1
|
Kim HU, Park YH, An MY, Kim YK, Song C, Jung HS. Structural insights into calcium-induced conformational changes in human gelsolin. Biochem Biophys Res Commun 2024; 735:150826. [PMID: 39426132 DOI: 10.1016/j.bbrc.2024.150826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Gelsolin is known as one of the actin-binding proteins capable of severing and capping filamentous actin, and of undergoing structural changes in the presence of calcium ions to interact with actin filaments. In this study, single-particle 3D reconstruction using electron microscopy (EM) revealed that, in the presence of calcium, the structure of gelsolin undergoes structural changes before interacting with actin. These differences are subtle with similarities, as confirmed by the EM map. According to the results of the molecular dynamics simulations, these nuanced structural differences primarily manifest at the domain level when calcium is present. These results provide structural evidence that, in the presence of calcium, gelsolin enters a phase of conformational preparation to transition into the active state. This process enables gelsolin to bind to actin, whereupon gelsolin undergoes more drastic structural changes upon interaction with actin filaments, which allows it to participate in binding and severing to regulate the cytoskeleton. This is the first visualization of full-length gelsolin, and helps to clarify crucial aspects of the as of yet incompletely understood interaction between gelsolin and actin.
Collapse
Affiliation(s)
- Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea; Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea
| | - Yoon Ho Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mi Young An
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young Kwan Kim
- Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea
| | - Chihong Song
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea; Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Rice KL, Chan CM, Kelu JJ, Miller AL, Webb SE. A Role for Two-Pore Channel Type 2 (TPC2)-Mediated Regulation of Membrane Contact Sites During Zebrafish Notochord Biogenesis? CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211409. [PMID: 38028019 PMCID: PMC10658360 DOI: 10.1177/25152564231211409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
We have previously shown that in the developing trunk of zebrafish embryos, two-pore channel type 2 (TPC2)-mediated Ca2+ release from endolysosomes plays a role in the formation of the skeletal slow muscle. In addition, TPC2-mediated Ca2+ signaling is required for axon extension and the establishment of synchronized activity in the primary motor neurons. Here, we report that TPC2 might also play a role in the development of the notochord of zebrafish embryos. For example, when tpcn2 was knocked down or out, increased numbers of small vacuoles were formed in the inner notochord cells, compared with the single large vacuole in the notochord of control embryos. This abnormal vacuolation was associated with embryos displaying attenuated body axis straightening. We also showed that TPC2 has a distinct pattern of localization in the notochord in embryos at ∼24 hpf. Finally, we conducted RNAseq to identify differentially expressed genes in tpcn2 mutants compared to wild-type controls, and found that those involved in actin filament severing, cellular component morphogenesis, Ca2+ binding, and structural constituent of cytoskeleton were downregulated in the mutants. Together, our data suggest that TPC2 activity plays a key role in notochord biogenesis in zebrafish embryos.
Collapse
Affiliation(s)
- Keira L. Rice
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Ching Man Chan
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Jeffrey J. Kelu
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Andrew L. Miller
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Sarah E. Webb
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| |
Collapse
|
3
|
Ahangar P, Strudwick XL, Cowin AJ. Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harb Perspect Biol 2022; 14:a041235. [PMID: 35074864 PMCID: PMC9341468 DOI: 10.1101/cshperspect.a041235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| |
Collapse
|
4
|
Gammons J, Halpage J, Mancarella S. Mapping the Proximity Interaction Network of STIM1 Reveals New Mechanisms of Cytoskeletal Regulation. Cells 2021; 10:2701. [PMID: 34685680 PMCID: PMC8535089 DOI: 10.3390/cells10102701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) resides primarily in the sarco/endoplasmic reticulum, where it senses intraluminal Ca2+ levels and activates Orai channels on the plasma membrane to initiate Ca2+ influx. We have previously shown that STIM1 is involved in the dynamic remodeling of the actin cytoskeleton. However, the downstream effectors of STIM1 that lead to cytoskeletal remodeling are not known. The proximity-labeling technique (BioID) can capture weak and transient protein-protein interactions, including proteins that reside in the close vicinity of the bait, but that may not be direct binders. Hence, in the present study, we investigated the STIM1 interactome using the BioID technique. A promiscuous biotin ligase was fused to the cytoplasmic C-terminus of STIM1 and was stably expressed in a mouse embryonic fibroblast (MEF) cell line. Screening of biotinylated proteins identified several high confidence targets. Here, we report Gelsolin (GSN) as a new member of the STIM1 interactome. GSN is a Ca2+-dependent actin-severing protein that promotes actin filament assembly and disassembly. Results were validated using knockdown approaches and immunostaining. We tested our results in neonatal cardiomyocytes where STIM1 overexpression induced altered actin dynamics and cytoskeletal instability. This is the first time that BioID assay was used to investigate the STIM1 interactome. Our work highlights the role of STIM1/GSN in the structure and function of the cytoskeleton.
Collapse
Affiliation(s)
| | | | - Salvatore Mancarella
- Health Sciences Center, Department of Physiology, University of Tennessee, Memphis, TN 38163, USA; (J.G.); (J.H.)
| |
Collapse
|
5
|
Myrka A, Buck L. Cytoskeletal Arrest: An Anoxia Tolerance Mechanism. Metabolites 2021; 11:metabo11080561. [PMID: 34436502 PMCID: PMC8401981 DOI: 10.3390/metabo11080561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
Polymerization of actin filaments and microtubules constitutes a ubiquitous demand for cellular adenosine-5′-triphosphate (ATP) and guanosine-5′-triphosphate (GTP). In anoxia-tolerant animals, ATP consumption is minimized during overwintering conditions, but little is known about the role of cell structure in anoxia tolerance. Studies of overwintering mammals have revealed that microtubule stability in neurites is reduced at low temperature, resulting in withdrawal of neurites and reduced abundance of excitatory synapses. Literature for turtles is consistent with a similar downregulation of peripheral cytoskeletal activity in brain and liver during anoxic overwintering. Downregulation of actin dynamics, as well as modification to microtubule organization, may play vital roles in facilitating anoxia tolerance. Mitochondrial calcium release occurs during anoxia in turtle neurons, and subsequent activation of calcium-binding proteins likely regulates cytoskeletal stability. Production of reactive oxygen species (ROS) formation can lead to catastrophic cytoskeletal damage during overwintering and ROS production can be regulated by the dynamics of mitochondrial interconnectivity. Therefore, suppression of ROS formation is likely an important aspect of cytoskeletal arrest. Furthermore, gasotransmitters can regulate ROS levels, as well as cytoskeletal contractility and rearrangement. In this review we will explore the energetic costs of cytoskeletal activity, the cellular mechanisms regulating it, and the potential for cytoskeletal arrest being an important mechanism permitting long-term anoxia survival in anoxia-tolerant species, such as the western painted turtle and goldfish.
Collapse
Affiliation(s)
- Alexander Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
| | - Leslie Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence: ; Tel.: +1-416-978-3506
| |
Collapse
|
6
|
Liebman C, McColloch A, Rabiei M, Bowling A, Cho M. Mechanics of the cell: Interaction mechanisms and mechanobiological models. CURRENT TOPICS IN MEMBRANES 2020; 86:143-184. [PMID: 33837692 DOI: 10.1016/bs.ctm.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of cell mechanics has long been recognized for the cell development and function. Biomechanics plays an important role in cell metabolism, regulation of mechanotransduction pathways and also modulation of nuclear response. The mechanical properties of the cell are likely determined by, among many others, the cytoskeleton elasticity, membrane tension and cell-substrate adhesion. This coordinated but complex mechanical interplay is required however, for the cell to respond to and influence in a reciprocal manner the chemical and mechanical signals from the extracellular matrix (ECM). In an effort to better and more fully understand the cell mechanics, the role of nuclear mechanics has emerged as an important contributor to the overall cellular mechanics. It is not too difficult to appreciate the physical connection between the nucleus and the cytoskeleton network that may be connected to the ECM through the cell membrane. Transmission of forces from ECM through this connection is essential for a wide range of cellular behaviors and functions such as cytoskeletal reorganization, nuclear movement, cell migration and differentiation. Unlike the cellular mechanics that can be measured using a number of biophysical techniques that were developed in the past few decades, it still remains a daunting challenge to probe the nuclear mechanics directly. In this paper, we therefore aim to provide informative description of the cell membrane and cytoskeleton mechanics, followed by unique computational modeling efforts to elucidate the nucleus-cytoskeleton coupling. Advances in our knowledge of complete cellular biomechanics and mechanotransduction may lead to clinical relevance and applications in mechano-diseases such as atherosclerosis, stem cell-based therapies, and the development of tissue engineered products.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Manoochehr Rabiei
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan Bowling
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States.
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
7
|
Tavabe Ghavami TS, Irani S, Mirfakhrai R, Shirkoohi R. Differential expression of Scinderin and Gelsolin in gastric cancer and comparison with clinical and morphological characteristics. EXCLI JOURNAL 2020; 19:750-761. [PMID: 32636728 PMCID: PMC7332812 DOI: 10.17179/excli2020-1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 12/07/2022]
Abstract
Gastric cancer is the first cause of cancer-related death in males and the second in female patients in Iran. Advanced cancer is usually associated with distant metastasis, which is uncontrollable. This study was conducted to compare the expression of Scinderin and Gelsolin genes between gastric cancer and adjacent normal tissue samples in Iranian patients in order to better understand the role of these genes in this disease and to assess them as potential gastric cancer diagnostic or prognostic biomarkers. This case-control study was conducted in 41 Iranian patients suffering from stage I to IV of Gastric Cancer diagnosed by pathologic and endoscopic tests. In this study, significant down-regulation of Gelsolin (p=0.001) and over-expression of Scinderin (p=0.001) were observed in tumor tissues compared to the adjacent normal tissues. The results of the present study showed decreased Gelsolin expression in patients above 40 years, while the relationship between Gelsolin expression and age was not significant; also, a significant increase was observed in Scinderin expression in patients above 40 years. Furthermore, Lymph node metastasis was observed in 59.52 % of the cases. The results showed that reduced Gelsolin and increased Scinderin expression were related to lymph node metastasis. Based on results, a significant association was observed between tumor size and Scinderin expression level. Furthermore, Gelsolin and Scinderin expressions were assessed in different grades and stages to determine the association of this gene with cancer progression. The result indicates significant alteration in Scinderin expression level of I and IV, II and IV, and III and IV stages. Although no significant association was observed between Scinderin expression level and GC grade, the mean Gelsolin expression showed a significant difference between grade II and III as well as grade I and IV. Based on our results, these genes would be potential biomarkers.
Collapse
Affiliation(s)
| | - Shiva Irani
- Department of Biology, Islamic Azad University, Tehran, Iran
| | - Reza Mirfakhrai
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Flightless-1 inhibits ER stress-induced apoptosis in colorectal cancer cells by regulating Ca 2+ homeostasis. Exp Mol Med 2020; 52:940-950. [PMID: 32504039 PMCID: PMC7338537 DOI: 10.1038/s12276-020-0448-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) stress response is an adaptive mechanism that is activated upon disruption of ER homeostasis and protects the cells against certain harmful environmental stimuli. However, critical and prolonged cell stress triggers cell death. In this study, we demonstrate that Flightless-1 (FliI) regulates ER stress-induced apoptosis in colon cancer cells by modulating Ca2+ homeostasis. FliI was highly expressed in both colon cell lines and colorectal cancer mouse models. In a mouse xenograft model using CT26 mouse colorectal cancer cells, tumor formation was slowed due to elevated levels of apoptosis in FliI-knockdown (FliI-KD) cells. FliI-KD cells treated with ER stress inducers, thapsigargin (TG), and tunicamycin exhibited activation of the unfolded protein response (UPR) and induction of UPR-related gene expression, which eventually triggered apoptosis. FliI-KD increased the intracellular Ca2+ concentration, and this upregulation was caused by accelerated ER-to-cytosolic efflux of Ca2+. The increase in intracellular Ca2+ concentration was significantly blocked by dantrolene and tetracaine, inhibitors of ryanodine receptors (RyRs). Dantrolene inhibited TG-induced ER stress and decreased the rate of apoptosis in FliI-KD CT26 cells. Finally, we found that knockdown of FliI decreased the levels of sorcin and ER Ca2+ and that TG-induced ER stress was recovered by overexpression of sorcin in FliI-KD cells. Taken together, these results suggest that FliI regulates sorcin expression, which modulates Ca2+ homeostasis in the ER through RyRs. Our findings reveal a novel mechanism by which FliI influences Ca2+ homeostasis and cell survival during ER stress. A cytoskeletal protein that helps tumors avoid cell death offers a promising new drug target for fighting cancer. A team led by Jang Hyun Choi and Sun Sil Choi of the Ulsan National Institute of Science and Technology, South Korea, detailed how a protein called Flightless I (FliI) that normally regulates the remodeling of structural filaments in the cell can, in colorectal cancer cells, serve as a tumor promoter through its action on calcium levels. Typically, cells respond to chronic stress by altering calcium signaling to promote their own death. In tumors, however, FliI maintains normal calcium levels to enhance cell survival even in the face of chemotherapy and other stressful stimuli. Suppressing FliI activity could thus help sensitize cancer cells to other stress- and death-inducing drug regimens.
Collapse
|
9
|
Lee M, Kang EH. Molecular dynamics study of interactions between polymorphic actin filaments and gelsolin segment-1. Proteins 2019; 88:385-392. [PMID: 31498927 DOI: 10.1002/prot.25813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 11/08/2022]
Abstract
The assembly of protein actin into double-helical filaments promotes many eukaryotic cellular processes that are regulated by actin-binding proteins (ABPs). Actin filaments can adopt multiple conformations, known as structural polymorphism, which possibly influences the interaction between filaments and ABPs. Gelsolin is a Ca2+ -regulated ABP that severs and caps actin filaments. Gelsolin binding modulates filament structure; however, it is not known how polymorphic actin filament structures influence an interaction of gelsolin S1 with the barbed-end of filament. Herein, we investigated how polymorphic structures of actin filaments affect the interactions near interfaces between the gelsolin segment 1 (S1) domain and the filament barbed-end. Using all-atom molecular dynamics simulations, we demonstrate that different tilted states of subunits modulate gelsolin S1 interactions with the barbed-end of polymorphic filaments. Hydrogen bonding and interaction energy at the filament-gelsolin S1 interface indicate distinct conformations of filament barbed ends, resulting in different interactions of gelsolin S1. This study demonstrates that filament's structural multiplicity plays important roles in the interactions of actin with ABPs.
Collapse
Affiliation(s)
- Myeongsang Lee
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Ellen H Kang
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Department of Physics, University of Central Florida, Orlando, Florida.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida
| |
Collapse
|
10
|
Retana Moreira L, Rodríguez Serrano F, Osuna A. Extracellular vesicles of Trypanosoma cruzi tissue-culture cell-derived trypomastigotes: Induction of physiological changes in non-parasitized culture cells. PLoS Negl Trop Dis 2019; 13:e0007163. [PMID: 30789912 PMCID: PMC6383987 DOI: 10.1371/journal.pntd.0007163] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is the obligate intracellular parasite that causes Chagas disease. The pathogenesis of this disease is a multifactorial complex process that involves a large number of molecules and particles, including the extracellular vesicles. The presence of EVs of T. cruzi was first described in 1979 and, since then, research regarding these particles has been increasing. Some of the functions described for these EVs include the increase in heart parasitism and the immunomodulation and evasion of the host immune response. Also, EVs may be involved in parasite adhesion to host cells and host cell invasion. METHODOLOGY/PRINCIPAL FINDINGS EVs (exosomes) of the Pan4 strain of T. cruzi were isolated by differential centrifugation, and measured and quantified by TEM, NTA and DLS. The effect of EVs in increasing the parasitization of Vero cells was evaluated and the ED50 was calculated. Changes in cell permeability induced by EVs were evaluated in Vero and HL-1 cardiomyocyte cells using cell viability techniques such as trypan blue and MTT assays, and by confocal microscopy. The intracellular mobilization of Ca2+ and the disruption of the actin cytoskeleton induced by EVs over Vero cells were followed-up in time using confocal microscopy. To evaluate the effect of EVs over the cell cycle, cell cycle analyses using flow cytometry and Western blotting of the phosphorylated and non-phosphorylated protein of Retinoblastoma were performed. CONCLUSION/SIGNIFICANCE The incubation of cells with EVs of trypomastigotes of the Pan4 strain of T. cruzi induce a number of changes in the host cells that include a change in cell permeability and higher intracellular levels of Ca2+ that can alter the dynamics of the actin cytoskeleton and arrest the cell cycle at G0/G1 prior to the DNA synthesis necessary to complete mitosis. These changes aid the invasion of host cells and augment the percentage of cell parasitization.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Universidad de Granada, Granada, Spain
| | | | - Antonio Osuna
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
11
|
Kretzschmar A, Schülke JP, Masana M, Dürre K, Müller MB, Bausch AR, Rein T. The Stress-Inducible Protein DRR1 Exerts Distinct Effects on Actin Dynamics. Int J Mol Sci 2018; 19:ijms19123993. [PMID: 30545002 PMCID: PMC6321462 DOI: 10.3390/ijms19123993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Cytoskeletal dynamics are pivotal to memory, learning, and stress physiology, and thus psychiatric diseases. Downregulated in renal cell carcinoma 1 (DRR1) protein was characterized as the link between stress, actin dynamics, neuronal function, and cognition. To elucidate the underlying molecular mechanisms, we undertook a domain analysis of DRR1 and probed the effects on actin binding, polymerization, and bundling, as well as on actin-dependent cellular processes. Methods: DRR1 domains were cloned and expressed as recombinant proteins to perform in vitro analysis of actin dynamics (binding, bundling, polymerization, and nucleation). Cellular actin-dependent processes were analyzed in transfected HeLa cells with fluorescence recovery after photobleaching (FRAP) and confocal microscopy. Results: DRR1 features an actin binding site at each terminus, separated by a coiled coil domain. DRR1 enhances actin bundling, the cellular F-actin content, and serum response factor (SRF)-dependent transcription, while it diminishes actin filament elongation, cell spreading, and actin treadmilling. We also provide evidence for a nucleation effect of DRR1. Blocking of pointed end elongation by addition of profilin indicates DRR1 as a novel barbed end capping factor. Conclusions: DRR1 impacts actin dynamics in several ways with implications for cytoskeletal dynamics in stress physiology and pathophysiology.
Collapse
Affiliation(s)
- Anja Kretzschmar
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| | - Jan-Philip Schülke
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| | - Mercè Masana
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg Universität Medical Center, 55131 Mainz, Germany.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, CIBERNED, Casanova, 143, 08036 Barcelona, Spain.
| | - Katharina Dürre
- Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
| | - Marianne B Müller
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg Universität Medical Center, 55131 Mainz, Germany.
| | - Andreas R Bausch
- Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| |
Collapse
|
12
|
Development of a Novel Diagnostic Biomarker Set for Rheumatoid Arthritis Using a Proteomics Approach. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7490723. [PMID: 30662913 PMCID: PMC6312602 DOI: 10.1155/2018/7490723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/28/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease that starts with inflammation of the synovial membrane. Studies have been conducted to develop methods for efficient diagnosis of RA and to identify the mechanisms underlying RA development. Blood samples can be useful for detecting disturbance of homeostasis in patients with RA. Nanoliquid chromatography-tandem mass spectrometry (LC-MS/MS) is an efficient proteomics approach to analyze blood sample and quantify serum proteins. Methods Serum samples of 18 healthy controls and 18 patients with RA were analyzed by LC-MS/MS. Selected candidate biomarkers were validated by enzyme-linked immunosorbent assay (ELISA) using sera from 43 healthy controls and 44 patients with RA. Results Thirty-eight proteins were significantly differentially expressed by more than 2-fold in healthy controls and patients with RA. Based on a literature survey, we selected six candidate RA biomarkers. ELISA was used to evaluate whether these proteins effectively allow distinguishing patients with RA from healthy controls and monitoring drug efficacy. SAA4, gelsolin, and vitamin D-binding protein were validated as potential biomarkers of RA for screening and drug efficacy monitoring of RA. Conclusions We identified a panel of three biomarkers for RA which has potential for application in RA diagnosis and drug efficacy monitoring. Further, our findings will aid in understanding the pathogenesis of RA.
Collapse
|
13
|
Ćetković H, Harcet M, Roller M, Bosnar MH. A survey of metastasis suppressors in Metazoa. J Transl Med 2018; 98:554-570. [PMID: 29453400 DOI: 10.1038/s41374-018-0024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/04/2018] [Accepted: 01/18/2018] [Indexed: 01/29/2023] Open
Abstract
Metastasis suppressors are genes/proteins involved in regulation of one or more steps of the metastatic cascade while having little or no effect on tumor growth. The list of putative metastasis suppressors is constantly increasing although thorough understanding of their biochemical mechanism(s) and evolutionary history is still lacking. Little is known about tumor-related genes in invertebrates, especially non-bilaterians and unicellular relatives of animals. However, in the last few years we have been witnessing a growing interest in this subject since it has been shown that many disease-related genes are already present in simple non-bilateral animals and even in their unicellular relatives. Studying human diseases using simpler organisms that may better represent the ancestral conditions in which the specific disease-related genes appeared could provide better understanding of how those genes function. This review represents a compilation of published literature and our bioinformatics analysis to gain a general insight into the evolutionary history of metastasis-suppressor genes in animals (Metazoa). Our survey suggests that metastasis-suppressor genes emerged in three different periods in the evolution of Metazoa: before the origin of metazoans, with the emergence of first animals and at the origin of vertebrates.
Collapse
Affiliation(s)
- Helena Ćetković
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Matija Harcet
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Maša Roller
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, Zagreb, Croatia
| | - Maja Herak Bosnar
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| |
Collapse
|
14
|
Sankaranarayanan S, Higashiyama T. Capacitation in Plant and Animal Fertilization. TRENDS IN PLANT SCIENCE 2018; 23:129-139. [PMID: 29170007 DOI: 10.1016/j.tplants.2017.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Sexual reproduction relies on the successful fusion of the sperm and egg cell. Despite the vast differences between plants and animals, there are similarities at a molecular level between plant and animal reproduction. While the molecular basis of fertilization has been extensively studied in plants, the process of capacitation has received little attention until recently. Recent research has started to uncover the molecular basis of plant capacitation. Furthermore, recent studies suggest that the key molecules in plants and animal fertilization are functionally conserved. Here, we review new insights for our understanding of capacitation of pollen tube and fertilization in plants and also propose that there are commonalities in the process of sexual reproduction between plants and animals.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
15
|
Breitbart H, Finkelstein M. Actin cytoskeleton and sperm function. Biochem Biophys Res Commun 2017; 506:372-377. [PMID: 29102633 DOI: 10.1016/j.bbrc.2017.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022]
Abstract
For the acquisition of the ability to fertilize the egg, mammalian spermatozoa should undergo a series of biochemical transformations in the female reproductive tract, collectively called capacitation. The capacitated sperm can undergo the acrosomal exocytosis process near or on the oocyte, which allows the spermatozoon to penetrate and fertilize it. One of the main processes in capacitation involves dynamic cytoskeletal remodeling particularly of actin. Actin polymerization occurs during sperm capacitation and the produced F-actin should be depolymerized prior to the acrosomal exocytosis. In the present review, we describe the mechanisms that regulate F-actin formation during sperm capacitation and the F-actin dispersion prior to the acrosomal exocytosis. During sperm capacitation, the actin severing proteins gelsolin and cofilin are inactive and they undergo activation prior to the acrosomal exocytosis.
Collapse
Affiliation(s)
- Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | | |
Collapse
|
16
|
Taniuchi K, Furihata M, Naganuma S, Dabanaka K, Hanazaki K, Saibara T. Podocalyxin-like protein, linked to poor prognosis of pancreatic cancers, promotes cell invasion by binding to gelsolin. Cancer Sci 2016; 107:1430-1442. [PMID: 27461278 PMCID: PMC5084665 DOI: 10.1111/cas.13018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 12/14/2022] Open
Abstract
The cell‐adhesion glycoprotein PODXL is associated with an aggressive tumor phenotype in several forms of cancer. Here, we report that high PODXL expression was an independent predictor of worse overall survival of pancreatic cancer patients, and that PODXL promoted pancreatic cancer cell motility and invasion by physically binding to the cytoskeletal protein gelsolin. Suppression of PODXL or gelsolin decreased membrane protrusions with abundant peripheral actin structures, and in turn inhibited cell motility and invasion. Transfection of a PODXL‐rescue construct renewed the expression of gelsolin bound to peripheral actin structures in cell protrusions, and abrogated the decreased cell protrusions caused by the knockdown of PODXL. Furthermore, transfection of a PODXL‐rescue construct into pancreatic cancer cells in which both PODXL and gelsolin were suppressed failed to increase the formation of the protrusions. Thus, PODXL enhances motility and invasiveness through an increase in gelsolin–actin interactions in cell protrusions.
Collapse
Affiliation(s)
- Keisuke Taniuchi
- Department of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Nankoku, Japan. .,Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan.
| | - Mutsuo Furihata
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Ken Dabanaka
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Kazuhiro Hanazaki
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
17
|
Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease. Neural Plast 2016; 2016:2371970. [PMID: 27127658 PMCID: PMC4835652 DOI: 10.1155/2016/2371970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 02/07/2023] Open
Abstract
Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer's disease pathology.
Collapse
|
18
|
Breitbart H, Finkelstein M. Regulation of Sperm Capacitation and the Acrosome Reaction by PIP 2 and Actin Modulation. Asian J Androl 2016; 17:597-600. [PMID: 25966627 PMCID: PMC4492050 DOI: 10.4103/1008-682x.154305] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Actin polymerization and development of hyperactivated (HA) motility are two processes that take place during sperm capacitation. Actin polymerization occurs during capacitation and prior to the acrosome reaction, fast F-actin breakdown takes place. The increase in F-actin during capacitation depends upon inactivation of the actin severing protein, gelsolin, by its binding to phosphatydilinositol-4, 5-bisphosphate (PIP 2 ) and its phosphorylation on tyrosine-438 by Src. Activation of gelsolin following its release from PIP 2 is known to cause F-actin breakdown and inhibition of sperm motility, which can be restored by adding PIP 2 to the cells. Reduction of PIP 2 synthesis inhibits actin polymerization and motility, while increasing PIP 2 synthesis enhances these activities. Furthermore, sperm demonstrating low motility contained low levels of PIP 2 and F-actin. During capacitation there was an increase in PIP 2 and F-actin levels in the sperm head and a decrease in the tail. In spermatozoa with high motility, gelsolin was mainly localized to the sperm head before capacitation, whereas in low motility sperm, most of the gelsolin was localized to the tail before capacitation and translocated to the head during capacitation. We also showed that phosphorylation of gelsolin on tyrosine-438 depends upon its binding to PIP 2 . Stimulation of phospholipase C, by Ca 2 + -ionophore or by activating the epidermal-growth-factor-receptor, inhibits tyrosine phosphorylation of gelsolin and enhances enzyme activity. In conclusion, these data indicate that the increase of PIP 2 and/or F-actin in the head during capacitation enhances gelsolin translocation to the head. As a result, the decrease of gelsolin in the tail allows the maintenance of high levels of F-actin in this structure, which is essential for the development of HA motility.
Collapse
Affiliation(s)
- Haim Breitbart
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
19
|
The role and importance of cofilin in human sperm capacitation and the acrosome reaction. Cell Tissue Res 2015; 362:665-75. [DOI: 10.1007/s00441-015-2229-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
20
|
Huang GW, Liao LD, Li EM, Xu LY. siRNA induces gelsolin gene transcription activation in human esophageal cancer cell. Sci Rep 2015; 5:7901. [PMID: 25600697 PMCID: PMC4298738 DOI: 10.1038/srep07901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/17/2014] [Indexed: 02/05/2023] Open
Abstract
Recent studies show that targeting gene promoter or 3' terminal regions of mRNA with siRNA induces target gene transcription. However, the ability of exon-targeting siRNA to affect transcription has yet to be demonstrated. We designed and synthesized siRNA against various exons in the gelsolin gene (GSN) to knockdown GSN transcript in KYSE150 and KYSE450 cells. Surprisingly, we found that siGSN-2, targeting the GSN twelfth exon, induced GSN gene transcription detected by real time RT-PCR. An siGSN-2 co-precipitation assay was performed and H3 histone, previously shown to correlate with gene transcription, was detected in the siGSN-2 pull-down pellet. However, H3 histone was not detected in an siGSN-1-precipitated pellet, which resulted in GSN knockdown. In addition, siGSN-2 decreased stress fibers, lamellipodia and filopodia, demonstrating that siGSN-2 induced GSN transcription activation and exerted biological function. In conclusion, our finds reveal siRNA, which is derived from target gene exon, can form the complex with H3 histone to be involved in the regulation of gene expression.
Collapse
Affiliation(s)
- Guo-Wei Huang
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - En-Min Li
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
21
|
Abstract
Neurons begin their life as simple spheres, but can ultimately assume an elaborate morphology with numerous, highly arborized dendrites, and long axons. This is achieved via an astounding developmental progression which is dependent upon regulated assembly and dynamics of the cellular cytoskeleton. As neurites emerge out of the soma, neurons break their spherical symmetry and begin to acquire the morphological features that define their structure and function. Neurons regulate their cytoskeleton to achieve changes in cell shape, velocity, and direction as they migrate, extend neurites, and polarize. Of particular importance, the organization and dynamics of actin and microtubules directs the migration and morphogenesis of neurons. This review focuses on the regulation of intrinsic properties of the actin and microtubule cytoskeletons and how specific cytoskeletal structures and dynamics are associated with the earliest phase of neuronal morphogenesis—neuritogenesis.
Collapse
|
22
|
Qi W, Gao Y, Tian J, Jiang H. Adseverin knockdown inhibits osteoclastogenesis in RAW264.7 cells. Int J Mol Med 2014; 34:1483-91. [PMID: 25339151 PMCID: PMC4214352 DOI: 10.3892/ijmm.2014.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022] Open
Abstract
Osteoclastogenesis is a complex process that is highly dependent on the dynamic regulation of the actin cytoskeleton. Adseverin (Ads), a member of the gelsolin superfamily of actin-binding proteins, regulates actin remodeling by severing and capping actin filaments. The objective of the present study was to characterize the role of Ads during osteoclastogenesis by assessing Ads expression and using a knockdown strategy. Immunoblot analyses were used to examine Ads expression during osteoclastogenesis. A stable Ads knockdown macrophage cell line was generated using a retroviral shRNA construct. Osteoclast differentiation was morphologically examined via cell staining with osteoclast specific markers and light microscopy. The results showed that Ads expression was significantly increased in response to receptor activator of nuclear factor-κB ligand during osteoclastogenesis, and Ads was highly expressed in mature osteoclasts. Ads-knockdown macrophages showed major osteoclastogenesis defects, most likely caused by a pre-osteoclast fusion defect. These results indicate that Ads deficiency in monocytes inhibits osteoclastogenesis. Thus, in future studies it could be noteworthy to investigate the function of Ads in bone marrow monocytes during osteoclastogenesis.
Collapse
Affiliation(s)
- Wenting Qi
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Gao
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jun Tian
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwei Jiang
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
23
|
Ho KW, Lambert WS, Calkins DJ. Activation of the TRPV1 cation channel contributes to stress-induced astrocyte migration. Glia 2014; 62:1435-51. [PMID: 24838827 DOI: 10.1002/glia.22691] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/13/2023]
Abstract
Astrocytes provide metabolic, structural, and synaptic support to neurons in normal physiology and also contribute widely to pathogenic processes in response to stress or injury. Reactive astrocytes can undergo cytoskeletal reorganization and increase migration through changes in intracellular Ca(2+) mediated by a variety of potential modulators. Here we tested whether migration of isolated retinal astrocytes following mechanical injury (scratch wound) involves the transient receptor potential vanilloid-1 channel (TRPV1), which contributes to Ca(2+)-mediated cytoskeletal rearrangement and migration in other systems. Application of the TRPV1-specific antagonists, capsazepine (CPZ) or 5'-iodoresiniferatoxin (IRTX), slowed migration by as much as 44%, depending on concentration. In contrast, treatment with the TRPV1-specific agonists, capsaicin (CAP) or resiniferatoxin (RTX) produced only a slight acceleration over a range of concentrations. Chelation of extracellular Ca(2+) with EGTA (1 mM) slowed astrocyte migration by 35%. Ratiometric imaging indicated that scratch wound induced a sharp 20% rise in astrocyte Ca(2+) that dissipated with distance from the wound. Treatment with IRTX both slowed and dramatically reduced the scratch-induced Ca(2+) increase. Both CPZ and IRTX influenced astrocyte cytoskeletal organization, especially near the wound edge. Taken together, our results indicate that astrocyte mobilization in response to mechanical stress involves influx of extracellular Ca(2+) and cytoskeletal changes in part mediated by TRPV1 activation.
Collapse
Affiliation(s)
- Karen W Ho
- Vanderbilt Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|
24
|
Marino N, Marshall JC, Collins JW, Zhou M, Qian Y, Veenstra T, Steeg PS. Nm23-h1 binds to gelsolin and inactivates its actin-severing capacity to promote tumor cell motility and metastasis. Cancer Res 2013; 73:5949-62. [PMID: 23940300 PMCID: PMC3825031 DOI: 10.1158/0008-5472.can-13-0368] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nm23-H1 has been identified as a metastasis suppressor gene, but its protein interactions have yet to be understood with any mechanistic clarity. In this study, we evaluated the proteomic spectrum of interactions made by Nm23-H1 in 4T1 murine breast cancer cells derived from tissue culture, primary mammary tumors, and pulmonary metastases. By this approach, we identified the actin-severing protein Gelsolin as binding partner for Nm23-H1, verifying their interaction by coimmunoprecipitation in 4T1 cells as well as in human MCF7, MDA-MB-231T, and MDA-MB-435 breast cancer cells. In Gelsolin-transfected cells, coexpression of Nm23-H1 abrogated the actin-severing activity of Gelsolin. Conversely, actin severing by Gelsolin was abrogated by RNA interference-mediated silencing of endogenous Nm23-H1. Tumor cell motility was negatively affected in parallel with Gelsolin activity, suggesting that Nm23-H1 binding inactivated the actin-depolymerizing function of Gelsolin to inhibit cell motility. Using indirect immunoflourescence to monitor complexes formed by Gelsolin and Nm23-H1 in living cells, we observed their colocalization in a perinuclear cytoplasmic compartment that was associated with the presence of disrupted actin stress fibers. In vivo analyses revealed that Gelsolin overexpression increased the metastasis of orthotopically implanted 4T1 or tail vein-injected MDA-MB-231T cells (P = 0.001 and 0.04, respectively), along with the proportion of mice with diffuse liver metastases, an effect ablated by coexpression of Nm23-H1. We observed no variation in proliferation among lung metastases. Our findings suggest a new actin-based mechanism that can suppress tumor metastasis.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Apoptosis
- Blotting, Western
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Female
- Fluorescent Antibody Technique
- Gelsolin/antagonists & inhibitors
- Gelsolin/genetics
- Gelsolin/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/secondary
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NM23 Nucleoside Diphosphate Kinases/antagonists & inhibitors
- NM23 Nucleoside Diphosphate Kinases/genetics
- NM23 Nucleoside Diphosphate Kinases/metabolism
- RNA, Small Interfering/genetics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Natascia Marino
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda MD 20892
| | - Jean-Claude Marshall
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda MD 20892
| | - Joshua W. Collins
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda MD 20892
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Yongzhen Qian
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda MD 20892
| | - Timothy Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Patricia S. Steeg
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda MD 20892
| |
Collapse
|
25
|
Marino N, Marshall JC, Collins JW, Zhou M, Qian Y, Veenstra T, Steeg PS. Nm23-h1 binds to gelsolin and inactivates its actin-severing capacity to promote tumor cell motility and metastasis. Cancer Res 2013. [PMID: 23940300 DOI: 10.1158/0008-5472.can-13-0368-009-0109-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nm23-H1 has been identified as a metastasis suppressor gene, but its protein interactions have yet to be understood with any mechanistic clarity. In this study, we evaluated the proteomic spectrum of interactions made by Nm23-H1 in 4T1 murine breast cancer cells derived from tissue culture, primary mammary tumors, and pulmonary metastases. By this approach, we identified the actin-severing protein Gelsolin as binding partner for Nm23-H1, verifying their interaction by coimmunoprecipitation in 4T1 cells as well as in human MCF7, MDA-MB-231T, and MDA-MB-435 breast cancer cells. In Gelsolin-transfected cells, coexpression of Nm23-H1 abrogated the actin-severing activity of Gelsolin. Conversely, actin severing by Gelsolin was abrogated by RNA interference-mediated silencing of endogenous Nm23-H1. Tumor cell motility was negatively affected in parallel with Gelsolin activity, suggesting that Nm23-H1 binding inactivated the actin-depolymerizing function of Gelsolin to inhibit cell motility. Using indirect immunoflourescence to monitor complexes formed by Gelsolin and Nm23-H1 in living cells, we observed their colocalization in a perinuclear cytoplasmic compartment that was associated with the presence of disrupted actin stress fibers. In vivo analyses revealed that Gelsolin overexpression increased the metastasis of orthotopically implanted 4T1 or tail vein-injected MDA-MB-231T cells (P = 0.001 and 0.04, respectively), along with the proportion of mice with diffuse liver metastases, an effect ablated by coexpression of Nm23-H1. We observed no variation in proliferation among lung metastases. Our findings suggest a new actin-based mechanism that can suppress tumor metastasis.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Apoptosis
- Blotting, Western
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Female
- Fluorescent Antibody Technique
- Gelsolin/antagonists & inhibitors
- Gelsolin/genetics
- Gelsolin/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/secondary
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NM23 Nucleoside Diphosphate Kinases/antagonists & inhibitors
- NM23 Nucleoside Diphosphate Kinases/genetics
- NM23 Nucleoside Diphosphate Kinases/metabolism
- RNA, Small Interfering/genetics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Natascia Marino
- Authors' Affiliations: Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda; and Laboratory of Proteomics and Analytical Technologies, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | | | | | | | | |
Collapse
|
26
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
27
|
Ickowicz D, Finkelstein M, Breitbart H. Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J Androl 2012; 14:816-21. [PMID: 23001443 PMCID: PMC3720105 DOI: 10.1038/aja.2012.81] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/30/2012] [Accepted: 07/08/2012] [Indexed: 12/19/2022] Open
Abstract
Mammalian sperm must undergo a series of biochemical and physiological modifications, collectively called capacitation, in the female reproductive tract prior to the acrosome reaction (AR). The mechanisms of these modifications are not well characterized though protein kinases were shown to be involved in the regulation of intracellular Ca(2+) during both capacitation and the AR. In the present review, we summarize some of the signaling events that are involved in capacitation. During the capacitation process, phosphatidyl-inositol-3-kinase (PI3K) is phosphorylated/activated via a protein kinase A (PKA)-dependent cascade, and downregulated by protein kinase C α (PKCα). PKCα is active at the beginning of capacitation, resulting in PI3K inactivation. During capacitation, PKCα as well as PP1γ2 is degraded by a PKA-dependent mechanism, allowing the activation of PI3K. The activation of PKA during capacitation depends mainly on cyclic adenosine monophosphate (cAMP) produced by the bicarbonate-dependent soluble adenylyl cyclase. This activation of PKA leads to an increase in actin polymerization, an essential process for the development of hyperactivated motility, which is necessary for successful fertilization. Actin polymerization is mediated by PIP(2) in two ways: first, PIP(2) acts as a cofactor for phospholipase D (PLD) activation, and second, as a molecule that binds and inhibits actin-severing proteins such as gelsolin. Tyrosine phosphorylation of gelsolin during capacitation by Src family kinase (SFK) is also important for its inactivation. Prior to the AR, gelsolin is released from PIP(2) and undergoes dephosphorylation/activation, resulting in fast F-actin depolymerization, leading to the AR.
Collapse
Affiliation(s)
- Debby Ickowicz
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52100, Israel
| | | | | |
Collapse
|
28
|
Itach SBS, Finklestein M, Etkovitz N, Breitbart H. Hyper-activated motility in sperm capacitation is mediated by phospholipase D-dependent actin polymerization. Dev Biol 2011; 362:154-61. [PMID: 22178154 DOI: 10.1016/j.ydbio.2011.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 11/22/2011] [Accepted: 12/01/2011] [Indexed: 12/15/2022]
Abstract
In order to fertilize the oocyte, sperm must undergo a series of biochemical changes in the female reproductive tract, known as capacitation. Once capacitated, spermatozoon can bind to the zona pellucida of the egg and undergo the acrosome reaction (AR), a process that enables its penetration and fertilization of the oocyte. Important processes that characterize sperm capacitation are actin polymerization and the development of hyper-activated motility (HAM). Previously, we showed that Phospholipase D (PLD)-dependent actin polymerization occurs during sperm capacitation, however the role of this process in sperm capacitation is not yet known. In the present study, we showed for the first time the involvement of PLD-dependent actin polymerization in sperm motility during mouse and human capacitation. Sperm incubated under capacitation conditions revealed a time dependent increase in actin polymerization and HAM. Inhibition of Phosphatidic Acid (PA) formation by PLD using butan-1-ol, inhibited actin polymerization and motility, as well as in vitro fertilization (IVF) and the ability of the sperm to undergo the AR. The inhibition of sperm HAM by low concentration of butan-1-ol is completely restored by adding PA, further indicating the involvement of PLD in these processes. Furthermore, exogenous PA enhanced rapid actin polymerization that was followed by a rise in the HAM, as well as an increased in IVF rate. In conclusion, our results demonstrate that PLD-dependent actin polymerization is a critical step needed for the development of HAM during mouse and human sperm capacitation.
Collapse
Affiliation(s)
- Sarit Bar-Sheshet Itach
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, 52900, Israel
| | | | | | | |
Collapse
|
29
|
Abstract
The actin cytoskeleton is indispensable for normal cellular function. In particular, several actin-based structures coordinate cellular motility, a process hijacked by tumor cells in order to facilitate their propagation to distant sites. The actin cytoskeleton, therefore, represents a point for chemotherapeutic intervention. The challenge in disrupting the actin cytoskeleton is in preserving actin-driven contraction of cardiac and skeletal muscle. By targeting actin-binding proteins with altered expression in malignancy, it may be possible to achieve tumor-specific toxicity. A number of actin-binding proteins act cooperatively and synergistically to regulate actin structures required for motility. The actin cytoskeleton is characterized by a significant degree of plasticity. Targeting specific actin-binding proteins for chemotherapy will only be successful if no other compensatory mechanisms exist.
Collapse
|
30
|
Finkelstein M, Etkovitz N, Breitbart H. Role and regulation of sperm gelsolin prior to fertilization. J Biol Chem 2010; 285:39702-9. [PMID: 20937821 DOI: 10.1074/jbc.m110.170951] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To acquire fertilization competence, spermatozoa should undergo several biochemical changes in the female reproductive tract, known as capacitation. The capacitated spermatozoon can interact with the egg zona pellucida resulting in the occurrence of the acrosome reaction, a process that allowed its penetration into the egg and fertilization. Sperm capacitation requires actin polymerization, whereas F-actin must disperse prior to the acrosome reaction. Here, we suggest that the actin-severing protein, gelsolin, is inactive during capacitation and is activated prior to the acrosome reaction. The release of bound gelsolin from phosphatidylinositol 4,5-bisphosphate (PIP(2)) by PBP10, a peptide containing the PIP(2)-binding domain of gelsolin, or by activation of phospholipase C, which hydrolyzes PIP(2), caused rapid Ca(2+)-dependent F-actin depolymerization as well as enhanced acrosome reaction. Using immunoprecipitation assays, we showed that the tyrosine kinase SRC and gelsolin coimmunoprecipitate, and activating SRC by adding 8-bromo-cAMP (8-Br-cAMP) enhanced the amount of gelsolin in this precipitate. Moreover, 8-Br-cAMP enhanced tyrosine phosphorylation of gelsolin and its binding to PIP(2(4,5)), both of which inactivated gelsolin, allowing actin polymerization during capacitation. This actin polymerization was blocked by inhibiting the Src family kinases, suggesting that gelsolin is activated under these conditions. These results are further supported by our finding that PBP10 was unable to cause complete F-actin breakdown in the presence of 8-Br-cAMP or vanadate. In conclusion, inactivation of gelsolin during capacitation occurs by its binding to PIP(2) and tyrosine phosphorylation by SRC. The release of gelsolin from PIP(2) together with its dephosphorylation enables gelsolin activation, resulting in the acrosome reaction.
Collapse
Affiliation(s)
- Maya Finkelstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
31
|
Windhorst S, Fliegert R, Blechner C, Möllmann K, Hosseini Z, Günther T, Eiben M, Chang L, Lin HY, Fanick W, Schumacher U, Brandt B, Mayr GW. Inositol 1,4,5-trisphosphate 3-kinase-A is a new cell motility-promoting protein that increases the metastatic potential of tumor cells by two functional activities. J Biol Chem 2010; 285:5541-54. [PMID: 20022963 PMCID: PMC2820782 DOI: 10.1074/jbc.m109.047050] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 12/16/2009] [Indexed: 11/06/2022] Open
Abstract
Cellular migration is an essential prerequisite for metastatic dissemination of cancer cells. This study demonstrates that the neuron/testis-specific F-actin-targeted inositol 1,4,5-trisphosphate 3-kinase-A (ITPKA) is ectopically expressed in different human tumor cell lines and during tumor progression in the metastatic tumor model Balb-neuT. High expression of ITPKA increases invasive migration in vitro and metastasis in a xenograft SCID mouse model. Mechanistic studies show that ITPKA promotes migration of tumor cells by two different mechanisms as follows: growth factor independently high levels of ITPKA induce the formation of large cellular protrusions by directly modulating the actin cytoskeleton. The F-actin binding activity of ITPKA stabilizes and bundles actin filaments and thus increases the levels of cellular F-actin. In growth factor-stimulated cells, the catalytically active domain enhances basal ITPKA-induced migration by activating store-operated calcium entry through production of inositol 1,3,4,5-tetrakisphosphate and subsequent inhibition of inositol phosphate 5-phosphatase. These two functional activities of ITPKA stimulating tumor cell migration place the enzyme among the potential targets of anti-metastatic therapy.
Collapse
Affiliation(s)
- Sabine Windhorst
- Institut für Biochemie und Molekularbiologie I, Zelluläre Signaltransduktion, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bunnell SC. Multiple microclusters: diverse compartments within the immune synapse. Curr Top Microbiol Immunol 2010; 340:123-54. [PMID: 19960312 DOI: 10.1007/978-3-642-03858-7_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The activation of classical alphabeta T cells is initiated when the T cell receptor (TCR) recognizes peptide antigens presented by major histocompatibility complex (pMHC) molecules. This recognition always occurs at the junction of a T cell and antigen-presenting cell (APC). Existing models of T-cell activation accurately explain the sensitivity and selectivity of antigen recognition within the immunological synapse. However, these models have not fully incorporated the diverse microcluster types revealed by current imaging technologies. It is increasingly clear that a better understanding of T-cell activation will require an appreciation of the diverse signaling assemblies arising within the immune synapse, the interrelationships between these structures, and the mechanisms by which underlying cytoskeletal systems govern their assembly and fate. Here, we will provide a brief framework for understanding these issues, review our contributions to current knowledge, and provide perspectives on the future of this rapidly advancing field.
Collapse
Affiliation(s)
- Stephen C Bunnell
- Department of Pathology, Tufts University Medical School, Boston, MA 02111, USA.
| |
Collapse
|
33
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Yole M, Wickstrom M, Blakley B. Cell death and cytotoxic effects in YAC-1 lymphoma cells following exposure to various forms of mercury. Toxicology 2006; 231:40-57. [PMID: 17210217 DOI: 10.1016/j.tox.2006.11.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Revised: 10/29/2006] [Accepted: 11/12/2006] [Indexed: 12/14/2022]
Abstract
The effects of 1 min-4 h exposures to four Hg compounds (mercuric chloride [HgCl2], methyl mercuric chloride [CH3HgCl], p-chloromercuribenzoate [p-CMB] and thimerosal [TMS; ethylmercurithiosalicylate]) on cell death, microtubules, actin, CD3 receptor expression, protein tyrosine phosphorylation (PTyr-P) and intracellular calcium ([Ca2+]i) levels were investigated in YAC-1 lymphoma cells using flow cytometry. YOPRO-1 (YP) and propidium iodide (PI) dye uptake indicated all forms of Hg tested were toxic at concentrations ranging from 25.8-48.4 microM, with two distinct patterns of effects. Early apoptosis was prolonged for CH3HgCl- and TMS-treated cells, with more than 50% remaining YP+/PI- after 4h. Both CH3HgCl and TMS induced complete loss of beta-tubulin fluorescence, indicative of microtubule depolymerization and inhibition of tubulin synthesis and/or beta-tubulin degradation, while F-actin fluorescence diminished to a lesser degree and only after loss beta-tubulin. CH3HgCl and TMS induced an almost immediate two-fold increase in CD3 fluorescence, with levels returning to baseline within minutes. With continued exposure, CD3 fluorescence was reduced to approximately 50% of baseline values. Both compounds also increased PTyr-P two- to three-fold immediately, with levels returning to baseline at 4h. Similarly, two- to three-fold increases in [Ca2+]i were noted after 1 min exposure. [Ca2+]i increased progressively, reaching levels five- to eight-fold greater than control values. In contrast, dye uptake was delayed with HgCl2 and p-CMB, although cell death proceeded rapidly, with almost all non-viable cells being late apoptotic (YP+/PI+) by 4h. p-CMB produced early reductions in F-actin, and after 4h, complete loss of F-actin with only partial reduction of total beta-tubulin was seen with both p-CMB and HgCl2. HgCl2 reduced CD3 expression and PTyr-P slightly within minutes, while p-CMB produced similar effects on CD3 only at 4h, at which time PTyr-P was increased two- to three-fold. Both compounds increased [Ca2+]i within minutes, though levels remained under twice the baseline concentration after 15 min exposure. With continued exposure, [Ca2+]i increased to levels two- to five-fold greater than control values. These findings indicate the two groups of Hg compounds may induce cell death by distinct pathways, reflecting interactions with different cellular targets leading to cell death.
Collapse
Affiliation(s)
- Margaret Yole
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, University of Saskatchewan, Saskatoon SK S7N 5B4, Canada.
| | | | | |
Collapse
|
35
|
Grimm ED, Portugal RV, de Oliveira Neto M, Martins NH, Polikarpov I, Zaha A, Ferreira HB. Structural analysis of an Echinococcus granulosus actin-fragmenting protein by small-angle x-ray scattering studies and molecular modeling. Biophys J 2006; 90:3216-23. [PMID: 16473915 PMCID: PMC1432106 DOI: 10.1529/biophysj.105.067801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Echinococcus granulosus actin filament-fragmenting protein (EgAFFP) is a three domain member of the gelsolin family of proteins, which is antigenic to human hosts. These proteins, formed by three or six conserved domains, are involved in the dynamic rearrangements of the cytoskeleton, being responsible for severing and capping actin filaments and promoting nucleation of actin monomers. Various structures of six domain gelsolin-related proteins have been investigated, but little information on the structure of three domain members is available. In this work, the solution structure of the three domain EgAFFP has been investigated through small-angle x-ray scattering (SAXS) studies. EgAFFP exhibits an elongated molecular shape. The radius of gyration and the maximum dimension obtained by SAXS were, respectively, 2.52 +/- 0.01 nm and 8.00 +/- 1.00 nm, both in the absence and presence of Ca2+. Two different molecular homology models were built for EgAFFP, but only one was validated through SAXS studies. The predicted structure for EgAFFP consists of three repeats of a central beta-sheet sandwiched between one short and one long alpha-helix. Possible implications of the structure of EgAFFP upon actin binding are discussed.
Collapse
Affiliation(s)
- Eliana D Grimm
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Apostolova MD, Christova T, Templeton DM. Involvement of gelsolin in cadmium-induced disruption of the mesangial cell cytoskeleton. Toxicol Sci 2005; 89:465-74. [PMID: 16280379 DOI: 10.1093/toxsci/kfj035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cadmium (Cd2+) is known to cause a selective disruption of the filamentous actin cytoskeleton in the smooth muscle-like renal mesangial cell. We examined the effect of Cd2+ on the distribution of the actin-severing protein, gelsolin. Over 8 h, CdCl2 (10 microM) caused a progressive shift of gelsolin from a diffuse perinuclear and cytoplasmic distribution to a pattern decorating F-actin filaments. Over this time filaments were decreased in number in many cells, and membrane ruffling was initiated. Western blotting and 125I-F-actin gel overlays demonstrated an increase in actin-binding gelsolin activity in the cytoskeletal fraction of cell extracts following Cd2+ treatment. In in vitro polymerization assays, gelsolin acted as a nucleating factor and increased the rate of polymerization. Cytosolic extracts also increased the polymerization rate. Addition of Cd2+ together with gelsolin further increased the rate of polymerization. Gelsolin enhanced depolymerization of purified actin, and Cd2+ partially suppressed this effect. However, cytoskeletal extracts from Cd2+-treated cells also markedly increased depolymerization, suggesting further that Cd2+ may activate cellular component(s) such as gelsolin for actin binding. We conclude that a major effect of Cd2+ on the mesangial cell cytoskeleton is manifest through activating the association of gelsolin with actin, with gelsolin's severing properties predominating under conditions found in Cd2+-treated cells.
Collapse
Affiliation(s)
- Margarita D Apostolova
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | | | | |
Collapse
|
37
|
Hao S, August A. Actin depolymerization transduces the strength of B-cell receptor stimulation. Mol Biol Cell 2005; 16:2275-84. [PMID: 15728723 PMCID: PMC1087234 DOI: 10.1091/mbc.e04-10-0881] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Polymerization of the actin cytoskeleton has been found to be essential for B-cell activation. We show here, however, that stimulation of BCR induces a rapid global actin depolymerization in a BCR signal strength-dependent manner, followed by polarized actin repolymerization. Depolymerization of actin enhances and blocking actin depolymerization inhibits BCR signaling, leading to altered BCR and lipid raft clustering, ERK activation, and transcription factor activation. Furthermore actin depolymerization by itself induces altered lipid raft clustering and ERK activation, suggesting that F-actin may play a role in separating lipid rafts and in setting the threshold for cellular activation.
Collapse
Affiliation(s)
- Shengli Hao
- Immunology Research Laboratories, Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
38
|
NAGAYAMA K, MATSUMOTO T. Observation of Cell Shortening and Dynamic Changes of Actin Filaments during Cell Detachment from Thermoresponsive-Gelatin-Coated Substrate. ACTA ACUST UNITED AC 2005. [DOI: 10.1299/jsmec.48.411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazuaki NAGAYAMA
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology
| | - Takeo MATSUMOTO
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology
| |
Collapse
|
39
|
Croce A, Cassata G, Disanza A, Gagliani MC, Tacchetti C, Malabarba MG, Carlier MF, Scita G, Baumeister R, Di Fiore PP. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nat Cell Biol 2004; 6:1173-9. [PMID: 15558032 DOI: 10.1038/ncb1198] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 10/13/2004] [Indexed: 01/17/2023]
Abstract
Redundant gene function frequently hampers investigations of the physiological roles of mammalian proteins. This is the case for Eps8, a receptor tyrosine kinase (RTK) substrate that participates in the activation of the Rac-specific guanine nucleotide-exchange function of Sos1 (refs 2-5), thereby regulating actin remodelling by RTKs. EPS8-knockout mice, however, exhibit no evident phenotype, owing to the redundant function of three other EPS8-related genes. Here we show that in the nematode Caenorhabditis elegans, only one orthologue of the EPS8 gene exists, which gives rise to two alternatively spliced isoforms, EPS-8A and EPS-8B, differing at their carboxyl termini. In the nematode, eps-8 is essential for embryonic development. Furthermore, EPS-8A, but not EPS-8B, is specifically required for proper apical morphogenesis in the intestinal cells. This latter phenotype could be precisely correlated with a previously unknown actin barbed-end-capping activity, which is present in the C terminus of the EPS-8A isoform. Therefore, nematode genetics allowed not only the unmasking of distinct EPS-8-linked phenotypes, but also the definition of a novel function for this molecule in actin dynamics.
Collapse
Affiliation(s)
- Assunta Croce
- IFOM Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chan MWC, El Sayegh TY, Arora PD, Laschinger CA, Overall CM, Morrison C, McCulloch CAG. Regulation of intercellular adhesion strength in fibroblasts. J Biol Chem 2004; 279:41047-57. [PMID: 15247242 DOI: 10.1074/jbc.m406631200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The regulation of adherens junction formation in cells of mesenchymal lineage is of critical importance in tumorigenesis but is poorly characterized. As actin filaments are crucial components of adherens junction assembly, we studied the role of gelsolin, a calcium-dependent, actin severing protein, in the formation of N-cadherin-mediated intercellular adhesions. With a homotypic, donor-acceptor cell model and plates or beads coated with recombinant N-cadherin-Fc chimeric protein, we found that gelsolin spatially co-localizes to, and is transiently associated with, cadherin adhesion complexes. Fibroblasts from gelsolin-null mice exhibited marked reductions in kinetics and strengthening of N-cadherin-dependent junctions when compared with wild-type cells. Experiments with lanthanum chloride (250 microm) showed that adhesion strength was dependent on entry of calcium ions subsequent to N-cadherin ligation. Cadherin-associated gelsolin severing activity was required for localized actin assembly as determined by rhodamine actin monomer incorporation onto actin barbed ends at intercellular adhesion sites. Scanning electron microscopy showed that gelsolin was an important determinant of actin filament architecture of adherens junctions at nascent N-cadherin-mediated contacts. These data indicate that increased actin barbed end generation by the severing activity of gelsolin associated with N-cadherin regulates intercellular adhesion strength.
Collapse
Affiliation(s)
- Matthew W C Chan
- Canadian Institutes of Health Research (CIHR) Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Sarmiere PD, Bamburg JR. Regulation of the neuronal actin cytoskeleton by ADF/cofilin. ACTA ACUST UNITED AC 2004; 58:103-17. [PMID: 14598374 DOI: 10.1002/neu.10267] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Actin and microtubules are major cytoskeletal elements of most cells including neurons. In order for a cell to move and change shape, its cytoskeleton must undergo rearrangements that involve breaking down and reforming filaments. Many recent reviews have focused on the signaling pathways emanating from receptors that ultimately affect axon growth and growth cone steering. This particular review will address changes in the actin cytoskeleton modulated by the family of actin dynamizing proteins known as actin depolymerizing factor (ADF)/cofilin or AC proteins. Though much is known about inactivation of AC proteins through phosphorylation at ser3 by LIM or TES kinases, new mechanisms of regulation of AC have recently emerged. A novel phosphatase, slingshot (SSH), and the 14-3-3 family of regulatory proteins have also been found to affect AC activity. The potential role of AC proteins in modulating the actin organizational changes that accompany neurite initiation, axonogenesis, growth cone guidance, and dendritic spine formation will be discussed.
Collapse
Affiliation(s)
- Patrick D Sarmiere
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
42
|
Adami R, Cintio O, Trombetta G, Choquet D, Grazi E. On the stiffness of the natural actin filament decorated with alexa fluor tropomyosin. Biophys Chem 2003; 104:469-76. [PMID: 12878314 DOI: 10.1016/s0301-4622(03)00036-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Natural, phalloidin-free, actin filaments were decorated with tropomyosin made fluorescent by reaction with alexa fluor (R) 488 C(5) maleimide. The elastic modulus by stretching of these filaments was then determined and found to span between 38.2 MPa and 61.48 MPa. We tried also to determine the yield strength of the same filaments in the laser light trap operated at 920 mW, the maximum power of the apparatus. Only two out of the 10 filaments tested were broken under these conditions, yield strength being 50.5 and 55 pN, respectively.
Collapse
Affiliation(s)
- Raffaella Adami
- Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| | | | | | | | | |
Collapse
|
43
|
dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 2003; 83:433-73. [PMID: 12663865 DOI: 10.1152/physrev.00026.2002] [Citation(s) in RCA: 710] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The actin cytoskeleton is a complex structure that performs a wide range of cellular functions. In 2001, significant advances were made to our understanding of the structure and function of actin monomers. Many of these are likely to help us understand and distinguish between the structural models of actin microfilaments. In particular, 1) the structure of actin was resolved from crystals in the absence of cocrystallized actin binding proteins (ABPs), 2) the prokaryotic ancestral gene of actin was crystallized and its function as a bacterial cytoskeleton was revealed, and 3) the structure of the Arp2/3 complex was described for the first time. In this review we selected several ABPs (ADF/cofilin, profilin, gelsolin, thymosin beta4, DNase I, CapZ, tropomodulin, and Arp2/3) that regulate actin-driven assembly, i.e., movement that is independent of motor proteins. They were chosen because 1) they represent a family of related proteins, 2) they are widely distributed in nature, 3) an atomic structure (or at least a plausible model) is available for each of them, and 4) each is expressed in significant quantities in cells. These ABPs perform the following cellular functions: 1) they maintain the population of unassembled but assembly-ready actin monomers (profilin), 2) they regulate the state of polymerization of filaments (ADF/cofilin, profilin), 3) they bind to and block the growing ends of actin filaments (gelsolin), 4) they nucleate actin assembly (gelsolin, Arp2/3, cofilin), 5) they sever actin filaments (gelsolin, ADF/cofilin), 6) they bind to the sides of actin filaments (gelsolin, Arp2/3), and 7) they cross-link actin filaments (Arp2/3). Some of these ABPs are essential, whereas others may form regulatory ternary complexes. Some play crucial roles in human disorders, and for all of them, there are good reasons why investigations into their structures and functions should continue.
Collapse
Affiliation(s)
- C G dos Remedios
- Institute for Biomedical Research, Muscle Research Unit, Department of Anatomy and Histology, University of Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
44
|
Becker PM, Kazi AA, Wadgaonkar R, Pearse DB, Kwiatkowski D, Garcia JGN. Pulmonary vascular permeability and ischemic injury in gelsolin-deficient mice. Am J Respir Cell Mol Biol 2003; 28:478-84. [PMID: 12654637 DOI: 10.1165/rcmb.2002-0024oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gelsolin is a potent actin filament regulatory protein that controls cytoskeletal assembly and disassembly. Because cellular gelsolin deficiency leads to pronounced actin stress fiber formation and defective chemotaxis, and similar cytoskeletal remodeling results in endothelial barrier dysfunction, we hypothesized that gelsolin deficient mice would exhibit increased vascular permeability. To test this hypothesis, we compared baseline lung lavage (BAL) protein concentration, wet/dry weight ratio, and osmotic reflection coefficient for albumin (sigma alb) in gelsolin-deficient (gsn-/-) and C57BL/6 (wild-type) mice. In addition, we assessed lung permeability in response to ischemia by evaluating BAL protein concentration after 4, 8, or 24 h of left pulmonary arterial (LPA) occlusion, and lung wet/dry weight ratio and histology after 24 h of LPA occlusion, in gsn-/- and wild-type animals, as compared with control and sham-operated mice. Baseline measurements revealed that BAL protein concentration was 18-fold higher in gsn-/- than in wild-type mice, whereas sigma alb averaged 0.62 + 0.15 in wild-type, as compared with 0.31 + 0.05 in gsn-/- animals, indicating that gelsolin deficiency caused increased pulmonary vascular permeability. Ischemia increased lung permeability (BAL protein and lung wet/dry weight) in both wild-type and gsn-/- mice. However, whereas the fold-increase in BAL protein concentration was less in gsn-/- mice (2- to 4-fold) as compared with wild-type (22- to 34-fold), the duration of ischemia-induced permeability changes was prolonged. Lung wet/dry weight and gross histology following ischemia were comparable in wild-type and gsn-/- animals. These data suggest that gelsolin significantly contributes to maintenance of vascular barrier function in the lung.
Collapse
Affiliation(s)
- Patrice M Becker
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
45
|
D'Amato M, Flugy AM, Alaimo G, Bauder B, Kohn EC, De Leo G, Alessandro R. Role of calcium in E-selectin induced phenotype of T84 colon carcinoma cells. Biochem Biophys Res Commun 2003; 301:907-14. [PMID: 12589798 DOI: 10.1016/s0006-291x(03)00062-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The adhesion of cancer cells to the endothelium during the metastatic process involves the interaction of specific cell-cell adhesion receptors on the cell surface. E-selectin on endothelial cells and sialyl Lewis X carbohydrate component on tumor cells are mainly implicated in the adhesion of colon carcinoma cells to the endothelium of target organ. In this paper we show that binding of E-selectin to T84 colon tumor cells causes approximately a twofold increase in intracellular calcium concentration. In particular, using two inhibitors of receptor operated calcium channels, CAI and SK&F 96365, we present evidences that the augmentation in cytoplasmic calcium originates from ionic influx from extracellular sources. Furthermore, we demonstrated that modulation of [Ca2+]i by engagement of E-selectin receptor starts signal transduction pathways that affect cell spreading, tyrosine phosphorylation signaling, and cancer cell motility.
Collapse
Affiliation(s)
- M D'Amato
- Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, Via Divisi 83, 90133, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Choe H, Burtnick LD, Mejillano M, Yin HL, Robinson RC, Choe S. The calcium activation of gelsolin: insights from the 3A structure of the G4-G6/actin complex. J Mol Biol 2002; 324:691-702. [PMID: 12460571 DOI: 10.1016/s0022-2836(02)01131-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gelsolin participates in the reorganization of the actin cytoskeleton that is required during such phenomena as cell movement, cytokinesis, and apoptosis. It consists of six structurally similar domains, G1-G6, which are arranged at resting intracellular levels of calcium ion so as to obscure the three actin-binding surfaces. Elevation of Ca(2+) concentrations releases latches within the constrained structure and produces large shifts in the relative positioning of the domains, permitting gelsolin to bind to and sever actin filaments. How Ca(2+) is able to activate gelsolin has been a major question concerning the function of this protein. We present the improved structure of the C-terminal half of gelsolin bound to monomeric actin at 3.0 A resolution. Two classes of Ca(2+)-binding site are evident on gelsolin: type 1 sites share coordination of Ca(2+) with actin, while type 2 sites are wholly contained within gelsolin. This structure of the complex reveals the locations of two novel metal ion-binding sites in domains G5 and G6, respectively. We identify both as type 2 sites. The absolute conservation of the type 2 calcium-ligating residues across the six domains of gelsolin suggests that this site exists in each of the domains. In total, gelsolin has the potential to bind eight calcium ions, two type 1 and six type 2. The function of the type 2 sites is to facilitate structural rearrangements within gelsolin as part of the activation and actin-binding and severing processes. We propose the novel type 2 site in G6 to be the critical site that initiates overall activation of gelsolin by releasing the tail latch that locks calcium-free gelsolin in a conformation unable to bind actin.
Collapse
Affiliation(s)
- Han Choe
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92186-5800, USA
| | | | | | | | | | | |
Collapse
|
47
|
Buch S, Gremm D, Wegner A, Mannherz HG. Binding of a C-terminal fragment (residues 369 to 435) of vitamin D-binding protein to actin. Biol Chem 2002; 383:1621-31. [PMID: 12452439 DOI: 10.1515/bc.2002.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The vitamin D-binding protein (DBP) binds to monomeric actin with high affinity. The variation in DBP isoforms is due to genetic polymorphism and varying glycosylation. To obtain a homogeneous preparation, the cDNA for human DBP and truncations thereof were cloned and various systems were applied for heterologous bacterial and yeast expression. The full-length protein and the N- and C-terminal halves of DBP remained insoluble probably because the protein did not fold to its native three-dimensional structure due to formation of accidental intra- and inter-molecular disulfide bonds during expression in bacteria or yeast. This problem was overcome by cloning of a C-terminal fragment comprising residues 369 to 435 that did not contain disulfide bonds and was completely soluble. Binding of the C-terminal fragment to monomeric actin was demonstrated by comigration with actin during native polyacrylamide gel electrophoresis and surface plasmon resonance, however, at considerably lower affinity than full-length DBP. This suggests that in addition to the C-terminal amino acid sequence other parts (amino acid residues or sugar moieties) of DBP participate in actin binding. The C-terminal fragment was found to inhibit denaturation of actin and to decrease the rate of actin polymerisation both at the barbed and at the pointed end in a concentration-dependent manner. According to a quantitative analysis of the polymerisation kinetics, association of actin monomers to nucleate filaments was not prevented by binding of the C-terminal fragment to actin. These data suggest that the sites on the surface of actin that are involved in actin nucleation and elongation are different.
Collapse
Affiliation(s)
- Stefan Buch
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
48
|
Mogilner A, Edelstein-Keshet L. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys J 2002; 83:1237-58. [PMID: 12202352 PMCID: PMC1302225 DOI: 10.1016/s0006-3495(02)73897-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We develop a mathematical model that describes key details of actin dynamics in protrusion associated with cell motility. The model is based on the dendritic-nucleation hypothesis for lamellipodial protrusion in nonmuscle cells such as keratocytes. We consider a set of partial differential equations for diffusion and reactions of sequestered actin complexes, nucleation, and growth by polymerization of barbed ends of actin filaments, as well as capping and depolymerization of the filaments. The mechanical aspect of protrusion is based on an elastic polymerization ratchet mechanism. An output of the model is a relationship between the protrusion velocity and the number of filament barbed ends pushing the membrane. Significantly, this relationship has a local maximum: too many barbed ends deplete the available monomer pool, too few are insufficient to generate protrusive force, so motility is stalled at either extreme. Our results suggest that to achieve rapid motility, some tuning of parameters affecting actin dynamics must be operating in the cell.
Collapse
Affiliation(s)
- Alex Mogilner
- Department of Mathematics and Institute of Theoretical Dynamics, University of California, Davis, California 95616 USA.
| | | |
Collapse
|
49
|
Abstract
Ca(2+) of 0.3-1.0 microM induces both the exposure of tryptic cleavage sites within the gelsolin molecule inaccessible in the Ca-free conformation, and binding of one actin monomer to the N-terminal half of gelsolin. On the other hand, gelsolin-induced enhancement of pyrene actin fluorescence was observed only above 50 microM Ca(2+), and a ternary actin/gelsolin complex preformed in 200 microM Ca(2+) was stable only above 30 microM Ca(2+). These results provide direct evidence for Ca-induced transitions from closed to open conformation of the gelsolin molecule in the range of 3 x 10(-7) to 10(-6) M Ca(2+). They also suggest that Ca(2+)>10(-5) M is required to stabilize actin-actin contacts in the 2:1 actin/gelsolin complex.
Collapse
|
50
|
Clary DC. Torsional diffusion Monte Carlo: A method for quantum simulations of proteins. J Chem Phys 2001. [DOI: 10.1063/1.1368402] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|