1
|
Smith MM, Moran GR. Building on a theme: The redox hierarchy of pyridine nucleotide-disulfide oxidoreductases. Arch Biochem Biophys 2024; 755:109966. [PMID: 38537870 DOI: 10.1016/j.abb.2024.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Flavin disulfide reductases (FDRs) are FAD-dependent enzymes that transmit electrons from NAD(P)H to reduce specific oxidant substrate disulfides. These enzymes have been studied extensively, most particularly the paradigm examples: glutathione reductase and thioredoxin reductase. The common, though not universal, traits of the family include a tyrosine- or phenylalanine-gated binding pocket for NAD(P) nicotinamides adjacent to the FAD isoalloxazine re-face, and a disulfide stacked against the si-face of the isoalloxazine whose dithiol form is activated for subsequent exchange reactions by a nearby histidine acting as a base. This arrangement promotes transduction of the reducing equivalents for disulfide exchange relay reactions. From an observational standpoint the proximal parallel stacking of three redox moieties induces up to three opportunities for unique charge transfer interactions (NAD(P)H FAD, NAD(P)+•FADH2, and FAD•thiolate). In transient state, the charge transfer transitions provide discrete signals to assign reaction sequences. This review summarizes the lineage of observations for the FDR enzymes that have been extensively studied. Where applicable and in order to chart a consistent interpretation of the record, only data derived from studies that used anaerobic methods are cited. These data reveal a recurring theme for catalysis that is elaborated with specific additional functionalities for each oxidant substrate.
Collapse
Affiliation(s)
- Madison M Smith
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, United States
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL, 60660, United States.
| |
Collapse
|
2
|
Dagsuyu E, Yanardag R. Purification of thioredoxin reductase from Spirulina platensis by affinity chromatography and investigation of kinetic properties. Protein Expr Purif 2024; 216:106417. [PMID: 38110108 DOI: 10.1016/j.pep.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and nicotinamide adenine dinucleotide phosphate (NADPH). Spirulina platensis, which is one of the blue-green algae in the form of spiral rings, belongs to the cyanobacteria class. Spirulina platensis can produce Trx under stress conditions. If it can produce Trx, it also has TrxR activity. Therefore, in this study, the TrxR enzyme was purified for the first time from Spirulina platensis, an algae the most grown and also used as a nutritional supplement in the world. A two-step purification process was used: preparation of the homogenate and 2',5'-ADP sepharose 4B affinity chromatography. The enzyme was purified with a purification fold of 1059.51, a recovery yield of 9.7 %, and a specific activity of 5.77 U/mg protein. The purified TrxR was tested for purity by SDS-PAGE. The molecular weight of its subunit was found to be about 45 kDa. Optimum pH, temperature and ionic strength of the enzyme were pH 7.0, 40 °C and 750 mM in phosphate buffer respectively. The Michaelis constant (Km) and maximum velocity of enzyme (Vmax) values for NADPH and 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) are 5 μM and 2.2 mM, and 0.0033 U/mL and 0.0044 U/mL, respectively. Storage stability of the purified enzyme was determined at several temperatures. The inhibition effects of Ag+, Cu2+, Al3+ and Se4+ metal ions on the purified TrxR activity were investigated in vitro. While Se4+ ion increased the enzyme activity, other tested metal ions showed different type of inhibitory effects on the Lineweaver-Burk graphs.
Collapse
Affiliation(s)
- Eda Dagsuyu
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320, Avcilar, Istanbul, Turkey.
| | - Refiye Yanardag
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320, Avcilar, Istanbul, Turkey.
| |
Collapse
|
3
|
Barry CJ, Pillay CS, Rohwer JM. Modelling the Decamerisation Cycle of PRDX1 and the Inhibition-like Effect on Its Peroxidase Activity. Antioxidants (Basel) 2023; 12:1707. [PMID: 37760010 PMCID: PMC10525498 DOI: 10.3390/antiox12091707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Peroxiredoxins play central roles in the detoxification of reactive oxygen species and have been modelled across multiple organisms using a variety of kinetic methods. However, the peroxiredoxin dimer-to-decamer transition has been underappreciated in these studies despite the 100-fold difference in activity between these forms. This is due to the lack of available kinetics and a theoretical framework for modelling this process. Using published isothermal titration calorimetry data, we obtained association and dissociation rate constants of 0.050 µM-4·s-1 and 0.055 s-1, respectively, for the dimer-decamer transition of human PRDX1. We developed an approach that greatly reduces the number of reactions and species needed to model the peroxiredoxin decamer oxidation cycle. Using these data, we simulated horse radish peroxidase competition and NADPH-oxidation linked assays and found that the dimer-decamer transition had an inhibition-like effect on peroxidase activity. Further, we incorporated this dimer-decamer topology and kinetics into a published and validated in vivo model of PRDX2 in the erythrocyte and found that it almost perfectly reconciled experimental and simulated responses of PRDX2 oxidation state to hydrogen peroxide insult. By accounting for the dimer-decamer transition of peroxiredoxins, we were able to resolve several discrepancies between experimental data and available kinetic models.
Collapse
Affiliation(s)
- Christopher J. Barry
- Laboratory for Molecular Systems Biology, Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Ché S. Pillay
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa;
| | - Johann M. Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
4
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|
5
|
Rai R, Singh S, Rai KK, Raj A, Sriwastaw S, Rai LC. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:353-372. [PMID: 34700048 DOI: 10.1016/j.plaphy.2021.09.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 05/19/2023]
Abstract
Oxidative stress is common consequence of abiotic stress in plants as well as cyanobacteria caused by generation of reactive oxygen species (ROS), an inevitable product of respiration and photosynthetic electron transport. ROS act as signalling molecule at low concentration however, when its production exceeds the endurance capacity of antioxidative defence system, the organisms suffer oxidative stress. A highly toxic metabolite, methylglyoxal (MG) is also produced in cyanobacteria in response to various abiotic stresses which consequently augment the ensuing oxidative damage. Taking recourse to the common lineage of eukaryotic plants and cyanobacteria, it would be worthwhile to explore the regulatory role of glyoxalase system and antioxidative defense mechanism in combating abiotic stress in cyanobacteria. This review provides comprehensive information on the complete glyoxalase system (GlyI, GlyII and GlyIII) in cyanobacteria. Furthermore, it elucidates the recent understanding regarding the production of ROS and MG, noteworthy link between intracellular MG and ROS and its detoxification via synchronization of antioxidants (enzymatic and non-enzymatic) and glyoxalase systems using glutathione (GSH) as common co-factor.
Collapse
Affiliation(s)
- Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sonam Sriwastaw
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Abstract
Significance: Unique to the branched-chain aminotransferase (BCAT) proteins is their redox-active CXXC motif. Subjected to post-translational modification by reactive oxygen species and reactive nitrogen species, these proteins have the potential to adopt numerous cellular roles, which may be fundamental to their role in oncogenesis and neurodegenerative diseases. An understanding of the interplay of the redox regulation of BCAT with important cell signaling mechanisms will identify new targets for future therapeutics. Recent Advances: The BCAT proteins have been assigned novel thiol oxidoreductase activity that can accelerate the refolding of proteins, in particular when S-glutathionylated, supporting a chaperone role for BCAT in protein folding. Other metabolic proteins were also shown to have peroxide-mediated redox associations with BCAT, indicating that the cellular function of BCAT is more diverse. Critical Issues: While the role of branched-chain amino acid metabolism and its metabolites has dominated aspects of cancer research, less is known about the role of BCAT. The importance of the CXXC motif in regulating the BCAT activity under hypoxic conditions, a characteristic of tumors, has not been addressed. Understanding how these proteins operate under various cellular redox conditions will become important, in particular with respect to their moonlighting roles. Future Directions: Advances in the quantification of thiols, their measurement, and the manipulation of metabolons that rely on redox-based interactions should accelerate the investigation of the cellular role of moonlighting proteins such as BCAT. Given the importance of cross talk between signaling pathways, research should focus more on these "housekeeping" proteins paying attention to their wider application. Antioxid. Redox Signal. 34, 1048-1067.
Collapse
Affiliation(s)
- Myra Elizabeth Conway
- Department of Applied Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
7
|
Ren X, Zou L, Holmgren A. Targeting Bacterial Antioxidant Systems for Antibiotics Development. Curr Med Chem 2020; 27:1922-1939. [PMID: 31589114 DOI: 10.2174/0929867326666191007163654] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/18/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022]
Abstract
The emergence of multidrug-resistant bacteria has become an urgent issue in modern medicine which requires novel strategies to develop antibiotics. Recent studies have supported the hypothesis that antibiotic-induced bacterial cell death is mediated by Reactive Oxygen Species (ROS). The hypothesis also highlighted the importance of antioxidant systems, the defense mechanism which contributes to antibiotic resistance. Thioredoxin and glutathione systems are the two major thiol-dependent systems which not only provide antioxidant capacity but also participate in various biological events in bacteria, such as DNA synthesis and protein folding. The biological importance makes them promising targets for novel antibiotics development. Based on the idea, ebselen and auranofin, two bacterial thioredoxin reductase inhibitors, have been found to inhibit the growth of bacteria lacking the GSH efficiently. A recent study combining ebselen and silver exhibited a strong synergistic effect against Multidrug-Resistant (MDR) Gram-negative bacteria which possess both thioredoxin and glutathione systems. These drug-repurposing studies are promising for quick clinical usage due to their well-known profile.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lili Zou
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.,Translational Neuroscience & Neural Regeneration and Repair Institute/ Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University, 443000 Yichang, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
8
|
Di Meo S, Venditti P. Evolution of the Knowledge of Free Radicals and Other Oxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9829176. [PMID: 32411336 PMCID: PMC7201853 DOI: 10.1155/2020/9829176] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Free radicals are chemical species (atoms, molecules, or ions) containing one or more unpaired electrons in their external orbitals and generally display a remarkable reactivity. The evidence of their existence was obtained only at the beginning of the 20th century. Chemists gradually ascertained the involvement of free radicals in organic reactions and, in the middle of the 20th century, their production in biological systems. For several decades, free radicals were thought to cause exclusively damaging effects . This idea was mainly supported by the finding that oxygen free radicals readily react with all biological macromolecules inducing their oxidative modification and loss of function. Moreover, evidence was obtained that when, in the living organism, free radicals are not neutralized by systems of biochemical defences, many pathological conditions develop. However, after some time, it became clear that the living systems not only had adapted to the coexistence with free radicals but also developed methods to turn these toxic substances to their advantage by using them in critical physiological processes. Therefore, free radicals play a dual role in living systems: they are toxic by-products of aerobic metabolism, causing oxidative damage and tissue dysfunction, and serve as molecular signals activating beneficial stress responses. This discovery also changed the way we consider antioxidants. Their use is usually regarded as helpful to counteract the damaging effects of free radicals but sometimes is harmful as it can block adaptive responses induced by low levels of radicals.
Collapse
Affiliation(s)
- Sergio Di Meo
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Paola Venditti
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
9
|
Li M, Wang J, Xu W, Wang Y, Zhang M, Wang M. Crystal structure of
Akkermansia muciniphila
peroxiredoxin reveals a novel regulatory mechanism of typical 2‐Cys Prxs by a distinct loop. FEBS Lett 2020; 594:1550-1563. [DOI: 10.1002/1873-3468.13753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/12/2020] [Accepted: 01/17/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Mengyu Li
- School of Life Sciences Anhui University Hefei China
| | - Junchao Wang
- School of Life Sciences Anhui University Hefei China
- Institutes of Physical Science and Information Technology Anhui University Hefei China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei China
| | - Wenjuan Xu
- School of Life Sciences Anhui University Hefei China
| | - Yongzhong Wang
- School of Life Sciences Anhui University Hefei China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei China
| | - Min Zhang
- School of Life Sciences Anhui University Hefei China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei China
| | - Mingzhu Wang
- School of Life Sciences Anhui University Hefei China
- Institutes of Physical Science and Information Technology Anhui University Hefei China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei China
| |
Collapse
|
10
|
Nóbrega CS, Pauleta SR. Reduction of hydrogen peroxide in gram-negative bacteria - bacterial peroxidases. Adv Microb Physiol 2019; 74:415-464. [PMID: 31126534 DOI: 10.1016/bs.ampbs.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacteria display an array of enzymes to detoxify reactive oxygen species that cause damage to DNA and to other biomolecules leading to cell death. Hydrogen peroxide is one of these species, with endogenous and exogenous sources, such as lactic acid bacteria, oxidative burst of the immune system or chemical reactions at oxic-anoxic interfaces. The enzymes that detoxify hydrogen peroxide will be the focus of this review, with special emphasis on bacterial peroxidases that reduce hydrogen peroxide to water. Bacterial peroxidases are periplasmic cytochromes with either two or three c-type haems, which have been classified as classical and non-classical bacterial peroxidases, respectively. Most of the studies have been focus on the classical bacterial peroxidases, showing the presence of a reductive activation in the presence of calcium ions. Mutagenesis studies have clarified the catalytic mechanism of this enzyme and were used to propose an intramolecular electron transfer pathway, with far less being known about the intermolecular electron transfer that occurs between reduced electron donors and the enzyme. The physiological function of these enzymes was not very clear until it was shown, for the non-classical bacterial peroxidase, that this enzyme is required for the bacteria to use hydrogen peroxide as terminal electron acceptor under anoxic conditions. These non-classical bacterial peroxidases are quinol peroxidases that do not require reductive activation but need calcium ions to attain maximum activity and share similar catalytic intermediates with the classical bacterial peroxidases.
Collapse
Affiliation(s)
- Cláudia S Nóbrega
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
11
|
Kamariah N, Eisenhaber B, Eisenhaber F, Grüber G. Essential role of the flexible linker on the conformational equilibrium of bacterial peroxiredoxin reductase for effective regeneration of peroxiredoxin. J Biol Chem 2017; 292:6667-6679. [PMID: 28270505 DOI: 10.1074/jbc.m117.775858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can damage DNA, proteins, and lipids, so cells have antioxidant systems that regulate ROS. In many bacteria, a dedicated peroxiredoxin reductase, alkyl hydroperoxide reductase subunit F (AhpF), catalyzes the rapid reduction of the redox-active disulfide center of the antioxidant protein peroxiredoxin (AhpC) to detoxify ROS such as hydrogen peroxide, organic hydroperoxide, and peroxynitrite. AhpF is a flexible multidomain protein that enables a series of electron transfers among the redox centers by accepting reducing equivalents from NADH. A flexible linker connecting the N-terminal domain (NTD) and C-terminal domain (CTD) of AhpF suggests that the enzyme adopts a large-scale domain motion that alternates between the closed and open states to shuttle electrons from the CTD via the NTD to AhpC. Here, we conducted comprehensive mutational, biochemical, and biophysical analyses to gain insights into the role of the flexible linker and the residues critical for the domain motions of Escherichia coli AhpF (EcAhpF) during electron transfer. Small-angle X-ray scattering studies of linker mutants revealed that a group of charged residues, 200EKR202, is crucial for the swiveling motion of the NTD. Moreover, NADH binding significantly affected EcAhpF flexibility and the movement of the NTD relative to the CTD. The mutants also exhibited a decrease in H2O2 reduction by the AhpF-AhpC ensemble. We propose that a concerted movement involving the NTD, C-terminal NADH, and FAD domains, and the flexible linker between them is essential for optimal intra-domain cross-talk and for efficient electron transfer to the redox partner AhpC required for peroxidation.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671
| | - Birgit Eisenhaber
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671
| | - Frank Eisenhaber
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671.,the School of Computer Engineering, Nanyang Technological University, Singapore 637553, Republic of Singapore
| | - Gerhard Grüber
- From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, .,the School of Biological Sciences, Nanyang Technological University, Singapore 637551, and
| |
Collapse
|
12
|
Miller CL, Van Laar TA, Chen T, Karna SLR, Chen P, You T, Leung KP. Global transcriptome responses including small RNAs during mixed-species interactions with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Microbiologyopen 2016; 6. [PMID: 27868360 PMCID: PMC5458535 DOI: 10.1002/mbo3.427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus mixed‐species biofilm infections are more resilient to biocide attacks compared to their single‐species counterparts. Therefore, this study used an in vitro model recapitulating bacterial burdens seen in in vivo infections to investigate the interactions of P. aeruginosa and S. aureus in biofilms. RNA sequencing (RNA‐seq) was utilized to identify the entire genomic response, both open reading frames (ORFs) and small RNAs (sRNAs), of each species. Using competitive indexes, transposon mutants validated uncharacterized PA1595 of P. aeruginosa and Panton–Valentine leukocidin ORFs of S. aureus are required for competitive success. Assessing spent media on biofilm development determined that the effects of these ORFs are not solely mediated by mechanisms of secretion. Unlike PA1595, leukocidin (lukS‐PV) mutants of S. aureus lack a competitive advantage through contact‐mediated mechanisms demonstrated by cross‐hatch assays. RNA‐seq results suggested that during planktonic mixed‐species growth there is a robust genomic response or active combat from both pathogens until a state of equilibrium is reached during the maturation of a biofilm. In mixed‐species biofilms, P. aeruginosa differentially expressed only 0.3% of its genome, with most ORFs necessary for growth and biofilm development, whereas S. aureus modulated approximately 5% of its genome, with ORFs suggestive of a phenotype of increased virulence and metabolic quiescence. Specific expression of characterized sRNAs aligned with the genomic response to presumably coordinate the adaptive changes necessary for this homeostatic mixed‐species biofilm and sRNAs may provide viable foci for the design of future therapeutics.
Collapse
Affiliation(s)
- Christine L Miller
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Tricia A Van Laar
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Tsute Chen
- The Forsyth Institute, Cambridge, MA, USA
| | - S L Rajasekhar Karna
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Ping Chen
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Tao You
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Kai P Leung
- Microbiology Branch, Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| |
Collapse
|
13
|
Rodrigues RC, Haddad N, Chevret D, Cappelier JM, Tresse O. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions. Front Microbiol 2016; 7:1596. [PMID: 27790195 PMCID: PMC5061731 DOI: 10.3389/fmicb.2016.01596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection.
Collapse
Affiliation(s)
- Ramila C. Rodrigues
- LUNAM Université, Oniris, Université de NantesNantes, France
- INRA, UMR 1014 SECALIMNantes, France
| | - Nabila Haddad
- LUNAM Université, Oniris, Université de NantesNantes, France
- INRA, UMR 1014 SECALIMNantes, France
| | | | - Jean-Michel Cappelier
- LUNAM Université, Oniris, Université de NantesNantes, France
- INRA, UMR 1014 SECALIMNantes, France
| | - Odile Tresse
- LUNAM Université, Oniris, Université de NantesNantes, France
- INRA, UMR 1014 SECALIMNantes, France
| |
Collapse
|
14
|
Kamariah N, Nartey W, Eisenhaber B, Eisenhaber F, Grüber G. Low resolution solution structure of an enzymatic active AhpC10:AhpF2 ensemble of the Escherichia coli Alkyl hydroperoxide Reductase. J Struct Biol 2015; 193:13-22. [PMID: 26584540 DOI: 10.1016/j.jsb.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 11/15/2022]
Abstract
The ability of bacteria to combat oxidative stress is imperative for their survival. The Alkyl hydroperoxide Reductase (AhpR) system, composed of the AhpC and AhpF proteins, is one of the dominant antioxidant defense systems required for scavenging hydrogen peroxide and organic peroxide. Therefore, it is necessary to understand the mechanism of the AhpR ensemble formation. In previous studies, we were able to elucidate conformational flexibility of Escherichia coli AhpF during the catalytic cycle and its binding site, the N-terminal domain (NTD), to AhpC. We proposed the novel binding and release mechanism of EcAhpC-AhpF, which is mediated by the well defined redox-state linked conformational changes associated with the C-terminal tail and active site regions of EcAhpC. Here, we have proceeded further to elucidate the solution structure of E. coli AhpC and the stable ensemble formation with EcAhpF using size-exclusion chromatography (SEC), dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) techniques. The EcAhpC-AhpF complex structure with a stoichiometry of AhpC10:AhpF2 reveals that dimeric EcAhpF in its extended conformation enables the NTD disulphide centers to come in close proximity to the redox-active disulphide centers of EcAhpC, and provides an efficient electron transfer. Furthermore, the significance of the C-terminal tail of EcAhpC in ensemble formation is elucidated. SAXS data-based modeling revealed the flexible C-terminal tail of EcAhpC in solution, and its exposed nature, making it possible to contact the NTD of EcAhpF for stable complex formation.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; School of Computer Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Republic of Singapore; Department of Biological Sciences, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
15
|
Natalia D, Jumadila O, Anggraini ID, Meutia F, Puspasari F, Hasan K. Alkyl hydroperoxide reductase from Bacillus aquimaris
MKSC 6.2 protects Esherichia coli
from oxidative stress. J Basic Microbiol 2015; 56:834-7. [DOI: 10.1002/jobm.201500406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/03/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Dessy Natalia
- Division of Biochemistry Research; Faculty of Mathematics and Natural Sciences; Institut Teknologi Bandung; Bandung Indonesia
- Bioscience and Biotechnology Research Center; Institut Teknologi Bandung; Bandung Indonesia
| | - Ozi Jumadila
- Division of Biochemistry Research; Faculty of Mathematics and Natural Sciences; Institut Teknologi Bandung; Bandung Indonesia
| | - Irika Devi Anggraini
- Division of Biochemistry Research; Faculty of Mathematics and Natural Sciences; Institut Teknologi Bandung; Bandung Indonesia
| | - Febrina Meutia
- Division of Biochemistry Research; Faculty of Mathematics and Natural Sciences; Institut Teknologi Bandung; Bandung Indonesia
| | - Fernita Puspasari
- Bioscience and Biotechnology Research Center; Institut Teknologi Bandung; Bandung Indonesia
| | - Khomaini Hasan
- Bioscience and Biotechnology Research Center; Institut Teknologi Bandung; Bandung Indonesia
- Biochemistry Laboratory, Faculty of Medicine; Universitas Jenderal Achmad Yani; Cimahi West Java Indonesia
| |
Collapse
|
16
|
Nartey W, Basak S, Kamariah N, Manimekalai MSS, Robson S, Wagner G, Eisenhaber B, Eisenhaber F, Grüber G. NMR studies reveal a novel grab and release mechanism for efficient catalysis of the bacterial 2-Cys peroxiredoxin machinery. FEBS J 2015; 282:4620-38. [DOI: 10.1111/febs.13522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/28/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Wilson Nartey
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
| | - Sandip Basak
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
| | - Neelagandan Kamariah
- Bioinformatics Institute; Agency for Science; Technology and Research (A*STAR); Singapore City Singapore
| | | | - Scott Robson
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston MA USA
| | - Birgit Eisenhaber
- Bioinformatics Institute; Agency for Science; Technology and Research (A*STAR); Singapore City Singapore
| | - Frank Eisenhaber
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
- School of Computer Engineering; Nanyang Technological University (NTU); Singapore City Singapore
- Department of Biological Sciences; National University of Singapore; Singapore
| | - Gerhard Grüber
- School of Biological Sciences; Nanyang Technological University; Singapore City Singapore
- Bioinformatics Institute; Agency for Science; Technology and Research (A*STAR); Singapore City Singapore
| |
Collapse
|
17
|
Gundogdu O, da Silva DT, Mohammad B, Elmi A, Mills DC, Wren BW, Dorrell N. The Campylobacter jejuni MarR-like transcriptional regulators RrpA and RrpB both influence bacterial responses to oxidative and aerobic stresses. Front Microbiol 2015; 6:724. [PMID: 26257713 PMCID: PMC4508579 DOI: 10.3389/fmicb.2015.00724] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/02/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide) respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2) stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA) expression. However, a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Mutation of either rrpA or rrpB also results in a reduction in the level of katA expression, but this reduction was not observed in the rrpAB double mutant. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2) stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the G mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2) stress responses, enhancing bacterial survival in vivo and in the environment.
Collapse
Affiliation(s)
- Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Daiani T da Silva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Banaz Mohammad
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Dominic C Mills
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London, UK
| |
Collapse
|
18
|
Kamariah N, Manimekalai MSS, Nartey W, Eisenhaber F, Eisenhaber B, Grüber G. Crystallographic and solution studies of NAD(+)- and NADH-bound alkylhydroperoxide reductase subunit F (AhpF) from Escherichia coli provide insight into sequential enzymatic steps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1139-52. [PMID: 26092085 DOI: 10.1016/j.bbabio.2015.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Redox homeostasis is significant for the survival of pro- and eukaryotic cells and is crucial for defense against reactive oxygen species like superoxide and hydrogen peroxide. In Escherichia coli, the reduction of peroxides occurs via the redox active disulfide center of the alkyl hydroperoxide reductase C subunit (AhpC), whose reduced state becomes restored by AhpF. The 57kDa EcAhpF contains an N-terminal domain (NTD), which catalyzes the electron transfer from NADH via an FAD of the C-terminal domain into EcAhpC. The NTD is connected to the C-terminal domain via a linker. Here, the first crystal structure of E. coli AhpF bound with NADH and NAD(+) has been determined at 2.5Å and 2.4Å resolution, respectively. The NADH-bound form of EcAhpF reveals that the NADH-binding domain is required to alter its conformation to bring a bound NADH to the re-face of the isoalloxazine ring of the flavin, and thereby render the NADH-domain dithiol center accessible to the NTD disulfide center for electron transfer. The NAD(+)-bound form of EcAhpF shows conformational differences for the nicotinamide end moieties and its interacting residue M467, which is proposed to represent an intermediate product-release conformation. In addition, the structural alterations in EcAhpF due to NADH- and NAD(+)-binding in solution are shown by small angle X-ray scattering studies. The EcAhpF is revealed to adopt many intermediate conformations in solution to facilitate the electron transfer from the substrate NADH to the C-terminal domain, and subsequently to the NTD of EcAhpF for the final step of AhpC reduction.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | | | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; School of Computer Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Republic of Singapore; Department of Biological Sciences, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore
| | - Gerhard Grüber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Republic of Singapore; Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
19
|
Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 2015; 80:148-57. [PMID: 25433365 PMCID: PMC4355186 DOI: 10.1016/j.freeradbiomed.2014.11.013] [Citation(s) in RCA: 607] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/20/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic, or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts to functional sites their specialized properties (e.g., nucleophilicity, high-affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low-molecular-weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes, including signal transduction.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
20
|
Abstract
Peroxiredoxins were not recognized as a family of enzymes until the 1990s but are now known to be the dominant peroxidases in most organisms. Here, the history and fundamental properties of peroxiredoxins are briefly reviewed, with a special focus on describing how an exquisitely tunable balance between fully folded and locally unfolded conformations plays a large role in peroxiredoxin catalytic properties.
Collapse
Affiliation(s)
- P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
21
|
Parsonage D, Nelson KJ, Ferrer-Sueta G, Alley S, Karplus PA, Furdui CM, Poole LB. Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC. Biochemistry 2015; 54:1567-75. [PMID: 25633283 PMCID: PMC4489686 DOI: 10.1021/bi501515w] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peroxiredoxins make up a ubiquitous family of cysteine-dependent peroxidases that reduce hydroperoxide or peroxynitrite substrates through formation of a cysteine sulfenic acid (R-SOH) at the active site. In the 2-Cys peroxiredoxins, a second (resolving) cysteine reacts with the sulfenic acid to form a disulfide bond. For all peroxiredoxins, structural rearrangements in the vicinity of the active site cysteine(s) are necessary to allow disulfide bond formation and subsequent reductive recycling. In this study, we evaluated the rate constants for individual steps in the catalytic cycle of Salmonella typhimurium AhpC. Conserved Trp residues situated close to both peroxidatic and resolving cysteines in AhpC give rise to large changes in fluorescence during the catalytic cycle. For recycling, AhpF very efficiently reduces the AhpC disulfide, with a single discernible step and a rate constant of 2.3 × 10(7) M(-1) s(-1). Peroxide reduction was more complex and could be modeled as three steps, beginning with a reversible binding of H2O2 to the enzyme (k1 = 1.36 × 10(8) M(-1) s(-1), and k-1 = 53 s(-1)), followed by rapid sulfenic acid generation (620 s(-1)) and then rate-limiting disulfide bond formation (75 s(-1)). Using bulkier hydroperoxide substrates with higher Km values, we found that different efficiencies (kcat/Km) for turnover of AhpC with these substrates are primarily caused by their slower rates of binding. Our findings indicate that this bacterial peroxiredoxin exhibits rates for both reducing and oxidizing parts of the catalytic cycle that are among the fastest observed so far for this diverse family of enzymes.
Collapse
Affiliation(s)
- Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
- Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Kimberly J. Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
- Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Samantha Alley
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - P. Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, 2011 AG Life Sciences Building, Corvallis, Oregon 97331, United States
| | - Cristina M. Furdui
- Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
- Section on Molecular Medicine in Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
- Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
22
|
Kim JC, Oh E, Hwang S, Ryu S, Jeon B. Non-selective regulation of peroxide and superoxide resistance genes by PerR in Campylobacter jejuni. Front Microbiol 2015; 6:126. [PMID: 25741333 PMCID: PMC4330884 DOI: 10.3389/fmicb.2015.00126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/03/2015] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is an important foodborne pathogen. The molecular mechanisms for the regulation of oxidative stress resistance have not yet been understood fully in this bacterium. In this study, we investigated how PerR (peroxide stress regulator) modulates the transcriptional regulation of both peroxide and superoxide resistance genes in C. jejuni, particularly under oxidative stress conditions. The transcriptional levels of ahpC, katA, and sodB were substantially increased by aeration and oxidant exposure. Interestingly, a perR mutation completely abrogated the transcriptional response of ahpC, katA and sodB to oxidants. Furthermore, we demonstrated that perR transcription was reduced by aeration and oxidant exposure. In contrast to the unique role of PerR homologs in peroxide stress regulation in other bacteria, C. jejuni PerR directly regulates the transcription of sodB, the most important gene in superoxide defense, as evidenced by the alteration of sodB transcription by the perR mutation and direct binding of rPerR to the sodB promoter. In addition, we also observed notable morphological changes in C. jejuni from spiral rods to cocoid morphology under aerobic conditions. Based on the intracellular ATP levels, C. jejuni entered a viable-but-non-culturable (VBNC) state under aerobic conditions. These findings clearly demonstrate that C. jejuni possesses a unique regulatory mechanism of oxidative stress defense that does not specifically distinguish between peroxide and superoxide defense, and PerR plays a pivotal role in this non-selective regulation of oxidative stress resistance in C. jejuni.
Collapse
Affiliation(s)
- Jong-Chul Kim
- School of Public Health, University of Alberta Edmonton, AB, Canada
| | - Euna Oh
- School of Public Health, University of Alberta Edmonton, AB, Canada
| | - Sunyoung Hwang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University Seoul, South Korea
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
23
|
Dip PV, Kamariah N, Subramanian Manimekalai MS, Nartey W, Balakrishna AM, Eisenhaber F, Eisenhaber B, Grüber G. Structure, mechanism and ensemble formation of the alkylhydroperoxide reductase subunits AhpC and AhpF fromEscherichia coli. ACTA ACUST UNITED AC 2014; 70:2848-62. [DOI: 10.1107/s1399004714019233] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/26/2014] [Indexed: 11/11/2022]
Abstract
Hydroperoxides are reactive oxygen species (ROS) that are toxic to all cells and must be converted into the corresponding alcohols to alleviate oxidative stress. InEscherichia coli, the enzyme primarily responsible for this reaction is alkylhydroperoxide reductase (AhpR). Here, the crystal structures of both of the subunits ofEcAhpR,EcAhpF (57 kDa) andEcAhpC (21 kDa), have been solved. TheEcAhpF structures (2.0 and 2.65 Å resolution) reveal an open and elongated conformation, while that ofEcAhpC (3.3 Å resolution) forms a decameric ring. Solution X-ray scattering analysis ofEcAhpF unravels the flexibility of its N-terminal domain, and its binding toEcAhpC was demonstrated by isothermal titration calorimetry. These studies suggest a novel overall mechanistic model of AhpR as a hydroperoxide scavenger, in which the dimeric, extended AhpF prefers complex formation with the AhpC ring to accelerate the catalytic activity and thus to increase the chance of rescuing the cell from ROS.
Collapse
|
24
|
Paulo E, García-Santamarina S, Calvo IA, Carmona M, Boronat S, Domènech A, Ayté J, Hidalgo E. A genetic approach to study H2O2 scavenging in fission yeast--distinct roles of peroxiredoxin and catalase. Mol Microbiol 2014; 92:246-57. [PMID: 24521463 DOI: 10.1111/mmi.12548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2014] [Indexed: 01/28/2023]
Abstract
The main peroxiredoxin in Schizosaccharomyces pombe, Tpx1, is important to sustain aerobic growth, and cells lacking this protein are only able to grow on solid plates under anaerobic conditions. We have found that deletion of the gene coding for thioredoxin reductase, trr1, is a suppressor of the sensitivity to aerobic growth of Δtpx1 cells, so that cells lacking both proteins are able to grow on solid plates in the presence of oxygen. We have investigated this suppression effect, and determined that it depends on the presence of catalase, which is constitutively expressed in Δtrr1 cells in a transcription factor Pap1-dependent manner. A complete characterization of the repertoire of hydrogen peroxide scavenging activities in fission yeast suggests that Tpx1 is the only enzyme with sufficient sensitivity for peroxides and cellular abundance as to control the low levels produced during aerobic growth, catalase being the next barrier of detoxification when the steady-state levels of peroxides are increased in Δtpx1 cells. Gpx1, the only glutathione peroxidase encoded by the S. pombe genome, only has a minor secondary role when extracellular peroxides are added. Our study proposes non-overlapping roles for the different hydrogen peroxide scavenging activities of this eukaryotic organism.
Collapse
Affiliation(s)
- Esther Paulo
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, E-08003, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Horch M, Pinto AF, Utesch T, Mroginski MA, Romão CV, Teixeira M, Hildebrandt P, Zebger I. Reductive activation and structural rearrangement in superoxide reductase: a combined infrared spectroscopic and computational study. Phys Chem Chem Phys 2014; 16:14220-30. [DOI: 10.1039/c4cp00884g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Local and global structural changes that enable reductive activation of superoxide reductase are revealed by a combined approach of infrared difference spectroscopy and computational methods.
Collapse
Affiliation(s)
- M. Horch
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - A. F. Pinto
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República (EAN)
- P-2780-157 Oeiras, Portugal
| | - T. Utesch
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - M. A. Mroginski
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - C. V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República (EAN)
- P-2780-157 Oeiras, Portugal
| | - M. Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República (EAN)
- P-2780-157 Oeiras, Portugal
| | - P. Hildebrandt
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - I. Zebger
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| |
Collapse
|
26
|
Abstract
The thioredoxin (Trx) system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin, is a key antioxidant system in defense against oxidative stress through its disulfide reductase activity regulating protein dithiol/disulfide balance. The Trx system provides the electrons to thiol-dependent peroxidases (peroxiredoxins) to remove reactive oxygen and nitrogen species with a fast reaction rate. Trx antioxidant functions are also shown by involvement in DNA and protein repair by reducing ribonucleotide reductase, methionine sulfoxide reductases, and regulating the activity of many redox-sensitive transcription factors. Moreover, Trx systems play critical roles in the immune response, virus infection, and cell death via interaction with thioredoxin-interacting protein. In mammalian cells, the cytosolic and mitochondrial Trx systems, in which TrxRs are high molecular weight selenoenzymes, together with the glutathione-glutaredoxin (Grx) system (NADPH, glutathione reductase, GSH, and Grx) control the cellular redox environment. Recently mammalian thioredoxin and glutathione systems have been found to be able to provide the electrons crossly and to serve as a backup system for each other. In contrast, bacteria TrxRs are low molecular weight enzymes with a structure and reaction mechanism distinct from mammalian TrxR. Many bacterial species possess specific thiol-dependent antioxidant systems, and the significance of the Trx system in the defense against oxidative stress is different. Particularly, the absence of a GSH-Grx system in some pathogenic bacteria such as Helicobacter pylori, Mycobacterium tuberculosis, and Staphylococcus aureus makes the bacterial Trx system essential for survival under oxidative stress. This provides an opportunity to kill these bacteria by targeting the TrxR-Trx system.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
27
|
Mochizuki D, Arai T, Asano M, Sasakura N, Watanabe T, Shiwa Y, Nakamura S, Katano Y, Fujinami S, Fujita N, Abe A, Sato J, Nakagawa J, Niimura Y. Adaptive response of Amphibacillus xylanus to normal aerobic and forced oxidative stress conditions. MICROBIOLOGY-SGM 2013; 160:340-352. [PMID: 24307665 DOI: 10.1099/mic.0.068726-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Amphibacillus xylanus grows at the same rate and with the same cell yield under aerobic and anaerobic conditions. Under aerobic conditions, it exhibits vigorous oxygen consumption in spite of lacking a respiratory system and haem catalase. To understand the adaptive response of A. xylanus to oxidative stresses, a genomic analysis of A. xylanus was conducted. The analysis showed that A. xylanus has the genes of four metabolic systems: two pyruvate metabolic pathways, a glycolytic metabolic pathway and an NADH oxidase (Nox)-AhpC (Prx) system. A transcriptional study confirmed that A. xylanus has these metabolic systems. Moreover, genomic analysis revealed the presence of two genes for NADH oxidase (nox1 and nox2), both of which were identified in the transcriptional analysis. The nox1 gene in A. xylanus was highly expressed under normal aerobic conditions but that of nox2 was not. A purification study of NADH oxidases indicated that the gene product of nox1 is a primary metabolic enzyme responsible for metabolism of both oxygen and reactive oxygen species. A. xylanus was successfully grown under forced oxidative stress conditions such as 0.1 mM H2O2, 0.3 mM paraquat and 80 % oxygen. Proteomic analysis revealed that manganese SOD, Prx, pyruvate dehydrogenase complex E1 and E3 components, and riboflavin synthase β-chain are induced under normal aerobic conditions, and the other proteins except the five aerobically induced proteins were not induced under forced oxidative stress conditions. Taken together, the present findings indicate that A. xylanus has a unique defence system against forced oxidative stress.
Collapse
Affiliation(s)
- Daichi Mochizuki
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Toshiaki Arai
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Masazumi Asano
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Natsuki Sasakura
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Toshihiro Watanabe
- Department of Food Science and Technology, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan
| | - Yuh Shiwa
- Nodai Genome Research Center, Setagaya-ku, Tokyo 156-8502, Japan
| | - Sanae Nakamura
- National Institute of Technology and Evaluation, Nishihara, Shibuya, Tokyo 156-0066, Japan
| | - Yoko Katano
- National Institute of Technology and Evaluation, Nishihara, Shibuya, Tokyo 156-0066, Japan
| | - Shun Fujinami
- National Institute of Technology and Evaluation, Nishihara, Shibuya, Tokyo 156-0066, Japan
| | - Nobuyuki Fujita
- National Institute of Technology and Evaluation, Nishihara, Shibuya, Tokyo 156-0066, Japan
| | - Akira Abe
- Department of Ophthalmology, Sapporo Medical University, Hokkaido 060-8556, Japan
| | - Junichi Sato
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Junichi Nakagawa
- Department of Food Science and Technology, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan
| | - Youichi Niimura
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
28
|
Varlamova EG, Goltyaev MV, Novoselov SV, Novoselov VI, Fesenko EE. Characterization of several members of the thiol oxidoreductase family. Mol Biol 2013. [DOI: 10.1134/s0026893313040146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Pieper R, Zhang Q, Clark DJ, Parmar PP, Alami H, Suh MJ, Kuntumalla S, Braisted JC, Huang ST, Tzipori S. Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets. PLoS One 2013; 8:e66462. [PMID: 23840478 PMCID: PMC3686733 DOI: 10.1371/journal.pone.0066462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/05/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Shiga toxin (Stx)-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer's patches and formation of attachment/effacement (A/E) lesions. These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects. METHODOLOGY/PRINCIPAL FINDINGS Enterohemorrhagic E. coli strain 86-24 produces Shiga toxin-2 and belongs to the serotype O157:H7. Bacterial cells were scrapped from stationary phase cultures (the in vitro condition) and used to infect gnotobiotic piglets via intestinal lavage. Bacterial cells isolated from the piglets' guts constituted the in vivo condition. Cell lysates were subjected to quantitative 2D gel and shotgun proteomic analyses, revealing metabolic shifts towards anaerobic energy generation, changes in carbon utilization, phosphate and ammonia starvation, and high activity of a glutamate decarboxylase acid resistance system in vivo. Increased abundance of pyridine nucleotide transhydrogenase (PntA and PntB) suggested in vivo shortage of intracellular NADPH. Abundance changes of proteins implicated in lipopolysaccharide biosynthesis (LpxC, ArnA, the predicted acyltransferase L7029) and outer membrane (OM) assembly (LptD, MlaA, MlaC) suggested bacterial cell surface modulation in response to activated host defenses. Indeed, there was evidence for interactions of innate immunity-associated proteins secreted into the intestines (GP340, REG3-γ, resistin, lithostathine, and trefoil factor 3) with the bacterial cell envelope. SIGNIFICANCE Proteomic analysis afforded insights into system-wide adaptations of strain 86-24 to a hostile intestinal milieu, including responses to limited nutrients and cofactor supplies, intracellular acidification, and reactive nitrogen and oxygen species-mediated stress. Protein and lipopolysaccharide compositions of the OM were altered. Enhanced expression of type III secretion system effectors correlated with a metabolic shift back to a more aerobic milieu in vivo. Apparent pathogen pattern recognition molecules from piglet intestinal secretions adhered strongly to the bacterial cell surface.
Collapse
Affiliation(s)
- Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail:
| | - Quanshun Zhang
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - David J. Clark
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Hamid Alami
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Moo-Jin Suh
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - John C. Braisted
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Shih-Ting Huang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Saul Tzipori
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
30
|
Kim M, Lee KW, Cho AE. Elucidation of allosteric inhibition mechanism of 2-Cys human peroxiredoxin by molecular modeling. J Chem Inf Model 2012. [PMID: 23194275 DOI: 10.1021/ci3004495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We used molecular dynamics (MD) simulations and protein docking to elucidate the mechanism of allosteric inhibition of the human form of peroxiredoxin (Prx), 2-Cys proliferation associated gene (PAG). Beginning by using the rat form of Prx, 2-Cys heme-binding protein as a template, we used homology modeling to find the structure of human 2-Cys PAG, which is in dimeric form. Molecular dynamics simulations showed that the structure of the reduced form of the 2-Cys PAG dimer fluctuates as the two monomers drift away and approach each other. We then used SiteMap to search for binding sites on the surface of this dimer. A binding site between the two monomers was found, and virtual screening with docking was performed to identify a ligand binding to this site. Subsequent MD simulation revealed that with this ligand in the binding site, the dimer structure of 2-Cys PAG becomes stabilized such that two cysteine residues from two monomers, which are partners of a disulfide bond of the oxidized form, remain separated. This mechanism can be used as an allosteric inhibition of Prx as a hydrogen peroxide reducer, the role of which has been studied as an anticancer drug target.
Collapse
Affiliation(s)
- Minsup Kim
- Department of Bioinformatics, Korea University, Sejong, Korea
| | | | | |
Collapse
|
31
|
Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris alleviates environmental stresses in yeast together with 2-Cys peroxiredoxin. PLoS One 2012; 7:e45988. [PMID: 23029353 PMCID: PMC3454380 DOI: 10.1371/journal.pone.0045988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/23/2012] [Indexed: 02/07/2023] Open
Abstract
Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances.
Collapse
|
32
|
|
33
|
Crystal structures of complexes of the branched-chain aminotransferase from Deinococcus radiodurans with α-ketoisocaproate and L-glutamate suggest the radiation resistance of this enzyme for catalysis. J Bacteriol 2012; 194:6206-16. [PMID: 22984263 DOI: 10.1128/jb.01659-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Branched-chain aminotransferases (BCAT), which utilize pyridoxal 5'-phosphate (PLP) as a cofactor, reversibly catalyze the transfer of the α-amino groups of three of the most hydrophobic branched-chain amino acids (BCAA), leucine, isoleucine, and valine, to α-ketoglutarate to form the respective branched-chain α-keto acids and glutamate. The BCAT from Deinococcus radiodurans (DrBCAT), an extremophile, was cloned and expressed in Escherichia coli for structure and functional studies. The crystal structures of the native DrBCAT with PLP and its complexes with L-glutamate and α-ketoisocaproate (KIC), respectively, have been determined. The DrBCAT monomer, comprising 358 amino acids, contains large and small domains connected with an interdomain loop. The cofactor PLP is located at the bottom of the active site pocket between two domains and near the dimer interface. The substrate (L-glutamate or KIC) is bound with key residues through interactions of the hydrogen bond and the salt bridge near PLP inside the active site pocket. Mutations of some interaction residues, such as Tyr71, Arg145, and Lys202, result in loss of the specific activity of the enzymes. In the interdomain loop, a dynamic loop (Gly173 to Gly179) clearly exhibits open and close conformations in structures of DrBCAT without and with substrates, respectively. DrBCAT shows the highest specific activity both in nature and under ionizing radiation, but with lower thermal stability above 60 °C, than either BCAT from Escherichia coli (eBCAT) or from Thermus thermophilus (HB8BCAT). The dimeric molecular packing and the distribution of cysteine residues at the active site and the molecular surface might explain the resistance to radiation but small thermal stability of DrBCAT.
Collapse
|
34
|
Bernal-Bayard P, Hervás M, Cejudo FJ, Navarro JA. Electron transfer pathways and dynamics of chloroplast NADPH-dependent thioredoxin reductase C (NTRC). J Biol Chem 2012; 287:33865-72. [PMID: 22833674 DOI: 10.1074/jbc.m112.388991] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
NADPH-dependent thioredoxin reductases (NTRs) contain a flavin cofactor and a disulfide as redox-active groups. The catalytic mechanism of standard NTR involves a large conformational change between two configurations. Oxygenic photosynthetic organisms possess a plastid-localized NTR, called NTRC, with a thioredoxin module fused at the C terminus. NTRC is an efficient reductant of 2-Cys peroxiredoxins (2-Cys Prxs) and thus is involved in the protection against oxidative stress, among other functions. Although the mechanism of electron transfer of canonical NTRs is well established, it is not yet known in NTRC. By employing stopped-flow spectroscopy, we have carried out a comparative kinetic study of the electron transfer reactions involving NTRC, the truncated NTR module of NTRC, and NTRB, a canonical plant NTR. Whereas the three NTRs maintain the conformational change associated with the reductive cycle of catalysis, NTRC intramolecular electron transfer to the thioredoxin module presents two kinetic components (k(ET) of ~2 and 0.1 s(-1)), indicating the occurrence of additional dynamic motions. Moreover, the dynamic features associated with the electron transfer to the thioredoxin module are altered in the presence of 2-Cys Prx. NTRC shows structural constraints that may locate the thioredoxin module in positions with different efficiencies for electron transfer, the presence of 2-Cys Prx shifting the conformational equilibrium of the thioredoxin module to a specific position, which is not the most efficient.
Collapse
Affiliation(s)
- Pilar Bernal-Bayard
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, CicCartuja, Seville, Spain
| | | | | | | |
Collapse
|
35
|
Reeves SA, Parsonage D, Nelson KJ, Poole LB. Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry 2011; 50:8970-81. [PMID: 21910476 DOI: 10.1021/bi200935d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, bacterioferritin comigratory protein (BCP) is a peroxiredoxin (Prx) that catalyzes the reduction of H(2)O(2) and organic hydroperoxides. This protein, along with plant PrxQ, is a founding member of one of the least studied subfamilies of Prxs. Recent structural data have suggested that proteins in the BCP/PrxQ group can exist as monomers or dimers; we report here that, by analytical ultracentrifugation, both oxidized and reduced E. coli BCP behave as monomers in solution at concentrations as high as 200 μM. Unexpectedly, thioredoxin (Trx1)-dependent peroxidase assays conducted by stopped-flow spectroscopy demonstrated that V(max,app) increases with increasing Trx1 concentrations, indicating a nonsaturable interaction (K(m) > 100 μM). At a physiologically reasonable Trx1 concentration of 10 μM, the apparent K(m) value for H(2)O(2) is ~80 μM, and overall, the V(max)/K(m) for H(2)O(2), which remains constant at the various Trx1 concentrations (consistent with a ping-pong mechanism), is ~1.3 × 10(4) M(-1) s(-1). Our kinetic analyses demonstrated that BCP can utilize a variety of reducing substrates, including Trx1, Trx2, Grx1, and Grx3. BCP exhibited a high redox potential of -145.9 ± 3.2 mV, the highest to date observed for a Prx. Moreover, BCP exhibited a broad peroxide specificity, with comparable rates for H(2)O(2) and cumene hydroperoxide. We determined a pK(a) of ~5.8 for the peroxidatic cysteine (Cys45) using both spectroscopic and activity titration data. These findings support an important role for BCP in interacting with multiple substrates and remaining active under highly oxidizing cellular conditions, potentially serving as a defense enzyme of last resort.
Collapse
Affiliation(s)
- Stacy A Reeves
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
36
|
Poole LB, Hall A, Nelson KJ. Overview of peroxiredoxins in oxidant defense and redox regulation. CURRENT PROTOCOLS IN TOXICOLOGY 2011; Chapter 7:Unit7.9. [PMID: 21818754 PMCID: PMC3156475 DOI: 10.1002/0471140856.tx0709s49] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peroxiredoxins are important hydroperoxide detoxification enzymes, yet have only come to the fore in recent years relative to the other major players in peroxide detoxification, heme-containing catalases and peroxidases and glutathione peroxidases. These cysteine-dependent peroxidases exhibit high reactivity with hydrogen peroxide, organic hydroperoxides, and peroxynitrite and play major roles not only in peroxide defense, but also in regulating peroxide-mediated cell signaling. This overview focuses on important peroxiredoxin features that have emerged over the past several decades with an emphasis on catalytic mechanism, regulation, and biological function.
Collapse
Affiliation(s)
- Leslie B. Poole
- Dept. of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Andrea Hall
- Dept. of Biochemistry and Biophysics, Oregon State University, Corvallis, OR
| | - Kimberly J. Nelson
- Dept. of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
37
|
Roos G, Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 2011; 51:314-26. [PMID: 21605662 DOI: 10.1016/j.freeradbiomed.2011.04.031] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/31/2011] [Accepted: 04/17/2011] [Indexed: 01/17/2023]
Abstract
Protein sulfenic acid formation has long been regarded as unwanted damage caused by reactive oxygen species (ROS). However, over the past 10 years, accumulating evidence has shown that the reversible oxidation of cysteine thiol groups to sulfenic acid functions as a redox-based signal transduction mechanism. Here, we review the mechanisms of sulfenic acid formation by ROS. We present some of the most important roles played by sulfenic acids in living cells as well as the pathways that regulate sulfenic acid formation. We highlight the experimental tools that have been developed to study the cellular sulfenome and show how computational approaches might help to better understand the mechanisms of sulfenic acid formation.
Collapse
Affiliation(s)
- Goedele Roos
- Department of Molecular and Cellular Interactions, Flanders Institute for Biotechnology, VIB, B-1050 Brussels, Belgium
| | | |
Collapse
|
38
|
Kern M, Volz J, Simon J. The oxidative and nitrosative stress defence network of Wolinella succinogenes: cytochrome c nitrite reductase mediates the stress response to nitrite, nitric oxide, hydroxylamine and hydrogen peroxide. Environ Microbiol 2011; 13:2478-94. [PMID: 21672122 DOI: 10.1111/j.1462-2920.2011.02520.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microorganisms employ diverse mechanisms to withstand physiological stress conditions exerted by reactive or toxic oxygen and nitrogen species such as hydrogen peroxide, organic hydroperoxides, superoxide anions, nitrite, hydroxylamine, nitric oxide or NO-generating compounds. This study identified components of the oxidative and nitrosative stress defence network of Wolinella succinogenes, an exceptional Epsilonproteobacterium that lacks both catalase and haemoglobins. Various gene deletion-insertion mutants were constructed, grown by either fumarate respiration or respiratory nitrate ammonification and subjected to disc diffusion, growth and viability assays under stress conditions. It was demonstrated that mainly two periplasmic multihaem c-type cytochromes, namely cytochrome c peroxidase and cytochrome c nitrite reductase (NrfA), mediated resistance to hydrogen peroxide. Two AhpC-type peroxiredoxin isoenzymes were shown to be involved in protection against different organic hydroperoxides. The phenotypes of two superoxide dismutase mutants lacking either SodB or SodB2 implied that both isoenzymes play important roles in oxygen and superoxide stress defence although they are predicted to reside in the cytoplasm and periplasm respectively. NrfA and a cytoplasmic flavodiiron protein (Fdp) were identified as key components of nitric oxide detoxification. In addition, NrfA (but not the hybrid cluster protein Hcp) was found to mediate resistance to hydroxylamine stress. The results indicate the presence of a robust oxidative and nitrosative stress defence network and identify NrfA as a multifunctional cytochrome c involved in both anaerobic respiration and stress protection.
Collapse
Affiliation(s)
- Melanie Kern
- Institute of Microbiology and Genetics, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | | | | |
Collapse
|
39
|
Huang HH, Day L, Cass CL, Ballou DP, Williams CH, Williams DL. Investigations of the catalytic mechanism of thioredoxin glutathione reductase from Schistosoma mansoni. Biochemistry 2011; 50:5870-82. [PMID: 21630672 DOI: 10.1021/bi200107n] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Thioredoxin glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both thioredoxin and glutathione disulfides (GSSG), thus playing a crucial role in maintaining redox homeostasis in the parasite. In line with this role, previous studies have demonstrated that SmTGR is a promising drug target for schistosomiasis. To aid in the development of efficacious drugs that target SmTGR, it is essential to understand the catalytic mechanism of SmTGR. SmTGR is a dimeric flavoprotein in the glutathione reductase family and has a head-to-tail arrangement of its monomers; each subunit has the components of both a thioredoxin reductase (TrxR) domain and a glutaredoxin (Grx) domain. However, the active site of the TrxR domain is composed of residues from both subunits: FAD and a redox-active Cys-154/Cys-159 pair from one subunit and a redox-active Cys-596'/Sec-597' pair from the other; the active site of the Grx domain contains a redox-active Cys-28/Cys-31 pair. Via its Cys-28/Cys-31 dithiol and/or its Cys-596'/Sec-597' thiol-selenolate, SmTGR can catalyze the reduction of a variety of substrates by NADPH. It is presumed that SmTGR catalyzes deglutathionylation reactions via the Cys-28/Cys-31 dithiol. Our anaerobic titration data suggest that reducing equivalents from NADPH can indeed reach the Cys-28/Cys-31 disulfide in the Grx domain to facilitate reductions effected by this cysteine pair. To clarify the specific chemical roles of each redox-active residue with respect to its various reactivities, we generated variants of SmTGR. Cys-28 variants had no Grx deglutathionylation activity, whereas Cys-31 variants retained partial Grx deglutathionylation activity, indicating that the Cys-28 thiolate is the nucleophile initiating deglutathionylation. Lags in the steady-state kinetics, found when wild-type SmTGR was incubated at high concentrations of GSSG, were not present in Grx variants, indicating that this cysteine pair is in some way responsible for the lags. A Sec-597 variant was still able to reduce a variety of substrates, albeit slowly, showing that selenocysteine is important but is not the sole determinant for the broad substrate tolerance of the enzyme. Our data show that Cys-520 and Cys-574 are not likely to be involved in the catalytic mechanism.
Collapse
Affiliation(s)
- Hsin-Hung Huang
- Department of Microbiology and Immunology, Rush University Medical Center, Chicago, Illinois 60612, United States
| | | | | | | | | | | |
Collapse
|
40
|
Peroxiredoxins are involved in metallothionein protection from doxorubicin cardiotoxicity. Eur J Pharmacol 2011; 659:224-32. [DOI: 10.1016/j.ejphar.2011.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/28/2011] [Accepted: 03/21/2011] [Indexed: 11/17/2022]
|
41
|
Divya B, Soumya KV, Nair S. 16SrRNA and enzymatic diversity of culturable bacteria from the sediments of oxygen minimum zone in the Arabian Sea. Antonie van Leeuwenhoek 2010; 98:9-18. [PMID: 20229220 DOI: 10.1007/s10482-010-9423-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 03/01/2010] [Indexed: 11/27/2022]
Abstract
Sediment underlying the oxygen minimum zone of the eastern Arabian Sea is rich in organic matter. Bacteria in this sediment-water interface are of great ecological importance as they are responsible for decomposing, mineralizing and subsequent recycling of organic matter. This study has for the first time addressed the phylogenetic and functional description of culturable bacteria of this region. Genotypic characterization of the isolates using amplified rDNA restriction analysis (ARDRA) followed by 16SrRNA sequencing grouped them into various phylogenetic groups such as Firmicutes, Gammaproteobacteria, Low G+C Gram positive bacteria, Actinobacteria and unaffiliated bacteria. Among the enzyme activities, phosphatase was predominant (52%) and was associated with all the phylotypes followed by amylase (37%) and gelatinase (33%). These hydrolytic enzymes were expressed at a wide range of temperature and pH. Firmicutes expressed most of the hydrolytic activities, consistent with a role in degradation of organic matter. Multiple enzyme expression (>/=3) was exhibited by Actinobacteria (100%), followed by unaffiliated group (62.5%) and Firmicutes (61.5%). Besides hydrolytic enzymes, the phylotypes also elaborated functional enzymes such as nitrate reductase and catalase (58 and 81% of the isolates, respectively). In the oxygen minimum zone, the diversity was high with 28 phylotypes. Culturable bacterial assemblages encountered were Bacillus sp., Halobacillus sp., Virgibacillus sp., Paenibacillus sp., Marinilactibacillus sp., Kytococcus sp., Micrococcus sp., Halomonas sp. and Alteromonas sp. The high diversity and high percentage of extracellular hydrolytic enzyme activities of the culturable bacteria reflect their important ecological role in biogeochemical cycling of organic matter in the oxygen minimum zone.
Collapse
Affiliation(s)
- Baby Divya
- Microbiology Laboratory, National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | | | | |
Collapse
|
42
|
Characterization of a thioredoxin-thioredoxin reductase system from the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 2010; 192:1370-6. [PMID: 20061476 DOI: 10.1128/jb.01035-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A thioredoxin reductase and a thioredoxin were purified to homogeneity from a cell extract of Thermotoga maritima. The thioredoxin reductase was a homodimeric flavin adenine dinucleotide (FAD)-containing protein with a subunit of 37 kDa estimated using SDS-PAGE, which was identified to be TM0869. The amino acid sequence of the enzyme showed high identities and similarities to those of typical bacterial thioredoxin reductases. Although the purified T. maritima thioredoxin reductase could not use thioredoxin from Spirulina as an electron acceptor, it used thioredoxin that was purified from T. maritima by monitoring the dithiothreitol-dependent reduction of bovine insulin. This enzyme also catalyzed the reduction of benzyl viologen using NADH or NADPH as an electron donor with apparent V(max) values of 1,111 +/- 35 micromol NADH oxidized min(-1)mg(-1) and 115 +/- 2.4 micromol NADPH oxidized min(-1)mg(-1), respectively. The apparent K(m) values were determined to be 89 +/- 1.1 microM, 73 +/- 1.6 microM, and 780 +/- 20 microM for benzyl viologen, NADH, and NADPH, respectively. Optimal pH values were determined to be 9.5 and 6.5 for NADH and NADPH, respectively. The enzyme activity increased along with the rise of temperature up to 95 degrees C, and more than 60% of the activity remained after incubation for 28 h at 80 degrees C. The purified T. maritima thioredoxin was a monomer with a molecular mass of 31 kDa estimated using SDS-PAGE and identified as TM0868, which exhibited both thioredoxin and thioltransferase activities. T. maritima thioredoxin and thioredoxin reductase together were able to reduce insulin or 5,5'-dithio-bis(2-nitrobenzoic acid) using NAD(P)H as an electron donor. This is the first thioredoxin-thioredoxin reductase system characterized from hyperthermophilic bacteria.
Collapse
|
43
|
Abstract
This paper describes the cloning, purification, and characterization of thioredoxin (Trx) and thioredoxin reductase (TrxR) and the structure determination of TrxR from the ionizing radiation-tolerant bacterium Deinococcus radiodurans strain R1. The genes from D. radiodurans encoding Trx and TrxR were amplified by PCR, inserted into a pET expression vector, and overexpressed in Escherichia coli. The overexpressed proteins were purified by metal affinity chromatography, and their activity was demonstrated using well-established assays of insulin precipitation (for Trx), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) reduction, and insulin reduction (for TrxR). In addition, the crystal structure of oxidized TrxR was determined at 1.9-A resolution. The overall structure was found to be very similar to that of E. coli TrxR and homodimeric with both NADPH- and flavin adenine dinucleotide (FAD)-binding domains containing variants of the canonical nucleotide binding fold, the Rossmann fold. The K(m) (5.7 muM) of D. radiodurans TrxR for D. radiodurans Trx was determined and is about twofold higher than that of the E. coli thioredoxin system. However, D. radiodurans TrxR has a much lower affinity for E. coli Trx (K(m), 44.4 muM). Subtle differences in the surface charge and shape of the Trx binding site on TrxR may account for the differences in recognition. Because it has been suggested that TrxR from D. radiodurans may have dual cofactor specificity (can utilize both NADH and NADPH), D. radiodurans TrxR was tested for its ability to utilize NADH as well. Our results show that D. radiodurans TrxR can utilize only NADPH for activity.
Collapse
|
44
|
Landriscina M, Maddalena F, Laudiero G, Esposito F. Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid Redox Signal 2009; 11:2701-16. [PMID: 19778285 DOI: 10.1089/ars.2009.2692] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The discovery of some additional properties and functions of reactive oxygen species (ROS), beyond their toxic effects, provides a novel scenario for the molecular basis and cell regulation of several pathophysiologic processes. ROS are generated by redox-sensitive, prosurvival signaling pathways and function as second messengers in the transduction of several extracellular signals. A complex intracellular redox buffering network has developed to adapt and protect cells against the dangerous effects of oxidative stress. However, pathways involved in ROS-adaptive response may also play a critical role in protecting cells against cytotoxic effects of anticancer agents, thus supporting the hypothesis of a correlation between adaptation/resistance to oxidative stress and resistance to anticancer drugs. This review summarizes the main systems involved in the adaptive responses: an overview on the pathophysiologic relevance of mitochondria on redox-sensitive transcription factors and genes and main antioxidant networks in tumor cells is provided. One of the major aims is to highlight the adaptive mechanisms and their interplay in the intricate connection between oncogenic signaling, oxidative stress, and chemoresistance. Clarification of these mechanisms has tremendous application potential, in terms of developing novel molecular-targeted anticancer therapies and innovative strategies for rational combination of these agents with chemotherapeutic or tumor-specific biologic drugs.
Collapse
Affiliation(s)
- Matteo Landriscina
- Clinical Oncology Unit, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | | | | | | |
Collapse
|
45
|
Atack JM, Kelly DJ. Oxidative stress in Campylobacter jejuni: responses, resistance and regulation. Future Microbiol 2009; 4:677-90. [PMID: 19659424 DOI: 10.2217/fmb.09.44] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni is a major food-borne human pathogen that paradoxically is an oxygen-sensitive microaerophile, yet must resist the oxidative stresses encountered both in the host and in the environment. Recent studies suggest that, perhaps surprisingly, C. jejuni contains a wide range of enzymes involved in oxidative stress defense, and this review focuses on the properties and roles of these proteins. Although the mechanisms of gene regulation are still poorly understood in C. jejuni, several regulators of the oxidative stress response have been identified and their properties are discussed here. We suggest that future studies should be directed towards identifying the role of additional and less well characterized components involved in oxidative stress resistance, as well as providing a more complete picture of the underlying sensing and regulatory mechanisms.
Collapse
Affiliation(s)
- John M Atack
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, The University of Sheffield, Sheffield, S3 7HF, UK
| | | |
Collapse
|
46
|
Abstract
Redox regulation of stress proteins, such as molecular chaperones, guarantees an immediate response to oxidative stress conditions. This review focuses on the two major classes of redox-regulated chaperones, Hsp33 in bacteria and typical 2-Cys peroxiredoxins in eukaryotes. Both proteins employ redox-sensitive cysteines, whose oxidation status directly controls their affinity for unfolding proteins and therefore their chaperone function. We will first discuss Hsp33, whose oxidative stress-induced disulfide bond formation triggers the partial unfolding of the chaperone, which, in turn, leads to the exposure of a high-affinity binding site for unfolded proteins. This rapid mode of activation makes Hsp33 essential for protecting bacteria against severe oxidative stress conditions, such as hypochlorite (i.e., bleach) treatment, which leads to widespread protein unfolding and aggregation. We will compare Hsp33 to the highly abundant eukaryotic typical 2-Cys peroxiredoxin, whose oxidative stress-induced sulfinic acid formation turns the peroxidase into a molecular chaperone in vitro and presumably in vivo. These examples illustrate how proteins use reversible cysteine modifications to rapidly adjust to oxidative stress conditions and demonstrate that redox regulation plays a vital role in protecting organisms against reactive oxygen species-mediated cell death.
Collapse
Affiliation(s)
- Caroline Kumsta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
47
|
Hall A, Parsonage D, Horita D, Karplus PA, Poole LB, Barbar E. Redox-dependent dynamics of a dual thioredoxin fold protein: evolution of specialized folds. Biochemistry 2009; 48:5984-93. [PMID: 19459661 DOI: 10.1021/bi900270w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enzyme system protecting bacteria from oxidative stress includes the flavoprotein AhpF and the peroxiredoxin AhpC. The N-terminal domain of AhpF (NTD), with two fused thioredoxin (Trx) folds, belongs to the hyperthermophilic protein disulfide oxidoreductase family. The NTD is distinct in that it contains a redox active a fold with a CxxC sequence and a redox inactive b fold that has lost the CxxC motif. Here we characterize the stability, the (15)N backbone relaxation, and the hydrogen-deuterium exchange properties of reduced [NTD-(SH)(2)] and oxidized (NTD-S(2)) NTD from Salmonella typhimurium. While both NTD-(SH)(2) and NTD-S(2) exhibit similar equilibrium unfolding transitions and order parameters, R(ex) relaxation terms are quite distinct with considerably more intermediate time scale motions in NTD-S(2). Hydrogen exchange protection factors show that the slowly exchanging core corresponds to residues in the b fold in both NTD-(SH)(2) and NTD-S(2). Interestingly, folded-state dynamic fluctuations in the catalytic a fold are significantly increased for residues in NTD-S(2) compared to NTD-(SH)(2). Taken together, these data demonstrate that oxidation of the active site disulfide does not significantly increase stability but results in a dramatic increase in conformational heterogeneity in residues primarily in the redox active a fold. Differences in dynamics between the two folds of the NTD suggest that each evolved a specialized function which, in the a fold, couples redox state to internal motions which may enhance catalysis and specificity and, in the b fold, provides a redox insensitive stable core.
Collapse
Affiliation(s)
- Andrea Hall
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | |
Collapse
|
48
|
Jacquot JP, Eklund H, Rouhier N, Schürmann P. Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. TRENDS IN PLANT SCIENCE 2009; 14:336-43. [PMID: 19446492 DOI: 10.1016/j.tplants.2009.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 05/24/2023]
Abstract
Thioredoxins (Trxs) are small oxidoreductases that are involved in redox homeostasis and are found in large numbers in the subcellular compartments of eukaryotic plant cells, including the chloroplasts. Also present in chloroplasts are two forms of thioredoxin reductase (TR), which use either NADPH or ferredoxin as an electron donor. In other compartments, two additional TR forms also use NADPH: one is distributed in all photosynthetic organisms and is similar to prokaryotic enzymes, whereas the other is restricted to algae and is similar to mammalian selenoproteins. Here, we review current knowledge of the different forms of TRs across organisms and discuss the possible evolutionary fate of this class of enzymes, which provide an example of convergent functional evolution.
Collapse
Affiliation(s)
- Jean-Pierre Jacquot
- Interactions Arbres Microorganismes UMR 1136, IFR 110, Nancy University, BP 239, 54506 Vandoeuvre Cedex, France.
| | | | | | | |
Collapse
|
49
|
Pérez-Ruiz JM, González M, Spínola MC, Sandalio LM, Cejudo FJ. The quaternary structure of NADPH thioredoxin reductase C is redox-sensitive. MOLECULAR PLANT 2009; 2:457-467. [PMID: 19825629 DOI: 10.1093/mp/ssp011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
NADPH thioredoxin reductase C (NTRC) is a chloroplast enzyme able to conjugate NADPH thioredoxin reductase (NTR) and thioredoxin (TRX) activities for the efficient reduction of 2-Cys peroxiredoxin (2-Cys PRX). Because NADPH can be produced in chloroplasts during darkness, NTRC plays a key role for plant peroxide detoxification during the night. Here, it is shown that the quaternary structure of NTRC is highly dependent on its redox status. In vitro, most of the enzyme adopted an oligomeric state that disaggregated in dimers upon addition of NADPH, NADH, or DTT. Gel filtration and Western blot analysis of protein extracts from Arabidopsis chloroplast stroma showed that native NTRC forms aggregates, which are sensitive to NADPH and DTT, suggesting that the aggregation state might be a significant aspect of NTRC activity in vivo. Moreover, the enzyme is localized in clusters in Arabidopsis chloroplasts. NTRC triple and double mutants, A164G-V182E-R183F and A164G-R183F, replacing key residues of NADPH binding site, showed reduced activity but were still able to dimerize though with an increase in intermediary forms. Based on these results, we propose that the catalytically active form of NTRC is the dimer, which formation is induced by NADPH.
Collapse
Affiliation(s)
- Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y CSIC, Avda Américo Vespucio 49, 41092-Sevilla, Spain
| | | | | | | | | |
Collapse
|
50
|
Pérez-Ruiz JM, Cejudo FJ. A proposed reaction mechanism for rice NADPH thioredoxin reductase C, an enzyme with protein disulfide reductase activity. FEBS Lett 2009; 583:1399-402. [DOI: 10.1016/j.febslet.2009.03.067] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/26/2022]
|