myelination, glutamate signalling might be particularly important for learning-dependent myelination. The majority of myelinated projection neurons are glutamatergic. Oligodendrocyte precursor cells receive glutamatergic synaptic inputs from unmyelinated axons and oligodendrocyte lineage cells express glutamate receptors which enable them to monitor and respond to changes in neuronal activity. Yet, what role glutamate plays for oligodendroglia is not fully understood. Here, we review glutamate signalling and its effects on oligodendrocyte lineage cells, and myelination in health and disease. Furthermore, we discuss whether glutamate signalling between neurons and oligodendroglia might lay the foundation to activity-dependent white matter plasticity. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
|
42
|
Lu W, Wang L, Wo C, Yao J. Ketamine attenuates osteoarthritis of the knee via modulation of inflammatory responses in a rabbit model. Mol Med Rep 2016; 13:5013-20. [PMID: 27109206 PMCID: PMC4878578 DOI: 10.3892/mmr.2016.5164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 03/31/2016] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to investigate the efficacy of ketamine in attenuating osteoarthritis (OA) and modulating the expression of inflammatory mediators. A rabbit OA model was established by knee immobilization using plaster bandages. After six weeks, rabbits were randomly allocated into four groups (n=6/group): Normal saline, Ket60, Ket100, and Ket200 and twice a week for four weeks the rabbits received an intra-articular injection of saline, or 60, 100 or 200 µmol/l ketamine, respectively. One week after the final injection, samples of synovial membrane, synovial fluid and articular cartilage were isolated. The pathological changes were assessed by general observation, hematoxylin and eosin staining and Alcian blue/periodic-acid Schiff staining. Cartilage pathology was assessed using Mankin's scoring system. Tumor necrosis factor (TNF)-α and interleukin (IL)-10 levels in the synovial fluid were measured by enzyme-linked immunosorbent assays. The nuclear factor (NF)-κB p65 subunit expression level in cartilage samples was determined by immunohistochemistry. OA was characterized by morphological changes in the articular surface, cartilage lesions, infiltration of inflammatory cells and a significantly increased Mankin's score. Elevated TNF-α and reduced IL-10 levels in the synovial fluid, along with increased p65 expression levels in the cartilage were observed in OA rabbits. Intra-articular injection of ketamine ameliorated the pathological characteristics of OA, reduced the Mankin's score, decreased TNF-α and NF-κB p65 expression levels, and increased the level of IL-10 expression in a dose-dependent manner. Thus is was demonstrated that Ketamine suppresses the inflammatory response in OA by modulating inflammatory mediator expression levels in a rabbit model of OA.
Collapse
Affiliation(s)
- Wei Lu
- Department of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lin Wang
- Department of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chunxin Wo
- Department of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jing Yao
- Department of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
43
|
Beaudin S, Welsh J. 1,25-Dihydroxyvitamin D induces the glutamate transporter SLC1A1 and alters glutamate handling in non-transformed mammary cells. Mol Cell Endocrinol 2016; 424:34-41. [PMID: 26774511 PMCID: PMC4779372 DOI: 10.1016/j.mce.2016.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 12/27/2022]
Abstract
Genomic profiling of immortalized human mammary epithelial (hTERT-HME1) cells identified several metabolic genes, including the membrane glutamate transporter, SLC1A1, as 1,25-dihydroxyvitamin D3 (1,25D) regulated. In these studies we have surveyed the effects of 1,25D on known glutamate transporters and evaluated its impact on cellular glutamate handling. We confirm that expression of SLC1A1 and all of its known transcript variants are significantly upregulated in hTERT-HME1 cells following 1,25D treatment. Expression of the full-length cognate protein, EAAT3, is correspondingly increased in 1,25D treated hTERT-HME1 cells. Under the same conditions, the expression of two other glutamate transporters--SLC1A6 (EAAT4) and SLC1A2 (EAAT2 or GLT-1)--is enhanced by 1,25D while that of SLC1A3 (EAAT1 or GLAST) and SLC7A11 (xCT) is decreased. Glutamate is not essential for growth of hTERT-HME1 cells, and supplemental glutamate (up to 0.5 mM) does not abrogate the growth inhibitory effects of 1,25D. These data suggest that extracellular glutamate is not a major contributor to cellular energy metabolism in hTERT-HME1 cells under basal conditions and that the growth inhibitory effects of 1,25D are not secondary to its effects on glutamate handling. Instead, the effects of 1,25D on glutamate transporters translated to a decrease in cellular glutamate concentration and an increase in media glutamate concentration, suggesting that one or more of these transporters functions to export glutamate in response to 1,25D exposure. The reduced cellular glutamate concentration may also reflect its incorporation into the cellular glutathione (GSH) pool, which is increased upon 1,25D treatment. In support of this concept, the expression of GCLC (which codes for the rate-limiting enzyme in GSH synthesis) and genes which generate reducing equivalents in the form of NADPH (ie, G6PD, PGD, IDH2) are elevated in 1,25D-treated cells. Taken together, these data identify 1,25D as a physiological regulator of multiple membrane glutamate transporters that impacts on overall cellular glutamate handling.
Collapse
Affiliation(s)
- Sarah Beaudin
- Department of Biomedical Sciences, University at Albany, Rensselaer, NY, USA; Cancer Research Center, University at Albany, Rensselaer, NY, USA
| | - JoEllen Welsh
- Cancer Research Center, University at Albany, Rensselaer, NY, USA; Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA.
| |
Collapse
|
44
|
Mahieu S, Klug M, Millen N, Fabro A, Benmelej A, Contini MDC. Monosodium glutamate intake affect the function of the kidney through NMDA receptor. Life Sci 2016; 149:114-9. [DOI: 10.1016/j.lfs.2016.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 01/09/2023]
|
45
|
Low JSY, Chin YM, Mushiroda T, Kubo M, Govindasamy GK, Pua KC, Yap YY, Yap LF, Subramaniam SK, Ong CA, Tan TY, Khoo ASB, Ng CC. A Genome Wide Study of Copy Number Variation Associated with Nasopharyngeal Carcinoma in Malaysian Chinese Identifies CNVs at 11q14.3 and 6p21.3 as Candidate Loci. PLoS One 2016; 11:e0145774. [PMID: 26730743 PMCID: PMC4701378 DOI: 10.1371/journal.pone.0145774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 12/08/2015] [Indexed: 11/24/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a neoplasm of the epithelial lining of the nasopharynx. Despite various reports linking genomic variants to NPC predisposition, very few reports were done on copy number variations (CNV). CNV is an inherent structural variation that has been found to be involved in cancer predisposition. Methods A discovery cohort of Malaysian Chinese descent (NPC patients, n = 140; Healthy controls, n = 256) were genotyped using Illumina® HumanOmniExpress BeadChip. PennCNV and cnvPartition calling algorithms were applied for CNV calling. Taqman CNV assays and digital PCR were used to validate CNV calls and replicate candidate copy number variant region (CNVR) associations in a follow-up Malaysian Chinese (NPC cases, n = 465; and Healthy controls, n = 677) and Malay cohort (NPC cases, n = 114; Healthy controls, n = 124). Results Six putative CNVRs overlapping GRM5, MICA/HCP5/HCG26, LILRB3/LILRA6, DPY19L2, RNase3/RNase2 and GOLPH3 genes were jointly identified by PennCNV and cnvPartition. CNVs overlapping GRM5 and MICA/HCP5/HCG26 were subjected to further validation by Taqman CNV assays and digital PCR. Combined analysis in Malaysian Chinese cohort revealed a strong association at CNVR on chromosome 11q14.3 (Pcombined = 1.54x10-5; odds ratio (OR) = 7.27; 95% CI = 2.96–17.88) overlapping GRM5 and a suggestive association at CNVR on chromosome 6p21.3 (Pcombined = 1.29x10-3; OR = 4.21; 95% CI = 1.75–10.11) overlapping MICA/HCP5/HCG26 genes. Conclusion Our results demonstrated the association of CNVs towards NPC susceptibility, implicating a possible role of CNVs in NPC development.
Collapse
Affiliation(s)
- Joyce Siew Yong Low
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Translational Genomics Lab, High Impact Research Building (Level 2), University of Malaya, Kuala Lumpur, Malaysia
| | - Yoon Ming Chin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Translational Genomics Lab, High Impact Research Building (Level 2), University of Malaya, Kuala Lumpur, Malaysia
| | - Taisei Mushiroda
- Laboratory for Pharmacogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Kin Choo Pua
- Department of Otorhinolaryngology, Hospital Pulau Pinang, Penang, Malaysia
| | - Yoke Yeow Yap
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral Biology & Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Selva Kumar Subramaniam
- Department of Otorhinolaryngology, Head and Neck Surgery, Sarawak General Hospital, Sarawak, Malaysia
| | - Cheng Ai Ong
- ENT Department, Hospital Queen Elizabeth, Karung Berkunci No. 2029, Kota Kinabalu, Sabah, Malaysia
| | - Tee Yong Tan
- Department of Otorhinolaryngology, Sarawak General Hospital, Kuching, Sarawak, Malaysia
| | - Alan Soo Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - The Malaysian NPC Study Group
- The Malaysian Nasopharyngeal Carcinoma Study Group: Hospital Pulau Pinang, Hospital Kuala Lumpur/Universiti Putra Malaysia, University of Malaya, Institute for Medical Research, Cancer Research Initiatives Foundation, Sarawak General Hospital/Universiti Malaysia Sarawak, Queen Elizabeth Hospital and Hospital Universiti Sains, Malaysia
| | - Ching Ching Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Translational Genomics Lab, High Impact Research Building (Level 2), University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
46
|
Dumas SJ, Humbert M, Cohen-Kaminsky S. [The cancer paradigm in pulmonary arterial hypertension: towards anti-remodeling therapies targeting metabolic dysfunction?]. Biol Aujourdhui 2016; 210:171-189. [PMID: 28327277 DOI: 10.1051/jbio/2016022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 11/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, complex and multifactorial disease in which pulmonary vascular remodeling plays a major role ending in right heart failure and death. Current specific therapies of PAH that mainly target the vasoconstriction/vasodilatation imbalance are not curative. Bi-pulmonary transplantation remains the only option in patients resistant to current therapies. It is thus crucial to identify novel vascular anti-remodeling therapeutic targets. This remodeling displays several properties of cancer cells, especially overproliferation and apoptosis resistance of pulmonary vascular cells, hallmarks of cancer related to the metabolic shift known as the "Warburg effect". The latter is characterized by a shift of ATP production, from oxidative phosphorylation to low rate aerobic glycolysis. In compensation, the cancer cells exhibit exacerbated glutaminolysis thus resulting in glutamine addiction, necessary to their overproliferation. Glutamine intake results in glutamate production, a molecule at the crossroads of energy metabolism and cancer cell communication, thus contributing to cell proliferation. Accordingly, therapeutic strategies targeting glutamate production, its release into the extracellular space and its membrane receptors have been suggested to treat different types of cancers, not only in the central nervous system but also in the periphery. We propose that similar strategies targeting glutamatergic signaling may be considered in PAH, especially as they could affect not only the vascular remodeling but also the right heart hypertrophy known to involve the glutaminolysis pathway. Ongoing studies aim to characterize the involvement of the glutamate pathway and its receptors in vascular remodeling, and the therapeutic potential of specific molecules targeting this pathway.
Collapse
Affiliation(s)
- Sébastien J Dumas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
47
|
Miladinovic T, Nashed MG, Singh G. Overview of Glutamatergic Dysregulation in Central Pathologies. Biomolecules 2015; 5:3112-41. [PMID: 26569330 PMCID: PMC4693272 DOI: 10.3390/biom5043112] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/27/2022] Open
Abstract
As the major excitatory neurotransmitter in the mammalian central nervous system, glutamate plays a key role in many central pathologies, including gliomas, psychiatric, neurodevelopmental, and neurodegenerative disorders. Post-mortem and serological studies have implicated glutamatergic dysregulation in these pathologies, and pharmacological modulation of glutamate receptors and transporters has provided further validation for the involvement of glutamate. Furthermore, efforts from genetic, in vitro, and animal studies are actively elucidating the specific glutamatergic mechanisms that contribute to the aetiology of central pathologies. However, details regarding specific mechanisms remain sparse and progress in effectively modulating glutamate to alleviate symptoms or inhibit disease states has been relatively slow. In this report, we review what is currently known about glutamate signalling in central pathologies. We also discuss glutamate's mediating role in comorbidities, specifically cancer-induced bone pain and depression.
Collapse
Affiliation(s)
- Tanya Miladinovic
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Mina G Nashed
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
48
|
Wen ZH, Chang YC, Jean YH. Excitatory amino acid glutamate: role in peripheral nociceptive transduction and inflammation in experimental and clinical osteoarthritis. Osteoarthritis Cartilage 2015; 23:2009-16. [PMID: 26521747 DOI: 10.1016/j.joca.2015.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/15/2015] [Accepted: 03/18/2015] [Indexed: 02/02/2023]
Abstract
Although a large proportion of patients with osteoarthritis (OA) show inflammation in their affected joints, the pathological role of inflammation in the development and progression of OA has yet to be clarified. Glutamate is considered an excitatory amino acid (EAA) neurotransmitter in the mammalian central nervous system (CNS). There are cellular membrane glutamate receptors and transporters for signal input modulation and termination as well as vesicular glutamate transporters (VGLUTs) for signal output through exocytotic release. Glutamate been shown to mediate intercellular communications in bone cells in a manner similar to synaptic transmission within the CNS. Glutamate-mediated events may also contribute to the pathogenesis and ongoing processes of peripheral nociceptive transduction and inflammation of experimental arthritis models as well as human arthritic conditions. This review will discuss the differential roles of glutamate signaling and blockade in peripheral neuronal and non-neuronal joint tissues, including bone remodeling systems and their potentials to impact OA-related inflammation and progression. This will serve to identify several potential targets to direct novel therapies for OA. Future studies will further elucidate the role of glutamate in the development and progression of OA, as well as its association with the clinical features of the disease.
Collapse
Affiliation(s)
- Z-H Wen
- Marine Biomedical Laboratory & Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Taiwan
| | - Y-C Chang
- Marine Biomedical Laboratory & Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Taiwan
| | - Y-H Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan.
| |
Collapse
|
49
|
Medial Septal NMDA Glutamate Receptors are Involved in Modulation of Blood Natural Killer Cell Activity in Rats. J Neuroimmune Pharmacol 2015; 11:121-32. [PMID: 26454750 DOI: 10.1007/s11481-015-9632-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/15/2015] [Indexed: 02/08/2023]
Abstract
The purpose of the present study was to determine the specific role of the medial septal (MS) NMDA glutamate receptors on peripheral blood natural killer cell cytotoxicity (NKCC) and their (large granular lymphocyte, LGL) number, as well as the plasma concentration of tumor necrosis factor α (TNF-α) and corticosterone in male Wistar rats exposed to elevated plus maze (EPM) stress or non-stress conditions. The NMDA groups were injected with NMDA glutamate receptor agonist (N-methyl-D-aspartate; 0.25 μg/rat), the D-AP7 group was injected with DL-2-amino-7-phosphoheptanoate (0.1 μg/rat), an antagonist of NMDA glutamate receptors, and the control Sal group with saline (0.5 μl/rat) via previously implanted cannulae into the MS. There was an increase in the NKCC, NK/LGL number and plasma TNF-α concentration after the NMDA injections, being much stronger within the rats under non-stress conditions rather than the rats exposed to EPM stress. These parameters were decreased in the D-AP7 rats, suggesting receptor/ion channel specificity. Moreover, a lower plasma corticosterone concentration within the NMDA rather than the Sal and D-AP7 groups was found. The obtained results suggest that activation of the NMDA glutamate receptors in the MS, accompanied by changes in the corticosterone and cytokine responses, may be involved in modulation of the blood natural anti-tumor response, under EPM stress and non-stress conditions.
Collapse
|
50
|
GRM4 gene polymorphism is associated with susceptibility and prognosis of osteosarcoma in a Chinese Han population. Med Oncol 2015; 31:50. [PMID: 24984297 PMCID: PMC4079940 DOI: 10.1007/s12032-014-0050-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Osteosarcoma (OS), the most common primary bone malignancy, occurs primarily in adolescents and young adults. In earlier genome-wide association studies, rs7591996, rs10208273, rs17206779 and rs1906953 were identified as candidate loci for OS in Caucasians but the association of these single-nucleotide polymorphisms (SNPs) with OS in a Chinese Han population remains unknown. We measured the frequency of these four variants in a Chinese Han population to better understand the genetic etiology of OS. Polymerase chain reaction sequencing was used to detect the genotypes of four candidate SNPs in peripheral blood samples collected from 168 OS patients and 216 healthy controls. Logistic regression models were used to estimate the odds ratios and 95 % confidence intervals. We found rs1906953 in the glutamate receptor metabotropic 4 (GRM4) gene was associated significantly with OS in our Chinese Han population; as with the other SNPs, however, no statistically significant difference was detected. Further analysis showed the association between rs1906953 and OS was independent of gender and age. The rs1906953 locus was not associated with Enneking stages or tumor location; however, it was associated significantly with OS metastasis and prognosis. The GRM4 gene polymorphism was associated with the susceptibility and metastasis of OS in a Chinese Han population.
Collapse
|