1
|
Badilla-Vargas L, Pereira R, Molina-Mora JA, Alape-Girón A, Flores-Díaz M. Clostridium perfringens phospholipase C, an archetypal bacterial virulence factor, induces the formation of extracellular traps by human neutrophils. Front Cell Infect Microbiol 2023; 13:1278718. [PMID: 37965263 PMCID: PMC10641792 DOI: 10.3389/fcimb.2023.1278718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are networks of DNA and various microbicidal proteins released to kill invading microorganisms and prevent their dissemination. However, a NETs excess is detrimental to the host and involved in the pathogenesis of various inflammatory and immunothrombotic diseases. Clostridium perfringens is a widely distributed pathogen associated with several animal and human diseases, that produces many exotoxins, including the phospholipase C (CpPLC), the main virulence factor in gas gangrene. During this disease, CpPLC generates the formation of neutrophil/platelet aggregates within the vasculature, favoring an anaerobic environment for C. perfringens growth. This work demonstrates that CpPLC induces NETosis in human neutrophils. Antibodies against CpPLC completely abrogate the NETosis-inducing activity of recombinant CpPLC and C. perfringens secretome. CpPLC induces suicidal NETosis through a mechanism that requires calcium release from inositol trisphosphate receptor (IP3) sensitive stores, activation of protein kinase C (PKC), and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathways, as well as the production of reactive oxygen species (ROS) by the metabolism of arachidonic acid. Proteomic analysis of the C. perfringens secretome identified 40 proteins, including a DNAse and two 5´-nucleotidases homologous to virulence factors that could be relevant in evading NETs. We suggested that in gas gangrene this pathogen benefits from having access to the metabolic resources of the tissue injured by a dysregulated intravascular NETosis and then escapes and spreads to deeper tissues. Understanding the role of NETs in gas gangrene could help develop novel therapeutic strategies to reduce mortality, improve muscle regeneration, and prevent deleterious patient outcomes.
Collapse
Affiliation(s)
- Lisa Badilla-Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Reynaldo Pereira
- Centro Nacional de alta Tecnología, Consejo Nacional de Rectores (CONARE), San José, Costa Rica
| | - José Arturo Molina-Mora
- Centro de investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Singh V, Rai R, Mathew BJ, Chourasia R, Singh AK, Kumar A, Chaurasiya SK. Phospholipase C: underrated players in microbial infections. Front Cell Infect Microbiol 2023; 13:1089374. [PMID: 37139494 PMCID: PMC10149971 DOI: 10.3389/fcimb.2023.1089374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
During bacterial infections, one or more virulence factors are required to support the survival, growth, and colonization of the pathogen within the host, leading to the symptomatic characteristic of the disease. The outcome of bacterial infections is determined by several factors from both host as well as pathogen origin. Proteins and enzymes involved in cellular signaling are important players in determining the outcome of host-pathogen interactions. phospholipase C (PLCs) participate in cellular signaling and regulation by virtue of their ability to hydrolyze membrane phospholipids into di-acyl-glycerol (DAG) and inositol triphosphate (IP3), which further causes the activation of other signaling pathways involved in various processes, including immune response. A total of 13 PLC isoforms are known so far, differing in their structure, regulation, and tissue-specific distribution. Different PLC isoforms have been implicated in various diseases, including cancer and infectious diseases; however, their roles in infectious diseases are not clearly understood. Many studies have suggested the prominent roles of both host and pathogen-derived PLCs during infections. PLCs have also been shown to contribute towards disease pathogenesis and the onset of disease symptoms. In this review, we have discussed the contribution of PLCs as a determinant of the outcome of host-pathogen interaction and pathogenesis during bacterial infections of human importance.
Collapse
Affiliation(s)
- Vinayak Singh
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rupal Rai
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Bijina J. Mathew
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rashmi Chourasia
- Department of Chemistry, IES University, Bhopal, Madhya Pradesh, India
| | - Anirudh K. Singh
- School of Sciences, SAM Global University, Raisen, Madhya Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Shivendra K. Chaurasiya
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- *Correspondence: Shivendra K. Chaurasiya,
| |
Collapse
|
3
|
Monturiol-Gross L, Villalta-Romero F, Flores-Díaz M, Alape-Girón A. Bacterial phospholipases C with dual activity: phosphatidylcholinesterase and sphingomyelinase. FEBS Open Bio 2021; 11:3262-3275. [PMID: 34709730 PMCID: PMC8634861 DOI: 10.1002/2211-5463.13320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial phospholipases and sphingomyelinases are lipolytic esterases that are structurally and evolutionarily heterogeneous. These enzymes play crucial roles as virulence factors in several human and animal infectious diseases. Some bacterial phospholipases C (PLCs) have both phosphatidylcholinesterase and sphingomyelinase C activities. Among them, Listeria
monocytogenes PlcB, Clostridium perfringens PLC, and Pseudomonas aeruginosa PlcH are the most deeply understood. In silico predictions of substrates docking with these three bacterial enzymes provide evidence that they interact with different substrates at the same active site. This review discusses structural aspects, substrate specificity, and the mechanism of action of those bacterial enzymes on target cells and animal infection models to shed light on their roles in pathogenesis.
Collapse
Affiliation(s)
- Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabian Villalta-Romero
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
4
|
Visual Detection of Clostridium perfringens Alpha Toxin by Combining Nanometer Microspheres with Smart Phones. Microorganisms 2020; 8:microorganisms8121865. [PMID: 33256026 PMCID: PMC7761010 DOI: 10.3390/microorganisms8121865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Clostridium perfringens α toxin (CPA) is an important virulence factor that causes livestock hemorrhagic enteritis and food poisoning by contaminated meat products. In this study, the nano-silica microspheres combined with smartphone image processing technology was developed to realize real-time CPA detection. First, the N-terminal and C-terminal domain of the CPA toxin (CPAC3 and CPAN) and their anti-sera were prepared. The silica microspheres coupled with the antibody of CPAC3 was prepared to capture the toxin that existed in the detection sample and the fluorescent-labeled antibody of CPAN was incubated. Moreover, the fluorescent pictures of gray value were performed in a cell phone app, corresponding to toxin concentration. The new assay takes 90 min to perform and can detect CPA as little as 32.8 ng/mL. Our results showed a sensitive, stable, and convenient CPA detection system, which provides a novel detection method of native CPA in foods.
Collapse
|
5
|
Zhang J, Liu S, Xia L, Wen Z, Hu N, Wang T, Deng X, He J, Wang J. Verbascoside Protects Mice From Clostridial Gas Gangrene by Inhibiting the Activity of Alpha Toxin and Perfringolysin O. Front Microbiol 2020; 11:1504. [PMID: 32760362 PMCID: PMC7371946 DOI: 10.3389/fmicb.2020.01504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/10/2020] [Indexed: 01/24/2023] Open
Abstract
Gas gangrene, caused mainly by the anaerobic bacterium Clostridium perfringens (C. perfringens), causes death within 48 h of onset. Limited therapeutic strategies are available, and it is associated with extremely high mortality. Both C. perfringens alpha toxin (CPA) and perfringolysin O (PFO) are important virulence factors in the development of gas gangrene, suggesting that they are therapeutic targets. Here, we found that verbascoside, a phenylpropanoid glycoside widely distributed in Chinese herbal medicines, could effectively inhibit the biological activity of both CPA and PFO in hemolytic assays. The oligomerization of PFO was remarkably inhibited by verbascoside. Although no antibacterial activity was observed, verbascoside treatment protected Caco-2 cells from the damage caused by CPA and PFO. Additionally, infected mice treated with verbascoside showed significantly alleviated damage, reduced bacterial burden, and decreased mortality. In summary, verbascoside has an effective therapeutic effect against C. perfringens virulence both in vitro and in vivo by simultaneously targeting CPA and PFO. Our results provide a promising strategy and a potential lead compound for C. perfringens infections, especially gas gangrene.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shui Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Zhongmei Wen
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Naiyu Hu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Tingting Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiakang He
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jianfeng Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
Nagahama M, Takehara M, Rood JI. Histotoxic Clostridial Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0024-2018. [PMID: 31350831 PMCID: PMC10957196 DOI: 10.1128/microbiolspec.gpp3-0024-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of clostridial myonecrosis or gas gangrene involves an interruption to the blood supply to the infected tissues, often via a traumatic wound, anaerobic growth of the infecting clostridial cells, the production of extracellular toxins, and toxin-mediated cell and tissue damage. This review focuses on host-pathogen interactions in Clostridium perfringens-mediated and Clostridium septicum-mediated myonecrosis. The major toxins involved are C. perfringens α-toxin, which has phospholipase C and sphingomyelinase activity, and C. septicum α-toxin, a β-pore-forming toxin that belongs to the aerolysin family. Although these toxins are cytotoxic, their effects on host cells are quite complex, with a range of intracellular cell signaling pathways induced by their action on host cell membranes.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Ferreira MRA, Moreira GMSG, Cunha CEPD, Mendonça M, Salvarani FM, Moreira ÂN, Conceição FR. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins (Basel) 2016; 8:E340. [PMID: 27879630 PMCID: PMC5127136 DOI: 10.3390/toxins8110340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/21/2023] Open
Abstract
Clostridium perfringens is a spore-forming, commensal, ubiquitous bacterium that is present in the gastrointestinal tract of healthy humans and animals. This bacterium produces up to 18 toxins. The species is classified into five toxinotypes (A-E) according to the toxins that the bacterium produces: alpha, beta, epsilon, or iota. Each of these toxinotypes is associated with myriad different, frequently fatal, illnesses that affect a range of farm animals and humans. Alpha, beta, and epsilon toxins are the main causes of disease. Vaccinations that generate neutralizing antibodies are the most common prophylactic measures that are currently in use. These vaccines consist of toxoids that are obtained from C. perfringens cultures. Recombinant vaccines offer several advantages over conventional toxoids, especially in terms of the production process. As such, they are steadily gaining ground as a promising vaccination solution. This review discusses the main strategies that are currently used to produce recombinant vaccines containing alpha, beta, and epsilon toxins of C. perfringens, as well as the potential application of these molecules as vaccines for mammalian livestock animals.
Collapse
Affiliation(s)
- Marcos Roberto A Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Gustavo Marçal S G Moreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Carlos Eduardo P da Cunha
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Garanhuns CEP 55292-270, Pernambuco, Brazil.
| | - Felipe M Salvarani
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal CEP 68740-970, Pará, Brazil.
| | - Ângela N Moreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas CEP 96010-610, Rio Grande do Sul, Brazil.
| | - Fabricio R Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| |
Collapse
|
8
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
9
|
Membrane-Binding Mechanism of Clostridium perfringens Alpha-Toxin. Toxins (Basel) 2015; 7:5268-75. [PMID: 26633512 PMCID: PMC4690130 DOI: 10.3390/toxins7124880] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens alpha-toxin is a key mediator of gas gangrene, which is a life-threatening infection that manifests as fever, pain, edema, myonecrosis, and gas production. Alpha-toxin possesses phospholipase C and sphingomyelinase activities. The toxin is composed of an N-terminal domain (1-250 aa, N-domain), which is the catalytic site, and a C-terminal domain (251-370 aa, C-domain), which is the membrane-binding site. Immunization of mice with the C-domain of alpha-toxin prevents the gas gangrene caused by C. perfringens, whereas immunization with the N-domain has no effect. The central loop domain (55-93 aa), especially H….SW(84)Y(85)….G, plays an important role in the interaction with ganglioside GM1a. The toxin binds to lipid rafts in the presence of a GM1a/TrkA complex, and metabolites from phosphatidylcholine to diacylglycerol through the enzymatic activity of alpha-toxin itself. These membrane dynamics leads to the activation of endogenous PLCγ-1 via TrkA. In addition, treatment with alpha-toxin leads to the formation of diacylglycerol at membrane rafts in ganglioside-deficient DonQ cells; this in turn triggers endocytosis and cell death. This article summarizes the current the membrane-binding mechanism of alpha-toxin in detail.
Collapse
|
10
|
Identification of Sphingomyelinase on the Surface of Chlamydia pneumoniae: Possible Role in the Entry into Its Host Cells. Interdiscip Perspect Infect Dis 2014; 2014:412827. [PMID: 24757444 PMCID: PMC3976853 DOI: 10.1155/2014/412827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/19/2014] [Indexed: 11/18/2022] Open
Abstract
We have recently suggested a novel mechanism, autoendocytosis, for the entry of certain microbes into their hosts, with a key role played by the sphingomyelinase-catalyzed topical conversion of sphingomyelin to ceramide, the differences in the biophysical properties of these two lipids providing the driving force. The only requirement for such microbes to utilize this mechanism is that they should have a catalytically active SMase on their outer surface while the target cells should expose sphingomyelin in the external leaflet of their plasma membrane. In pursuit of possible microbial candidates, which could utilize this putative mechanism, we conducted a sequence similarity search for SMase. Because of the intriguing cellular and biochemical characteristics of the poorly understood entry of Chlamydia into its host cells these microbes were of particular interest. SMase activity was measured in vitro from isolated C. pneumoniae elementary bodies (EB) and in the lysate from E. coli cells transfected with a plasmid expressing CPn0300 protein having sequence similarity to SMase. Finally, pretreatment of host cells with exogenous SMase resulting in loss plasma membrane sphingomyelin attenuated attachment of EB.
Collapse
|
11
|
Monturiol-Gross L, Flores-Díaz M, Pineda-Padilla MJ, Castro-Castro AC, Alape-Giron A. Clostridium perfringens phospholipase C induced ROS production and cytotoxicity require PKC, MEK1 and NFκB activation. PLoS One 2014; 9:e86475. [PMID: 24466113 PMCID: PMC3900566 DOI: 10.1371/journal.pone.0086475] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/11/2013] [Indexed: 02/07/2023] Open
Abstract
Clostridium perfringens phospholipase C (CpPLC), also called α-toxin, is the most toxic extracellular enzyme produced by this bacteria and is essential for virulence in gas gangrene. At lytic concentrations, CpPLC causes membrane disruption, whereas at sublytic concentrations this toxin causes oxidative stress and activates the MEK/ERK pathway, which contributes to its cytotoxic and myotoxic effects. In the present work, the role of PKC, ERK 1/2 and NFκB signalling pathways in ROS generation induced by CpPLC and their contribution to CpPLC-induced cytotoxicity was evaluated. The results demonstrate that CpPLC induces ROS production through PKC, MEK/ERK and NFκB pathways, the latter being activated by the MEK/ERK signalling cascade. Inhibition of either of these signalling pathways prevents CpPLC's cytotoxic effect. In addition, it was demonstrated that NFκB inhibition leads to a significant reduction in the myotoxicity induced by intramuscular injection of CpPLC in mice. Understanding the role of these signalling pathways could lead towards developing rational therapeutic strategies aimed to reduce cell death during a clostridialmyonecrosis.
Collapse
Affiliation(s)
- Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Maria Jose Pineda-Padilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - Alberto Alape-Giron
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
- Centro de investigación en estructuras microscópicas, Universidad de Costa Rica, San José, Costa Rica
- * E-mail:
| |
Collapse
|
12
|
Monturiol-Gross L, Flores-Díaz M, Campos-Rodríguez D, Mora R, Rodríguez-Vega M, Marks DL, Alape-Girón A. Internalization of Clostridium perfringens α-toxin leads to ERK activation and is involved on its cytotoxic effect. Cell Microbiol 2013; 16:535-47. [PMID: 24245664 DOI: 10.1111/cmi.12237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 10/25/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
Clostridium perfringens phospholipase C (CpPLC), also called α-toxin, plays a key role in the pathogenesis of gas gangrene. CpPLC may lead to cell lysis at concentrations that cause extensive degradation of plasma membrane phospholipids. However, at sublytic concentrations it induces cytotoxicity without inducing evident membrane damage. The results of this work demonstrate that CpPLC becomes internalized in cells by a dynamin-dependent mechanism and in a time progressive process: first, CpPLC colocalizes with caveolin both at the plasma membrane and in vesicles, and later it colocalizes with early and late endosomes and lysosomes. Lysosomal damage in the target cells is evident 9 h after CpPLC exposure. Our previous work demonstrated that CpPLCinduces ERK1/2 activation, which is involved in its cytotoxic effect. In this work we found that cholesterol sequestration, dynamin inhibition, as well as inhibition of actin polymerization, prevent CpPLC internalization and ERK1/2 activation, involving endocytosis in the signalling events required for CpPLC cytotoxic effect at sublytic concentrations. These results provide new insights about the mode of action of this bacterial phospholipase C, previously considered to act only locally on cell membrane.
Collapse
Affiliation(s)
- Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Escuela de Medicina Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | | | | | |
Collapse
|
13
|
Uppalapati SR, Kingston JJ, Qureshi IA, Murali HS, Batra HV. In silico, in vitro and in vivo analysis of binding affinity between N and C-domains of Clostridium perfringens alpha toxin. PLoS One 2013; 8:e82024. [PMID: 24349173 PMCID: PMC3859591 DOI: 10.1371/journal.pone.0082024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/28/2013] [Indexed: 02/03/2023] Open
Abstract
Clostridium perfringens alpha toxin/phospholipase C (CP-PLC) is one of the most potent bacterial toxins known to cause soft tissue infections like gas gangrene in humans and animals. It is the first bacterial toxin demonstrated to be an enzyme with phospholipase, sphingomyelinase and lecithinase activities. The toxin is comprised of an enzymatic N-domain and a binding C-domain interconnected by a flexible linker. The N-domain alone is non-toxic to mammalian cells, but incubation with C-domain restores the toxicity, the mechanism of which is still not elucidated. The objectives of the current study were to investigate the formation of a stable N and C-domain complex, to determine possible interactions between the two domains in silico and to characterize the in vitro and in vivo correlates of the interaction. To establish the existence of a stable N and C-domain hybrid, in vitro pull down assay and dot-Far Western blotting assays were employed, where it was clearly revealed that the two domains bound to each other to form an intermediate. Using bioinformatics tools like MetaPPISP, PatchDock and FireDock, we predicted that the two domains may interact with each other through electrostatic interactions between at least six pairs of amino acids. This N and C-domains interacted with each other in 1:1 ratio and the hybrid lysed mouse erythrocytes in a slower kinetics when compared with wild type native Cp-PLC. BALB/c mice when challenged with N and C-domain hybrid demonstrated severe myonecrosis at the site of injection while no death was observed. Our results provide further insight into better understanding the mechanism for the toxicity of Cp-PLC N and C-domain mixture.
Collapse
Affiliation(s)
| | | | - Insaf Ahmed Qureshi
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Harsh Vardhan Batra
- Microbiology Division, Defence Food Research Laboratory, Mysore, Karnataka, India
| |
Collapse
|
14
|
Monturiol-Gross L, Flores-Díaz M, Araya-Castillo C, Pineda-Padilla MJ, Clark GC, Titball RW, Alape-Girón A. Reactive oxygen species and the MEK/ERK pathway are involved in the toxicity of clostridium perfringens α-toxin, a prototype bacterial phospholipase C. J Infect Dis 2012; 206:1218-26. [PMID: 22904339 DOI: 10.1093/infdis/jis496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens, the most broadly distributed pathogen in nature, produces a prototype phospholipase C, also called α-toxin, which plays a key role in the pathogenesis of gas gangrene. α-Toxin causes plasma membrane disruption at high concentrations, but the role of intracellular mediators in its toxicity at low concentrations is unknown. This work demonstrates that α-toxin causes oxidative stress and activates the MEK/ERK pathway in cultured cells and furthermore provides compelling evidence that O(2)(-.), hydrogen peroxide, and the OH(.) radical are involved in its cytotoxic and myotoxic effects. The data show that antioxidants and MEK1 inhibitors reduce the cytotoxic and myotoxic effects of α-toxin and demonstrate that edaravone, a clinically used hydroxyl radical trap, reduces the myonecrosis and the mortality caused by an experimental infection with C. perfringens in a murine model of gas gangrene. This knowledge provides new insights for the development of novel therapies to reduce tissue damage during clostridial myonecrosis.
Collapse
Affiliation(s)
- Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 2060 San José, Costa Rica
| | | | | | | | | | | | | |
Collapse
|
15
|
Oda M, Kabura M, Takagishi T, Suzue A, Tominaga K, Urano S, Nagahama M, Kobayashi K, Furukawa K, Furukawa K, Sakurai J. Clostridium perfringens alpha-toxin recognizes the GM1a-TrkA complex. J Biol Chem 2012; 287:33070-9. [PMID: 22847002 DOI: 10.1074/jbc.m112.393801] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Clostridium perfringens alpha-toxin is the major virulence factor in the pathogenesis of gas gangrene. Alpha-toxin is a 43-kDa protein with two structural domains; the N-domain contains the catalytic site and coordinates the divalent metal ions, and the C-domain is a membrane-binding site. The role of the exposed loop region (72-93 residues) in the N-domain, however, has been unclear. Here we show that this loop contains a ganglioside binding motif (H … SXWY … G) that is the same motif seen in botulinum neurotoxin and directly binds to a specific conformation of the ganglioside Neu5Acα2-3(Galβ1-3GalNAcβ1-4)Galβ1-4Glcβ1Cer (GM1a) through a carbohydrate moiety. Confocal microscopy analysis using fluorescently labeled BODIPY-GM1a revealed that the toxin colocalized with GM1a and induced clustering of GM1a on the cell membranes. Alpha-toxin was only slightly toxic in β1,4-N-acetylgalactosaminyltransferase knock-out mice, which lack the a-series gangliosides that contain GM1a, but was highly toxic in α2,8-sialyltransferase knock-out mice, which lack both b-series and c-series gangliosides, similar to the control mice. Moreover, experiments with site-directed mutants indicated that Trp-84 and Tyr-85 in the exposed alpha-toxin loop play an important role in the interaction with GM1a and subsequent activation of TrkA. These results suggest that binding of alpha-toxin to GM1a facilitates the activation of the TrkA receptor and induces a signal transduction cascade that promotes the release of chemokines. Therefore, we conclude that GM1a is the primary cellular receptor for alpha-toxin, which can be a potential target for drug developed against this pathogen.
Collapse
Affiliation(s)
- Masataka Oda
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Urbina P, Collado MI, Alonso A, Goñi FM, Flores-Díaz M, Alape-Girón A, Ruysschaert JM, Lensink MF. Unexpected wide substrate specificity of C. perfringens α-toxin phospholipase C. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2618-27. [DOI: 10.1016/j.bbamem.2011.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/09/2011] [Accepted: 06/13/2011] [Indexed: 02/05/2023]
|
17
|
Vachieri SG, Clark GC, Alape-Girón A, Flores-Díaz M, Justin N, Naylor CE, Titball RW, Basak AK. Comparison of a nontoxic variant ofClostridium perfringensα-toxin with the toxic wild-type strain. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1067-74. [DOI: 10.1107/s090744491003369x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 08/20/2010] [Indexed: 11/10/2022]
|
18
|
Urbina P, Flores-Díaz M, Alape-Girón A, Alonso A, Goñi FM. Effects of bilayer composition and physical properties on the phospholipase C and sphingomyelinase activities of Clostridium perfringens α-toxin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:279-86. [PMID: 20727345 DOI: 10.1016/j.bbamem.2010.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/30/2010] [Accepted: 08/11/2010] [Indexed: 01/15/2023]
Abstract
α-Toxin, a major determinant of Clostridium perfringens toxicity, exhibits both phospholipase C and sphingomyelinase activities. Our studies with large unilamellar vesicles containing a variety of lipid mixtures reveal that both lipase activities are enhanced by cholesterol and by lipids with an intrinsic negative curvature, e.g. phosphatidylethanolamine. Conversely lysophospholipids, that possess a positive intrinsic curvature, inhibit the α-toxin lipase activities. Phospholipids with a net negative charge do not exert any major effect on the lipase activities, and the same lack of effect is seen with the lysosomal lipid bis (monoacylglycero) phosphate. Ganglioside GT1b has a clear inhibitory effect, while the monosialic ganglioside GM3 is virtually ineffectual even when incorporated at 6mol % in the vesicles. The length of the lag periods appears to be inversely related to the maximum (post-lag) enzyme activities. Moreover, and particularly in the presence of cholesterol, lag times increase with pH. Both lipase activities are sensitive to vesicle size, but in opposite ways: while phospholipase C is higher with larger vesicles, sphingomyelinase activity is lower. The combination of our results with previous structural studies suggests that α-toxin lipase activities have distinct, but partially overlapping and interacting active sites.
Collapse
Affiliation(s)
- Patricia Urbina
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
19
|
A live oral recombinant Salmonella enterica serovar typhimurium vaccine expressing Clostridium perfringens antigens confers protection against necrotic enteritis in broiler chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 17:205-14. [PMID: 20007363 DOI: 10.1128/cvi.00406-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Necrotic enteritis (NE) in broiler chickens is caused by Clostridium perfringens, and there is currently no effective vaccine for NE. We previously showed that in broiler chickens protection against NE can be achieved through intramuscular immunization with alpha toxin (AT) and hypothetical protein (HP), and we subsequently identified B-cell epitopes in HP. In the present study, we identified B-cell epitopes in AT recognized by chickens immune to NE. The gene fragments encoding immunodominant epitopes of AT as well as those of HP were codon optimized for Salmonella and cloned into pYA3493, and the resultant plasmid constructs were introduced into an attenuated Salmonella enterica serovar Typhimurium chi9352 vaccine vehicle. The expression of these Clostridium perfringens proteins, alpha toxoid (ATd) and truncated HP (HPt), was confirmed by immunoblotting. The protection of broiler chickens against experimentally induced NE was assessed at both the moderate and the severe levels of challenge. Birds immunized orally with Salmonella expressing ATd were significantly protected against moderate NE, and there was a nonsignificant trend for protection against severe challenge, whereas HPt-immunized birds were significantly protected against both severities of challenge. Immunized birds developed serum IgY and mucosal IgA and IgY antibody responses against Clostridium and Salmonella antigens. In conclusion, this study identified, for the first time, the B-cell epitopes in AT from an NE isolate recognized by chickens and showed the partial protective ability of codon-optimized ATd and HPt against NE in broiler chickens when they were delivered orally by using a Salmonella vaccine vehicle.
Collapse
|
20
|
Shaikh FA, Randriantsoa M, Withers SG. Mechanistic Analysis of the Blood Group Antigen-Cleaving endo-β-Galactosidase from Clostridium perfringens. Biochemistry 2009; 48:8396-404. [DOI: 10.1021/bi900991h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fathima Aidha Shaikh
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Mialy Randriantsoa
- Centre de Recherches sur les Macromolécules Végétales (CERMAV - CNRS), affiliated with Joseph Fourier University, BP 53, 38041 Grenoble Cedex 9, France
| | - Stephen G. Withers
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver V6T 1Z1, Canada
| |
Collapse
|
21
|
The NanI and NanJ sialidases of Clostridium perfringens are not essential for virulence. Infect Immun 2009; 77:4421-8. [PMID: 19651873 DOI: 10.1128/iai.00548-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The essential toxin in Clostridium perfringens-mediated gas gangrene or clostridial myonecrosis is alpha-toxin, although other toxins and extracellular enzymes may also be involved. In many bacterial pathogens extracellular sialidases are important virulence factors, and it has been suggested that sialidases may play a role in gas gangrene. C. perfringens strains have combinations of three different sialidase genes, two of which, nanI and nanJ, encode secreted sialidases. The nanI and nanJ genes were insertionally inactivated by homologous recombination in derivatives of sequenced strain 13 and were shown to encode two functional secreted sialidases, NanI and NanJ. Analysis of these derivatives showed that NanI was the major sialidase in this organism. Mutation of nanI resulted in loss of most of the secreted sialidase activity, and the residual activity was eliminated by subsequent mutation of the nanJ gene. Only a slight reduction in the total sialidase activity was observed in a nanJ mutant. Cytotoxicity assays using the B16 melanoma cell line showed that supernatants containing NanI or overexpressing NanJ enhanced alpha-toxin-mediated cytotoxicity. Finally, the ability of nanI, nanJ, and nanIJ mutants to cause disease was assessed in a mouse myonecrosis model. No attenuation of virulence was observed for any of these strains, providing evidence that neither the NanI sialidase nor the NanJ sialidase is essential for virulence.
Collapse
|
22
|
Vasil ML, Stonehouse MJ, Vasil AI, Wadsworth SJ, Goldfine H, Bolcome RE, Chan J. A complex extracellular sphingomyelinase of Pseudomonas aeruginosa inhibits angiogenesis by selective cytotoxicity to endothelial cells. PLoS Pathog 2009; 5:e1000420. [PMID: 19424430 PMCID: PMC2673038 DOI: 10.1371/journal.ppat.1000420] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 04/08/2009] [Indexed: 11/19/2022] Open
Abstract
The hemolytic phospholipase C (PlcHR) expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC) produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase). Data presented herein indicate that picomolar (pM) concentrations of PlcHR are selectively lethal to endothelial cells (EC). An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS), but not control peptides (i.e., GDGRS), block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD) are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation), which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature). Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to approximately 50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization). An active site mutant of PlcHR (Thr178Ala) exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where angiogenesis contributes pathological conditions (e.g., vascularization of tumors, diabetic retinopathy).
Collapse
Affiliation(s)
- Michael L Vasil
- Department of Microbiology, University of Colorado Denver, Anschutz Medical Center, Aurora, Colorado, United States of America.
| | | | | | | | | | | | | |
Collapse
|
23
|
Phospholipase C and sphingomyelinase activities of the Clostridium perfringens α-toxin. Chem Phys Lipids 2009; 159:51-7. [DOI: 10.1016/j.chemphyslip.2009.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/22/2009] [Accepted: 02/03/2009] [Indexed: 11/21/2022]
|
24
|
Abildgaard L, Engberg RM, Pedersen K, Schramm A, Hojberg O. Sequence variation in the alpha-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens. Vet Microbiol 2008; 136:293-9. [PMID: 19070974 DOI: 10.1016/j.vetmic.2008.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
The aim of the present study was to analyse the genetic diversity of the alpha-toxin encoding plc gene and the variation in alpha-toxin production of Clostridium perfringens type A strains isolated from presumably healthy chickens and chickens suffering from either necrotic enteritis (NE) or cholangio-hepatitis. The alpha-toxin encoding plc genes from 60 different pulsed-field gel electrophoresis (PFGE) types (strains) of C. perfringens were sequenced and translated in silico to amino acid sequences and the alpha-toxin production was investigated in batch cultures of 45 of the strains using an enzyme-linked immunosorbent assay (ELISA) approach. Overall, the truncated amino acid sequences showed close similarity (>98% at the amino acid level) to previously reported sequences from chicken-derived C. perfringens isolates. Variations were however observed in 23 out of 379 aa positions leading to the definition of 26 different alpha-toxin sequence types among the 60 strains. Moreover, a type II intron of 834 non-coding nucleotides was identified in the plc gene of three of the investigated strains. The in vitro alpha-toxin production investigated in 45 of the strains, including the three harbouring the intron, revealed no correlation between PFGE type, alpha-toxin sequence type, health status of the host chickens and level of alpha-toxin production. It is therefore concluded that neither plc gene type nor alpha-toxin production level seems to correlate to origin (healthy or diseased chicken) of the C. perfringens strains.
Collapse
Affiliation(s)
- Lone Abildgaard
- Institute of Animal Health, Welfare and Nutrition, Faculty of Agricultural Sciences, University of Aarhus, DK-8830 Tjele, Denmark
| | | | | | | | | |
Collapse
|
25
|
Kulkarni R, Parreira V, Sharif S, Prescott J. Oral immunization of broiler chickens against necrotic enteritis with an attenuated Salmonella vaccine vector expressing Clostridium perfringens antigens. Vaccine 2008; 26:4194-203. [DOI: 10.1016/j.vaccine.2008.05.079] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 11/24/2022]
|
26
|
Molecular and cellular basis of microvascular perfusion deficits induced by Clostridium perfringens and Clostridium septicum. PLoS Pathog 2008; 4:e1000045. [PMID: 18404211 PMCID: PMC2275794 DOI: 10.1371/journal.ppat.1000045] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/14/2008] [Indexed: 01/05/2023] Open
Abstract
Reduced tissue perfusion leading to tissue ischemia is a central component of the pathogenesis of myonecrosis caused by Clostridium perfringens. The C. perfringens α-toxin has been shown capable of inducing these changes, but its potential synergy with perfringolysin O (θ-toxin) is less well understood. Similarly, Clostridium septicum is a highly virulent causative agent of spontaneous gas gangrene, but its effect on the microcirculation has not been examined. Therefore, the aim of this study was to use intravital microscopy to examine the effects of C. perfringens and C. septicum on the functional microcirculation, coupled with the use of isogenic toxin mutants to elucidate the role of particular toxins in the resultant microvascular perfusion deficits. This study represents the first time this integrated approach has been used in the analysis of the pathological response to clostridial toxins. Culture supernatants from wild-type C. perfringens induced extensive cell death within 30 min, as assessed by in vivo uptake of propidium iodide. Furthermore, significant reductions in capillary perfusion were observed within 60 min. Depletion of either platelets or neutrophils reduced the alteration in perfusion, consistent with a role for these blood-borne cells in obstructing perfusion. In addition, mutation of either the α-toxin or perfringolysin O structural genes attenuated the reduction in perfusion, a process that was reversed by genetic complementation. C. septicum also induced a marked reduction in perfusion, with the degree of microvascular compromise correlating with the level of the C. septicum α-toxin. Together, these data indicate that as a result of its ability to produce α-toxin and perfringolysin O, C. perfringens rapidly induces irreversible cellular injury and a marked reduction in microvascular perfusion. Since C. septicum induces a similar reduction in microvascular perfusion, it is postulated that this function is central to the pathogenesis of clostridial myonecrosis, irrespective of the causative bacterium. Clostridial myonecrosis is a life-threatening process induced by infection with species such as C. perfringens and C. septicum. The associated pathology includes muscle death and a characteristic disruption in tissue perfusion. Exotoxins produced by these species have been implicated in the reduction in perfusion. However, how these toxins function in tandem remains unclear. In this study we used intravital microscopy to study microvascular blood flow in a muscle exposed to products of C. perfringens and C. septicum. C. perfringens supernatants induced cellular injury and a progressive reduction in blood flow. Removal of blood-borne platelets and neutrophils from the circulation reduced the alteration in blood flow. In addition, this response was reduced by genetic deletion of either the α-toxin or perfringolysin O, providing the first indication that each of these exotoxins contributes to the reduction in blood supply to affected tissues. Using a similar approach, we observed that C. septicum supernatant induced a comparable reduction in perfusion, which was mediated in part via the C. septicum α-toxin. These results indicate that platelets, neutrophils and multiple clostridial toxins contribute to reduced blood supply and oxygen delivery associated with clostridial infection and suggest that the dominant component of the pathology is toxin-induced cellular injury and death.
Collapse
|
27
|
Kulkarni RR, Parreira VR, Sharif S, Prescott JF. Immunization of broiler chickens against Clostridium perfringens-induced necrotic enteritis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1070-7. [PMID: 17634510 PMCID: PMC2043299 DOI: 10.1128/cvi.00162-07] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Necrotic enteritis (NE) in broiler chickens is caused by Clostridium perfringens. Currently, no vaccine against NE is available and immunity to NE is not well characterized. Our previous studies showed that immunity to NE followed oral infection by virulent rather than avirulent C. perfringens strains and identified immunogenic secreted proteins apparently uniquely produced by virulent C. perfringens isolates. These proteins were alpha-toxin, glyceraldehyde-3-phosphate dehydrogenase, pyruvate:ferredoxin oxidoreductase (PFOR), fructose 1,6-biphosphate aldolase, and a hypothetical protein (HP). The current study investigated the role of each of these proteins in conferring protection to broiler chickens against oral infection challenges of different severities with virulent C. perfringens. The genes encoding these proteins were cloned and purified as histidine-tagged recombinant proteins from Escherichia coli and were used to immunize broiler chickens intramuscularly. Serum and intestinal antibody responses were assessed by enzyme-linked immunosorbent assay. All proteins significantly protected broiler chickens against a relatively mild challenge. In addition, immunization with alpha-toxin, HP, and PFOR also offered significant protection against a more severe challenge. When the birds were primed with alpha-toxoid and boosted with active toxin, birds immunized with alpha-toxin were provided with the greatest protection against a severe challenge. The serum and intestinal washings from protected birds had high antigen-specific antibody titers. Thus, we conclude that there are certain secreted proteins, in addition to alpha-toxin, that are involved in immunity to NE in broiler chickens.
Collapse
Affiliation(s)
- R R Kulkarni
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
28
|
Rooney AP, Swezey JL, Friedman R, Hecht DW, Maddox CW. Analysis of core housekeeping and virulence genes reveals cryptic lineages of Clostridium perfringens that are associated with distinct disease presentations. Genetics 2006; 172:2081-92. [PMID: 16489222 PMCID: PMC1456398 DOI: 10.1534/genetics.105.054601] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium perfringens is an important human and animal pathogen that causes a number of diseases that vary in their etiology and severity. Differences between strains regarding toxin gene composition and toxin production partly explain why some strains cause radically different diseases than others. However, they do not provide a complete explanation. The purpose of this study was to determine if there is a phylogenetic component that explains the variance in C. perfringens strain virulence by assessing patterns of genetic polymorphism in genes (colA gyrA, plc, pfoS, and rplL) that form part of the core genome in 248 type A strains. We found that purifying selection plays a central role in shaping the patterns of nucleotide substitution and polymorphism in both housekeeping and virulence genes. In contrast, recombination was found to be a significant factor only for the virulence genes plc and colA and the housekeeping gene gyrA. Finally, we found that the strains grouped into five distinct evolutionary lineages that show evidence of host adaptation and the early stages of speciation. The discovery of these previously unknown lineages and their association with distinct disease presentations carries important implications for human and veterinary clostridial disease epidemiology and provides important insights into the pathways through which virulence has evolved in C. perfringens.
Collapse
Affiliation(s)
- Alejandro P Rooney
- Microbial Genomics Research Unit, National Center for Agricultural Utilization Research, U.S. Department of Agriculture--Agricultural Research Service, Peoria, Illinois 61604, USA.
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Richard W Titball
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| |
Collapse
|
30
|
Flores-Díaz M, Alape-Girón A, Clark G, Catimel B, Hirabayashi Y, Nice E, Gutiérrez JM, Titball R, Thelestam M. A cellular deficiency of gangliosides causes hypersensitivity to Clostridium perfringens phospholipase C. J Biol Chem 2005; 280:26680-9. [PMID: 15919667 DOI: 10.1074/jbc.m500278200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens phospholipase C (Cp-PLC), also called alpha-toxin, is the major virulence factor in the pathogenesis of gas gangrene. Previously, a cellular UDP-Glc deficiency was related with a hypersensitivity to the cytotoxic effect of Cp-PLC. Because UDP-Glc is required in the synthesis of proteoglycans, N-linked glycoproteins, and glycosphingolipids, the role of these gly-coconjugates in the cellular sensitivity to Cp-PLC was studied. The cellular sensitivity to Cp-PLC was significantly enhanced by glycosphingolipid synthesis inhibitors, and a mutant cell line deficient in gangliosides was found to be hypersensitive to Cp-PLC. Gangliosides protected hypersensitive cells from the cytotoxic effect of Cp-PLC and prevented its membrane-disrupting effect on artificial membranes. Removal of sialic acids by C. perfringens sialidase increases the sensitivity of cultured cells to Cp-PLC and intramuscular co-injection of C. perfringens sialidase, and Cp-PLC in mice potentiates the myotoxic effect of the latter. This work demonstrated that a reduction in gangliosides renders cells more susceptible to the membrane damage caused by Cp-PLC and revealed a previously unrecognized synergism between Cp-PLC and C. perfringens sialidase, providing new insights toward understanding the pathogenesis of clostridial myonecrosis.
Collapse
Affiliation(s)
- Marietta Flores-Díaz
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm S-17177, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Flores-Díaz M, Alape-Girón A. Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon 2004; 42:979-86. [PMID: 15019495 DOI: 10.1016/j.toxicon.2003.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gas gangrene is an acute and devastating infection most frequently caused by Clostridium perfringens and characterized by severe myonecrosis, intravascular leukocyte accumulation, and significant thrombosis. Several lines of evidence indicate that C. perfringens phospholipase C (Cp-PLC), also called alpha-toxin, is the major virulence factor in this disease. This toxin is a Zn2+ metalloenzyme with lecithinase and sphingomyelinase activities. Its three dimensional structure shows two domains, an N-terminal domain which contains the active site, and a C-terminal domain required for the Ca2+dependent interaction with membranes. Cp-PLC displays several biological activities: it increases capillary permeability, induces platelet aggregation, hemolysis, myonecrosis, decreases cardiac contractility, and is lethal. Experiments with genetically engineered Cp-PLC variants have revealed that the sphingomyelinase activity and the C-terminal domain are required for toxicity. The myotoxicity of Cp-PLC is largely dependent on its membrane damaging effect. In addition, it has been suggested that the alterations in the blood flow induced by this toxin also contribute to muscle damage. In gas gangrene, Cp-PLC dysregulates transduction pathways in endothelial cells, platelets and neutrophils leading to the uncontrolled production of several intercellular mediators and adhesion molecules. Thus, Cp-PLC alters the traffic of neutrophils to the infected tissue and promotes thrombotic events, enhancing the conditions for anaerobic growth.
Collapse
Affiliation(s)
- Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
32
|
Flores-Díaz M, Thelestam M, Clark GC, Titball RW, Alape-Girón A. Effects of Clostridium perfringens phospholipase C in mammalian cells. Anaerobe 2004; 10:115-23. [PMID: 16701508 DOI: 10.1016/j.anaerobe.2003.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 11/05/2003] [Indexed: 11/23/2022]
Abstract
Clostridium perfringens phospholipase C (Cp-PLC), the major virulence factor in the pathogenesis of gas gangrene, is a Zn(2+) metalloenzyme with lecithinase and sphingomyelinase activities. Its structure shows an N-terminal domain containing the active site, and a C-terminal Ca(2+) binding domain required for membrane interaction. Although the knowledge of the structure of Cp-PLC and its interaction with aggregated phospholipids has advanced significantly, an understanding of the effects of Cp-PLC in mammalian cells is still incomplete. Cp-PLC binds to artificial bilayers containing cholesterol and sphingomyelin or phosphatidylcholine (PC) and degrades them, but glycoconjugates present in biological membranes influence its binding or positioning toward its substrates. Studies with Cp-PLC variants harboring single amino-acid substitutions have revealed that the active site, the Ca(2+) binding region, and the membrane interacting surface are required for cytotoxic and haemolytic activity. Cp-PLC causes plasma membrane disruption at high concentrations, whereas at low concentrations it perturbs phospholipid metabolism, induces DAG generation, PKC activation, Ca(2+) mobilization, and activates arachidonic acid metabolism. The cellular susceptibility to Cp-PLC depends on the composition of the plasma membrane and the capacity to up-regulate PC synthesis. The composition of the plasma membrane determines whether Cp-PLC can bind and acquire its active conformation, and thus the extent of phospholipid degradation. The capacity of PC synthesis and the availability of precursors determine whether the cell can replace the degraded phospholipids. Whether the perturbations of signal transduction processes caused by Cp-PLC play a role in cytotoxicity is not clear. However, these perturbations in endothelial cells, platelets and neutrophils lead to the uncontrolled production of intercellular mediators and adhesion molecules, which inhibits bacterial clearance and induces thrombotic events, thus favouring bacterial growth and spread in the host tissues.
Collapse
Affiliation(s)
- Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | |
Collapse
|
33
|
Reed SM, Bayly WM, Sellon DC. Mechanisms of Infectious Disease. EQUINE INTERNAL MEDICINE 2004. [PMCID: PMC7278211 DOI: 10.1016/b0-72-169777-1/50004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Clark GC, Briggs DC, Karasawa T, Wang X, Cole AR, Maegawa T, Jayasekera PN, Naylor CE, Miller J, Moss DS, Nakamura S, Basak AK, Titball RW. Clostridium absonum alpha-toxin: new insights into clostridial phospholipase C substrate binding and specificity. J Mol Biol 2003; 333:759-69. [PMID: 14568535 DOI: 10.1016/j.jmb.2003.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clostridium absonum phospholipase C (Caa) is a 42.7 kDa protein, which shows 60% amino acid sequence identity with the Clostridium perfringens phospholipase C, or alpha-toxin (Cpa), and has been isolated from patients suffering from gas gangrene. We report the cloning and sequencing, purification, characterisation and crystal structure of the Caa enzyme. Caa had twice the phospholipid-hydrolysing (lecithinase) activity, 1.5 times the haemolytic activity and over seven times the activity towards phosphatidylcholine-based liposomes when compared with Cpa. However, the Caa enzyme had a lower activity than Cpa to the free (i.e. not in lipid bilayer) substrate para-nitrophenylphosphorylcholine, towards sphingomyelin-based liposomes and showed half the cytotoxicity. The lethal dose (LD(50)) of Caa in mice was approximately twice that of Cpa. The crystal structure of Caa shows that the 72-93 residue loop is in a conformation different from those of previously determined open-form alpha-toxin structures. This conformational change suggests a role for W84 in membrane binding and a possible route of entry into the active site along a hydrophobic channel created by the re-arrangement of this loop. Overall, the properties of Caa are compatible with a role as a virulence-determinant in gas gangrene caused by C.absonum.
Collapse
Affiliation(s)
- Graeme C Clark
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Karasawa T, Wang X, Maegawa T, Michiwa Y, Kita H, Miwa K, Nakamura S. Clostridium sordellii phospholipase C: gene cloning and comparison of enzymatic and biological activities with those of Clostridium perfringens and Clostridium bifermentans phospholipase C. Infect Immun 2003; 71:641-6. [PMID: 12540540 PMCID: PMC145374 DOI: 10.1128/iai.71.2.641-646.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding Clostridium sordellii phospholipase C (Csp) was cloned and expressed as a histidine-tagged (His-tag) protein, and the protein was purified to compare its enzymatic and biological activities with those of Clostridium perfringens phospholipase C (Cpa) and Clostridium bifermentans phospholipase C (Cbp). Csp was found to consist of 371 amino acid residues in the mature form and to be more homologous to Cbp than to Cpa. The egg yolk phospholipid hydrolysis activity of the His-tag Csp was about one-third of that of His-tag Cpa, but the hemolytic activity was less than 1% of that of His-tag Cpa. His-tag Csp was nontoxic to mice. Immunization of mice with His-tag Cbp or His-tag Csp did not provide effective protection against the lethal activity of His-tag Cpa. These results indicate that Csp possesses similar molecular properties to Cbp and suggest that comparative analysis of toxic and nontoxic clostridial phospholipases is helpful for characterization of the toxic properties of clostridial phospholipases.
Collapse
Affiliation(s)
- Tadahiro Karasawa
- Department of Bacteriology, Graduate School of Medical Science, Kanazawa University, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Callegan MC, Cochran DC, Kane ST, Gilmore MS, Gominet M, Lereclus D. Contribution of membrane-damaging toxins to Bacillus endophthalmitis pathogenesis. Infect Immun 2002; 70:5381-9. [PMID: 12228262 PMCID: PMC128340 DOI: 10.1128/iai.70.10.5381-5389.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane-damaging toxins are thought to be responsible for the explosive clinical course of Bacillus endophthalmitis. This study analyzed the contribution of phosphatidylinositol-specific phospholipase C (PI-PLC) and phosphatidylcholine-specific phospholipase C (PC-PLC) to the pathogenesis of experimental Bacillus endophthalmitis. Isogenic mutants were constructed by insertion of lacZ into Bacillus thuringiensis genes encoding PI-PLC (plcA) and PC-PLC (plcB). Rabbit eyes were injected intravitreally with 2 log(10) CFU of strain BT407 (wild type), the PI-PLC mutant (BTplcA::lacZ), or the PC-PLC mutant (BTplcB::lacZ). The rates of decrease in retinal responses of eyes infected with the isogenic mutants were similar to that of wild type, with all infections resulting in elimination of retinal function by 18 h. Strain BT407 caused a significant increase in the latency of retinal responses at 6 h, but strains BTplcA::lacZ and BTplcB::lacZ did not. All strains elicited significant inflammatory cell influx into the anterior chamber by 12 h. Histologically, eyes infected with each strain were indistinguishable throughout the infection course. In this model, neither PI-PLC nor PC-PLC had an effect on the course or severity of experimental Bacillus endophthalmitis. Alterations in retinal responses early in infection may mark the beginnings of specific photoreceptor or glial cell dysfunction.
Collapse
Affiliation(s)
- Michelle C Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Justin N, Walker N, Bullifent HL, Songer G, Bueschel DM, Jost H, Naylor C, Miller J, Moss DS, Titball RW, Basak AK. The first strain of Clostridium perfringens isolated from an avian source has an alpha-toxin with divergent structural and kinetic properties. Biochemistry 2002; 41:6253-62. [PMID: 12009886 DOI: 10.1021/bi012015v] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Clostridium perfringens alpha-toxin is a 370-residue, zinc-dependent, phospholipase C that is the key virulence determinant in gas gangrene. It is also implicated in the pathogenesis of sudden death syndrome in young animals and necrotic enteritis in chickens. Previously characterized alpha-toxins from different strains of C. perfringens are almost identical in sequence and biochemical properties. We describe the cloning, nucleotide sequencing, expression, characterization, and crystal structure of alpha-toxin from an avian strain, SWan C. perfringens (SWCP), which has a large degree of sequence variation and altered substrate specificity compared to these strains. The structure of alpha-toxin from strain CER89L43 has been previously reported in open (active site accessible to substrate) and closed (active site obscured by loop movements) conformations. The SWCP structure is in an open-form conformation, with three zinc ions in the active site. This is the first example of an open form of alpha-toxin crystallizing without the addition of divalent cations to the crystallization buffer, indicating that the protein can retain three zinc ions bound in the active site. The topology of the calcium binding site formed by residues 269, 271, 336, and 337, which is essential for membrane binding, is significantly altered in comparison with both the open and closed alpha-toxin structures. We are able to relate these structural changes to the different substrate specificity and membrane binding properties of this divergent alpha-toxin. This will provide essential information when developing an effective vaccine that will protect against C. perfringens infection in a wide range of domestic livestock.
Collapse
Affiliation(s)
- Neil Justin
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
O'Callaghan CA, Cerwenka A, Willcox BE, Lanier LL, Bjorkman PJ. Molecular competition for NKG2D: H60 and RAE1 compete unequally for NKG2D with dominance of H60. Immunity 2001; 15:201-11. [PMID: 11520456 DOI: 10.1016/s1074-7613(01)00187-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
NKG2D is a potent activating receptor on natural killer cells, T cells, and macrophages. Mouse NKG2D interacts with two cell surface ligands related to class I MHC molecules: RAE1 and H60. We used soluble versions of NKG2D, RAE1, and H60 to characterize their interactions. RAE1 and H60 each bind NKG2D with nanomolar affinities, indicating tighter binding than most cell surface immune interactions, but NKG2D binds to H60 with approximately 25-fold higher affinity than to RAE1. RAE1 and H60 compete directly for occupancy of NKG2D, and, thus, NKG2D can be occupied by only one ligand at a time. The NKG2D-H60 interaction is more temperature dependent and makes greater use of electrostatic interactions than the NKG2D-RAE1 interaction. The distinct thermodynamic profiles provide insights into the different molecular mechanisms of the binding interactions.
Collapse
Affiliation(s)
- C A O'Callaghan
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
39
|
Jepson M, Bullifent HL, Crane D, Flores-Diaz M, Alape-Giron A, Jayasekeera P, Lingard B, Moss D, Titball RW. Tyrosine 331 and phenylalanine 334 in Clostridium perfringens alpha-toxin are essential for cytotoxic activity. FEBS Lett 2001; 495:172-7. [PMID: 11334886 DOI: 10.1016/s0014-5793(01)02385-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Differences in the biological properties of the Clostridium perfringens phospholipase C (alpha-toxin) and the C. bifermentans phospholipase C (Cbp) have been attributed to differences in their carboxy-terminal domains. Three residues in the carboxy-terminal domain of alpha-toxin, which have been proposed to play a role in membrane recognition (D269, Y331 and F334), are not conserved in Cbp (Y, L and I respectively). We have characterised D269Y, Y331L and F334I variant forms of alpha-toxin. Variant D269Y had reduced phospholipase C activity towards aggregated egg yolk phospholipid but increased haemolytic and cytotoxic activity. Variants Y331L and F334I showed a reduction in phospholipase C, haemolytic and cytotoxic activities indicating that these substitutions contribute to the reduced haemolytic and cytotoxic activity of Cbp.
Collapse
Affiliation(s)
- M Jepson
- Defense Evaluation Research Agency, CBD Porton Down, Salisbury, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Walker N, Holley J, Naylor CE, Flores-Díaz M, Alape-Girón A, Carter G, Carr FJ, Thelestam M, Keyte M, Moss DS, Basak AK, Miller J, Titball RW. Identification of residues in the carboxy-terminal domain of Clostridium perfringens alpha-toxin (phospholipase C) which are required for its biological activities. Arch Biochem Biophys 2000; 384:24-30. [PMID: 11147832 DOI: 10.1006/abbi.2000.2065] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A panel of random mutants within the DNA encoding the carboxy-terminal domain of Clostridium perfringens alpha-toxin was constructed. Three mutants were identified which encoded alpha-toxin variants (Lys330Glu, Asp305Gly, and Asp293Ser) with reduced hemolytic activity. These variants also had diminished phospholipase C activity toward aggregated egg yolk phospholipid and reduced cytotoxic and myotoxic activities. Asp305Gly showed a significantly increased enzymatic activity toward the monodisperse substrate rhoNPPC, whereas Asp293Ser displayed a reduced activity toward this phospholipid analogue. In addition, Asp293Ser showed an increased dependence on calcium for enzymatic activity toward aggregated phospholipid and appeared calcium-depleted in PAGE band-shift assays. In contrast, neither Lys330Glu nor Asp305Gly showed altered dependence on calcium for enzymatic activity toward aggregated phospholipid. Asp305 is located in the interface between the amino- and carboxy-terminal domains, whereas Asp293 and Lys330 are surface exposed residues which may play a role in the recognition of membrane phospholipids.
Collapse
Affiliation(s)
- N Walker
- Defence Evaluation and Research Agency, Salisbury, Wilts, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|