1
|
Wheless A, Gunn KH, Neher SB. Macromolecular Interactions of Lipoprotein Lipase (LPL). Subcell Biochem 2024; 104:139-179. [PMID: 38963487 DOI: 10.1007/978-3-031-58843-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.
Collapse
Affiliation(s)
- Anna Wheless
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn H Gunn
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Stony Brook University, Stony Brook, USA
| | - Saskia B Neher
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism. Int J Mol Sci 2022; 23:ijms232315392. [PMID: 36499725 PMCID: PMC9737104 DOI: 10.3390/ijms232315392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The aggregation of intracellular proteins may be enhanced under stress. The expression of heat-shock proteins (HSPs) and the accumulation of osmolytes are among the cellular protective mechanisms in these conditions. In addition, one should remember that the cell environment is highly crowded. The antiaggregation activity of HSPB5 and the effect on it of either a crowding agent (polyethylene glycol (PEG)) or an osmolyte (betaine), or their mixture, were tested on the aggregation of two target proteins that differ in the order of aggregation with respect to the protein: thermal aggregation of glutamate dehydrogenase and DTT-induced aggregation of lysozyme. The kinetic analysis of the dynamic light-scattering data indicates that crowding can decrease the chaperone-like activity of HSPB5. Nonetheless, the analytical ultracentrifugation shows the protective effect of HSPB5, which retains protein aggregates in a soluble state. Overall, various additives may either improve or impair the antiaggregation activity of HSPB5 against different protein targets. The mixed crowding arising from the presence of PEG and 1 M betaine demonstrates an extraordinary effect on the oligomeric state of protein aggregates. The shift in the equilibrium of HSPB5 dynamic ensembles allows for the regulation of its antiaggregation activity. Crowding can modulate HSPB5 activity by affecting protein-protein interactions.
Collapse
|
3
|
Use of molecular crowding for the detection of protein self-association by size-exclusion chromatography. Anal Biochem 2019; 584:113392. [PMID: 31408631 DOI: 10.1016/j.ab.2019.113392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 11/24/2022]
Abstract
The feasibility of employing molecular crowding cosolutes to facilitate the detection of protein self-association by zonal size exclusion chromatography is investigated. Theoretical considerations have established that although the cosolute-induced displacement of a self-association equilibrium towards the oligomeric state invariably occurs in the mobile phase of the column, that displacement is only manifested as a decreased protein elution volume for cosolutes sufficiently small to partition between the mobile and stationary phases. Indeed, the use of a crowding agent sufficiently large to be confined to the mobile phase gives rise to an increased elution volume that could be misconstrued as evidence of cosolute-induced protein dissociation. Those theoretical considerations are reinforced by experimental studies of α-chymotrypsin (a reversibly dimerizing enzyme) on Superdex 200. The use of cosolutes such as sucrose and small polyethylene glycol fractions such as PEG-2000 is therefore recommended for the detection of protein self-association by molecular crowding effects in size exclusion chromatography.
Collapse
|
4
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Borzova VA, Yudin IK, Kurganov BI. Mechanism of aggregation of UV-irradiated glycogen phosphorylase b at a low temperature in the presence of crowders and trimethylamine N-oxide. Biophys Chem 2018; 232:12-21. [DOI: 10.1016/j.bpc.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
5
|
Hall D, Harding SE. Foreword to 'Quantitative and analytical relations in biochemistry'-a special issue in honour of Donald J. Winzor's 80th birthday. Biophys Rev 2016; 8:269-277. [PMID: 28510020 PMCID: PMC5425807 DOI: 10.1007/s12551-016-0227-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022] Open
Abstract
The purpose of this special issue is to honour Professor Donald J. Winzor's long career as a researcher and scientific mentor, and to celebrate the milestone of his 80th birthday. Throughout his career, Don has been renowned for his development of clever approximations to difficult quantitative relations governing a range of biophysical measurements. The theme of this special issue, 'Quantitative and analytical relations in biochemistry', was chosen to reflect this aspect of Don's scientific approach.
Collapse
Affiliation(s)
- Damien Hall
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
6
|
Chebotareva NA, Roman SG, Kurganov BI. Dissociative mechanism for irreversible thermal denaturation of oligomeric proteins. Biophys Rev 2016; 8:397-407. [PMID: 28510015 PMCID: PMC5418479 DOI: 10.1007/s12551-016-0220-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Protein stability is a fundamental characteristic essential for understanding conformational transformations of the proteins in the cell. When using protein preparations in biotechnology and biomedicine, the problem of protein stability is of great importance. The kinetics of denaturation of oligomeric proteins may have characteristic properties determined by the quaternary structure. The kinetic schemes of denaturation can include the multiple stages of conformational transitions in the protein oligomer and stages of reversible dissociation of the oligomer. In this case, the shape of the kinetic curve of denaturation or the shape of the melting curve registered by differential scanning calorimetry can vary with varying the protein concentration. The experimental data illustrating dissociative mechanism for irreversible thermal denaturation of oligomeric proteins have been summarized in the present review. The use of test systems based on thermal aggregation of oligomeric proteins for screening of agents possessing anti-aggregation activity is discussed.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia.
| | - Svetlana G Roman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| |
Collapse
|
7
|
Rao A, Cölfen H. Mineralization and non-ideality: on nature's foundry. Biophys Rev 2016; 8:309-329. [PMID: 28510024 DOI: 10.1007/s12551-016-0228-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022] Open
Abstract
Understanding how ions, ion-clusters and particles behave in non-ideal environments is a fundamental question concerning planetary to atomic scales. For biomineralization phenomena wherein diverse inorganic and organic ingredients are present in biological media, attributing biomaterial composition and structure to the chemistry of singular additives may not provide a holistic view of the underlying mechanisms. Therefore, in this review, we specifically address the consequences of physico-chemical non-ideality on mineral formation. Influences of different forms of non-ideality such as macromolecular crowding, confinement and liquid-like organic phases on mineral nucleation and crystallization in biological environments are presented. Novel prospects for the additive-controlled nucleation and crystallization are accessible from this biophysical view. In this manner, we show that non-ideal conditions significantly affect the form, structure and composition of biogenic and biomimetic minerals.
Collapse
Affiliation(s)
- Ashit Rao
- Freiburg Institute for Advanced Studies, Albert Ludwigs University of Freiburg, 79104, Freiburg im Breisgau, Germany.
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, D-78457, Konstanz, Germany.
| |
Collapse
|
8
|
Chebotareva NA, Eronina TB, Sluchanko NN, Kurganov BI. Effect of Ca2+ and Mg2+ ions on oligomeric state and chaperone-like activity of αB-crystallin in crowded media. Int J Biol Macromol 2015; 76:86-93. [DOI: 10.1016/j.ijbiomac.2015.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/12/2022]
|
9
|
Abstract
Macromolecular crowding decreases the diffusion rate, shifts the equilibrium of protein-protein and protein-substrate interactions, and changes protein conformational dynamics. Collectively, these effects contribute to enzyme catalysis. Here we describe how crowding may bias the conformational change and dynamics of enzyme populations and in this way affect catalysis. Crowding effects have been studied using artificial crowding agents and in vivo-like environments. These studies revealed a correlation between protein dynamics and function in the crowded environment. We suggest that crowded environments be classified into uniform crowding and structured crowding. Uniform crowding represents random crowding conditions created by synthetic particles with a narrow size distribution. Structured crowding refers to the highly coordinated cellular environment, where proteins and other macromolecules are clustered and organized. In structured crowded environments the perturbation of protein thermal stability may be lower; however, it may still be able to modulate functions effectively and dynamically. Dynamic, allosteric enzymes could be more sensitive to cellular perturbations if their free energy landscape is flatter around the native state; on the other hand, if their free energy landscape is rougher, with high kinetic barriers separating deep minima, they could be more robust. Above all, cells are structured; and this holds both for the cytosol and for the membrane environment. The crowded environment is organized, which limits the search, and the crowders are not necessarily inert. More likely, they too transmit allosteric effects, and as such play important functional roles. Overall, structured cellular crowding may lead to higher enzyme efficiency and specificity.
Collapse
Affiliation(s)
- Judith Klinman
- Department of Chemistry Department of Molecular and Cell Biology, University of California The california institute for Quantitativ, Berkeley, CA, USA
| | | |
Collapse
|
10
|
Roman SG, Chebotareva NA, Eronina TB, Kleymenov SY, Makeeva VF, Poliansky NB, Muranov KO, Kurganov BI. Does the Crowded Cell-like Environment Reduce the Chaperone-like Activity of α-Crystallin? Biochemistry 2011; 50:10607-23. [DOI: 10.1021/bi201030y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Svetlana G. Roman
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
- Department of Physics, Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Natalia A. Chebotareva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Tatyana B. Eronina
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Sergey Yu. Kleymenov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
- Kol’tsov Institute of Developmental
Biology, Russian Academy of Sciences, Vavilova
st. 26, Moscow 119991, Russia
| | - Valentina F. Makeeva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Nikolay B. Poliansky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, Moscow 119991, Russia
| | - Konstantin O. Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, Moscow 119991, Russia
| | - Boris I. Kurganov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| |
Collapse
|
11
|
Chebotareva NA, Makeeva VF, Bazhina SG, Eronina TB, Gusev NB, Kurganov BI. Interaction of Hsp27 with native phosphorylase kinase under crowding conditions. Macromol Biosci 2010; 10:783-9. [PMID: 20491124 DOI: 10.1002/mabi.200900397] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Interaction of the wild type (wt) heat shock protein Hsp27 and its three-dimensional (3D) mutant (mimicking phosphorylation at Ser15, 78, and 82) with rabbit skeletal muscle phosphorylase kinase (PhK) has been studied under crowding conditions modeled by addition of 1 M trimethylamine N-oxide (TMAO). According to the data of sedimentation velocity and dynamic light scattering, crowding provokes the formation of large-sized associates of both PhK and Hsp27. Under crowding conditions, small associates of PhK and Hsp27 interact with each other thus leading to dissociation of large homooligomers of each protein. Taking into account high concentrations of PhK in the cell, we speculate that native PhK might modulate the oligomeric state and chaperone-like activity of Hsp27.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky 33, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
12
|
Chebotareva NA, Meremyanin AV, Makeeva VF, Eronina TB, Kurganov BI. Glycogen phosphorylase b and phosphorylase kinase binding to glycogen under molecular crowding conditions. Inhibitory effect of FAD. BIOCHEMISTRY (MOSCOW) 2009; 74:562-8. [PMID: 19538131 DOI: 10.1134/s0006297909050125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dynamic light scattering was used to study the interaction of phosphorylase kinase (PhK) and glycogen phosphorylase b (Phb) from rabbit skeletal muscle with glycogen under molecular crowding conditions arising from the presence of 1 M trimethylamine N-oxide and at physiological ionic strength. The mean value of hydrodynamic radius of the initial glycogen particles was 52 nm. Crowding stimulated Phb and PhK combined binding on glycogen particles. Two-stage character of PhK binding to glycogen particles containing adsorbed Phb was found in the presence of the crowding agent. At the initial stage, limited size particles with hydrodynamic radius of approximately 220 nm are formed, whereas the second stage is accompanied by linear growth of hydrodynamic radius. Flavin adenine dinucleotide (FAD) selectively inhibited PhK binding at the second stage. The data indicate that in the first stage Phb is involved in PhK binding by glycogen particles containing adsorbed Phb, whereas PhK binding in the second stage does not involve Phb.
Collapse
Affiliation(s)
- N A Chebotareva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
13
|
Chebotareva NA, Meremyanin AV, Makeeva VF, Livanova NB, Kurganov BI. Cooperative self-association of phosphorylase kinase from rabbit skeletal muscle. Biophys Chem 2008; 133:45-53. [DOI: 10.1016/j.bpc.2007.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 11/15/2022]
|
14
|
Chebotareva NA. Effect of molecular crowding on the enzymes of glycogenolysis. BIOCHEMISTRY (MOSCOW) 2007; 72:1478-90. [DOI: 10.1134/s0006297907130056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Makeeva VF, Chebotareva NA, Andreeva IE, Livanova NB, Kurganov BI. Interaction of phosphorylase kinase from rabbit skeletal muscle with flavin adenine dinucleotide. BIOCHEMISTRY (MOSCOW) 2006; 71:652-7. [PMID: 16827657 DOI: 10.1134/s0006297906060095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction of flavin adenine dinucleotide (FAD) with rabbit skeletal muscle phosphorylase kinase has been studied. Direct evidence of binding of phosphorylase kinase with FAD has been obtained using analytical ultracentrifugation. It has been shown that FAD prevents the formation of the enzyme-glycogen complex, but exerts practically no effect on the phosphorylase kinase activity. The dependence of the relative rate of phosphorylase kinase-glycogen complex formation on the concentration of FAD has cooperative character (the Hill coefficient is 1.3). Under crowding conditions in the presence of 1 M trimethylamine-N-oxide (TMAO), FAD has an inhibitory effect on self-association of phosphorylase kinase. The data suggest that the complex of glycogen metabolism enzymes in protein-glycogen particles may function as a flavin depot in skeletal muscle.
Collapse
Affiliation(s)
- V F Makeeva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
16
|
Chebotareva NA, Kurganov BI, Harding SE, Winzor DJ. Effect of osmolytes on the interaction of flavin adenine dinucleotide with muscle glycogen phosphorylase b. Biophys Chem 2006; 113:61-6. [PMID: 15617811 DOI: 10.1016/j.bpc.2004.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 11/20/2022]
Abstract
The effect of three osmolytes, trimethylamine N-oxide (TMAO), betaine and proline, on the interaction of muscle glycogen phosphorylase b with allosteric inhibitor FAD has been examined. In the absence of osmolyte, the interaction is described by a single intrinsic dissociation constant (17.8 microM) for two equivalent and independent binding sites on the dimeric enzyme. However, the addition of osmolytes gives rise to sigmoidal dependencies of fractional enzyme-site saturation upon free inhibitor concentration. The source of this cooperativity has been shown by difference sedimentation velocity to be an osmolyte-mediated isomerization of phosphorylase b to a smaller dimeric state with decreased affinity for FAD. These results thus have substantiated a previous inference that the tendency for osmolyte-enhanced self-association of dimeric glycogen phosphorylase b in the presence of AMP was being countered by the corresponding effect of molecular crowding on an isomerization of dimer to a smaller, nonassociating state.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- AN Bakh Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | |
Collapse
|
17
|
Eronina TB, Chebotareva NA, Kurganov BI. Influence of Osmolytes on Inactivation and Aggregation of Muscle Glycogen Phosphorylase b by Guanidine Hydrochloride. Stimulation of Protein Aggregation under Crowding Conditions. BIOCHEMISTRY (MOSCOW) 2005; 70:1020-6. [PMID: 16266274 DOI: 10.1007/s10541-005-0219-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of the osmolytes trimethylamine-N-oxide (TMAO), betaine, proline, and glycine on the kinetics of inactivation and aggregation of rabbit skeletal muscle glycogen phosphorylase b by guanidine hydrochloride (GuHCl) have been studied. It is shown that the osmolytes TMAO and betaine exhibit the highest protective efficacy against phosphorylase b inactivation. A test system for studying the effects of macromolecular crowding induced by osmolytes on aggregation of proteins is proposed. TMAO and glycine increase the rate of phosphorylase b aggregation induced by GuHCl.
Collapse
Affiliation(s)
- T B Eronina
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
18
|
Chebotareva NA, Kurganov BI, Livanova NB. Biochemical effects of molecular crowding. BIOCHEMISTRY (MOSCOW) 2005; 69:1239-51. [PMID: 15627378 DOI: 10.1007/s10541-005-0070-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell cytoplasm contains high concentrations of high-molecular-weight components that occupy a substantial part of the volume of the medium (crowding conditions). The effect of crowding on biochemical processes proceeding in the cell (conformational transitions of biomacromolecules, assembling of macromolecular structures, protein folding, protein aggregation, etc.) is discussed in this review. The excluded volume concept, which allows the effects of crowding on biochemical reactions to be quantitatively described, is considered. Experimental data demonstrating the biochemical effects of crowding imitated by both low-molecular-weight and high-molecular-weight crowding agents are summarized.
Collapse
Affiliation(s)
- N A Chebotareva
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| | | | | |
Collapse
|
19
|
Singh R, Haque I, Ahmad F. Counteracting Osmolyte Trimethylamine N-Oxide Destabilizes Proteins at pH below Its pK. J Biol Chem 2005; 280:11035-42. [PMID: 15653673 DOI: 10.1074/jbc.m410716200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Earlier studies have reported that trimethylamine N-oxide (TMAO), a naturally occurring osmolyte, is a universal stabilizer of proteins because it folds unstructured proteins and counteracts the deleterious effects of urea and salts on the structure and function of proteins. This conclusion has been reached from the studies of the effect of TMAO on proteins in the pH range 6.0-8.0. In this pH range TMAO is almost neutral (zwitterionic form), for it has a pK(a) of 4.66 +/- 0.10. We have asked the question of whether the effect of TMAO on protein stability is pH-dependent. To answer this question we have carried out thermal denaturation studies of lysozyme, ribonuclease-A, and apo-alpha-lactalbumin in the presence of various TMAO concentrations at different pH values above and below the pK(a) of TMAO. The main conclusion of this study is that near room temperature TMAO destabilizes proteins at pH values below its pK(a), whereas it stabilizes proteins at pH values above its pK(a). This conclusion was reached by determining the T(m) (midpoint of denaturation), delta H(m) (denaturational enthalpy change at T(m)), delta C(p) (constant pressure heat capacity change), and delta G(D) degrees (denaturational Gibbs energy change at 25 degrees C) of proteins in the presence of different TMAO concentrations. Other conclusions of this study are that T(m) and delta G(D) degrees depend on TMAO concentration at each pH value and that delta H(m) and the delta C(p) are not significantly changed in presence of TMAO.
Collapse
Affiliation(s)
- Rajendrakumar Singh
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | | | | |
Collapse
|
20
|
|
21
|
Chebotareva NA, Klinov SV, Kurganov BI. Regulation of muscle glycogen phosphorylase by physiological effectors. Biotechnol Genet Eng Rev 2002; 18:265-97. [PMID: 11530691 DOI: 10.1080/02648725.2001.10648016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- N A Chebotareva
- A.N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Leninsky prospekt 33, Moscow 117071, Russian Federation.
| | | | | |
Collapse
|